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The Value of Exact Analysis in
Requirements Selection

Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang

Abstract—Uncertainty is characterised by incomplete understanding. It is inevitable in the early phase of requirements engineering,
and can lead to unsound requirement decisions. Inappropriate requirement choices may result in products that fail to satisfy
stakeholders’ needs, and might cause loss of revenue. To overcome uncertainty, requirements engineering decision support needs
uncertainty management. In this research, we develop a decision support framework METRO for the Next Release Problem (NRP) to
manage algorithmic uncertainty and requirements uncertainty. An exact NRP solver (NSGDP) lies at the heart of METRO. NSGDP's
exactness eliminates interference caused by approximate existing NRP solvers. We apply NSGDP to three NRP instances, derived

from a real world NRP instance, RALIC, and compare with NSGA-II, a widely-used approximate (inexact) technique. We find the
randomness of NSGA-II results in decision makers missing up to 99.95 percent of the optimal solutions and obtaining up to 36.48
percent inexact requirement selection decisions. The chance of getting an inexact decision using existing approximate approaches is
negatively correlated with the implementation cost of a requirement (Spearman p up to —0.72). Compared to the inexact existing
approach, NSGDP saves 15.21 percent lost revenue, on average, for the RALIC dataset.

Index Terms—Software engineering, exact multi-objective optimisation, simulation optimisation, next release problem

1 INTRODUCTION

ETERMINING an appropriate subset of requirements to
be delivered in the next release of a software system is
a critical aspect in software engineering. In 1996, Karlsson
developed an Analytical Hierarchy Process for supporting
software requirements selection and prioritisation [1]. It
was subsequently formulated as the Next Release Problem
(NRP) by Bagnall et al. [2] in 2001. The NRP models stake-
holders’ objectives quantitatively, and employs optimisa-
tion techniques (i.e., meta-heuristic algorithms, dynamic
programming) to identify a subset of requirements that is
both feasible and well-suited to stakeholders’ requirements.
The NRP is a non-trivial problem, known to be NP-hard [2],
[3], [4]. The search space of this problem increases exponen-
tially with the number of requirements. Nevertheless, there
are exact solutions to the classic NRP (which simply balan-
ces cost and value) that scale reasonably [4], [5], [6].
Unfortunately, such exisiting exact solution approaches
fail to cater for uncertainty. Uncertainty is an inherent char-
acteristic of software engineering [7]. The essence of uncer-
tainty is the lack of complete knowledge at the time a
decision must be made [8]. In software engineering, the
requirements of a new system are incomplete before the
users have started to use it [9], and may remain the subject of
change and uncertainty thereinafter. Nevertheless, decision
makers have to make decisions under such uncertainties.
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The uncertainties include uncertainty about development
resource availability, the impact of dynamic and frequent
changes in the overall software development life cycle, and
the accuracy of the software project estimation. Underesti-
mated or ignored uncertainties may elevate risk, and might
even result in project failure [9].

Previous NRP work was concerned with point-based esti-
mation. Point based esitmates are specific values (rather than
intervals of “confidence”), estimated by human requirements
engineers [2], [10], [11], [12]. In this previous work, the attrib-
utes of requirements and stakeholders are quantified as
explicit values, and requirements uncertainty is either under-
estimated or completely overlooked [13]. For example, given
a set of quantified requirements, although point-based esti-
mation approaches can provide optimal solutions in terms of
expected cost and revenue, they fail to offer an assessment of
the confidence of such results. Thus, they may mislead the
decision maker and amplify the consequences of risk.

The impact of uncertainty could be mitigated by per-
forming mathematical measurement methods and scientific
risk management methods. Sensitivity analysis is one such
risk management method, and has been applied previously
in search-based requirements engineering [4], [14]. In this
previous work, sensitivity analysis was performed on solu-
tions generated by an approximate algorithm to capture the
sensitivities of requirements attributes and their effect on
candidate solution uncertainty. However, sensitivity analy-
sis can only provide information on the sensitivities of
parameters. It does not generate robust solutions that are
‘robust’ in the sense that they can tolerate the changes in cir-
cumstances that uncertainty makes inevitable.

Instead of discovering the sensitivity characteristics of
the problem, robust optimisation is an operational research
framework that explores the solution space and takes
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uncertainty into account simultaneously [15], [16]. Paixao
etal. and Li et al. introduced concepts from the literature on
robust optimisation to cater for the uncertainty in NRP
requirement decisions [17], [18]. They reported robust NRP
solutions, but did not guide decision makers to select solu-
tions from thousands of candidates offered. Moreover, the
algorithms they adopted are inexact, with a potential conse-
quence of information loss due to suboptimal solutions. In
order to aid decision support in the early stages of software
engineering, we develop a decision support framework for
Next Release Problem (called METRO), which utilises both a
simulation-based robust optimisation approach and in paral-
lel with an alternative traditional point-based optimisation
approach. Our approach involves a novel exact algorithm
combined with a Monte-Carlo Simulation (MCS) to deal
with algorithm non-determinism and to capture require-
ments uncertainty. Our approach eliminates algorithmic
uncertainty, and explicitly helps decision makers to under-
stand and make the trade-off between uncertainty/risk and
conventional objectives of cost & revenue.

To handle requirement uncertainty, METRO takes into
account the quantified cost and revenue of requirements as
well as the Probability Density Function (PDF) of uncertain-
ties associated with these requirement attributes (cost and
revenue). With the aid of a PDF of uncertainties, METRO
uses MCS to simulate uncertainties in terms of their impact
on specific objectives. A set of solutions is subsequently
picked by METRO's exact optimisation technique. METRO
quantitatively analyses the outcomes of its own optimisa-
tion phase, and interprets the findings through a set of visu-
alisations. These visualisations depict the tension between
two different objectives in the presence of uncertainty, and
illustrate the characteristics of requirements regarding the
design space. This information allows decision makers to
understand the impact of uncertainty and to determine
each requirement’s priority.

The paper’s primary contribution is to introduce exact
multi-objective dependence-respecting NRP solver to deal
with algorithmic uncertainty and requirements uncertainty,
although we also believe that METRO'’s visualisations are a
potentially useful secondary contribution. More specifically,
the following contributions are made:

1)  The first contribution is about eliminating algorith-
mic uncertainty. We develop an exact NRP optimisa-
tion solver: Non-dominated Sorting Conflict Graph
based Dynamic Programming algorithm (NSGDP)
for our framework METRO. Our experimental stud-
ies reveal that, with the aid of NSGDP, the decision
maker can avoid information loss (without which we
show that, for an example real world requirements
problem, he or she will lose up to 99.95 percent of
the optimal solutions and will make up to 36.48 per-
cent inexact requirement selection decisions as a
result). Furthermore, for the RALIC study, the execu-
tion time of NSGDP is better than NSGA-II which is
currently the best performing NRP solver according
to a recent empirical study [19]. However, this is
only a result from a single set of requirements, and
so we cannot claim overall superior performance,
based on this single study.
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2) The second contribution is our introduction of
an approach to cater for requirements uncertainty.
METRO investigates the difference between the
optimal-yet-risky solutions and robust-yet-suboptimal
solutions. Two indicators are used: expected risk pre-
mium and risk reduction. Our experimental results
show that, for RALIC NRP instances, developing a
software project based on an optimal-yet-risky release
plan rather than robust-yet-suboptimal release plan,
increases by 10 percent the probability of overrunning
(more than 150 percent budget) while gaining
less than 0.39 utility in return “the expected risk
premium”.

3) The third contribution is that the proposed frame-
work can better support decision makers in under-
standing the requirements selection problem. A
series of quantitative techniques is provided for
highlighting the characteristics of requirements and
solutions. The difference of requirement selection
probability between two NRP approaches is ana-
lysed and presented in a stacked bar plot. We found
that risk-aware simulation-based NRP model (simu-
lation-NRP) is more likely to include requirements
with low uncertainty than point-based estimated
NRP model (point-NRP) does.

The structure of the rest of the paper is organised as fol-
lows: Section 2 briefly describes the background of this
paper, including the problem statement of NRP in general,
the simulation-NRP, Requirements Interaction Management:
Conlflict Graph, and core NRP solver: Nemhauser-Ullmann
Algorithm. Section 3 formally defines the NRP decision
analysis framework which implements our approach. Sec-
tion 4 presents the research questions, and answers these
research questions by applying the proposed framework on
three synthetic NRP instances. Section 5 evaluates the
threats to validity for our framework, and Section 6 dis-
cusses the related work in which our work is located. Sec-
tion 7 concludes the paper and suggests future work.

2 BACKGROUND

Before introducing our NRP decision analysis framework,
we first describe the problem statement of the NRP in gen-
eral, as well as the improved NRP model: simulation-based
NRP. Subsequently, a Requirements Interaction Manage-
ment model: Conflict Graph is presented to construct
requirement dependencies, followed by introducing Nem-
hauser-Ullmann Algorithm, which is the NRP solver used
in our framework.

2.1 Next Release Problem Statement

In this section, we depict the problem statement of classic
NRP (we use a standard formulation of the problem). In
requirements analysis and optimisation, deciding which
requirements should be included in the next release of a soft-
ware system is critical for the software project. In the context
of Search-based Software Engineering (SBSE), the term NRP
was suggested by Bagnall et al. [2] in 2001. The aim of NRP is
to search the feasible and (near) ideal combinations of
requirements to balance the requests from different stake-
holders, and the constraints, by applying various meta-
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heuristic algorithms. The set of stakeholders is denoted by
Eq. (1) and the set of possible requirements is denoted as

Sy Cm} (1)
,’I“n}, (2)

where m is the number of stakeholders, and n is the number
of requirements.

During software development, some resources (e.g.,
human resources and facility resources) need to be allocated
to satisfy each requirement. In the context of cost-value
based NRP, cost is used to measure the amount of resource
needed to fulfil the requirements as given as

02{01,..
R:{rl,...

Cost = {costy, ..., cost,}. 3)

There is a weight vector that reflects the degree of impor-
tance of each stakeholder for the company. The relative
weight vector related to each stakeholder ¢ (1 < j<m) is
denoted as

Weight = {wy, ..., wy}, 4)

subject to: w; € [0,1],and 377", w; = 1.

It is assumed that the importance of each requirement for
each stakeholder is different. Given a stakeholder, the level
of satisfaction of this stakeholder is based on the require-
ments that are satisfied in the next release of the software
system. Based on this assumption, each requirement r;
(1 <i < n)is assigned a value (14, ¢;) by each stakeholder c;
(1 < j < m). The overall revenue of a given requirement r;
(1 < ¢ < n) for the company is denoted as

Revenue; = Z(wj -value(r;, cj)). (5)

J=1

In NRP, the solution is presented as a decision vector
Z={x1, --,z,} €{0,1}" to determine the requirements
that are to be selected in the next release. In this vector, z; is
1 if requirement i is selected and 0 otherwise.

Then, a single objective NRP, which intends to maximise
commercial profits within a limited cost budget, is formu-
lated as

Mazimise Objective(Z) = Z(ILL - Revenue;) (6)
i=1
Subject to Constraint(Z) = Z(L - Cost;) < b, )
i=1
where b is the project budget.

To allow the decision makers to understand the trade-off
between two conflicting objectives, the Multi-Objective ver-
sion of NRP (MONRP) treats the budget as another objec-
tive for optimisation instead of a constraint [12]. Thus, the
formulation of MONRP can be represented as follows:

Minimise Cost(¥) = Z(L - Cost;) (8
=1

Maximise Revenue(Z) = Z(a@ - Revenue;). 9
i—1

2.2 Simulation-Based Next Release Problem
Statement

The traditional formulation of NRP computes the model
parameters and objectives using point-based estimated val-
ues (exact numbers). As a result traditional NRP models
(abbreviated to point-NRP hereinafter) overlook any con-
cealed uncertainties under the expected parameter values.
To overcome this limitation, simulation-NRP, a robust NRP
model, is suggested by Li et al. [18] in 2014.

In simulation-NRP, the uncertainties concerning the
model parameters are extracted as probability distributions.
Besides, the solutions on Pareto-front contain, not only the
expected quality of objectives, but also the probability of
achieving the quality. This approach offers a probabilistic
point of view for decision makers, and allows decision mak-
ers to flexibly balance the trade-off between the quality of
software release plan and its probabilistic robustness.

Before performing simulation-NRP, one should ensure
that human domain experts have elicited probability distri-
bution of model parameters by a prior risk analysis. Once
the probability distribution of parameters is determined,
simulation-NRP utilises Monte-Carlo Simulation [20] to sam-
ple a large number of simulation scenarios of model param-
eters by their underlying probability distribution. The
requirements scenarios are presented as a matrix S as

(Rv C)lrl (R7 C)Z,l (Rv C)n,l
S = (R7 C’)1,2 (R7 0)242 (Ra C)n.,? , (10)
(Ra C)l,p (R7 C)Q,p (R7 C)n,p

where n is the number of requirements, and p is the number
of scenarios. The tuple (R, C), , denotes the revenue R and
cost C' of the ith (1 < ¢ < n) requirement in the kth scenarios
(1 <k<p).

Then according to the generated simulated scenarios,
decision makers can use simulation-NRP to estimate the
expected value of objectives as well as other interesting
measures, such as the expected revenue of alternative
(Eq. (11)), the expected cost of alternatives (Eq. (12)), and
probability of budget overrun as

n y4 R .
Exp_Revenue(Z) = Z (ml «w) (11
i=1 p
. I >r_, Cost; k>
Exp_Cost(Z) = (xl L= (12)
(%) ; )
Risk(Z) = P(actual_cost(Z) > 0 - Exp_Cost(T)), (13)

where p is the number of scenarios, 6 is the extent of budget
overrun assigned by the decision maker (e.g., 6 = 150 per-
cent), and P measures probability.

Drawing support from such probabilistic objective for-
mulations, simulation-NRP can simply compute arbitrarily
complicated parameter probability distributions and
explore the feasible solutions in terms of these intuitive

objectives as
Objective, (T) = Minimise Exp_Cost(T) (14)

Objectivey(T) = Maximise Exp_Revenue(T) (15)
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Objectives(¥) = Minimise Risk(Z). (16)
2.3 Next Release Problem with Conflict Graphs

In practice, there may be different constraints between the
requirements in NRP. These constraints describe the rela-
tionships between the various requirements [21]. Mutual
exclusion is a typical constraint, which denotes at most one
of the two mutually exclusive requirements can be selected
simultaneously. In graph theory, conflict graphs are usually
used to construct such logical relations between objects.
More precisely, a conflict graph G contains a set of vertices
and edges between two vertices as

G=(V.E)
V= {UZ'}
E = {(vi,vj)|The v; and v; is mutually exclusive},

17

where V' is the vertex set, in which each vertex represents a
distinct object, and F is the edge set, in which each edge
means two connected vertices exclude each other (thus can-
not be selected at the same time). The isolated vertices
denote that those vertices can be selected with every other
isolated vertex at the same time.

Conflict graphs have been successfully applied to
Knapsack-like Problems with Conflicts [22], [23], [24], which
are strongly NP-hard in general. Moreover, in 2009, Pferschy
and Schauer [25] proved that forming Knapsack-like Prob-
lem with Conflict Graph (KCG) in the search tree can carry
forward fully polynomial time approximation schemes
(FPTAS). Accordingly, it is promising to model NRP in the
form of the conflict graph, and then reconstruct it to search
tree. We would interpret how to construct NRP with conflict
graph to the search tree exemplified by the general knap-
sack-like problem.

To reconstruct a knapsack-like problem from a conflict
graph data structure to a search tree data structure, the first
step is processing G in depth-first-search. Then picking a
constrained vertex v; (conflicting with vertex v;) to distin-
guish the problem into two sub-problems from top-down:

e Necessarily including v; in the sub-problem, and
excluding v,
e Always excluding v; in the sub-problem, and keep-
ing the decision concerning v; open.
Mathematically, the process of constructing problem tree
is presented as follows.

Definition 1. G\ v means subtracting a vertex v €V from
graph  G: G\v=(V',E'), where V' =V —{v} and
E = {(vi,vj) | (v,j,vj) e E.v € V’,’Uj S V/}

Definition 2. For graph G = (V, E) and a vertex ve V, C(v)
represents a set of objects including v and those have con-
straints with v: C(v) = {u € V|u=wv or (u,v) € E}.

When all leaves of the root problem tree have no edge at
all (|E| = 0), the problem is solved bottom up. The proce-
dure of solving KCG is described in Algorithm 1. In Algo-
rithm 1, if G has no constraints at all (|E| = 0), then solve
the problem using dynamic programming, otherwise the
problem G is divided into two sub-problems G\ v and
G\ C(v) with respect to a chosen constraint v. The former
one assumes v is not selected in all of the solutions and the
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latter one assumes v selected, thus all the objects that con-
flict with it cannot be selected in the final solutions and are
removed from the problem as well (C(v) contains the objects
that have connections with v). After these two sub-problems
are solved recursively, the algorithm sets z, = 1 in all of the
Pareto solutions for the second sub-problem, since v is
assumed to be selected in the second sub-problem. At last
the algorithm merges these two sets of non-dominated solu-
tions together and removes those being dominated to form
the Pareto solution set for the problem G.

Algorithm 1. Solve KCG S = Solve(G)

Require: conflict graph G = (V, E)
if E = () then
return KnapsackProblemSolver(G)
end if
Pick v € V that has an edge in I
Sy = Solve(G \ v)
S1 = Solve(G\ C(v))
forall 5 ¢ S do
set v selected: s, = 1
end for
return S = Merge(Sy, S1)

2.4 Nemhauser-Ullmann Algorithm

To solve NRP exactly, we build an exact NRP solver NSGDP
using the Nemhauser-Ullmann algorithm to solve specific
instances in a decision tree solution space. The Nemhauser-
Ullmann algorithm is a dynamic programming algorithm
proposed by Nemhauser and Ullmann in 1969 [26]. It is a
non-dominated sorting based multi-objective exact optimisa-
tion algorithm on enumerating the Pareto set of knapsack-like
problems [27]. However, it has an obvious drawback. It can-
not deal with knapsack-like problems with constraints. Har-
man et al. [4] employed it to materialise an exact NRP solver
that focuses on NRP with the independent requirement.

For a given NRP problem with n requirements, the Nem-
hauser-Ullmann algorithm starts with considering 0
requirements, and then iteratively inserts the next require-
ment ¢ into the every solution in the Pareto-front P(i — 1),
where P(i—1) denotes the Pareto-front of first i —1
requirements. After merging two solutions to set
P'(i)=P(i—1)U(P(i— 1)+ 1), the Nemhauser-Ullmann
algorithm uses non-dominated sorting (the so-called stair-
case function) to compute the Pareto-front of first 7 require-
ments P(i) = Non-dominated-Sorting(P'(7)). P(i—1)+1
denotes the set of solutions that is obtained by setting the
ith requirement to be selected for all solutions from
P(i — 1). Following these steps, the final result P(n) is com-
puted inductively. Summarising, the Nemhauser-Ullmann
algorithm is formalised by Algorithm 2:

Algorithm 2. Nemhauser-Ullmann Algorithm for NRP

Require: A set of n requirements
fori=1,...,ndo
P'(i)=P( —1)U(P(i—1)+1)
P(i) = Non-dominated-Sorting(P' (7))
end for
return P(n)
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3 SIMULATION NRP DECISION ANALYSIS
FRAMEWORK METRO

Multi-Objective NRP approaches produce a Pareto-front
which may contain a large number of solutions. It is labo-
rious for engineers to understand and identify one solu-
tion from thousands of candidate solutions, especially
taking uncertainty into account. To aid decision makers
to tackle the latent information within optimal solutions,
this paper proposes a simulation NRP decision analysis
framework, METRO. Instead of merely generating the
optimal solutions themselves, METRO statistically analy-
ses the optimal solutions, mines information from them,
and provides the insight of these solutions. The main pro-
cesses of METRO (Fig. 1) are:

Fig. 1. NRP decision analysis framework: METRO.

1)  Pre-processing the requirements dependencies.

2)  Adopting simulation-NRP and point-NRP to model
the requirements analysis problem separately, and
then using exact optimisation solver (NSGDP) to
produce the optimal solutions.

3) Statistically analysing results of two solutions, and
visualising the refined information as well as the
implicit requirement pattern for decision processes.

4)  Performing this analysis in the next iteration.

3.1 Requirements Interaction Pre-Processing

Requirements may depend on each other [28]. Some
requirements may interact with other requirements due
to the constraints or limitations that come from techni-
ques, or business related issues. Requirement implemen-
tations may be mutually exclusive, or should be fulfilled
together on the basis of their interactions. Failure to
consider requirement interactions, may yield infeasible
decisions.

Requirements Interaction Management has been pro-
posed to analyse and manage the dependences among
requirements [21], [29]. In NRP, Requirements Interaction
Management involves at least two types of interactions
(And, and Or). The And dependence between two require-
ments means the selections of requirements have to be in

the same release. On the other hand, the selection of two
requirements which have Or dependence is “repelling”
each other because these two requirements are mutually
exclusive. Table 1 presents the mathematical expressions of
these interactions.

Although the original Requirements Interaction Man-
agement defines the dependencies between requirements,
Requirements Interaction Management can be simplified
to enable fast execution and better convergence. In
our proposed approach, the And dependence satisfies
V(i,j) €& w;=wx; By transitivity, if (i,5) € and
(4, k) € & then z; = x; = x;. Therefore, a super-require-
ment Reg; j; can be used to represent requirement i, j,
and k in a single decision variable. This simplification,
reduces the computational cost for requirements con-
straint handling and the search space within which we
seek solutions.

3.2 Exact NRP Optimisation Solver
After requirement data pre-processing, decision makers
have to decide which requirements are critical and should
be included in the next release of system under budget con-
straints. For this step, the objectives and formulations
should be clearly defined. The conventional criteria for NRP
are maximising the expected revenue and minimising the
expected release cost. Decision makers can also define other
criteria, such as the satisfaction degree of customers, the
fairness level among different stakeholders [10], and the
utility of release.

Taking uncertainty into account, project risk could be an
extra objective to optimise. In a software project, the project
risk is related to future events that may have undesired

TABLE 1
Requirement Interactions

And
Or

V(’L,j) €@, x; N\ T = 0

The sets &, and ¢ present the interaction types And,
and Or, respectively. The set E N g = ().
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consequences for the project [30]. Project risk could
include budget overrun, the number of requirements
becoming inflated, departure of a key person, and pro-
ductivity failing to meet expected estimates [31], [32].
There are existing risk analysis methods that identify
and elicit these software project uncertainties quantita-
tively and use probability distributions to represent the
uncertainty [33]. After these uncertainties have been eli-
cited, our framework formulates the fitness function to
optimise project risk.

In NRP, such multi-objective decision support prob-
lems can be investigated using a multi-objective optimisa-
tion algorithm. In order to ensure that the variations in
results do not come from the stochastic nature of the algo-
rithm, we design an exact NRP optimisation solver
NSGDP. The NSGDP uses the Nemhauser-Ullmann algo-
rithm, an exact dynamic programming algorithm, as the
core NRP solver, and augmented by Conflict Graph to
deal with the requirements interaction. First, the NRP
problem with constraints is modelled into Conflict Graph.
Then, the root problem is broken down into sub-problems
according to Algorithm 1 until there is no constraint in
sub-problems. Lastly, Algorithm 2 is used to solve NRP
without constraint directly It is worth mentioning that,
our algorithm is applicable to, not only the case we study
in this paper, but also any kind of knapsack-like problems
with exclusive conditions.

To further improve the performance of our algorithm,
we introduce an array to store the processing order.
This is because, when a graph G is divided to two
graphs G\ v= (Vj,Ey) and G\ C(v)= Vi, E), G\ C(v)
is a sub-graph of G\ v (\;, DV, and Ej D E)). If further
divided, the ‘offspring’(s) of G\v may be exactly
the same as G\ C(v), thus does not need to be solved
multiple times.

There is no strict rule of which v should be chosen as long
as it has at least one constraint on it. In our algorithm, we
always choose the vertex v with the biggest degree (has the
biggest number of edges connecting it), thus the number of
edges in G is minimised to have a minimal depth of subse-
quent dividing.

Fig. 2 illustrates the breakdown process of our NSGDP
algorithm with a simple problem instance (Fig. 2a). There
are seven requirements and five conflicting interactions in
this instance. The edge connects two requirements means
these two requirements are conflicting with each other. So
the expressions of this instance is V = {ry, o, 73,74, 75, 76,77}
and E = {(7‘2, 7‘3), (T’Q, 7"4), (7"2, 7"5), (7'5, 7’6), (7'3, 7“7)}. For this
instance, the problem is divided based on requirement r;
first. The reason is that ry conflicts with most requirements
(rs, 74, and r5), so its degree is biggest (degree 3). Then the
problem is broke down into two sub-problem. The r; is
not selected in the first sub-problem G, = G, \ r; (Fig. 2b),
so 7o and the edges connected to r; are removed. In the
second sub-problem G.= G, \ Ezt(ry) (Fig. 2c), req is
selected. Accordingly, the requirements have connection
with 7, are removed. The dashed line in Fig. 2c denotes
that, in order to solve the problem G.=G,\ Ext(rs),
NSGDP first solves the right part, and then computes the
optimal frontier of whole problem G, by merging the con-
sideration of left part requirements.
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(j) The breakdown procedure (solid line) generated by NSGDP algo-
rithm, and the solving procedure (dashed line) for problem G,

Fig. 2. The illustration of the subdivision process of the NSGDP for an
instance with 7 requirements and 5 conflicting interactions. Figs. 2a to 2i
are each generated sub-problem in the subdivision phase. Fig. 2jillustrates
the generated sub-problems and the solution path of NSGDP algorithm.

Subsequently, NSGDP further divides these two gener-
ated sub-problems. Because there is no edge in G, (Fig. 2¢),
no further breakdown would be performed on G.. Since
there are two conflicts in Gy (Ey = {(r3,77), (r5,76)}), and
each conflicted requirement has same degree (degree 1),
NSGDP vpicks r3 by requirement id order. Thus, sub-
problem G is divided into sub-problems G;= Gj\ r;
(Fig. 2b) and G. = Gy \ Ext(r;) (Fig. 2e). NSGDP continues
to breakdown the problem until there is no further conflict
that can be subdivided. In this instance, there are five leaf
node sub-problems generated.

After the breakdown process is terminated, the NSGDP
solves the problem from the bottom up. Fig. 2j illustrates
the procedure by a dashed line. According to the composi-
tion of problems G;, Gj, and G, the algorithm solves the G;
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first. Then the results of GG; can be used for solving the other
two leaf nodes sub-problem G, and G,. Thus, the re-compu-
tation can be avoided by storing previous steps’ results.

3.3 Results Analysis & visualisation

The last step of METRO is to analyse the solutions on
two Pareto-fronts, one of which is produced by point-
NRP, and the other by simulation-NRP. The shape of gen-
erated Pareto-frontier exposes the possible trade-off
among all conflicting objectives.

The shape of Pareto-front helps decision makers to under-
stand the possible trade-off among all conflicting objectives,
yet it does not provide other intelligible information to inter-
pret the variations among the solutions as well as the charac-
teristics of requirements. In particular, the number of
solutions on Pareto-front maybe large, thereby requiring fur-
ther analysis support to help the decision maker understand
the implication for requirement release decisions. By
contrast, METRO performs a series of posterior analysis pro-
cedures to help decision makers to concentrate on the
impacts of requirements uncertainty, most interesting solu-
tions, and most urgent and worthwhile requirements.

Algorithm 3. Generate Solution Compare Pairs

Require: simulation-NRP solution set S;, and point-NRP Ss.
set Pairs = ()
forall 51 € S| do
5= 5,[0]
for all $3 € Sy A Cost(sy) > Cost(s7) do
if Cost(s3) < Cost(5) then
§=5
end if
end for
Puairs = Pairs U Pair(sy, 5)
end for
return Pairs

In order to assess the impact of requirements uncertainty,
we introduced the concept of the expected risk premium, which
is a variant of the risk premium [34]. This measures the differ-
ence between robust-yet-suboptimal solutions and optimal-
yet-risky solutions. The robust-yet-suboptimal solution is
simply that which has the lowest uncertainty variance in the
distribution of possible values. Suppose we use the point
based method to find a particular optimal-yet-risky solution
(a set of requirements), @, with given cost, cost(a) and value,
value(@). We can find the robust-yet-suboptimal solution, 7
with cost cost(7) closest to cost(d) that does not exceed
cost(@). This is the greatest lower bound, on robust-yet-
suboptimal solutions, bounded by the cost of d. Because the
robust-yet-suboptimal solution takes account of uncertainty,
it has a range of possible values, of which the expected value,
value(7), is simply the most probable. The expected risk pre-
mium is simply the difference between (value(d) — cost(a))
and (value(7)— cost(7)). It is an ‘expected” assessment of the
return that will be lost by maximally reducing uncertainty. It
is thus a way of understanding the penalty that is paid for
reducing uncertainty in terms of reduced expected return.

To compute the expected risk premium, a solution compare
pair which contains an optimal-yet-risky solution and a
robust-yet-suboptimal solution should be determined first.
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Fig. 3. lllustration of the triangle probability distribution [41]. ¢; and ¢, are
the mode (expected) value of probability distribution P, and probability
distribution P, respectively. a; and b; is the lowest value and highest of
P, respectively while ay and b, is the lowest value and highest of P,.

For each robust-yet-suboptimal solution 7, the optimal-yet-
risky solution from point-NRP, which has the closest cost to
and the cost is not lower than the cost of 7, is chosen as the
paired solution @. Thus, the solution compare pair is expressed
as Pair(d, 7). An example is illustrated in Algorithm 3.

4 APPLYING OUR APPROACH TO THE RALIC
DATASET

In this section, we illustrate the insights that can be obtained
by applying the proposed framework on a large real-world
example: the RALIC dataset.

4.1 Experimental Set Up
The detail of dataset, and the targeted objectives of the
experimental study are presented as follows.

4.1.1 Dataset

The RALIC project is an access control system developed at
University College London, UK. This project was estab-
lished in 2009 and deployed in 2011. The requirement data
was collected by using the StakeNet stakeholder analysis
method and StakeRare requirement elicitation method [35].
The implementation cost of each requirement was derived
from the RALIC posterior implementation report. The cost
is represented as the total man-hours spent on the require-
ment during the whole project development life cycle. The
detail information of RALIC data is publicly published at
http:/ /soolinglim.wordpress.com/datasets/.

Because there is no uncertainty information about the
attributes of requirements in RALIC dataset, we syntheti-
cally simulated these uncertainties following guidelines
from the literature [6] which advocate a triangle probability
distribution (illustrated in Fig. 3). In the early requirements
engineering phase, due to the lack of definition or under-
standing of the requirements to be done, the level of soft-
ware cost estimation accuracy ranged from 25 to 400
percent [36], [37], [38]. According to Jergensen and
Molekken-Ostvold’s review [38], the Standish Group
CHAOS Report [39] indicates that 52.7 percent of software
projects will overrun the 89 percent of their original budget
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estimation. Therefore, in our study, we define the range of
uncertainty for requirement cost as [25,400] percent. There
have also been studies on the accuracy of the software profit
estimation or the satisfaction of stakeholders. Michael Bloch
et al. study large-scale IT projects and report that the aver-
age benefit shortfall of IT projects is 56 percent, but no range
is reported. As Fogelstrom et al. [40] pointed out in 2009,
business risk-related uncertainty has received little atten-
tion, which means that we have little guidance as to the
likely bounds we should place on uncertainty. Therefore,
we have allowed for potential boundary scenarios in choos-
ing our uncertainty bounds. That is, the range of uncertainty
for satisfaction of stakeholder is defined as [10, 300] percent.
We believe that the true uncertainty value for any realistic
project is likely to lie within this extreme range.

There are two versions of RALIC datasets: ‘PointP” and
‘RankP’. In this paper, we empirically studied our frame-
work on the ‘PointP” dataset, which consists of 143 require-
ments, 86 And dependencies, and 23 Or dependencies.
According to literature [42], the size and complexity of
RALIC NRP instance are representative among the real
world projects. However, it should be noted that there may
still be more elaborate requirements and dependencies in
the real world. Therefore, we cannot claim that RALIC NRP
instances are fully representative of the real world. To gen-
eralise the study, three NRP instances are derived. There
are two boundary scenarios, in which the uncertainty of a
requirement is estimated, either highly optimistically or
pessimistically, and one ‘in-between’ scenario. In highly
optimistic scenarios, the requirements uncertainty is totally
underestimated (mode value equals to the lowest value). By
contrast, the requirements uncertainty is overestimated in
highly pessimist scenarios (mode value equals to the high-
est value). After the pre-processing described in Section 3.1,
there are 57 refined requirements, and 4 Or dependencies.

4.1.2 NRP Objective Formulation

In our experiment, three attributes of software release plan-
ning were considered as the optimisation objectives: cost,
satisfaction level, and the probability of budget overrun.
The objective cost and satisfaction level were viewed as the
utility of software release attainment and expressed as nor-
malisation functions. We assumed that these two objectives
were aggregatable. Thus, the expressions of the objective
cost and satisfaction can be defined as

> i (@i - Cost;)
Sor, Cost;

S (w; - Satis faction;)
S Satisfaction;

U(Z,cost) = (18)

(19)

U(Z, satis faction) =

The quality of the solution is measured as the utility
score of the solution as

Quality(Z) = U(Z, satis faction) — U(Z, cost).  (20)

The expression of the probability of budget overrun
remains the same (Eq. (13)). The extent 6 is set as 150 per-
cent. To reduce the simulations errors introduced by
Monte-Carol Simulation, in our experimental study, the
number of simulations is set as 10,000.
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4.2 Research Questions

To evaluate the METRO framework, we carried out an
experimental study to assess the ability of this approach
to manage the algorithmic uncertainty and capture the
impact of requirements uncertainties. In the experiment,
we demonstrate why the requirements optimisation com-
munity should take care with algorithmic uncertainty,
and how to employ METRO as a tool to assist decision
makers to comprehend the results, thus raising three
main research questions:

RQ1: How effective is NSGDP with respect to eliminating
algorithmic uncertainty compared to NSGA-II?

We investigate how much difference can be observed
between the solutions found by NSGA-II and NSGDP.
This research question is a foundation for applying
NSGDP. We compare the solutions found by NSGA-II
with the benchmarks which are found by NSGDP. The
differences between NSGA-II solutions and benchmarks
reveal additional (unnecessary & unhelpful) uncertainty
introduced by NSGA-IL

RQ1.1: How close are the solutions found by NSGA-II to the
ones found by NSGDP in objective space?

RQ1.2: Comparing the solutions provided by NSGDP and
NSGA-II, how much difference can be observed in
design space?

The remaining research questions are more concerned
with scrutinising the impact of uncertainty that came from
requirement itself.

RQ2: After eliminating the algorithmic uncertainty by using
NSGDP, what is the impact of the requirements
uncertainty?

This question can be expressed in a quantified manner as
to how much expected risk premium can be obtained when
a decision moves from an optimal-yet-risky solution to a
robust-yet-suboptimal one under the same budget.

RQ3: After eliminating the algorithmic uncertainty by using
NSGDP, is there any pattern between the require-
ments characteristics and requirements inclusions? If
so, what kind of pattern can be observed?

The third research question investigates the possible
insight of the requirement characteristics, which may
help decision makers to concentrate on the most inter-
esting property of requirements. This question is com-
posed of two more detailed sub-questions (RQ3.1, and
RQ3.2):

RQ3.1: Which requirements are the most sensitive, so require
the closest attention from the decision makers?

RQ3.2: Which requirements have the same inclusion behav-
iours, and can thus be clustered together?

4.3 Experiment Results
In this sub-section, we present the results of the experimen-
tal study, and provide a decision analysis guidance for
decision makers by interpreting the research questions
sequentially and separately.
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Fig. 4. Answers RQ1.1. These figures illustrate the differences between the solutions found by NSGA-Il and NSGDP. Figs. 4a and 4b present the
differences, based on three quality indicators (number of optimal solutions found, relative hypervolume, and relative revenue loss). The NSGDP
results always correspond to the 100 percent line, by definition. Figs. 4c and 4d present execution time differences. ‘# solution’ denotes the percent-
age of optimal solutions, ‘HV’ stands for relative hypervolume, and ‘RL’ indicates the percentage of revenue loss. The names of instance ‘O’, ‘P’, and
‘B’ stands for the highly Optimistic RALIC instance, and highly Pessimistic RALIC instance, and ‘in-Between’ RALIC instance, respectively.

4.3.1 RQ1: How Effective Is NSGDP with Respect to
Eliminating Algorithmic Uncertainty Compared

to NSGA-II?

RQ1.1 How close are the solutions found by NSGA-II to the
ones found by NSGDP in objective space?

We answer this question by comparing the quality of solu-
tions found by NSGA-II and NSGDP. Four quality indica-
tors are used: the percentage of optimal solutions found; the
relative hypervolume of the solution set; the percentage of
revenue loss that is measured by comparing the revenue

NSGA-II solution and the NSGDP solution
. 'A*”))), and the execution time. Figs. 4a and 4b
DP

between
(1-
present three éluality indicators of the solutions generated
by NSGA-II in objective space. The execution times of
NSGA-II and NSGDP are reported in Figs. 4c and 4d. We
study the effectiveness of NSGA-II and NSGDP on three
synthetic NRP instances. We execute NSGA-II on each
instance over 30 runs. In order to intuitively observe the dif-
ferences, in Figs. 4a and 4b, we report only the proportion
of optimal solutions, and relative hypervolume of Pareto-
front found by NSGA-II.

RQ1.1 can be answered with Fig. 4. In all cases, there are
thousands of solutions on the true Pareto-fronts. In all three
RALIC instances, the relative hypervolume of solutions
found by NAGA-II ranges from 98.68 to 99.96 percent-fairly
close to the optimal solutions. It denotes that, in our study,
NSGA-II is able to find the solutions with a good conver-
gence near the true Pareto-optimal front. This is because we
allowed NSGA-II to use sufficient computation resources
with 1,000 population and 1,000 generations. However,
with respect to the number of optimal solutions found,
NSGA-II may fail to find at least 73.03 percent of the optimal
solutions. The percentage of missed optimal solutions can
be yet up to 99.95 percent when considering uncertainty as
an extra optimisation objective. Therefore, despite the fact
that the convergence of NSGA-II is close to true Pareto-front
for NRP, the randomness of NSGA-II makes it difficult to
find complete optimal solutions. Moreover, compared to
the inexact algorithm currently proposed to NRP, NSGDP
saves 15.21 percent lost revenue on average for the RALIC
dataset. It reveals that additional uncertainty is introduced
to solutions by the algorithm itself. Additionally, according

to Fig. 4c, when decision makers do not consider require-
ments uncertainty, they can get response from NSGDP
immediately (0.37s on average), and wait for up to 616.93s
to get results from NSGA-II. If decision makers take require-
ments uncertainty into consideration, NSGDP is (35.33s on
average) still faster than NSGA-II (675.26s on average) in
general (Fig. 4d).

RQ1.2 Comparing the decisions provided by NSGDP and
NSGA-II, how much difference can be observed in
design space?

According to the answer of RQ1.1, we can see that, even
through NSGA-II converges to the true Pareto-front in
objective space, it can find only a small proportion of opti-
mal solutions. However, it is possible that such a small dif-
ference in objective space is caused by a prominent
difference in design space. In order to investigate the
hypothesis, we intend to inspect the requirements selection
probability, which we define as the chance of requirement
being included in the entire generated solution set. There-
fore, we compare the overall requirements selection proba-
bility provided by NSGA-II and NSGDP, and analyse how
much chance that the requirements decision is wrong when
applying NSGA-II instead of exact approach. The probabil-
ity of getting wrong requirements decision is measured by
the difference of the requirements selection between NSGA-
II solutions and benchmarks regarding to each requirement.
Fig. 5 pictures the chance that NSGA-II gives wrong
requirements decision with respect to each requirement and
the overall probability. It depicts the essential impact raised
from using an approximate algorithm.

In RALIC experimental study, due to the effects of ran-
domness from an approximate algorithm, in different runs,
the requirements selections are volatile. According to Fig. 5,
requirements uncertainty would aggravate the impact of the
inexactness of NSGA-II in general. In all instances, the proba-
bility of receiving a wrong decision in simulation-NRP is
almost double than that of point-NRP. Therefore, in the pres-
ent algorithmic uncertainty, requirements uncertainty places
decision makers at more serious risk of getting wrong require-
ments decision. We can see that, in an ‘in-between’ scenario,
the upper bound of the chance of getting wrong requirements
decision could rise from 16.25 to 36.48 percent, and the
median overall chance rises from 2.01 to 10.94 percent). Even
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Fig. 5. Answers RQ1.2. These box plots show the chance that NSGA-II

provides wrong requirements selection decision for each requirement in

RALIC instance. The grey box plot depicts the overall chance of getting wrong requirements decision.

if it were possible that in a particular run or particular sce-
nario NSGA-II can offer a minor wrong decision, the non-
determinism makes it produce a different answer in a differ-
ent run. The erratic result may result in providing completely
disorganised decisions. It emphasises that decision makers
definitely should raise concerns about the impact of the sto-
chastic algorithm on requirements selection. It is noteworthy
that such impact implies some patterns. We found that the
chance of getting a wrong decision is negatively correlated
with the implementation cost of requirement (Spearman p up
to 0.72 and p < 0.0001). That is, the larger the requirement
implementation cost, the less the chance that making a wrong
decision in requirements selection. There are only three
exceptions (Requirement 7, 23, and 38). NSGA-II has nearly

perfect match agreement on these three requirements over
three NRP instances. The reason for this exception may be
due to the inherit exclusive-or dependencies between these
requirements (discussed in Section 4.3.3). (This answers
RQ1.2).

In summary, to account for uncertainty in NRP, it is impor-
tant for decision makers to understand the source of
uncertainty in solution. Although NSGA-II can generate
approximate solutions with good convergence with respect
to objective space, the results of NSGA-II are still incomplete
and suboptimal. However, the solution quality information is
not meaningful for decision makers when they have to make
decisions for each requirement. Even for the solutions which
are very close to true Pareto-front, the decisions of selecting
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Fig. 6. The box-plots show how much expected risk premium and reduc-
tion of risk can achieve by taking account of requirements uncertainty.
The names of instance ‘O’, ‘P’, and ‘B’ represents the highly optimistic
RALIC instance, and highly pessimistic RALIC instance, and ‘in-
between’ RALIC instance, respectively. These figures answer RQ2.

requirements are surprisingly distinguishable. In other
words, relying on the requirements selections generated by
NSGA-II would result in misleading the requirement deci-
sion. Consequently, the wrong decision would further cause
the failure of a software project. Last but not least, NSGDP not
only can guarantee the exactness of result but also outperform
NSGA-II by offering a faster response to decision makers.
This enables decision makers to receive feedback from our
framework instantaneously. All of the above results empha-
sise the value of NSGDP, thus, answering why the require-
ment optimisation community should consider the exact
approach, and promote the motivation of our research.

4.3.2 RQ2: After Eliminating the Algorithmic
Uncertainty by Using NSGDP, What Is the Impact
of the Requirements Uncertainty?

After ruling out the algorithmic uncertainty, we would like
to evaluate the impact of the requirements uncertainty. The
results of the analysis are depicted in Fig. 6.

Fig. 6 statistically explains the impact of requirements
uncertainties on RALIC NRP instance (with 150 percent
budget overrun). There are 9,868, 1,149, and 31,417 optimal
solutions found when considering requirements uncertainty
(sNPR) in a highly optimistic scenario, a highly pessimistic
scenario, and an ‘in-between’ scenario, respectively. And
there are 221, 0, and 1,045 outliers in Fig. 6b, and 572, 0, and
967 outliers in Fig. 6a. The percentage of outliers is lower
than 5.79 percent. It could be observed that, overlooking
requirements uncertainty can contribute to suffer up to
10.09 percent risk that overrun more than 150 percent bud-
get, and get at most 0.39 utility in return.

The impact of requirements uncertainty is negligible in a
highly pessimistic scenario. This is because the worst case
requirements uncertainty has been taken into account in
requirements estimation. Taking account of uncertainty
during requirements selection does not matter much for
decision makers.

On the other hand, the impact of requirements uncer-
tainty in a highly optimistic scenario is slightly less than in
an ‘in-between’ scenario. This circumstance probably is
the consequence of involving extremely large uncertainty
in requirements estimation. In general, the principle of
simulation-NRP, which provides robust-yet-suboptimal solu-
tions, is replacing uncertain requirement with appropriate
‘less uncertain’ requirement(s). Meanwhile, all requirements
in a highly optimistic scenario are extremely uncertain. There

is a few relatively ‘less uncertain’ requirements can be cho-
sen. Accordingly, our framework cannot reduce too much
impact of requirements uncertainty in a highly optimistic
scenario. In spite of sacrificing a little extra utility to reduce
the risk by a small degree, this still offers decision makers
more options than point-based estimation approach. For a
decision maker, who is risk-averse, this risk reduction is
more valuable than the gained utility for him or her. So the
decision maker will not choose optimal-yet-risky solutions,
and would accept the guaranteed robust-yet-suboptimal
solutions. Otherwise, optimal-yet-risky solutions would
be more attractive for risk-loving decision makers. (This
answers RQ?2).

In summary, requirements uncertainty would result
in uncertainty for the overall software release plan. In order
to minimise this risk, some loss of perceived utility must be
accepted. The ‘loss” involved is only a “perceived’ loss, in
any case, because it is a loss that only occurs when the point
estimate turns out to be absolutely ‘spot on’. Since this is
unlikely in general (one of the inherent problems of point-
based or ‘spot’ estimates), the loss is therefore only a
‘perceived’ loss. That is, it is precisely the loss that will be
perceived by an engineer/manager who (unrealistically)
believes that point estimates are always spot on.

4.3.3 RQ3: After Eliminating the Algorithmic
Uncertainty by Using NSGDP, Is There Any
Pattern Between the Requirements
Characteristics and Requirements Inclusions?

The previous answer to research question RQ2 offers a
‘macroscopic’ suggestion to a decision maker, helping them
to understand the trade-off among different objectives.
However, the result cannot provide more details about the
nature of requirements, which may inspire decision makers
to prioritise the requirements for further evaluation and
inclusion. To aid this problem, RQ3 promotes a detailed
‘microscopic’ investigation of requirements analysis for
RALIC dataset.

RQ3.1 Which requirements are the most sensitive, so
require the closest attention from decision makers?

As distinct from conventional sensitivity analysis, here
we take an algorithmic view of the problem. Fig. 7 describes
the difference in the paired candidate solutions in terms of
the requirements selection probability.

The difference in the paired candidate solutions is
defined as follows. For a particular requirement reg, set A
denotes the paired solutions that contain req in simulation-
NRP solutions, and set B denotes the paired solutions that
contain req in point-NRP solutions. The intersection of
these sets indicates the number of pairs that contain req in
both parts (set AN B). The height of bar in Fig. 7 is the
symmetric difference of A and B (A A B). More precisely,
A\ B is denoted by the height of the red (light grey in
black and white) bar, while the size of B\ A is denoted by
the height of the blue (dark grey in black and white) bar. If
the height of bar is 0, it means the selection of this require-
ment in all paired candidate solutions is identical. In this
situation, the result reveals that, although it is unrealistic
in general, in this specific instance the point-based esti-
mate can be relied upon (even in the presence of the
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(c) “in-between’ scenario

Fig. 7. Answers RQ3.1. The difference of requirement inclusion between robust-yet-suboptimal (simulation-NRP) solutions and the corresponding
optimal-yet-risky solutions (point-NRP) in terms of requirements selection probability.

extreme range of risks we model (10% — 300 percent), and
two boundary NRP instances). From Fig. 7 we observe that
3 of the 57 requirements have this common property in all
instances. For these 3 requirements, our analysis has thus
revealed that we could simply revert to considering the
point-based estimate as sufficiently robust, even in the
presence of extreme risk. However, for the remaining 54
requirements, our analysis demonstrates the importance
of modelling risk. Another interesting finding is, in a
highly pessimistic scenario, there is no difference between
simulation-NRP and point-NRP methods, and the difference
is minor in the highly optimistic scenario. The reason has
been discussed in Section 4.3.2.

We take Kendall’s 7 correlation coefficient to statistically
analyse the correlation between the difference of require-
ments selection probability (percentage (selected_sNRP) —
percentage (selected_pNRP)) and its own risk in the highly
optimistic and ‘in-between’ scenarios experiments (where
SNRP and pNRP are the abbreviations of simulation-NRP
and point-NRP, respectively). The analysis result shows that
there is a negative correlation between these two attributes
(p < 0.001 and 7 up to —0.675). Namely, the requirement
with lower uncertainty has more chance to be selected by a
risk-aware approach. Therefore, decision makers can
observe the sensitivity of each requirement from the

perspective of the algorithm. In RALIC experimental study,
Requirement 3 is the most sensitive requirement with
respect to 150 percent budget overrun in both highly opti-
mistic and ‘in-between” NRP scenarios, while Requirement
19 is the most sensitive in ‘in-between” NRP scenarios. By
contrast, Requirements 25, 26, 28, 37, and 46 are more insen-
sitive. This recommends a risk-averse decision maker to be
deeply concerned with Requirement 3, and assign high pri-
ority to Requirements 25, 26, 28, 37, and 46 (answer RQ3.1).

RQ3.2 Which requirements have the same inclusion
behaviours, and can thus be clustered together?

With increasing numbers of requirements, it will be
tedious and time-consuming to analyse each requirement
manually. Identifying inclusion behaviours, the tendency of
including a requirement in the solutions on the Pareto-front
as the budget increases, and analysing the differences
between them may allow us to cluster requirements to
reduce cognitive overload. METRO uses a heat-map (Fig. 8)
to visualise the inclusion of requirements in the solutions on
the Pareto-front with respect to the results generated by
point-NRP and simulation-NRP. Moreover, in order to mea-
sure and highlight the similarities and differences, we cluster
related requirements by computing the complete euclidean dis-
tance among requirements’ inclusion percentage and present
the results of the corresponding Hierarchical Clustering. This
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Fig. 8. Answers RQ3.2. The clustered inclusion trends of requirements where 6 = 150 percent.

approach is exemplified by the results of ‘in-between” NRP
instance. From Fig. 8, we can observe that there are 4 major
clusters identified in the result of both point-NRP and simula-
tion-NRP, which can help the decision maker to inspect at a
much smaller number of groups of related requirements.
Additionally, instead of prioritising all requirements, deci-
sion makers can first prioritise the requirements groups
before prioritising the requirements within each cluster.

The answer of RQ3.2 is that, in ‘in-between’” RALIC
instance, Requirement 12 is treated similarly with Require-
ment 13,14, 19, 36 and prioritised as the most critical requ-
irements group by point-NRP approach, while Requirement
12 is grouped with 13,14,21,28,46, and 55 which are all
formalised as the most critical requirements by simulation-
NRP approach. Therefore, in order to gain higher profit per-
formance while minimising budget overrun risk, Require-
ments 12,13,14,21,28,46, and 55 should be prioritised as
the highest priority requirements group. Strikingly, some
requirements could never be selected in any solution with
any budget by the point-based approach. By looking at
these requirements, we find that some of them (Require-
ments 3, 7, 23, and 41) participate in exclusive-Or depen-
dencies. These four requirements are strongly dominated
by corresponding mutually exclusive requirements in
terms of optimisation goals. However, there is a nuance in

the results offered by simulation-based approach. The risk-
aware simulation-NRP approach does select Requirement 47
in some circumstances. The possible reason is that, by tak-
ing uncertainty into account, Requirement 47 is more
robust than Requirement 41. Therefore, Requirement 47
can attract considerable attention when there is abundant
budget (i.e., 50 percent of total budget) to neutralise its
unrewarding traditional optimisation goals (i.e., revenue
and cost).

To sum up, requirement characteristics play an impor-
tant role in their inclusion in the solutions on Pareto-front.
METRO can provide support to help decision makers iden-
tify relations between the different solutions by looking at
the details of each individual solution. With respect to inde-
pendent requirements, intrinsic uncertainty negatively cor-
relates with inclusion when minimising solution risk. For
mutually exclusive requirements, the inclusion of one
requirement relies on the dominance of these requirements’
fitness value. Therefore, the dominated requirements are
seldom selected, compared with their conflicted twin.

5 THREATS TO VALIDITY

In this section, we evaluate METRO with respect to its con-
struct validity, internal validity, and external validity.



LI ET AL.: THE VALUE OF EXACT ANALYSIS IN REQUIREMENTS SELECTION

5.1 Construct Validity

In this paper, only triangle probability distribution is used
to represent uncertainty. However, there are other kinds of
uncertainties representation that might be used in risk anal-
ysis. For example, Gaussian distribution, uniform distribu-
tion, and discrete probability distribution. Catering for
other distributions would not be a problem: our framework
computes the estimation uncertainties of requirement attrib-
utes using MCS, and MCS can simulate most kinds of
uncertainties straightforwardly (by sampling the scenarios
based on input probability distribution directly). Therefore,
METRO could use other kinds of uncertainty distribution to
model the uncertainties of requirements.

5.2 Internal Validity

Internal validity is concerned with any possible factor that
may perturb the experimental evaluations. The perturba-
tions may include inappropriate parameter settings, and the
implementation of algorithms. In our experimental study,
during the experiment, we excluded other system applica-
tions, so the experimental machine only ran our application.
Moreover, the solver of our framework is an exact approach,
thus the stochastic nature of algorithm can be excluded.

In our experimental study, there is one internal threat to
validity concerning the construction of probability distribu-
tion information for the requirements uncertainty. To gather
such information we need access to historical project pro-
cess data. However, this may be infeasible for researchers,
due to confidentiality and/or other commercial concerns.
The results shown in the experimental study may be
affected when different probability distributions are used to
represent requirement uncertainty.

The other threat to internal validity is concerned with the
accuracy of the elicited probability distributions of require-
ments attributes. There are some scientific methods for elic-
iting the probability distributions of uncertainties, but such
elicitation is sensitive due to the cognitive biases of the
selected experts [33]. In our paper, due to the lack of uncer-
tainty information within the RALIC data set, we generated
the uncertainty distributions for the estimation error of the
requirement cost, informed by a survey from literature. We
cannot know the true estimate uncertainty for one project.
Therefore, to minimise the impact of estimation accuracy,
we study three synthetic NRP instances. There are two
boundary scenarios, in which the uncertainty of a require-
ment is estimated either highly optimistically or pessimisti-
cally, and one ‘in-between’ scenario.

Therefore, we believe our framework METRO can solve
real NRP with various uncertainties and provide valuable
insight on decision analysis to decision makers.

5.3 External Validity

In the experimental study reported in the paper, we evalu-
ated METRO on three synthetic data sets. These three data
sets are derived from one real world data set from Univer-
sity College London, which contains two types of depen-
dencies, and 143 raw requirements. However, the instances
may bring external threats to the generalisability of our
experimental results. The information gap between syn-
thetic instances and real world instances may lead to a bias
for the evaluation results. The experimental results for the
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RALIC NRP instances demonstrate that the proposed
METRO framework can provide insights useful to a deci-
sion maker. However, there is no guarantee that, in all real
world software projects, it would be possible to obtain such
insights. Thus, we cannot generalise this experimental study
to other NRP problems. For generalisation, more work is
required to analyse different scenarios, models of uncer-
tainty, as well as different NRP formulations.

With regard to scalability, METRO processes the RALIC
dataset (with 57 refined requirements and 10,000 scenar-
ios). The mean execution time for one simulation-NRP
solver optimisation is 35.33s, and 0.37s for one point-NRP
solver optimisation. The total execution time for one analy-
sis is less than 40 seconds on average. The most critical
threat for computational consumption is NSGDP. The run-
ning time of original Nemhauser-Ullmann algorithm is
polynomially bounded in the size of the problem and the
number of solutions on the Pareto-front. Since there are
thousands of Pareto optimal solutions on the simulation-
NRP Pareto-front, the execution time for one simulation-
NRP optimisation grows exponentially compared with
point-NRP. In addition, the second heaviest computational
consumption is MCS. While the scale of the problem is
increasing, our methods become more complex and time-
consuming. A simple way to address this issue would be
to reduce the number of scenarios. Consequently, the com-
putation time will reduce, while the simulation error will
increase. Since this paper focusses on proposing a novel
framework to support decision analysis with uncertainty
in NRP, optimising the performance of this approach will
be an interesting further work.

6 RELATED WORK

6.1 Previous Work on Requirement Optimisation
and Analysis
The term software requirement is defined as “the property
which must be exhibited in order to solve some problem in
the real world” [43]. Essentially, a software requirement is
typically a complex combination of sub requirements to sat-
isfy different stakeholders and deployment environments
[44]. In our research, requirements optimisation and analy-
sis focuses on requirements selection and prioritisation.

In the literature, several authors have addressed decision
analysis support for requirements optimisation and analy-
sis. Saaty [45] introduced Analytical Hierarchy Process (AHP)
to solve the decision support about planning, priority set-
ting, and resource allocation in 1980. Karlsson adopted this
approach for software requirements selection and prioritisa-
tion [1] in 1996, and extended it as a cost-value approach in
1997 [46]. However, the efficiency of AHP is limited by
problem scale since it requires manual pairwise comparison
of requirements. Linear programming techniques were
introduced to assess requirements by Jung [47] in 1998. The
assessment function was formulated as a single-objective
function with a cost constraint function.

The term Next Release Problem was coined by Bagnall
et al. [2] in 2001. The NRP aims to search for feasible
and (near) ideal solution set to balance the requests from
different stakeholders by applying various meta-heuristic
algorithms. The NRP was formulated as a single-objective
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optimisation problem by Bagnall et al. [2]. Zhang et al. [12]
generalised the single objective NRP to multiple-objective
NRP (MONRP).

6.2 Uncertainty & Risk Handling in General

In previous work on the problems of uncertainty, research-
ers usually adapt quantitative analysis methods, such as
uncertainty analysis [48], to evaluate the robustness of the
“model”. On the other hand, though the uncertainty analy-
sis can evaluate how sensitive the solutions are to possible
estimation uncertainties, it cannot offer robust solutions by
itself, based on decision makers’ degree of risk aversion.
Some authors suggest to investigate uncertainties during the
process of optimisation to immunise solutions against pro-
duction tolerances, parameter drifts, and model sensitivities
by robust optimisation rather than adopting the post-analy-
sis approaches [15], [49], [50].

6.3 Uncertainty & Risk Handling in Requirements
Engineering

To study the uncertainty in the area of requirements optimi-
sation, Harman et al. [14] used a local sensitivity analysis
approach “One-At-a-Time” [51] to analyse the data sensitiv-
ity of NRP and MONRP. This approach measured parameter
sensitivity by perturbing variables upward or downward to
try out various ‘what-if’ scenarios. Al-Emran et al. [52], [53]
performed probabilistic sensitivity analysis to evaluate the
impact of uncertainties in operational release planning and
product release planning in 2010. To avoid stochastic nature
of the meta-heuristic algorithms, in 2014, Harman et al. [4]
applied a naive exact algorithm, a variant of the Nemhauser-
Ullmann’s algorithm [54], to study precise sensitivity analy-
sis of NRP without considering requirements interaction.

In the meantime, independent researchers have devel-
oped different concepts of robustness, measurements for
robustness, and robust optimisation approaches in differ-
ent research disciplines. The applications and studies of
robust optimisation can be widely found in other non soft-
ware engineering research literature [55], [56], [57], [58],
[59] but are seldom found in the requirements engineering
literature. In requirements engineering, to the best of our
knowledge, there are only four studies applying robust
optimisation on requirements engineering area.

In 2011, Heaven and Letier first proposed an optimisa-
tion framework, which integrated with stochastic simula-
tion, for guiding the choice of system design solutions on
high-level goals in quantitative Goal Models [60]. In 2014,
Letier et al. applied statistical decision theory to illustrate
the expected information value of model parameters based on
[60] to offer further decision suggestions [6]. Paixao and
Souza were the first authors to introduce a robust optimisa-
tion framework to the NRP problem in 2013 [17]. They used
interval to model the uncertainties of requirements imple-
mentation cost, and defined a small population of scenarios
to represent the uncertainty of requirement value. Thus, the
uncertainty of requirement value is represented as the dis-
crete variable. Each scenario was assigned a probability of
occurrence. The desired level of robustness of decision mak-
ers was determined by a control parameter. Their robust NRP
model tries to maximise the overall release solution value
with respect to all possible scenarios, while minimising the

implementation cost of release solution with respect to
worst case. Thereby, the outcome of their approach is a con-
servative robust solution, which can avoid the impact of
uncertainty in a worst scenario. Li et al. [18] proposed a sim-
ulation-based robust NRP (simulation-NRP) model. They
formalised the uncertainty of requirement cost and value by
Probability Density Function. Then, Monte-Carol Simula-
tion was employed to simulate thousands of scenarios to
represent the uncertainties of NRP model. The consequence
of uncertainty was modelled in the probabilistic way (e.g.,
the probability of project budget overrun) for monitoring.
Finally, a multi-objective optimisation approach was app-
lied to maximise the value of solution, minimise the cost of
solution in terms of all corresponding scenarios, as well as
minimising the likelihood of occurrence and the consequen-
ces of a given future undesirable event. The simulation-NRP
model enables decision makers to balance the trade-off
among expected cost and value of solutions based on the
solutions’ probabilistic robustness.

6.4 Novelty of Our Approach

Since it is concerned with uncertainty handling, METRO
exploits robust optimisation to deal with the uncertainty
which is inherent in all requirements optimisation prob-
lems. Compared to the previous work of Harman et al. [4],
[14] and Al-Emran et al. [52], [53], METRO can provide solu-
tions that guard against uncertainty (for different degrees of
the decision-maker’s risk aversion) whereas uncertainty
analysis merely analyses the sensitivity of uncertain model
parameters and their impacts. Our approach, therefore,
advances on previous work by taking account of risk in the
decisions suggested, rather than simply reporting upon its
possible pernicious effects.

METRO is built on an exact algorithm, which is used as
the core NRP solver. Previous work by Heaven et al. [60],
Paixao et al. [17], and Li et al. [18] relied solely upon (non-
deterministic) randomised meta-heuristic algorithms. While
our exact algorithm will always find the optimal solution,
these previously proposed meta-heuristic algorithms may
only find reasonable approximate solutions. While this is
acceptable in general, for the specific problem of handling
risk we face here, it is important for the decision maker to
know that all uncertainty derives from the problem itself and
not from the algorithm used to tackle it. METRO thus avoids
information loss due to the non-deterministic nature of the
approximation algorithm used as the core NRP solver.

Letier et al. [6] seek to overcome the limitations of
approximate meta-heuristic algorithms, by using an exhaus-
tive search as the core solver. Although the exhaustive
search will always find the optimal solution, it is inherently
expensive and may not scale sufficiently to be more gener-
ally applicable. For a NRP model which consists of n
requirements, there are 2" solutions in the objective space.
METRO introduces requirements interaction pre-processing
and the conflict graph to augment the previous exact algo-
rithms [26] thereby further enhancing scalability.

7 CONCLUSION

Uncertainty is inevitable in early requirements engineering.
The requirements engineering community has explored
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quantitative multi-objective decision techniques and search-
based approaches to produce optimal solutions to require-
ments decision support problems [10], [12], [61], [62]. Deci-
sion makers are informed of possible trade-offs among
conflicting objectives by visualising the Pareto optimal solu-
tions generated by these quantitative methods. However,
little work has been done to model design time uncertain-
ties, to interpret the consequences of those uncertainties,
and to support decision makers in analysing the inherent
characteristics of model parameters [4], [6], [14], [18], [60].
Decisions that have to be made under incomplete knowl-
edge about software project.

In this paper, we introduced a decision analysis frame-
work, METRO, incorporating multi-objective simulation
optimisation techniques, exact optimisation, and uncer-
tainty analysis, to systematically aid decision support and
analysis in the presence of uncertainty. We argued that
eliminating algorithmic uncertainty may reduce revenue
loss. We also argued that exposing the uncertainties and
assessing the impacts of uncertainties quantitatively (by
systematically analysing the variations between the point-
based estimate approach and a simulation-based appro-
ach) can provide better decision insights than looking at
point-based estimates alone. Our framework interprets the
information derived from the results of the point-based
estimate approach and a simulation-based approach to
address decision analysis. The derived information allows
requirements engineers to judge and weigh the trade-off
between relatively robust-yet-suboptimal solutions and
apparently optimal-yet-risky solutions. It also helps them
in identifying highly ‘sensitive’ requirements, according to
their robustness. This enables them to make decisions and
evaluate requirements incrementally. Additionally, our
framework also explains the inclusion patterns of require-
ments from two points of view. These patterns could
inspire decision makers to capture elaborate requirement
priorities, which can reduce the cognitive load on the deci-
sion maker. Future work will conduct more empirical
studies as well as applying the METRO approach to the
real world data sets to yield a better understanding of its
value and wider applicability.
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