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Abstract—In the presence of scale, dynamism, uncertainty and elasticity, cloud software engineers faces several challenges when
modeling Quality of Service (QoS) for cloud-based software services. These challenges can be best managed through self-adaptivity
because engineers’ intervention is difficult, if not impossible, given the dynamic and uncertain QoS sensitivity to the environment and
control knobs in the cloud. This is especially true for the shared infrastructure of cloud, where unexpected interference can be caused
by co-located software services running on the same virtual machine; and co-hosted virtual machines within the same physical
machine. In this paper, we describe the related challenges and present a fully dynamic, self-adaptive and online QoS modeling
approach, which grounds on sound information theory and machine learning algorithms, to create QoS model that is capable to predict
the QoS value as output over time by using the information on environmental conditions, control knobs and interference as inputs. In
particular, we report on in-depth analysis on the correlations of selected inputs to the accuracy of QoS model in cloud. To dynamically
selects inputs to the models at runtime and tune accuracy, we design self-adaptive hybrid dual-learners that partition the possible
inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques; the results of
sub-spaces are then combined. Subsequently, we propose the use of adaptive multi-learners for building the model. These learners
simultaneously allow several learning algorithms to model the QoS function, permitting the capability for dynamically selecting the best
model for prediction on the fly. We experimentally evaluate our models in the cloud environment using RUBIS benchmark and realistic
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FIFA 98 workload. The results show that our approach is more accurate and effective than state-of-the-art modelings.

Index Terms—Software quality, search-based software engineering, self-adaptive systems, machine learning, cloud computing,

performance modeling

1 INTRODUCTION

LOUD software engineering paradigm is gaining momen-
tum as evident by the tremendous use of cloud-based soft-
ware services. Software-as-a-Service (SaaS) in the cloud often
run on top of a software stack within the Platform-as-a-Service
(PaaS) layer [1]. They are also supported by the Virtual
Machines (VM) and hardware running at the Infrastructure-as-
a-Service (laaS) layer [2]. To offer scalability and elasticity
under changing environment conditions (e.g., workload, size
of incoming job etc.), cloud providers often have the capability
to dynamically scale various internal control knobs, providing
on-demand configurations of software (e.g., threads of service)
and hardware resources (e.g.,, CPU and memory of VM) in a
shared infrastructure. In this work, we term both control knobs
and environment conditions in the cloud as cloud primitives.
The elasticity of cloud has caused a paradigm shift in the
way we manage cloud-based software services. However,
by design time, it would be difficult for software engineers
and cloud engineers to anticipate the dynamic changes in
workload and the runtime demands of these cloud-based
software services. This fact implies that it becomes more
complex to assure the Quality of Service (QoS) during the
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engineering process. By QoS, we refer to the non-functional
attributes (e.g., Throughput) experienced by the end-users
of cloud-based software services.

With such context in mind, the key problem, which
cloud/service providers face is how to manage runtime QoS
by auto-scaling to the best set of control values on the fly. In
particular, the fundamental challenge is how to dynamically
link QoS with the primitives in cloud, which we address in
this paper. The QoS models generally take values of cloud
primitive as inputs and predict the likely QoS value as out-
puts. An accurate QoS model in the cloud can serve as a pow-
erful tool that assists software/cloud engineers or other
automated agents to diagnose the cause of violation on QoS
requirements; and more importantly, to compare and reason
about elastic auto-scaling strategies in the cloud.

The majority of the existing approaches for QoS model-
ing in cloud has been either static (i.e., analytical, e.g., [3],
[4] and simulation based, e.g., [5], [6]) or semi-dynamic,
e.g., [7], [8], [9]. The former is being static in the sense
that the expression of models are fixed, and therefore,
they are insensitive to the QoS fluctuations at runtime;
this is due to the entire modeling process has relied on
manual and offine analysis. On the other hand, the semi-
dynamic approaches focus on adaptive and dynamic
modeling for the magnitude of primitives in correlation
to QoS, which means the model changes with respect to
the QoS fluctuations. However, their selection of primi-
tives to determine the feature inputs of models has been
manual and offine, resulting fixed inputs for the models.
Thus, they suffer limited self-adaptivity.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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1.1 The Challenges and Current Limitations

In the following, we identify several important challenges
for QoS modeling in the cloud, which have not been or have
only been partially considered in previous work.

Fine-Grained QoS Modeling. There can be different cloud-
based software services running on a VM, each with its own
QoS requirements. Fine-grained QoS modeling is challeng-
ing as more heterogeneity (e.g., derivatives of QoS require-
ments and service characteristics etc.) need to be
considered. However, existing static and semi-dynamic
modeling tend to focus on the mean QoS of the entire VM,
limiting the model accuracy for individual software service.

Dynamic and Uncertain QoS Interference. QoS modeling in
the cloud suffers from the problem of QoS interference. QoS
interference refers to scenarios where a software service
exhibits wide disparity in its QoS performance that depends
on the dynamic behaviors of its neighbors. In particular, we
distinguish two major causes of interference, these are: co-
located service interference and co-hosted VM interference.
The former is an inherent issue from the traditional cluster
computing, where multiple applications/services running
on the same operating system can suffer contention on the
shared memory/cache, and therefore cause interference
[10]. This is also true for multi-core systems [11]. The latter,
on the other hand, is a significant unique problem in cloud
computing, where virtualization has been used as the basis.
This is because in such scenario, certain aspects of the
underlying infrastructure are shared amongst the co-hosted
VMs on a machine (e.g., last level cache of CPU and mem-
ory bandwidth), henceforth it can result in contention and
create the chances for interference, as evident by many
recent work [12], [13], [14]. Given that it can be extremely
difficult to completely eliminate QoS interference or it can
be too expensive to do so [13], it is crucial to consider and
handle the interference when modeling QoS in the cloud.
Here, the challenge lies in the difficulty to dynamically
incorporate information about interference in the modeling,
especially when the QoS interference is dynamic and uncer-
tain in nature—it is difficult to know when contention
would occur and what the degree of such contention is.
However, existing work either considers co-hosted VM
interference only (e.g., [13]) or completely ignores the pres-
ence of QoS interference (e.g., [7]), which is unrealistic.

Dynamic and Uncertain QoS Sensitivity. The core of QoS
modeling is how to model its sensitivity with respect to the
primitives in cloud. By QoS sensitivity, we are interested in
which (e.g., are CPU and Throughput correlated?), when (i.e.,
at which point in time they are correlated?) and how (.e.,
the magnitude of primitives in correlation) the primitives
correlate with QoS. Given the nature of cloud, QoS sensitiv-
ity is dynamic and uncertain, i.e., runtime changes occur in
terms of which, when and how primitives correlate with QoS.
Specifically, the challenges of QoS sensitivity in the model-
ing can be attributed to two important phases, namely prim-
itives selection and QoS function construction:

1) Primitives Selection: To model QoS and its sensitivity in
the cloud, a fundamental task is to adaptively determine
what are the primitives that should be used as feature
inputs of the model (i.e., which and when the primitives
correlate with QoS). To show a simple example of the
dynamics and uncertainties in primitives selection, in Fig. 1,
we vary the workload of a service while keeping that of the
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Fig. 1. The exampled fluctuations of CPU utilization and Response Time
in cloud.

co-located services and co-hosted VMs unchanged, we can
see that the Response Time of the said service tends to be
insensitive to CPU at the beginning hence it cannot provide
relevant information about the QoS. However, after the 18th
interval, the Response Time gradually become more
affected by the CPU as the workload change by time, which
is uncertain in nature; this becoming even more true in
the cloud when there is uncertain QoS interference, i.e., the
workload of neighbor services/VMs changes. Therefore, the
primitives selection needs to cope with the dynamics and
uncertainties in QoS sensitivity. Given that the selected
inputs have a great impact to the model accuracy (as we
will show in Section 4), it is important to select a right set of
primitives. In particular, too limited inputs may not provide
enough information of relevance to the QoS (i.e., the infor-
mation that drives the changes in QoS), which restricts the
model accuracy and applicability. On the other hand, too
many inputs can generate noise in the modeling, because it
introduces irrelevant information and large redundancy in
the inputs (i.e., the same information has been provided by
more than one selected primitives, thus it becomes noise),
this will downgrade the model accuracy [15] and generate
unnecessary overhead. Though some machine learning
algorithms are proved be be resistant to noise, e.g., those
with regularization [16], we believe that the benefits gained
from primitives selection is vast, e.g., improved accuracy,
more intuitive model and faster modeling time. The chal-
lenge here is how to dynamically select the most significant
set of primitives as inputs, including the information of QoS
interference from neighboring services and VMs, which
provides good model accuracy and adequate complexity.
Nevertheless, existing static and semi-dynamic approaches
for QoS modeling in the cloud rely on fixed and manual analy-
sis to select the primitives as inputs, which are often offine. A
widely applied approach is to reduce the possible primitives
space based on empirical observations and domain specific
assumptions, e.g., most work [7], [17], [18] consider only hard-
ware resources. However, this may mislead the QoS modeling
as it can ignore some highly relevant features, e.g., the soft-
ware configurations, which can interplay with the hardware
provision to influence QoS [8], [19], [20]. In addition, ignoring
QoS interference can result in inaccurate models. Even though
the offine and manual selection is achieved at a good accu-
racy, the runtime dynamics and uncertainties can become a
problem as there is no guarantee that the selected primitives
are the best for the entire service life time. Until recently, few
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techniques [8], [9] have been proposed for self-adaptive primi-
tives selection in the cloud. However, they implicitly tackle
redundancy and regard each primitive equally in the selec-
tion. We refer these techniques as single-learner in the remain-
ing of this paper. In Section 4, we will show why these single-
learner based techniques tend to be limited in accuracy.

2) QoS Function Construction: Another important task in
modeling QoS and its sensitivity is to adaptively determine
how the primitives correlate with QoS by means of mathe-
matical function. To show a simple example of the dynam-
ics and uncertainties in QoS function construction, we use
the above setup in Fig. 1. As we can see, from the 18t inter-
val onwards, the Response Time of the service is becoming
more sensitive to CPU till 30th where the sensitivity is start-
ing to decrease. This shows that the Response Time is
always sensitive to CPU for the period, but the magnitude
tends to be different depends on the uncertain changes of
workload from time to time. Again, this becomes more com-
plex in the cloud when it involves changing workloads of
neighbor services/VMs. All These facts imply that the
modeling needs to be able to handle the dynamic and uncer-
tain magnitude of primitives in the correlation, which is a
challenge. Consequently, the static QoS modeling
approaches tends to be insufficient, because the effective-
ness of these approaches is restricted by their simplified
and fixed assumptions on the environment and service’s
internal operations [7]. On the other hand, the semi-
dynamic approaches are capable to handle this challenge as
they are grounded on sound machine learning algorithms,
which are dynamic and self-adaptive in nature. These
approaches are single-learner based as they rely on a single
learning algorithm. Nevertheless, in Section 5, we will show
that a single learning algorithm can be suitable only for cer-
tain QoS trends. Consequently, a significant drawback of
these approaches is that, for any given scenarios, they
require the engineers to predetermine the suitable learning
algorithm. This can entail manual and intensive investiga-
tion rendering it as an expensive process. Moreover, a pre-
determined algorithm does not cater for unexpected or
envisioned changes in QoS at runtime. Now, the challenge
becomes how to efficiently and dynamically determine the
best learning algorithm for a scenario.

1.2 The Contributions and Organization

In this paper, we report on a set of integrations and extensions
to our prior work [21], [22]. To overcome the aforementioned
challenges in the cloud, we present a QoS modeling approach,
which is fully dynamic, self-adaptive and capable for online
modeling. Since our modeling approach does not rely on any
assumptions of the software service’s internal structure, the
resulted model are agnostic to the type of software service
hosted within VM. Specifically, our novel contributions can
be summarized as the follows:

First, we have described the unique challenges to the
online QoS modeling in the cloud (as in Section 1.1).

Second, we abstract a fine-grained and generic QoS model
to handle dynamic and uncertain QoS sensitivity; and to
incorporate information of the uncertain QoS interference
caused by the software services co-located on a VM and the
VMs co-hosted on a Physical Machine (PM).

Third, we present an in-depth analysis on the correlations
of selected primitives to the model accuracy for primitives

selection in the cloud; in particular, we show how the model
accuracy can be affected by the cumulative changes of the
information relevance to QoS and the information redun-
dancy of the selected primitives. We discovered that, without
special treatment, these cumulative changes cannot correctly
quantify the effects of primitives to model accuracy for the
entire input space. Drawing from the observations obtained
on this analysis, we propose a self-adaptive and online tech-
nique, namely hybrid dual-learners, to determine which and
when primitives correlates with the QoS on the fly. The idea is
that we aim to select the most significant set of primitives
which can improve accuracy in the modeling. To avoid mis-
leading caused by the cumulative changes, we partition the
possible primitives space into two sub-spaces; the learner in
each sub-space uses different primitives selection techniques
based on symmetric uncertainty [23] and the selected sets of
these two learners are combined. We design four variations of
our technique, each of which uses different formulations to
express the difference between relevance and redundancy of
the selected primitives.

Fourth, we present a suitability analysis of different learn-
ing algorithm for QoS function construction on different
QoS attributes. Particularly, we have examined three widely
used learning algorithms as exemplars, these are: Artificial
Neural Network (ANN) [24], Auto-Regressive Moving
Average with eXogenous inputs model (ARMAX) [25] and
Regression Tree (RT) [26]. We discovered that a single learn-
ing algorithm can perform significantly different depends
on the case. Motivated by this fact, we develop a self-adap-
tive and online solution, namely adaptive multi-learners, to
dynamically model how the primitives correlates with the
QoS. Precisely, multiple learners that apply different learn-
ing algorithms are used to build a bucket of models. By
doing so, the proposed solution is not only able to dynami-
cally correlate the selected primitives to the QoS, but also to
adaptively select the best learning algorithm and its resulted
model during prediction in cloud.

Fifth, we implement our modeling approach based on an
autonomic architecture in the cloud. We experimentally
evaluate the approach under four commonly used QoS
attributes, these are: Response Time, Throughput, Availabil-
ity and Reliability. In addition, we have used the well-known
RUBIS [27] benchmark and the FIFA 98 [28] workload to
assess various aspects of our approach, including accuracy,
stability, sensitivity to the online data size and efficiency.
The results reveal that our approach is overall more accurate,
more stable and reduce the error quicker than the other
approaches; while generating acceptable overhead.

The paper structure is organized as the follow: Section 2
decomposes the problem of QoS modeling and presents the
model. Section 3 describes our architecture and overview of
the approach. Section 4 specifies the hybrid dual-learners
approach for primitives selection; and the analysis about how
the relevance and redundancy of selected primitives influence
model accuracy, which drive our designs. Section 5 illustrates
how different learning algorithms perform under different
QoS attributes and fluctuations; we then specify the adaptive
multi-learners technique for QoS function construction. Sub-
sequently, we report on the experiments and evaluation in
Section 6. Sections 7, 8, and 9 present threats to validity,
related work and conclusion respectively.



456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.43, NO.5, MAY 2017

TABLE 1
The Basic Notations for QoS Modeling in Cloud

Sij The jth service-instance of the ith concrete
service.

QoSlij (t) The kth QoS attribute of S;;, and its value (e.g.,
mean response time) at interval ¢.

ij The QoS function for the kth QoS attribute of S;;.

k
Sp];{.f(t) The selected primitives matrix of S;; at ¢, its col-
' umn contains the most relevant and significant

inputs for the QoS, including the primitives that
tend to directly influence the QoS (e.g., the
threads of the corresponding service-instance);
and the primitives that belong to the co-located
service-instances and the co-hosted VMs. The
row indicates the number of order, denoted as ¢,
which represents how many historical data
points need to be used as inputs for improving
model accuracy.

8 Any other inputs, e.g., historical time-series QoS
points and tuning variables etc., that improve
model accuracy.

CP™(t) The value of the ath control primitive for S, at
interval t, e.g., CPU, memory and thread etc.
EP™(t —1) The value of the bth environmental primitive for

Sy at interval t-1, e.g., workload etc.

2 MODELS AND PROBLEM DESCRIPTION

2.1 Cloud System Model

We assume that cloud-based applications are composed of
services, each has different QoS requirements and external
environment changes (e.g., changes in workload). Often,
multi-tiers applications and services in the cloud can have
multiple replicas for various purposes, e.g., service differenti-
ation and load balancing etc. Therefore we assume that each
tier in a multi-tiers application, consisting of concrete services
Si, S,...,8;, can have multiple replicas deployed on differ-
ent VMs even PMs. In this work, we refer to the replicas of
concrete services as service-instances: the jth service-instance
of the ith concrete service is denoted by S;;. Multiple service-
instances are deployed on a cloud software stack running on
VM, which can be setup using various control knobs. These
control knobs can be either shared amongst the service-instan-
ces running on a VM (e.g., CPU of the VM) or specific to one
service-instance (e.g., threads of a service-instance). The basic
notations used in this section are listed in Table 1.

Unlike existing work, which focus on modeling for the
entire application and VM, we aim to create fine-grained
QoS models for each service-instance. In particular, the
resulted models should cope with the QoS interferences at
both inter-VMs and inter-services level. In addition, instead
of modeling the effect of VM-level provisioning (i.e., add/
remove a VM), we focus on the effect of fine-grained provi-
sioning and configuration inside VM (e.g., CPU of a VM
and/or thread of a service-instance). This would provide
more flexible use of the model, e.g., for vertical scaling. It is
wise to consider vertical scaling before horizontal scaling
(i.e., add, remove or migrate VMs) as the former is often
much more efficient than the latter.

It is worth noting that, apart from the co-hosted services
and co-located VMs, QoS interference can also occur due
to contention on the functionally dependent services. For
instance, Sj; and S3; (both running on different PMs) can be

Environmental Primitives

nfluence

SaaS

Software Control Primitives

it

Hardware Control Primitives

Fig. 2. Overview of the cloud primitives.

both dependent on Sy (e.g., a database service). This
implies that S;; and Ss; incur QoS interference. However,
we discovered that in such case, the primitives of S5;1 tend
to be insignificant in the QoS modeling of S;; as the same
information has already been expressed by the primitives of
Ss1, which is also part of the invocation. As a result, we con-
sider the co-hosted services and co-located VMs as the pri-
mary causes of QoS interference.

2.2 The Cloud Primitives for Building Models
The primitives in cloud serve as the fundamental inputs of a
QoS model. Without lose of generality, we decompose the
notion of primitives into two major domains: these are Con-
trol Primitive (CP) and Environmental Primitive (EP). Control
Primitives are the internal control knobs and can be either
software or hardware, which can be managed by the cloud
providers to support QoS. Specifically, software control
primitives are software tactics and the key configurations in
cloud; such as the number of threads in thread pool of ser-
vice/application, the buffer size and load balancing policies
etc. Whereas, hardware control primitives are computa-
tional resources, such as CPU and memory. As shown in
Fig. 2, software and hardware control primitives rely on the
PaaS and IaaS layers respectively. In particular, it is non-
trivial to consider software control primitives when model-
ing QoS in the cloud as they have been shown to be highly
relevant features for QoS [8], [19], [20]. On the other hand,
Environmental Primitives refer to the external stimulus that
cause dynamics and uncertainties in the cloud; for exam-
ples, workload and unpredictable incoming data etc. If the
cloud provider is able to control the presence of the stimu-
lus, then these can be considered as control primitives.

To improve accuracy and prevent noises, selecting the
right primitives as inputs is critical for QoS modeling in the
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cloud. However, the difficulty is that the primitive inputs,
which are relevant and useful for modeling QoS, tend to be
dynamic. In such context, possible inputs of a QoS model
can be the primitives that tend to directly influence the QoS
(e.g., the threads of the corresponding service-instance); it
can also include the primitives that belong to the co-located
service-instances and the co-hosted VMs; Specifically, all
possible primitives inputs for modeling the QoS attributes
of a service-instance form a space, which is termed possible
relevant primitives space. This space can be defined by:

Rule 1. A primitive belongs to the possible relevant primitives
space for modeling the QoS of Sy, if it can be classified into one
of the following groups:

1) Itisasoftware control or environmental primitive of Sp.

2) It is a hardware control primitive of the VM that
runs Sy,

3)  Itisasoftware control or environmental primitive of S,
given that Sy, has direct functional dependency on Sq.

4) It is a hardware control primitive of the VM that runs
Sed, given that Sy, has direct functional dependency
on S.q.

5) It is a software control or environmental primitive
of Sca, given that S.; is co-located with Sy, on the
same VM.

6) It is a hardware control primitive of a VM, which is co-
hosted with the VM that runs Sg,.

The problem here is how to select on the fly a right subset
of primitives from the space as the inputs of QoS models.
The aim is to improve the model’s accuracy by taking rele-
vance and redundancy of the primitives into account. In
Section 4, we will present detailed analysis and solution for
selecting the right primitives.

Another important decision to mention is that, for each
control primitive, we need to decide on whether the config-
uration value or the demand value should be used in the
modeling. By configuration value, we refer to the upper/
lower bound of control primitive. However, it is generally
impossible to guarantee that the configured value (e.g.,
CPU cap) can be fully utilized. Such fact obfuscates the sen-
sitivity of QoS to its primitives as using the configuration
values to model QoS would take those idle proportions of
provisions into account. As a result, using configuration val-
ues as inputs is ill-suited in our case. To cope with this issue,
we apply the demand values of control primitives (e.g., real-
time percent usage of CPU) as inputs, which better reveal
QoS sensitivity. Moreover, modeling QoS with demand val-
ues implies that our model is likely to determine the mini-
mal requirement of configurations for achieving certain QoS
objectives. This will potentially improve the elasticity of
software configuration and hardware provision in cloud,
when our modeling approach is used in cloud management.
It is worth noting that certain dimensions of control primi-
tives (e.g., thread) can be controlled for each service-
instance individually, whereas others (e.g., CPU and mem-
ory) are shared on a VM, in which case an identical value
would be used for modeling the QoS of all service-instances
deployed on such VM.

Instead of using multiple metrics for each primitive and
QoS, e.g., CPU percentage and instructions-per-second for

measuring CPU of a VM, we follow the state-of-the-art
assumption [7] that only one metric is used for each primi-
tive and QoS in the modeling; the proper metric can be cho-
sen by the software/cloud engineers based on certain
constraints in the cloud environment, e.g., whether it is sup-
ported by the hypervisor. We leave the study of multidi-
mensional metrics as future work.

2.3 Dynamic and Interference Aware QoS Model

To tackle the aforementioned challenges of QoS modeling in
the cloud, we define a generic QoS model. Formally, the
model at the ¢tth sampling interval is expressed as

QoS{(t) = £,/ (SP{(t),5), Q)

where QoS}f (t) is the kth QoS attribute of \S;;, and its value
that used in the modeling is represented by a given metric
(e.g., mean Response Time) at ¢. f]ij is the QoS function for
the kth QoS attribute of Sj;, and it is changed at runtime
using learning algorithms, as we will see in Section 5. §
refers to any other inputs (e.g., historical time-series QoS
points and tuning variables etc) required by the algorithm
to train apart from the cloud primitives. We denote the
input SP/(t) in (1) as the selected primitives matrix of
QoS (t) at t, formally depicted in (2)

CPIY(t) EPy™(t—1)
SP(t) = : : @

CPY(t—q+1) EP]"(t—q)

This matrix contains the primitive inputs of QOS,? (t) which
are dynamically selected from the possible relevant primitives
space for the QoS attributes of S;;, as we will see in Section 4.
More concretely, the column entries indicate the selected
primitives for the QoS. C'P;¥(t) denotes the ath control primi-
tive of S,, and EP;"(t —1) means the bth environmental
primitive of S,,, respectively. The actual values of CP(t)
and EP""(t — 1) in the modeling are measured by given met-
rics (e.g., expected CPU percent usage and mean request rate)
at t and ¢ — 1, respectively. ¢ determines the number of row
entries, which indicates the use of how many historical time-
series points of the selected primitives as inputs. We observed
that the best value of ¢ depends on the learning algorithm that
trains f,ij ; in particular, it is better to set q as constant for cer-
tain algorithms (e.g., ¢ = 1 for ANN and RT); however for the
others (e.g.,, ARMAX), we found that ¢ should be determined
during training via hill-climbing optimization, which starts
with ¢ =1, then automatically increase the number of row
entries one by one during training till the accuracy cannot be
further improved. To improve numeric stability for both con-
tinuous and discrete data, we normalized all data values to
the range between 0 and 1 before the modeling.

It is easy to see that (1) and (2) provide generic and intui-
tive formulations for modeling QoS in the cloud. Precisely,
to model QoS/(t), the objective of our fully dynamic,
self-adaptive and online modeling approach consists of
two-phases: (i) a primitives selection phase that determines
the content of SPZ,j (t) at runtime; and (i) a QoS function

construction phase that trains function f;’ on the fly.
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Fig. 3. Overview of the modeling approach in the cloud.

Online

3 OVERVIEW OF THE MODELING APPROACH
IN CLOUD

As shown in Fig. 3, the approach is realized as middle-
ware using autonomic architecture with a feedback loop.
The service-instances running on the VMs of a PM are
managed by a dedicated Middleware Instance (M),
which is attached to the root domain (e.g., DomO [29]) of
this PM. Each MI is self-adaptive as the feedback loop
runs continually to keep the models updated.

Our approach is designed for online scenarios; the only
offine preparation is to define the current service-instan-
ces, their QoS and classification of the primitives in the
spaces (i.e., using Rule 1). This preparation can be easily
done by the software/cloud engineers and it should be
updated accordingly if changes occur. The approach can
be also used offine in situations where conducting offine
modeling in advance can be beneficial to the online mod-
els. Within the feedback loop, Data Collector continually
monitors and stores data samples of QoS and primitives
from the service-instances/VMs running on a PM, and
those from the other PMs in the presence of functional
dependency. This can be achieved by accessing the cloud
sensors or log files. It is worth noting that the modeling
interval can be longer than the sampling interval; that is
to say, the frequency of data collection do not need to be
the same as the frequency of modeling, in which case the
sampled data can be stored in a history database and
retrieved when needed.

Upon each modeling interval, for each QoS attribute of
a service-instance, all historical data is then passed to the
primitives selection phase for determining which and
when primitives correlate with QoS at runtime (step 1).
Here, we have used two learners to select primitives from
two sub-spaces as motivated by our analysis in Section 4.
At step 2, the selected sets of primitives are combined
and sent to the QoS function construction phase, where
multiple learners are used to model how the primitives
correlate with QoS online (step 3). At step 4, each QoS
attribute is associated with a bucket of models produced
by candidate learners and an evaluation function; in addi-
tion, the weights in the evaluation function will be
updated. This bucket can be then used by, e.g., an
Autoscaler for performing prediction at any time (step 5).
Upon prediction when given a set of inputs, the evalua-
tion function is used to select the best model in the bucket
(see Section 5).

4 PRIMITIVES SELECTION IN THE CLOUD

As shown in (1) and (2), to dynamically model QoS}’(t) at
runtime, we first determine which and when the underlying
primitives should be included as column entries in SP’(t)
for the QoS modeling.

One straightforward solution to the primitives selection
problem is to search the best set of primitives using a given
learning algorithm that guarantee to produce the best accu-
racy for the said algorithm; this is regarded as the wrapper
approach [30]. Nevertheless, given that the learning algo-
rithm needs to be run many times during the selection pro-
cess, it is clear that such approach can introduce large
overheads in terms of both resource and latency. As a result,
the wrapper approach is ill-fit for online QoS modeling in
the cloud. In this work, we focus on an alternative approach
that is more efficient and capable to select primitives inde-
pendent of the learning algorithms, namely the filter [30].

Traditionally, selecting the primitives as model inputs for
QoS modeling in the cloud has been done using fixed and
manual sensitivity analysis (e.g., [7], [17]), or single-learner
based approach [8] as they consider all the possible primi-
tives in the space equally. However, there has been no
explicit definition of the objectives for primitives selection
process in the cloud; it has been implicitly known as to
select certain relevant primitives (e.g., the top two relevant
primitives) for modeling QoS without considering redun-
dancy. In addition, existing primitives selections in the
cloud are mostly driven by empirical observations and
domain specific assumptions— there has been no explicit or
quantitative studies about the correlation of selected primi-
tives to the model accuracy. In particular, it is not clear how
the relevance and redundancy of selected primitives can
affect the accuracy when modeling QoS in the cloud.

In this section, we clearly define the objectives of primi-
tives selection for QoS modeling in the cloud. We also pres-
ent a set of experimental analysis on the relevance and
redundancy of selected cloud primitives in relation to
model accuracy. Driven by the observations from the con-
ducted analysis, we propose a self-adaptive and online solu-
tion for primitives selection, namely hybrid dual-learners.

4.1 The Objectives in Primitives Selection

We define two main objectives for the primitives selection,
namely: selecting relevant primitives and selecting useful
primitives from the possible relevant primitives space. It is
well-known that one set of primitives can result in better
model accuracy than another set, given that both sets have
the same relevant primitives of the QoS and the former has
no or less irrelevant primitives (i.e., those that cannot influ-
ence Qo0S) than the latter [30]. Therefore the aim of the first
step in primitives selection is to select all relevant primi-
tives, we call this as the problem of relevant primitives selec-
tion and it can be easily resolved by using relevance
measurement, as we will show. However, selecting only the
relevant primitives is likely to have rich redundancy in the
selected primitives, which can negatively affect the model
accuracy [15]. Therefore, the crucial challenge is how to
select an even better set after the irrelevant primitives have
been eliminated, considering each relevant primitive can be
good for providing relevance, but bad for having
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redundancy with each others. We refer to this problem as
the useful primitives selection problem. In this problem, our
aim is to select a set of primitives that improve the model
accuracy. In particular, this can be achieved by reaching a
right balance between relevance and redundancy. It is easy
to see that a useful primitive is definitely a relevant primi-
tive, but the reverse is not always true.

4.2 Quantifying Relevance and Redundancy

To quantify the relevance of a primitive to the QoS and the
redundancy between a pair of primitives, we have used Sym-
metric Uncertainty (SU), which is a fundamental concept in
information theory [23]. SU measures the degree of relevance
between two time series variables by producing a value
ranges from 0 to 1, where a greater value implies higher rele-
vance. At one extreme, the value between a QoS attribute and
a primitive is 1 indicating that all information of the primitive
is correlated with the QoS (and vice versa). At the other
extreme, the value of 0 implies that changes in the primitive’s
behavior are independent of that of the QoS (i.e., irrelevant
primitive). Formally, the symmetric uncertainty between two
discrete, time-series variables is calculated by

22X I(X,Y)
I(X.Y) = log [ PEY) ()
(X,Y) ﬁzy;{p(m,y) 8 { ) % p0)
H(X) == p(x)log (p(z)), (5)
reX

where X and Y are the value vectors of a primitive (e.g.,
CPU) and a QoS attribute (e.g., Throughput), respectively;
I(X,Y) shows the formula for mutual information between
them and H(X) expresses entropy (we have used 2 as the
log base). = and y refer to a pair of primitive and QoS value
at the same sampling interval.' p(z, y) is the joint probability
between the values in a pair; p(x) is the marginal probability
of a particular primitive (or QoS) value. In the following, we
call a primitive as relevant primitive to a QoS attribute if it
results in non-zero SU value to such QoS. By using (3), it is
straightforward to measure the relevance of a primitive to
QoS. As for redundancy, we consider it as the relevance
between a pair of primitives, which can be also easily quan-
tified using (3).

Bear in mind that a single SU value is very helpful for fil-
tering the primitives that have relevance below threshold
(e.g., filter irrelevant primitives), if it is known that these
primitives can cause downgrade of the model accuracy; it is
also useful for conducting pair-wised comparison on the
relevance of two individual primitives to the QoS; or for
comparing the redundancy of two individual primitives to
the other same primitives. It is known that these compari-
sons can provide correct information about the relative
effects of relevance and redundancy of two individual prim-
itives to the model accuracy [15]. That is to say, it is known

1. To preserve simplicity and avoid the expensive calculation of con-
tinuous mutual information, we firstly normalise the continuous time
series data to the range of 0 and 100, we then discretize it by rounding
each value to the nearest integer.

that (i) A can help to produce better model accuracy than B
if B has zero SU value to the QoS while A has non-zero
value; or (ii) A can provide better accuracy than B if A is
more relevant (greater SU value) to the QoS and both of
them has the same redundancy value to each selected primi-
tives; or (iii) if there is only one selected primitives C, then A
can provide better accuracy than B given that the redun-
dancy between A and C is less than that between B and C
(i.e., smaller SU value), in addition, A and B has the same
relevance to the QoS.

Nevertheless, the single SU value and pair-wised com-
parison are insufficient for selecting useful primitives as
they cannot consider both relevance and redundancy simul-
taneously in the selection. In addition, it cannot properly
quantify the effects of combinatorial relevance and redun-
dancy to model accuracy for a whole set of selected relevant
primitives. This means given two sets of selected relevant
primitives, such comparison cannot determine which set
will produce better model accuracy during the selection.
Our problem requires a measurement that copes with those
issues. As a result, we need to study and select useful primi-
tives by comparing the cumulative representation of rele-
vance and redundancy for any possible sets of selected
relevant primitives.

There can be two forms of cumulative representation:
first we can consider multivariate probability distribution
for a given set of selected relevant primitives, in which case
(3) would be changed into the following formula:

2% I(X; Xs, ..., X,,Y)
U(X1,Xo,...,X,,Y) = : , Xn €8,
(XX ) H(X, Xs,...,X,) + H(Y)
(6)
where [X;, X5,..., X,] denotes vectors of n different primi-

tives that has been selected; and S denotes the set of selected
primitives. (6) expresses both relevance and redundancy as
they can be handled by the multivariate probability func-
tions. However, this method has some serious drawbacks:
(i) the number of online data samples can be insufficient for
correctly calculating the probability and (ii) the multivariate
joint probability calculation often involves computing the
inverse of the high-dimensional covariance matrix, which is
computationally expensive and thus it is an ill-suited solu-
tion in our case. Alternatively, we can compute the cumula-
tive SU values of relevance and redundancy. By cumulative
SU values, we refer to the cumulative combination (i.e., total
or average) of the single SU values for the primitives in a
given set of selected relevant primitives [15]. An example of
relevance is shown below

n
Relevance of a selected set = Z UX,Y). (7
XeS

This cumulative combination involves a bivariate probabil-
ity only and thus it is more appropriate for filtering at
runtime. In addition, it is highly intuitive and the nature of
cumulative combination implies its light computational
efforts. The cumulative representation for redundancy can
be similarly applied. In this work, we call these representa-
tions as cumulative relevance and cumulative redundancy.
Recall that in selecting useful primitives, we aim to
improve the model accuracy by balancing the relevance and
redundancy of selected primitives. With this in mind, it is
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Fig. 4. The relevance of different primitives for the exampled service-
instance. X-axis plots different primitive dimensions; y-axis denotes their
SU values.

easy to see that even if we incrementally select (add) the rel-
evant primitives one at a time, the validity and usefulness
of cumulative relevance and redundancy rely on the follow-
ing assumption (in the next section, we will experimentally
verify this assumption):

Assumption 1. For QoS modeling in the cloud, the model
accuracy, represented by error, is negative to the difference
between cumulative relevance and redundancy if the cumu-
lative relevance is bigger (i.e., the bigger the difference, the
smaller error); or being positive to such difference if the
cumulative redundancy is bigger (i.e., the bigger the differ-
ence, the bigger error).

Indeed, if this assumption does not hold, it means that
the cumulative SU values cannot correctly differentiate and
quantify the effects of some relevant primitives to the model
accuracy, and this will significantly mislead the selection
process. That is to say, given two sets of selected relevant
primitives A” and B’; A" should result in better accuracy
than B’ if the cumulative relevance of A’ is greater than that
of B” while the cumulative redundancy in A’ is smaller than
that in B”. However, when Assumption 1 does not hold, B’
can actually result in better accuracy than A’. Consequently,
the situation can mislead the selection process as it may
eliminates some highly useful primitives that help to
improve the model accuracy. In the following, we will ana-
lyze the effects of selected primitives w.r.t. model accuracy
and verify Assumption 1 for QoS modeling in the cloud.

4.3 Relevance and Redundancy Analysis on
Primitives Selection

To study the correlation of selected primitives to the accu-
racy for modeling QoS in the cloud, we have conducted sev-
eral analysis on the relevance and redundancy of selected
primitives by means of experiments (see Section 6 for the
detailed setup). In particular, we have carefully analyzed
the relevance between possible primitives and QoS from the
experiments— we first select the relevant primitives and
then we rank them based on their relevance to the QoS. We
found that the only constant observation across many QoS
attributes and service-instances is that for each feature
dimension (i.e., thread, CPU, Memory and Workload), cer-
tain primitives are more relevant to the QoS than all or most
of the others. As an example, Fig. 4 shows the relevance
(measured by (3)) for Response Time of a service-instance

for different feature dimensions, calculated by averaging
the values from all 350 intervals in one run. We performed
Wilcoxon Signed-Rank test (two-tailed) for all comparisons.
The resulted p values are smaller than 0.05, which confirms
the statistical significance of the results. We discovered that
the more relevant primitives are the ones that can directly
influence the corresponding service (dark bars), e.g., the
thread of the service and CPU of the VM; on the other hand,
the less relevant primitives are the ones that can only inter-
fere the service and its QoS via contention (light bars), e.g.,
the thread of co-located service and CPU of co-hosted VM.
Such observation indicates that the former is more impor-
tant to the QoS than the latter as QoS interference can only
occur when the contention is quite significant [13]. These
facts motivate us to partition the possible relevant primi-
tives spaces into two sub-spaces, namely direct primitives
space and indirect primitives space. By leveraging the classifi-
cations in Rule 1, the former is defined by:

Rule 2. A primitive belongs to the direct primitives space for
modeling the QoS of Sy if it is in group 1,2,3 or 4 from Rule 1.

It is clear to see that the direct primitive space contains
primitives that can directly influence the QoS, which means
they tend to provide different aspects of information. On
the other hand, the indirect primitives space contains infor-
mation about the QoS interference. Consequently, the indi-
rect primitive can be defined as:

Rule 3. A primitive belongs to the indirect primitives space for
modeling the QoS of Sy if it is in group 5 or 6 in Rule 1.

It is worth noting that the indirect primitives space
should generally be larger than the direct primitives space
as it is sensitive to the number of co-located service and co-
hosted VMs, which can be expended largely in the cloud. It
is possible that both direct and indirect primitives space
have irrelevant primitives, which can be easily eliminated.

Next, to verify whether the Assumption 1 is valid for the
case of QoS modeling in the cloud, we have conducted a set
of analytical experiments to evaluate how the accuracy
changes with respect to the changes of cumulative relevance
and redundancy. In particular, while keeping the total num-
ber of primitives and services unchanged, we gradually add
more relevant primitives as the selected inputs (from higher
relevance to lower relevance) to the modeling process. For
each set of selected primitives, the model accuracy and
cumulative values are calculated by averaging the results
from all 350 intervals in one run. We have used all the three
learning algorithms (i.e., ANN, ARMAX and RT) and
assessed the accuracy using SMAPE [31]. It has been shown
that SMAPE is intuitive, stable and more resilient to outliers
than the other metrics [32].

In summary of the experiments, we have obtained four
major observations: (i) within the direct primitives space,
Assumption 1 does not hold. This is due to the fact that the
direct primitives space contains different underlying primi-
tives that directly influence the QoS, hence they can usually
provide different aspects of information about a QoS attri-
bute, which cannot be correctly quantified by cumulative
SU value. Surprisingly, we also found that (ii) for inter
direct and indirect primitives space, Assumption 1 does not
hold either; (iii) however, within the indirect primitives
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Fig. 5. The fluctuation on model accuracy as the number of selected
primitives increase.

space, Assumption 1 is valid. We believe that the reason for
observations (ii) and (iii) is due to the fact that different
direct primitives provide different aspects of information
about the QoS and they influence the QoS directly. Whereas
all the indirect ones can only do so via interference and con-
tention; henceforth, they can only provide information on
contention which can be regarded as one aspect of informa-
tion that influences QoS. Obviously, this aspect of informa-
tion is different to those in the direct primitive space. These
observations also imply that the cumulative SU values can
only quantify the effects of primitives to model accuracy,
when they provide the same aspect of information. The final
observation (iv) is that, although the overall relevance in
direct primitives space is smaller than that of the indirect
primitives space (as the former is smaller in size), the
resulted model accuracy when using direct primitives is
generally better than the use of indirect ones. This is a typi-
cal consequence of redundancy: the overall redundancy in
the indirect primitives space tends to cause more negative
effects on model accuracy than that of the direct one. Such
observation means that even when redundancy is consid-
ered, the direct primitives can be more important than the
indirect ones in the modeling. However, we observed that
the best accuracy is achieved by the combination of direct
and indirect primitives. This means consider proper infor-
mation of QoS interference in the modeling can be quite
beneficial for accuracy.

We now explain the process of analysis in details by refer-
ring an example to simplify the exposition. In particular, we
report on the Response Time of a service-instance, but simi-
lar results have been observed on many other instances. To
avoid noise caused by the irrelevant primitives, we have con-
sidered only relevant primitives in the analysis. Fig. 5 shows
how the accuracy tends to change with the cumulative distri-
bution of selected primitives in the modeling. Fig. 6
expresses the changes of the cumulative average of relevance
(dashed blue line) and redundancy (solid red line) as the
number of selected primitives increases. Similarly, Fig. 7
shows the changes of the cumulative total of relevance and
redundancy with respect to the number of selected primi-
tives. It is worth noting that, it can be hard to interpret the
cumulative relevance and redundancy using cumulative
total, as they are on significantly different scales, especially
when the number of selected primitives increase. Therefore,
we have normalized the data in the way that the scales of
both values are in the range between 0 and 1.
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Fig. 6. The fluctuation on cumulative average of relevance and redun-
dancy as the number of selected primitives increase.

We initiate the process by adding the direct primitives
before the indirect ones as the former can be relatively
smaller in size, which causing minimal noise when the
number of primitives increases. In Figs. 5, 6, and 7, the
trend between 0 and 10 percent of the x-axis shows the
effects of adding direct primitives while the remaining
shows the effect of adding indirect ones. From Fig. 6, we
can see that the increase of cumulative redundancy tends
to be larger than the increase of cumulative relevance,
but they become close again as they reach the 10 percent.
We obtained similar results from Fig. 7 for the cumula-
tive total of relevance and redundancy. This means that,
if Assumption 1 is true from 0 to 10 percent, then the
error is expected to increase gradually and smoothly
before it drops slightly toward 10 percent. Nevertheless,
we observed rather contradictory results on the accuracy
curve of Fig. 5— for all the three learning algorithms,
the error drops almost linearly from 0 to 10 percent,
which means that in the direct primitives space,
Assumption 1 does not hold.

Next, we can see that similar result also occur at the initial
stages when adding the indirect primitives, particularly
between 10 and 20 percent of the x-axis. Precisely, both Figs. 6
and 7 indicate that from around 13 percent, the cumulative
relevance increase almost linearly and the cumulative redun-
dancy increase following a logarithmic behavior. This means
that if Assumption 1 is true, the error is expected to become
larger from 13 percent. This is contradicted with what is
shown in Fig. 5— the error continues to drop till it reaches the
best point at around 13 to 17 percent, and the accuracy stabil-
izes up to the 20 percent x-axis. Given that the number of

0.03 H 1
-++'Relevance -~ Relevance
—Redundancy |} 0.9 — Redundancy
> 0.02 : 0.8
£ 2 07
£ 3
] 0.02 T 06
o
S 5 05
2}
£ 001 2 04
£ e :
E e
@ 0.01 @» 0.2 '
01—t
0 0 i

Selected Primitives (%)

Fig. 7. The fluctuation on cumulative total of relevance and redundancy
as the number of selected primitives increase.
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primitives from both the direct and indirect primitives spaces
is close (i.e., 10 percent of the total number of relevant primi-
tives for each space), theses observations reveal that for the
inter direct and indirect primitive spaces, Assumption 1 does
not hold either. In addition, the accuracy trend implies that a
combination of all direct primitives and some indirect ones
yields better accuracy as it is important to consider interfer-
ence in the modeling.

Finally at Fig. 6, we can see that from 20 percent and
onwards, the cumulative relevance increases slightly and
linearly whereas the cumulative redundancy tend to exhibit
logarithmic and nonlinear behavior in its increase it
increases from 20 percent and drops by 60 percent. Similar
trend can be observed from Fig. 7— at around 60 percent,
the increasing slope of cumulative redundancy becomes
steeper towards the curve of cumulative relevance, which
keeps increasing linearly. As a result, if Assumption 1 is
true, then the error should become larger from 20 to 60 per-
cent; while from 60 percent onward, the error should start
to drop slightly and smoothly. This is almost what we can
observe from Fig. 5 for the three learning algorithms. Since
the effects of direct primitives becomes weaker (after 20 per-
cent) when more indirect primitives are involved in the
modeling, the results indicate that in the indirect primitives
space, the Assumption 1 is indeed valid. Another observa-
tion is that using the direct primitives tends to lead to better
accuracy than using of indirect primitives.

To summarize, we can conclude that Assumption 1 is true
for intra-indirect primitives space. However, for inter-direct
and indirect spaces, this assumption does not hold; for intra-
indirect primitives space, this assumption is invalid either. We
believe the reason being is that Assumption 1 can be easily vio-
lated when there are certain primitives providing different
aspects of information to the QoS. This means a single-learner
based technique (i.e., considering all primitives equally) tends
to be insufficient for the primitives selection, because it can
merely follow one of the three patterns below: (i) select relevant
primitives from one sub-space (e.g., direct primitives space),
which can lose highly relevant information from other sub-
spaces in the modeling; (ii) select relevant primitives from the
entire possible relevant primitives space and unavoidably
introducing too much unwanted redundancy; or (iii) select use-
ful primitives from the entire possible relevant primitives
space, in which the cumulative relevance and redundancy will
mislead the selection process. The observations also indicate
that in the fixed and manual primitives selection, one should
be extremely cautious to consider every possible combination
of the primitives in the analysis, which makes the process
extremely expensive and complicated. This is especially true in
situations where potential QoS interference needs to be consid-
ered, in which case the number of possible primitives increases
dramatically. Further, even when such process takes place, the
validity of offine result cannot be guaranteed due to dynamic
and uncertain nature of cloud.

All these facts urge the need for a self-adaptive and
online primitives selection for modeling QoS in the cloud,
which we address in this paper. Given the cumulative rele-
vance and redundancy can mislead the selection when
Assumption 1 does not hold and the fact that it is very diffi-
cult to efficiently handle the selection without cumulative
representations, we have decided to avoid the misleading

selection by partitioning the space. To better tackle the prob-
lem of relevance and redundancy in primitives selection, we
intend to partition the primitives that provide different
aspects of information to the QoS into sub-spaces, and select
the useful primitives from each sub-space independently
using cumulative relevance and redundancy.

4.4 The Hybrid Dual-Learners for Primitives
Selection

To adaptively and dynamically select primitives as the model
inputs online, we design a runtime filtering mechanism based
on symmetric uncertainty, which has the advantage to assess
the effects of selected primitives on model accuracy without
actually training a model. Based on the analysis in Section 4.3,
we use multi-learners in order to avoid the aforementioned
issues caused by single-learner based technique. In particular,
we partition the primitives that provide different aspects of
information on the QoS into sub-spaces; this will result in
k + 1 partitions, where k is equal to the number of primitives
in the direct primitives space; while the remaining one parti-
tion refers to the indirect primitive space. The objective is to
select useful primitives from each sub-space independently
using dedicated learners and then produce an ensemble
results as the selected inputs for modeling. By doing so, we
aim to produce a model with adequate model complexity and
improved accuracy.

Inspired by [15], for each sub-space, we formalize a Max-
imal Relevance Minimal Redundancy (MRMR) learner
using cumulative relevance and redundancy. This learner
aims to continually select the primitives that maximize

maz ®(S,Y), st.UX,Y) > 0,X €S, ®)

where X corresponds to the value vector of a primitive and
Y to the value vector of QoS attribute. S denotes the associ-
ated sub-space; U is the function of symmetric uncertainty
in (3). Mathematically, the objective function ® can have
four possible variations, depends on whether we use total
or average to represent cumulative SU values; and whether
we apply multiplicative or additive formulation to repre-
sent the difference between cumulative relevance and
redundancy. Specifically, we obtain several variations of the
objective function in (8)

Total and multiplicative:

Z;L(ES U(Xv Y)

9
1+ xxes UX, X') ©
Average and multiplicative:
Yes UX)Y) x (n—1) (10)
n?—=n+2x3 x e UX, X')
Total and additive:
Y UXY) - Y UK X) (11)
XeS X, X'eS
Average and additive:
Z;L(es U(Xv Y) 2 x ZX,X’ES U(X7 X,)
n a n?—n ' (12
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where X’ is the value vector of another primitive. n is the
number of primitives, which has been already selected. It is
clear to see that the constraint filters all the irrelevant primi-
tives and this can be done easily. In this work, we apply
incremental random search to optimize these functions for
simplicity; however, it can be easily replaced by more
sophisticated algorithms. In Section 6, we will experimen-
tally compare these variations.

Given that the Assumption 1 does not hold indirect prim-
itive space, we apply dedicated MRMR learner for each sub-
space independently. However, because there is only one
primitive exist for each k sub-space, the objective here is
equivalent to select the relevant primitives from all k sub-
spaces, therefore these sub-spaces can be merged into one
and the multiple MRMR learners can be simplified to a sin-
gle Maximal Relevance (MR) learner, which aims to contin-
ually select the primitives that maximize

max W(D,Y),¥ = > U(X,Y), stU(X,Y) >0, (13)
XeD

where D denote the associated direct primitive space and all
other notations are the same as (8). Again, the constraint fil-
ters all the irrelevant primitives.

It is worth noting that in case of selecting relevant primi-
tives, certain forms of cumulative relevance are applicable
as long as the cumulative relevance is positive to the num-
ber of selected primitives. This is because irrelevant primi-
tives can benefit nothing but degrading accuracy [15], [30].
As shown in (13), the problem of selecting relevant primi-
tives can be represented by maximizing the total SU value
of relevance, subject to a constraint that the relevance of
each selected primitive is greater than 0. This is because the
cumulative relevance does increase positively with the
increasing number of selected primitives. However, if we
replace the cumulative relevance function to maximize
average SU value, this can mislead the selection. In such
case the cumulative relevance to the number of selected
primitives can be negative. For example, if we have a two
primitives set with 0.5 and 0.3 relevance each, they will
have smaller cumulative average of relevance than that of a
one primitive set with 0.5 relevance, but greater than that of
a three primitives set with one 0.5 and two 0.3 relevance.

As for indirect primitives space, we use a MRMR learner
for this sub-space, given that the Assumption 1 is true and
the indirect primitive space tends to provide the same
aspect of information to the QoS.

Eventually, we only need to partition the possible rele-
vance primitives space into two sub-spaces, each of which
employs learners with different primitives selection techni-
ques (i.e.,, MR and MRMR learner). The final results are
combined to form the selected useful primitives. We call
this as the hybrid dual-learners technique. An algorithmic
description of the technique is illustrated in Algorithm 1.

4.5 Comparing to State-of-the-Art Feature Selection
Algorithms

Our symmetric uncertainty based hybrid dual-learners

approach can be treated as similar to the Kolmogorov-Smir-

nov based and Information Value Ranking algorithms for

feature selection. However, instead of following their

specific algorithmic steps (e.g., select the most relevant fea-
ture first and then remove redundant based on that), we
have formulated the problem as general optimization func-
tions which, in turn, can be solved by many off-the-shelf
optimization algorithms. Here, we have used randomized
optimization for simplicity, but more sophisticated algo-
rithms can be easily adopted. This will provide better flexi-
bility for tackling primitives selection in cloud QoS
modeling, which is an important, yet often ignored problem
in the literature. In contrast to the other sensitivity analysis
and tree-based importance analysis, our approach is light-
weighted and intuitive, yet still effective without heavy
human intervention for analyzing and tuning. Our
approach has also been specifically tuned for QoS modeling
in the cloud based on our observations regarding the effects
of direct and indirect primitives in the modeling.

Algorithm 1. Hybrid Dual-Learners for Primitives
Selection

Inputs:

given the value vector Y of a QoS attribute QOS;";" , the associated

direct primitives space D and indirect primitives space ID

Declare:

Clirec—the collection of selected direct primitives

Cindirec—the collection of selected indirect primitives

Outputs: -

the column entries of the selected primitives matrix SP}(t)

1: start primitives selection

2: Crﬁ,rs(',t = Q)/ er,{]ir*er:t = wr

3: Clirect :=argmaz WV(D,Y) via (13)

4: Cindirect = argmaz ®(S,Y) via one from (9), (10), (11), and
(12)

5: end primitives selection

Although one could argue that specific regularization
algorithms (e.g., lasso and ridge), which shrinks the coeffi-
cients of each input according to its importance instead of
the “cutting-off” them, might be effective and accurate,
applying an universal feature selection can lead to the fol-
lowing benefits:

e Since the dimensionality of inputs are reduced, it
helps to produce faster training and less computa-
tional cost for the learning algorithms. This is impor-
tant for efficient and scalable online QoS modeling in
the cloud.

e Our primitives selection method aims to “cutting-
oft” the useless and irrelevant inputs primitives (as
identified by the symmetric uncertainty metric). This
provides simpler and intuitive models, which in
turn, helps the cloud engineers to identify the depen-
dent QoS attributes, i.e., those that can be influenced
by the same inputs. This is also useful when using
the QoS models in the decision making process of
cloud autoscaling.

e It is flexible to support many learning algorithms/
models, as opposed to the fixed model in regulariza-
tion driven algorithms (e.g., linear model or tree).
This can help to improve the accuracy for those
learning algorithms that lacks regularization (e.g.,
ANN).
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TABLE 2
The SMAPE (%) of Learning Algorithms on Different
QoS Attributes and Relative Standard Deviation

QoS Attribute (RSD) ANN ARMAX RT
Response Time (4.197) 12.28 29.61 16.31
Throughput (0.663) 11.93 13.38 21.89
Reliability (0.012) 0.21 0.03 0.28
Availability (0.010) 0.37 0.03 0.43

5 QoS FUNCTION CONSTRUCTION IN THE CLOUD

Recall from (1), once the primitives in SPZ? (t) have been
selected, our next goal is to determine how those primitives
correlate with QoS;j(t) in the QoS function f}f (t).

Existing work has considered variety of learning algo-
rithms for QoS function construction, ranging from simple
linear model [33] to complex nonlinear ones [7]. These algo-
rithms are self-adaptive and dynamic in nature thus they
are capable to deal with dynamic and uncertain magnitude
of primitives in the correlation. In this section and by means
of experiments, we study the accuracy of the most widely
used single learning algorithms (i.e., ANN, ARMAX and
RT.) for QoS modeling in the cloud. In particular, we assess
the accuracy of the learning algorithms over four different
QoS attributes—Response Time, Throughput, Reliability
and Availability (see Section 6.2 for their detailed defini-
tions). Finally, we present a self-adaptive and online solu-
tion for QoS function construction, namely adaptive multi-
learners, to address the issues discovered.

5.1 Suitability Analysis of Learning Algorithms

on QoS Function Construction

For simplicity of exposition, we illustrate the results for a
service-instance for the three learning algorithms over the
four QoS attributes. We have used the variation in (7) for
primitives selection. To better interpret the result with
respect to different trends of QoS attributes, we apply Rela-
tive Standard Deviation (RSD) to measure the fluctuation of
the QoS in a relative manner, calculated as: RSD = o/pu,
where o is the standard deviation and u is the mean of all
measured QoS values. We can observe from Table 2 that the
RSD value of the QoS attribute can be sorted by the follow-
ing ascending order: Availability, Reliability, Throughput
to Response Time; this means the trend of Response Time
being the most fluctuated one. At the other extreme, the
trend of Availability being the most stable one. As shown in
Table 2, we can clearly see that the accuracy achieved by a
learning algorithm differs significantly from case to case—
ANN is the best for Response Time and Throughput while
the ARMAX is the best for Reliability and Availability. In
particular, the results of ARMAX reduces the error to
0.03 percent for Reliability and Availability; while ANN
tends to be significantly better than ARMAX for Response
Time and RT for Throughput. Beside, even though RT per-
form the worst for most of the cases, it can still largely reduce
the error in contrast to ARMAX at the case of Response Time.

An interesting discovery from Table 2 is that, if we inter-
pret the accuracy in conjunction to the RSD of different QoS
attributes, we can see that the ANN tends to perform better
than ARMAX on Throughput and Response Time where

the fluctuations of trend are relatively large; and this
improvement tends to increase from Throughput to
Response when the trend becomes more fluctuated. On the
other hand, ARMAX tends to produce better accuracy than
ANN on Reliability and Availability, where the fluctuations
of trend are relatively small; and this improvement tends to
increase from Reliability to Availability when the trend
becomes more stable. These observations reveal that nonlin-
ear model like ANN can better handle the dynamic and
uncertain magnitude of primitives in the correlation leading
to better accuracy when the fluctuation of the QoS increases,
whereas the linear ARMAX produces less error as such fluc-
tuation decreases.

All these experimental results suggest that the learning
algorithms perform quite differently depending on the QoS
fluctuation trends and primitives combination; henceforth,
we cannot reach a conclusion that a certain algorithm is gen-
erally the best learning algorithm for QoS modeling in the
cloud. This indicates that given the generality of the pro-
posed QoS model, the single learner is limited as it is diffi-
cult to determine which learning algorithm to use without
expensive and intensive analysis. In addition, even when
such process is performed, the offine analysis can still
become invalid at runtime. Therefore, it is desirable to build
a self-adaptive mechanism that not only able to adaptively
model the magnitude of selected primitives to the QoS, but
also dynamically select the suitable algorithm based on the
runtime trend of a QoS attribute.

5.2 The Adaptive Multi-Learners for QoS Function
Construction

Given the fact that most machine learning algorithms are
self-adaptive and dynamic in nature, the crucial challenge
here is how to adaptively determine the best learning algo-
rithm for QoS function construction. To this end, we propose
an adaptive multi-learners technique for updating QoS func-
tion f;/(t) on the fly and predicting the QoS values, as men-
tioned in Fig. 3. The technique has two main processes,
namely training and prediction. At the training process, we
simultaneously apply different learners to train the same
QoS function, but each of the learners uses different learning
algorithm to build a model. At the prediction process, we
evaluate these learning algorithms by comparing the
resulted models within the bucket on the fly; the model of
the best learning algorithm is used to predict QoS.

One of the most critical design decisions is to determine
the evaluation function that compares the models produced
by candidate learners. The basic method would be based on
global mean error of all historical samples. However, as
shown by Kundu et al. [7], given a set of primitive values as
inputs, the most accurate model using these inputs might
not be the one that has the best global error. This is because
the accuracy of a model can be sensitive to the local construct
of given input values, including the variation of possible
combination, scale and granularity, etc. As a result, our eval-
uation function aims to compare both the local error of a
given inputs set produced by a model and the global error of
the said model. In this work, we have used SMAPE for mea-
suring the error, but other metrics can be used easily.

An algorithmic description of the training process has
been shown in Algorithm 2. At the training process, as the
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collected online data increases, we continually train two
QoS models for each learner (lines 2-5): (i) A main-model that
uses 100 percent of the collected online data; (ii) A sub-
model, which is trained based on 70 percent of the total col-
lected data. The sub-model is used to test local and global
error for its main-model of a learner. In particular, it tests the
QoS prediction error on the remaining 30 percent testing
data— the split of training and testing data follows standard
machine learning approach for testing generalization errors.
These generalization errors and their corresponding sam-
ples (i.e., the observed values of all selected primitives and
QoS at each interval) within the testing data serve as the
local error patterns of the main-model. Finally, the main-model,
sub-model and local error patterns are put in a bucket.

Algorithm 2. Training Process in Adaptive Multi-Learners

Inputs: N

given the column entries of SP/(t) from Algorithm 1 and a set

of candidate learning algorithms

Declare:

(M4in, Msup, L) —a vector of main-model, sub-model and the cor-

responding local error pattern bucket—a collection of model

vectors

Outputs: B

a bucket of model vectors for a QoS attribute QoS}/

1: for each candidate learning algorithm simultaneously do

2:  find the optimal number of row entries, i.e., the value of g
in (2), for SP/(t) if it has not been predefined for this
learning algorithm

3:  train main-model M,,.;, and sub-model M,,;, based on the

required inputs defend by SPY (t)

4:  test the sub-model for building local error pattern L
5. bucket := bucket U (M,qin, Msup, L)
6: end for

An algorithmic description of the prediction process has
been shown in Algorithm 3. The prediction process is trig-
gered when there is need to perform prediction. In particu-
lar, the best main-model in the bucket is used as the final
model to predict QoS. To calculate the local error of a main-
model, we leverage the prediction error of its sub-model for
each sample within the testing data, as recorded in the local
error patterns (lines 3-9). When given a set of inputs (.e.,
new values of the selected primitives) for predicting QoS, the
local error of a main-model is determined by extrapolating
the similarity between the given set of inputs and each sam-
ple from local error patterns; the error of the most similar sam-
ple is used as the local error (lines 4-7). To this end, we apply
symmetric uncertainty based euclidean Distance to measure
the similarity. As shown in (14), 4 is the distance of the given
set of inputs against a sample in the local error patterns

d= 3 (U x (p: —1,)"), (14)

reX

pr and p'z respectively denote the value of zth selected
primitive in the given set of inputs and the value of the
same primitive in a sample from local error patterns. SU, is
the symmetric uncertainty value between the xth primitive
and the QoS attribute. The sample results in the smallest d is

the one that we are seeking, then its corresponding error is
used as the local error of the main-model (line 9).

Algorithm 3. Prediction Process in Adaptive Multi-Learners

Inputs:
given a set of inputs P and the bucket from Algorithm 2
Declare:
S—the current sample
Sselectei—the most similar sample to P
d—the distance between P and the current sample
dsmaiiess—the smallest distance between P and a sample
Ej,cai—the local error of the current main-model
Ey00a—the global error of the current main-model
E—the final error of the current main-model
Egnaiiest—the smallest final error of a main-model
M eiccrea—the selected main-model for prediction
Outputs: -
the predicted QoS value of QoS)/
1: start prediction -
2: for each (M,qin, Mg, L) in the bucket of QoS} (t) do
3: for each sample S in the local error pattern L of M, do

4. calculate distance d between P and S using (14)
5: if Asmaliest >d then
6: smaltest = d/ Sselected =S
7: end if
8: end for
9: get the error of Sycecica as the local error Ejgeqr of Mipqin
10: get the global error E oy of M
11: evaluate final error E of M,,,;, using (15)
12: if Fganest >E then
13: Egnatiest = E, Msciected = Mipain
14: end if
15: end for

16: predict(P) using the selected main-model Mcicctea
17: end prediction

On the other hand, the global error of a main-model is the
mean errors of all samples within the 30 percent testing data
produced by its sub-model (line 10). Finally, the evaluation
function selects the best main-model for a given set of inputs by
examining on both the local and global error of all main-models
in the bucket, as formally depicted in (15) (lines 11-14)

Ei =aX Elioval + /3 X E;labal’ (15)

where E', Ej,,; and E;,, denote the final, local and global
error of the ith main-model respectively. « and g are two heu-
ristics expressing the relative importance of local and global
errors. We have set the initial value of @ and g as 0.1, which
means the local and global error are equally important from
the beginning. The selected main-model and its learning
algorithm for a given inputs is the one that has the smallest
(line 16). To capture the right weight of local and global
errors,  and B are updated via 16 when new data is col-
lected

a=oa+Ax, B=B+AB
{ Aa = eg—gp=1 — Ca—1,p—0 if

s.t.
AB = eq—1,4-0 — €a=0,p-1

Ca=1,=0 < €a=0p=1
if  eq=1p=0 > €a=0p=1-
(16)

Specifically, e,—1 -0 is the prediction error of new data
produced by the selected main-model when ¢ = 1 and g = 0.
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Similarly, ey— -1 is the error produced by the selected
main-model when o = 0 and g = 1. In this way, the error that
is more useful in the selection will gradually gain more
importance. This updating process has been illustrated in
Algorithm 4.

Algorithm 4. Update « and g in the Evaluation Function

Inputs:

newly measured values vector Py, and QoS value y for a
QoS attribute of selected primitives QoS}f

1: start update when newly data is available

2: predict (Psgmpie) using Algorithm 3 wheno =1, =0

3: predict (Pygmpie) using Algorithm 3 whena = 0,8 =1

4: calculate the errors of the values from step 2 and 3 against y
5: calculate Ae and A using (16)

6: update o and B using (16)

7: end update

As mentioned in Section 5.1, we employ three different
learning algorithms (i.e., ARMAX, ANN and RT) in the
adaptive multi-learners. Our technique is flexible as new
algorithms can be added or old algorithms can be
removed /substituted if needed. The online training of these
learning algorithms follows standard procedure; in the fol-
lowing, we briefly explain the applied learning algorithms.

Auto-Regressive Moving Average with eXogenous inputs—
ARMAX [25] models the correlation between QoS and prim-
itives as a linear relation and it captures the time-series
information into the model. In this work, we train the
ARMAX using linear Least Mean Square (LMS) approach
[34]; and the ¢ in (2) is determined using hill-climbing algo-
rithm that starts with ¢ =1, then automatically increase
the number of row entries one by one during training till it
reaches good accuracy.

Artificial Neural Network—ANN [24] is a powerful super-
vised learning algorithm, which is capable for modeling
complex nonlinear correlations. This is achieved by weight-
ing the inputs and transforming them using activation func-
tion to produce the output. In this work, we use three layers
and Sigmoid function in the network as this setup tends
to relief the issue of local minima. ANN is trained using a
well-known technique, namely the Resilient backPROPaga-
tion (RPROP) [35]. We found that use ¢ =1 (i.e., no time
series information) can produce the best result; and the right
number of hidden neurons is determined using hill-climb-
ing algorithm during training till the accuracy cannot be fur-
ther improved.

Regression Tree—RT [26] is a learning algorithm that maps
the relation of primitives and QoS into a tree-like structure,
in which leaves represent class labels and branches express
conjunctions of features to reach these labels. Training is
completed via Classification and Regression Trees (CART)
technique [36] and we found that use ¢ =1 (i.e., no time
series information) can produce the optimal results.

5.3 Selected Model versus Ensemble Model

One could argue that an ensemble method may yield better
accuracy than dynamic selected model. However, a single
ensemble method has been also shown to be quite sensitive
to the variance of performance of the candidate learning

algorithms, that is, its performance can drop significantly
when more candidate learning algorithms are used [37];
while dynamic selected model tends to be resilient to this
issue. Perhaps, instead of dynamically selecting from a set
of models, dynamically selecting one from a set of ensem-
bles may be a more promising way to the problem. How-
ever, this will introduce extra overhead for the online QoS
modeling as the possible number of ensembles increases
dramatically w.r.t. the number of candidate learning algo-
rithms. We plan to systematically compare (single and mul-
tiple) ensemble method and the dynamic selected model for
cloud QoS modeling in our future work.

6 EXPERIMENTS AND EVALUATIONS

To evaluate our modeling approach, we experimentally
benchmark our results against other single-learner and
manual techniques. Specifically, the primary intention of
the experiments is to validate the approach against the fol-
lowing criteria:

e  Accuracy: By comparing with various other state-of-
the-art modeling approaches, we intend to examine
whether the hybrid dual-learners and the adaptive
multi-learners can achieve better accuracy.

e  Stability: We intend to assess the stability of the accu-
racy achieved by our approach under different sce-
narios, i.e., different QoS attributes and learning
algorithms, in contrast to the other competitors.

e Sensitivity of accuracy to online data size: We examine
the sensitivity of accuracy of the proposed approach
to the available online data size. The purpose is to
evaluate how quick the model accuracy changes
with respect to the increase in data size.

e  Overhead: We intend to evaluate the overhead of our
approach in terms of the latency in the modeling, for
both the primitives selection phase and the QoS
function construction phase.

In addition to the assessment of accuracy under different
QoS attributes and/or learning algorithms using SMAPE,
we also intend to examine the overall accuracy and stability
for all the considered scenarios. However, given the
assumption that the scenarios are equally important, simply
calculate the average or sum of all SMAPE can mislead the
results. This is because different QoS attributes produce dif-
ferent scale of the prediction error, e.g., the error for predict-
ing Throughput tends to be much larger than that for
Reliability; therefore a technique/learning algorithm that
performs better for Throughput will more likely to domi-
nate the overall results. To cope with this issue, we use the
summation of normalized SMAPE to illustrate the overall
accuracy of a competitor, as shown below

Owerall Accuracy = 100 x Z G ,

i €i,mean

(17

whereby e¢; is the SMAPE of a competitor for the ith QoS
attribute and/or learning algorithm and €; cq, is the mean
SMAPE of all competitors under such scenario; n is the total
number of QoS attribute and/or learning algorithm. In this
way, the errors under each scenario are formatted into the
same scale where smaller value indicates better overall
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TABLE 3
The Examined QoS Attributes and Primitives

QoS and Primitives Description

Output  Response Time (ms) The average leaped time
between a service-
instance receives and
replies a request.

The average rate of
completed requests.
The percentage of
requests that being com-
pleted less than a
threshold. (30 ms)

The percentage of time
that the average
response time above a

threshold. (60 ms)

Observed average CPU
utilization of a VM.
Observed average
Memory utilization of
a VM.

Observed maximum
concurrent threads of

a service-instance. (a
modified control knob
of Tomcat’s maxThread-
property)

Observed average
request rate of a service-
instance.

Throughput (req/min)

Reliability (%)

Availability (%)

CP input CPU (%)

Memory (MB)

Thread (no. of req)

EP input Workload (req/min)

accuracy. Similarly, we assess the stability of a competitor
via the summation of normalized distance to the best com-
petitor under each scenario, formally calculated by
n
€ — €ibes
Stability = 100 x Y ————

i €iworst — €ibest

(18)

where €; pest and e; o5t are the SMAPE produced by the best
and worst competitor respectively, under the ith QoS attri-
bute and/or learning algorithm. The remaining notations
are the same as (17). Again, smaller value indicates better
stability across different scenarios.

6.1 Experiments Setup

We conducted experiments on private cloud using a cluster
of PMs, each of which has Intel i7 2.8 GHz Quad Cores and
4 GB RAM. The PMs use Xen v3.0.3 [29] as the hypervisor
and the modeling process is running on Dom0. To eliminate
the interference caused by modeling, we allocated one CPU
core and 1.2 GB RAM to Dom0, which tends to be sufficient.
Our approach is implemented based on Encog [38] and
Apache Mathematics [39] using Java JDK 1.6. To simulate
QoS interference caused by the VMs while not exhausting
resources, we run three co-hosted VMs on each PM; the
remaining resources are evenly allocated to the co-hosted
VMs. All VMs run linux kernel v2.6.16.29.

Our experiments leverage RUBIS [27], which is a cloud-
based application consists of 26 co-located software services
using the eBay.com model. For simplicity, we have used three
RUBIS snapshots, each of which consists of a two-tiers (i.e.,
application and database tiers) based RUBIS application; the

1 2 t-2 t-1 t
1

EP values CP values
at t-1 att

~aa

predict QoS value at t

QoS and CP values from 1 to t-7 for training model

EP values from 1 to t-2 for training model

Fig. 8. The timing in evaluation of accuracy.

three RUBIS snapshots differ in terms of the database volume
size ranging from to 5 GB data. Each RUBIS snapshot is
deployed with a software stack including Tomcat v6.0.28 and
MySQL v3.23.58 on each co-hosted VM of a master PM; and we
have implemented sensors deployed on each service-instance
and VM for sending the online data to Data Collector. For each
RUBIS snapshot on the master PM, the application tier is repli-
cated to all other servant PMs in the cloud; these replicas are
connected to the database on the master PM for handling any
database related requests. Finally, each of the three RUBIS
snapshots and its replicas are linked to its dedicated load bal-
ancer. Three client emulators are used and they apply read/
write pattern to generate requests for each load balancer. Here,
we have considered two types of read/write pattern: a read-
intensive pattern where read to write ratio is around 9:1; and a
write-intensive one, i.e., read to write ratio is 1:1.

To simulate a realistic workload within the capacity of
our testbed, we vary the number of clients proportionally
according to the FIFA98 workload [28], which is com-
pressed in the way that the fluctuation of a day in the trend
corresponds to 200s in our case. This setup can generate up
to 400 parallel requests, hence the compression is realistic
and large enough to simulate QoS interference in cloud.

6.2 The QoS Attributes, Primitives and Evaluation
Procedure

The concrete QoS attributes and primitives depend on sce-
narios. For the simplicity of exposition, we have selected
commonly used QoS attributes and primitives in the evalua-
tion, but it is worth noting that our approach is not limited to
these dimensions. As listed in Table 3, these QoS attributes
and primitives are per-service except for CPU and memory
as they are shared on a VM. For each service-instance run-
ning on a VM of the master PM, a QoS model can at most has:

e four direct primitives—CPU, memory, thread and
workload of the corresponding service-instance and
VM.

e 54 indirect primitives—2 (thread and workload) x 25
(co-located service-instances) + 4 (CPU and memory
of another two co-hosted VMs).

This combination gives us a maximum of 58 possible rel-

evant primitives for each service-instance.

At runtime, we examine the accuracy of one interval
ahead prediction for each experiment run: by the end of
interval ¢, the QoS models are trained based on historical
data up to ¢t — 1 (up to ¢t — 2 for environmental primitives),
and then we use the observed primitives values at ¢ (at ¢ — 1
for environmental primitives) to predict the QoS value at ¢,
which is finally used to compared with the actual QoS value
via SMAPE. The timing regarding how the series of data
are used in our QoS modeling approach has been illustrated
in Fig. 8. The sampling and modeling intervals are both
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TABLE 4

The Compared Primitives Selection Techniques

Description

using (11) for MR and (7) for MRMR.
using (11) for MR and (8) for MRMR.
using (11) for MR and (9) for MRMR.
using (11) for MR and (10) for MRMR.
using (11) for MR and (7) for MRMR.
using (11) for MR.
using (7) for MRMR.
fixed and offine selection that statically uses

Primitive Space for MR  Primitive Space for MRMR

HYBRID-V1 four direct primitives 54 indirect primitives
HYBRID-V2 four direct primitives 54 indirect primitives
HYBRID-V3 four direct primitives 54 indirect primitives
HYBRID-V4 four direct primitives 54 indirect primitives
HYBRID four direct primitives 54 indirect primitives
SINGLE-MR all 58 primitives N/A

SINGLE-MRMR N/A all 58 primitives
MANUAL N/A N/A
SINGLE-MR-DIRECT  four direct primitives N/A

certain primitives (CPU and memory in our
case) as inputs, e.g., [7], [33]—we modified
the model from per-VM to per-service.
using (11) for MR and consider direct prim-
itives only.

120 secs with the total of 500 intervals, where the first 150
intervals use a static and stable workload trend aiming at
providing some essential data for the modeling; whereas
the rear 350 intervals follow the FIFA98 trend. This setup
can generate one new sample per interval for updating the
model. For all accuracy related experiments, we examine
the SMAPE for the rear 350 out of 500 intervals in one exper-
iment run; we calculate the mean accuracy of all service-
instances on one VM of the master PM and the reported
results are computed by averaging 10 runs. We have per-
formed Wilcoxon Signed-Rank test (two-tailed) for all com-
parisons. The resulted p values are smaller than 0.05, which
confirms the statistical significance of the results.

6.3 Accuracy of Hybrid Dual-Learners for Primitives
Selection

To assess the effectiveness of our hybrid dual-learners tech-
nique for primitives selection w.r.t. accuracy, stability and
model complexity. To start with, we first compare the four
variations of our hybrid dual-learners technique, as shown in
Table 4. We report the results by following the evaluation pro-
cedure described in Section 6.2. Specifically, we apply three
widely used learning algorithms (i.e., ANN, ARMAX and RT)
for QoS function construction on all the QoS attributes.

From Table 5, we can see that for both workload patterns,
HYBRID-V1 tends to produce the best accuracy overall, but
it has marginal difference to HYBRID-V3 on the write-inten-
sive pattern. As for stability, it is clear that the HYBRID-V1
achieves the best results. We observed that all four varia-
tions produce the same model complexity. Table 5 also
show the detailed accuracy results under each of the 12 sce-
narios. For both workload patterns, HYBRID-V1 produces
the best results for most of the cases on Response Time and
Throughput; whereas for other two QoS attributes, the best
variation tends to be different.

Next, we use HYBRID-V1 (we refer to as HYBRID for sim-
plicity), as the representative of our hybrid dual-learner tech-
nique, to compare against various other self-adaptive and
online selection techniques that are categorized as single-
learner based (i.e., SINGLE-MR, SINGLE-MRMR and SIN-
GLE-MR-DIRECT); and the manual selection technique,
denoted as MANUAL, that has been widely used in existing
static and semi-dynamic QoS modeling approaches (e.g., [7],
[33]). Their detailed explanations can be found in Table 4.

From Table 6, for the write-intensive workload, we can
see that the overall accuracy of all self-adaptive and online
techniques is better than that of the manual one, except for
the SINGLE-MR. This is because SINGLE-MR focuses on

TABLE 5
Comparing Variations of Hybrid Dual-Learners for Primitives Selection

Write-intensive workload \

Read-intensive workload |

HYBRID-  HYBRID-  HYBRID-  HYBRID- | HYBRID- HYBRID- HYBRID-  HYBRID-
Vi V2 V3 V4 \2! V2 V3 V4
ANN 12.28 12.8 12.81 12.48 13.51 15.44 15.14 15.35
Response Time ARMAX 29.61 30.56 29.84 36.59 44.85 45.62 44.36 45.68
RT 16.31 18.1 16.39 16.37 17.42 21.19 20.26 21.58
e ANN 11.93 12.29 12.67 13.59 13.75 15.73 15.84 15.55
& Throughput ARMAX 135 13.55 14.02 15.12 15.02 17.91 17.99 17.9
s RT 21.89 21.8 21.14 24.2 22.07 24.74 25.87 26.22
% ANN 0.21 0.21 0.21 0.2 0.32 0.42 0.44 0.44
= Reliability =~ ARMAX 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.04
» RT 0.28 0.26 0.29 0.27 0.38 0.3 0.43 0.33
ANN 0.37 0.36 0.36 0.43 0.61 0.69 0.7 0.7
Availability ~ ARMAX 0.03 0.02 0.03 0.03 0.05 0.06 0.06 0.06
RT 0.43 0.45 0.41 0.55 0.68 0.64 0.63 0.65
Overall Accuracy (%) 1170.2 1180.99 1170.66 1278.15 1083.95 1214.5 1264.87 1236.69
Stability (%) 321.7 466.83 357.4 787.52 198.02 884.78 940.97 996.03
Complexity (number of inputs) 6to8 6to8 6to8 6to8 5to8 5to8 5to8 5to8

(The best is highlighted).
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TABLE 6
Comparing Hybrid Dual-Learners with Single Learner for Primitives Selection

Write-intensive workload [

Read-intensive workload |

HYBRID SINGLE- SINGLE- MANUAL SINGLE- | HYBRID SINGLE- SINGLE- MANUAL SINGLE-
MR MRMR MR- MR MRMR MR-
DIRECT DIRECT
ANN 12.28 16.12 13.03 17.8 12.92 13.51 15.9 21.84 30.73 15.49
Response Time ARMAX 29.61 37.56 29.77 33.81 32.36 44.85 51.44 56.47 53.46 48.52
RT 16.31 19.74 15.4 19.25 17.91 17.42 20.21 20.01 21.09 20.73
— ANN 11.93 13.45 16.82 14.26 12.55 13.75 16.59 30.18 18.56 15.75
& Throughput ARMAX 13.35 15.29 17.53 14.17 13.6 15.02 17.04 17.31 17.87 17.66
m RT 21.89 23.52 23.17 19.88 19.94 22.07 24.4 30.79 25.81 24.51
% ANN 0.21 0.55 0.35 0.16 0.17 0.32 12 045 0.36 0.55
= Reliability =~ ARMAX 0.03 0.05 0.02 0.02 0.02 0.03 0.04 0.05 0.06 0.06
v RT 0.28 0.29 0.24 0.35 0.37 0.38 0.59 0.57 0.37 045
ANN 037 0.39 0.34 0.36 0.36 0.61 0.78 0.65 0.68 0.72
Availability ~ ARMAX 0.03 0.04 0.02 0.03 0.02 0.05 0.07 0.03 0.05 0.05
RT 0.43 0.43 0.43 0.55 0.56 0.68 0.64 1.32 0.83 0.77
Overall Accuracy (%) 1090.37 145281 113238 1185.85 1138.59 956.7 1308.6 13151  1231.0 1188.9
Stability (%) 246.73  882.85 35744  547.75 420.97 60.3 690.4 786.1 656.4 575.4
Complexity (number of inputs) 6to8 40to44 2to3 2to2 4to4 5to8 30to44 2to3 2to2 4to4

(The best is highlighted).

information relevance only and can introduce too much
redundancy. This result indicates that even though the
dynamics and uncertainties in QoS function construction can
be captured by the considered learning algorithms, it is still
important to properly handle the runtime dynamics and
uncertainties in primitives selection. In particular, a carefully
designed self-adaptive and online selection technique can
lead to better accuracy than the manual selection technique;
however an inappropriate one (i.e., the SINGLE-MR) can only
make the accuracy worse off. Among the self-adaptive and
online primitives selection techniques, we also observe that
although the SINGLE-MRMR ignores the fact that Assump-
tion 1 does not hold in some parts of the space and hence mis-
lead the selection, it tends to produce better accuracy overall
in contrast to that of SINGLE-MR and SINGLE-MR-DIRECT.
This is because they have been affected by more serious
issues: SINGLE-MR has too much redundancy while SIN-
GLE-MR-DIRECT does not explicitly consider information
about QoS interference. Finally, we can see that our HYBRID
produces the best accuracy overall. Specifically, in contrast to
those single-learner based techniques, HYBRID has better
overall accuracy than that of SINGLE-MR-DIRECT because it
considers extra information about interference in the model-
ing, which tends to be important for improving accuracy. In
addition, it is also overall more accurate than SINGLE-MR
and SINGLE-MRMR, because it is capable to select useful
primitives based on both relevance and redundancy while
still prevent misleading the selection process. This is achieved
by partitioning the possible relevance primitives space.

As for the overall accuracy under read-intensive work-
load, SINGLE-MR and SINGLE-MRMR are less accurate
than SINGLE-MR-DIRECT; they are even much worse than
the manual technique. This implies that the rich redun-
dancy and the misleading selection cause more serious
issues as when compared to write-intensive workload pat-
tern. For our HYBRID technique, we can note that it again
achieves the best accuracy overall, which is a consistent
result on both workload patterns.

The stability of the techniques is also illustrated in
Table 6; it is easy to see that our HYBRID technique produ-
ces the best result for both workload patterns, meaning that

it is the most robust one under different scenarios. As for
complexity shown in the same Table, the HYBRID can be
slightly more complex than the others, except for SINGLE-
MR. However, the benefits here is that the model’s overall
accuracy is better and more stable than others with respect
to the QoS attributes and the learning algorithms.

Table 6 also show the detailed accuracy results for each
of the 12 scenarios. Again, we can see that for both workload
patterns, the HYBRID produces the best results for most of
the cases on Response Time and Throughput, which are
highly fluctuate; but the best for Reliability and Availability
tend to vary. This is because the Reliability and Availability
trends tend to fluctuate less than that of Response Time and
Throughput. Therefore, the sensitivity of certain learning
algorithms to the number of inputs are amplified; this can
easily lead to over-fitting when the model complexity
increases, which will significantly influence the model accu-
racy. However for Reliability and Availability, the differen-
ces of accuracy between HYBRID and the best one ranges
from 0.01 to 0.05 percent, which is marginal as when com-
pared to the improvement that HYBRID offers.

According to all these results, we can conclude that
although HYBRID does not constantly produce the best accu-
racy for every learning algorithms and QoS attributes, it tends
to produce the best overall accuracy; it is also the most robust
and stable technique in the presence of variability introduced
by different learning algorithms and QoS trends. In particular,
HYBRID provides better accuracy when QoS fluctuates, while
leaving the model complexity adequate. It is also worth noting
that having a self-adaptive and online primitives selection
process promotes numerous other benefits, e.g., reduce the
needs for complex human analysis and can be easily adapted
to many learning algorithms etc.

6.4 Accuracy of Adaptive Multi-Learners for QoS
Function Construction

To evaluate our adaptive multi-learners technique (denoted

as ADAPTIVE) for QoS function construction, we follow the

evaluation procedure described in Section 6.2. For different

QoS attributes, we compare the accuracy and stability

of ADAPTIVE with that of the other online learning
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TABLE 7
Comparing Adaptive Multi-Learners with Single Learning Algorithms for QoS Function Construction

[ Write-intensive workload [

Read-intensive workload ]

[ ADAPTIVE ANN  ARMAX RT [ ADAPTIVE ANN  ARMAX RT |
= Response Time 13.72 12.28 29.61 16.31 13.82 13.51 44.85 17.42
:7: < Throughput 12.72 11.93 13.35 21.89 14.16 13.75 15.02 22.07
S< Reliability 0.03 0.21 0.03 0.28 0.03 0.32 0.03 0.38
52 Availability 0.03 0.37 0.03 0.43 0.05 0.61 0.05 0.68
Overall Accuracy (%) 192.8 474.90 285.20 646.20 179.01 488.89 322.83 609.27

Stability (%) 101.51 156.17 114.32 323.25 94.81 171.75 115.26 312.48

(The best is highlighted).

algorithms that assume single learner (i.e., ANN, ARMAX
and RT), which has been widely studied in existing semi-
dynamic QoS modeling approaches e.g., [7], [33]. In all the
cases, we have used HYBRID for primitives selection.

From Table 7, we can clearly see that ADAPTIVE produ-
ces the best accuracy overall for both workload patterns. It is
also the most stable and robust against different QoS attrib-
utes. Detailed accuracy results for each scenario can be also
found on Table 7. Here, we observe similar results on both
workload patterns: for Response Time and Throughput, the
ANN is the best learning algorithm in contrast to ARMAX
and RT; We can see that ADAPTIVE is also much better than
ARMAX and RT, but being slightly worse than ANN. These
results indicate that although the ADAPTIVE might occa-
sionally produce false positive/negative for selecting the
best learning algorithm, it is still able to produce very closed
accuracy to the best learning algorithm for a QoS attribute. In
cases of Reliability and Availability, we can see that the
ADAPTIVE is able to produce the same prediction error as
the best learning algorithm, which is ARMAX. This result
means that the ADAPTIVE successfully determines the best
learning algorithm along the QoS trend.

In summary, we can note that although the algorithms
behave differently depends on different QoS trends, our
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adaptive technique can still continuously select the suited
one to predict QoS and result in good accuracy; it is also the
most stable on different QoS trends. Moreover, our self-
adaptive and online solution eliminates the need of heavy
human intervention for identifying the suitable learning
algorithm, reducing the errors caused by human analysis.

6.5 Sensitivity of Accuracy to Online Data Size
Next, we evaluate the sensitivity of accuracy to the online data
size for our approach. This sensitivity expresses how quick
accuracy changes as the available data samples increase.
Instead of doing one-interval-ahead prediction, we sequentially
split the data size of the entire 350 intervals into training data
set and testing data set containing 70 and 30 percent of the origi-
nal data respectively. The training data set is then further
divided into different portions based on the order of time series:
20, 40, 60, 80, and 100 percent. These portions serve as the actual
training data applied for building the QoS models which are, in
turn, used to make prediction over the 30 percent testing data
set. In the following, we report on the results for the write-
intensive pattern over 10 runs. Similar observation has been
registered for the read-intensive workload pattern.

Fig. 9 shows the sensitivity of accuracy to data size for
the HYBRID and other single learner-based and manual

08
07V ¥

055 W HYBIRD
- MANUAL
v v SINGLE-MR v SINGLE-MR
- SNGLE-MRI & SINGLE-MRMR
- SINGLE-MR-DIRECT

> SINGLE-MR-DIRECT ~ 0.45 <
v
) v

3
10 20 30 40 50 60 70 80 90 100 110

(d) ANN for Availability

& HYBIRD

-© MANUAL

V SINGLE-MR

& SINGLE-MRMR

# SINGLE-MR-DIRECT

& HYBIRD

& MANUAL
05 v
0.6

0.5
0.4

0.1
10 20 30 40 50 60 70 80 90 100 110

(c) ANN for Reliability

-B-HYBIRD

- MANUAL

V SINGLE-MR

-& SINGLE-MRMR

- SINGLE-MR-DIRECT

*- v

0
10 20 30 40 50 60 70 80 90 100 110

(h) ARMAX for Availability

B HYBIRD
0.65

0.01
10 20 30 40 50 60 70 80 90 100 110

(g) ARMAX for Reliability

0 ®HYBIRD

- MANUAL
V SINGLE-MR

-& SINGLE-MRMR

S IRECT
%

A

- MANUAL
0.45 V SINGLE-MR
& SINGLE-MRMR

06 - SINGLE-MR-DIRECT

/i

0.4
10 20 30 40 50 60 70 80 90 100 110

() RT for Availability

0.2
10 20 30 40 50 60 70 80 90 100 110

(k) RT for Reliability

Fig. 9. Sensitivity of model accuracy to online data size for each primitives selection technique. The y-axis denotes SMAPE (percent); x-axis

expresses the online data size (percent).
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selection techniques. We note that all primitives selection
techniques lead to better accuracy as the data size
increases, given the fact that all selected primitives are
more or less relevant to the QoS. In most of the cases,
the sensitivity of model accuracy to data size has been
similar for all the primitives selection techniques. In
addition, the comparative accuracy under limited data
do not differ much as to what had been reported in Sec-
tion 6.3. However we found that in certain cases (e.g.,
Figs. 9a and 9e), particularly for fluctuated QoS trends,
the accuracy produced by HYBRID clearly has the great-
est sensitivity to data size; or being more sensitive than
most of the other selection techniques. We also discov-
ered that in these cases, HYBRID tends to produce better
or similar accuracy in contrast to the other selection tech-
niques, even when the data size is limited. These obser-
vations imply that, in contrast to the other approaches,
HYBRID can still further improve the accuracy quicker
as the data samples increase, while maintaining rela-
tively less or similar error under limited data size.

Fig. 10 illustrates the sensitivity of accuracy to data size
for the ADAPTIVE and other single learner-based learn-
ing algorithms. Again, all learning algorithms gradually
improve on accuracy as the data size increase. The sensi-
tivity of ADAPTIVE has been similar to most of the
others for Response Time and Reliability (i.e., Figs. 10a
and 10c). However, for Throughput and Availability (i.e.,
Figs. 10b and 10d), our ADAPTIVE and the best learning
algorithms (i.e., ANN and ARMAX) tends to improve
accuracy slightly quicker than the others while maintain-
ing relatively less error under limited data size. We can
also observe that, in contrast to the corresponding best
single learning algorithm for each QoS attribute, the
accuracy of our ADAPTIVE has the same or similar sen-
sitivity to the online data size.
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Fig. 11. Overhead for primitives selection on write-intensive (top) and
read-intensive workload (bottom).

6.6 Efficiency

To assess the overhead of our approach, we compare the
latency of HYBRID to other single learner-based techni-
ques, which has been considered in the experiments for
primitives selection; we also examine the latency of
ADAPTIVE to that of ANN, ARMAX and RT for QoS
function construction. Because the latency can be varied
depends on the characteristics of the service and data
size, we have used an instance of the service named
SearchltemsByCategory as the example given that it
exhibits the most fluctuated workload. The experiments
are performed using the rear 10 out of 500 intervals and
we report on the average results of all QoS attributes
over 10 runs.

Fig. 11 shows the performance overhead for different
primitives selection techniques. We can see that under both
workload patterns, the HYBRID (0.68s and 0.65s) has rela-
tively bigger overhead as when compared to SINGLE-MR
and SINGLE-MR-DIRECT; but it is smaller to that of SIN-
GLE-MRMR. We have observed that this is due to the
majority of overhead is caused by the optimization process
of (6), which is not part of the process in SINGLE-MR and
SINGLE-MR-DIRECT. However, such extra overhead of
HYBRID is generally acceptable as it is still less than 1 sec.
For the case of QoS function construction, Fig. 12 illustrates
the best and worst cases for all learning algorithms. In par-
ticular, for both patterns, ANN generally produces bigger
overhead as when compared to ARMAX and RT. This is
because the ANN is fundamentally more complex than the
other two. For both the best and worst cases, the ADAPTIVE
has relatively similar overhead to that of ANN; this is
expected as the ADAPTIVE needs to wait for the comple-
tion of all simultaneously running learning algorithms
before determine the best one to use. In conclusion, the
overhead of our modeling approach is acceptable under the
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Fig. 12. Overhead for QoS function construction on write-intensive (top)
and read-intensive workload (bottom).
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sampling and modeling interval of 120 s, and thus it is effi-
cient enough to be performed online.

6.7 Model Exploitations

As mentioned, the resulted QoS models can serve as power-
ful tools and foundation to achieve better self-adaptivity in
cloud computing, benefiting both the cloud providers and
consumers. Among others, the most significant exploitation
and benefits are:

e The models allow one to achieve more concise and
isolated decision making for elastic autoscaling,
where the independent QoS attributes (i.e., those
that do not sensitive to the same control primitives)
can be reasoned about in separated local processes
without affecting each others. This will yield less
overhead but still guarantee the overall quality. We
have quantitatively evaluated such benefit in our
other work [40].

e The models make identification of the sources of con-
tention and QoS interference easier. This is because
the primitives, which are selected as the input of
most QoS attributes, are likely to be the ones that
cause serious contention and QoS interference. Con-
sequently, they might need to be tuned more care-
fully than the others.

e The models create the foundation to reason about the
effects of the different amount of scaling on different
QoS attributes, the likely consequence of QoS inter-
ference and the possible trade-offs, i.e., answering
the related “what-if” questions. This will, in turn,
provide better governance and assurance of the
autoscaling actions (e.g., vertical/horizontal scaling)
that are subsequently performed. Interesting reader
can refer to our other work for details on this
topic [41], [42].

7 THREATS TO VALIDITY

The main threats to validity of our approach are associ-
ated with its scalability, which can be discussed in two
folds: the horizontal scalability w.r.t. the number of
input dimensions; and the vertical scalability, which is
concerned with the number of data samples associated
with these inputs.

e  Horizontal Scalability: the number of inputs dimen-
sions can directly influence the overhead of symmet-
ric uncertainty based optimization. However, one
benefit of our formulation of the primitives selection
problem is that it can be easily adopted with many
optimization algorithms, including those that capa-
ble to handle high number of variables and those
that provide approximated result under NP-hard
problem. At the stage of the QoS function construc-
tion, our hybrid learners approach has ensured a
lower number of inputs, which has proven to be
effective and scaling the modeling process. As
shown in the experiments, the learning algorithms
has to deal with only six to eight out of 58 input
primitives. This is only around 10 percent of the orig-
inal set in the modeling process. Further, unlike

many other non-cloud related problems (e.g., DNA
analysis) where the number of features can be a mil-
lion, the number of inputs dimensions in the cloud
environment is likely to be much less, e.g., it might
not exceed an hundred, depending on how many
VMs and services are co-running and their func-
tional dependencies. Thus, our approach has accept-
able scalability in such a context.

o  Vertical Scalability: In the primitives selection phase,
the number of data samples can only influence the
calculation of symmetric uncertainty. Given that we
have used a cumulative relevance and redundancy
representation, the overhead of such calculation is
linear to the number of data samples. In addition, we
have observed that the overhead is negligible in the
primitive selection phase when the number of data
samples increases. However, vertical scalability
might suffer bottleneck at the QoS function construc-
tion phase. Therefore a forgotten strateqy is desired
when there is no need to take too much data into
account. To achieve such goal, one could set a thresh-
old to the maximum number of historical intervals to
be recorded. Once such threshold is exceeded, the
QoS function construction process can apply cross-
validation to examine if dropping data from the
oldest intervals would affect the model accuracy.
For example, if the reduction in accuracy is less than
1 percent error, then such data can be removed.

8 RELATED WORK

8.1 Analytical Modeling

Analytical models have been widely used for QoS modeling
in the cloud, these models are built offine based on theoreti-
cal principles and assumptions. Among others, queuing the-
ory (e.g., queuing networks and layered queuing networks)
is one of the most popular technique used in existing work.
In this approach, QoS is usually modeled as a mathematical
function with respect to the CPU and the likely distribution
of workload [3], [4], [43]. For example, [3] describe an
approach to decompose QoS into hardware CPs, where a
multi-station queuing network is used to analyze the correla-
tion between demand and performance related QoS. Their
work is not specific for cloud computing however. [4] is
cloud specific and focus on analyzing QoS model for each
tier of an application with respect to the resources via queu-
ing network. Dependability models are another widely used
techniques for modeling in the cloud. This approach focus
on the modeling of stable states for QoS attributes. [44] utilize
Stochastic Petri Net with interacting sub-models to create the
correlation between availability and primitives in cloud
(e.g., design parameters and mean-time-to-failure etc). [45]
apply Markov model to correlate QoS with different deploy-
ment strategies, i.e., different configurations and resource
provisions. Finally, black-box models are also popular, in
which the QoS is modeled based on empirical knowledge or
statistical data of history [19], [46], [47]. For instance, Emea-
karoha et al. [46] propose a black-box framework to manage
QoS in the cloud. Their QoS models are static expressions,
which are formula constructed based on empirical knowl-
edge. All of the aforementioned analytical approaches are
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static, closed-form QoS models and they often require in-
depth knowledge of the likely behaviors of the service that
being modeled. Consequently, their effectiveness is
restricted to the assumptions of system’s internal operations;
such static nature makes these approaches limited in coping
with the dynamic and uncertain QoS sensitivity in cloud. In
addition, the resulted models are coarse-grained and can be
difficult to incorporate additional information, such as QoS
interference and software control primitives.

8.2 Simulation Based Modeling

Various simulators exist for creating QoS models; here, the
simulations are usually expensive and thus they are used in
an offine manner. Being the basis of many other simulators,
CloudSim [5] allows to simulate performance with respect
to the resources usage in cloud. CDOSim [48] is an exten-
sion of CloudSim aiming to model the correlation of QoS to
hardware provision of VMs and the costs. It relying on
OMG model and reverse engineering techniques. Likewise,
GridSim [6] is another simulator that models the relation-
ship of QoS and environmental conditions, i.e., the occur-
rences of events. Similar to the analytical approaches,
simulation based modeling is also static and restricted to
the assumptions made in the simulators, e.g., distribution of
workload, distribution of the expected QoS performance
and architecture of the hardware infrastructure. In addition,
it is difficult to simulate QoS interference as it is usually
hard to assume its distribution.

8.3 Machine Learning Based Modeling

The increasing complexity of managing services in the
cloud makes the modeling difficulty far beyond the capabil-
ity of human analysis. To this end, recent works have been
leveraging on the advances of machine learning algorithms,
e.g., simple linear regression [12], [13], ARMAX [33], [49],
ANN [7], [17], [18], nonlinear regression [50], RT [16] and
change-point detection [51] etc. For example, [33] and [49]
apply linear ARMAX regression online to express correla-
tion between performance and primitives for VM-based
applications. Similarly, [7] and [18] leverage offine model
training of ANN while [17] rely on online ANN for QoS
modeling in the cloud. Nevertheless, they do not intend to
discuss dynamic and uncertain QoS sensitivity. Despite
QoS interference being core to the problem of QoS modeling
in the cloud, there has been very little attempts: feedback
control is often applied with Multiple-Input and Multiple-
Output (MIMO) model to handle the QoS interference for
QoS modeling in cloud [12], [13], [14]. Notably, the research
discussed in [13] focuses on linear MIMO modeling of per-
formance and interference in the cloud. Zhu and Tung [14]
also intend to model QoS interference using fuzzy rules and
Support Vector Machine (SVM). These approaches consider
VM-level interference whereas our approach takes dynamic
service-level interference into account. Hybrid solutions are
also exist: [52] adapt Kalman-flter with linear regression to
model QoS and they cluster the resulted models. Unlike the
others, which are targeting per VM/application models,
[53] propose a hybrid, fine-grained performance modeling
where linear AR is used to predict demand of primitives
and Kalman-flter is applied to tune the actual model. How-
ever, all those approaches are semi-dynamic as the

primitives selection has been manual and fixed, as a result,
they require extensive human analysis and investigation.
Often, these approaches ignore the importance of primitives
selection and QoS interference (for both service level and
VM level). In addition, they do not take software control
primitives from the PaaS into account.

To cope with the issue of primitives selection, [9] describe
an online primitives selection technique using the combina-
tion of wrapper and filter for modeling QoS in cloud; the mod-
els are application specificc. However, as mentioned, the
wrapper can introduce large overhead and it is highly depen-
dent to the learning algorithm applied. In addition, they have
ignored QoS interference. Similar attempt has been conducted
by Bu, Rao and Xu [8], in which the QoS is modeled for each
VM. They consider software control primitives and use Sim-
plex Reduction to do dynamic primitives selection online, the
QoS function construction is handled by reinforcement learn-
ing. Both [9] and [8] are regarded as single-learner based
because they consider each primitive equally in the space. In
contrast, our approach works on a finer model.

A single learning algorithm is usually applied for QoS
function construction when modeling QoS in the cloud,
which can be limited under certain QoS trends. Alterna-
tively, [54] propose a way to predict the utilization of hard-
ware control primitive using an ensemble solution where
the results from different learning algorithms are combined
in a weighted sum relation. However, their approach is
highly sensitive to the similarity of candidate learners [37].
Our work on the other hand, dynamically select the best
algorithm for predicting the correlation between QoS and
its primitives.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose a self-adaptive and online
approach for QoS modeling in the cloud. To tackle the
dynamics and uncertainties related to QoS sensitivity and
interference, we use hybrid dual-learners technique for
primitives selection. We have presented a detailed study on
how the relevance and redundancy of selected primitives
influences the model accuracy, which drives our designs.
On the other hand, we have showed that different learning
algorithms perform significantly different depends on QoS
attributes and their fluctuations. Therefore, we use an adap-
tive multi-learners technique for QoS function construction.
In this way, we aim to dynamically select the best learning
algorithms at runtime. The experiment results suggest that,
in contrast to state-of-the-art QoS modelings, our approach
produces better overall accuracy while having acceptable
overhead; and it is more stable against the variability intro-
duced by different scenarios. More importantly, the pro-
posed approach eliminates the need for heavy human
intervention, which can be complex and error-prone.

The implication of QoS modeling and its dynamic analy-
sis to intelligent adaptation in the cloud are vast: the model
can assist autonomic software agents in predicting causes of
probable risks leading to QoS violations; reasoning about
appropriate mitigation strategies and/or even planning for
optimal QoS design and online adaptation strategies. More-
over, it can assist problems related to QoS self-management,
self-adaptation, resource utilization and elastic autoscaling.
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In future papers, we will report on novel applications
benefiting from the proposed modeling approach. We hope
that these insights can help to influence the agenda for more
intelligent engineering in future cloud computing.
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