
The Role of Method Chains and
Comments in Software Readability

and Comprehension—An Experiment
J€urgen B€orstler,Member, IEEE and Barbara Paech,Member, IEEE

Abstract—Software readability and comprehension are important factors in software maintenance. There is a large body of research

on software measurement, but the actual factors that make software easier to read or easier to comprehend are not well understood. In

the present study, we investigate the role of method chains and code comments in software readability and comprehension. Our

analysis comprises data from 104 students with varying programming experience. Readability and comprehension were measured by

perceived readability, reading time and performance on a simple cloze test. Regarding perceived readability, our results show

statistically significant differences between comment variants, but not between method chain variants. Regarding comprehension,

there are no significant differences between method chain or comment variants. Student groups with low and high experience,

respectively, show significant differences in perceived readability and performance on the cloze tests. Our results do not show any

significant relationships between perceived readability and the other measures taken in the present study. Perceived readability might

therefore be insufficient as the sole measure of software readability or comprehension. We also did not find any statistically significant

relationships between size and perceived readability, reading time and comprehension.

Index Terms—Software readability, software comprehension, software measurement, comments, method chains, experiment

Ç

1 INTRODUCTION

SOFTWARE readability and comprehension are major soft-
ware cost factors. Software maintenance accounts for 66-

90 percent of the total costs of software during its lifetime
[1] and around half of those costs are spent on code compre-
hension [2], [3], [4]. Furthermore, more than 40 percent of
the comprehension time is spent on plain code reading [5].
Readability is therefore a key cost-driver for software devel-
opment and maintenance.

Chen and Huang [6] claim that inadequate documenta-
tion and lack of adherence to common guidelines or best
practices are the most important problem factors for mainte-
nance. Extensive documentation can significantly support
software maintenance, but the extra effort needed to pro-
duce the necessary documents pays off only long-term and
only for complex maintenance tasks [7]. In practice, docu-
mentation therefore rapidly deteriorates [8]. Writing self-
documenting code, instead of documenting ill-structured
code, is proposed as a partial solution to this problem [9],
[10]. This emphasizes the importance of readable and com-
prehensible code, in particular in the context of Agile/Lean
development practices where extraneous documentation
might be considered as waste [11].

There is a large body of literature on general coding
guidelines or practices to improve code readability and

comprehension [12], [13], [14] as well as specific rules, heu-
ristics and guidelines to obtain “good” or “better” (object-
oriented) design or code, e.g., design patterns [15], [16],
design heuristics [17], [18], code smells and refactoring [19],
[20], [21]. The actual factors that make software easier to
comprehend are, however, not well understood. Further-
more, the factors can also have complex interactions.

We distinguish people, project, cognitive and software
factors, where people factors comprise properties of people
and software factors comprise properties of software, cogni-
tive factors are derived from cognitive theories and project
factors describe elements of the project environment which
can ease comprehension (see Fig. 1). In this classification
readability is a software factor. Examples of interactions can
be found between complexity, size and readability. Reduc-
ing the complexity of a program will likely also affect its
size. More comments or more white-space might increase a
programs readability and comprehensibility, but also make
it longer. Longer programs are, however, less readable and
more difficult to comprehend [22].

In the present study, we investigate the role of source
code comments and method chains in software readability
and comprehension. Method chaining has been advocated
as a programming style that leads to more compact and
more readable code [23], [24]. Careless use of method chain-
ing can lead to violations of the Law of Demeter (LoD) [17]
though, which can lead to more defects [25]. In coding
guidelines source code comments are advocated as
“absolutely vital to keeping ... code readable”1, but also that
focus should be on code that clearly communicates intent
and functionality to reduce the need for comments [26].

� J. B€orstler is with the Department of Software Engineering, Blekinge Institute
of Technology, Karlskrona 37179, Sweden. E-mail: jurgen.borstler@bth.se.

� B. Paech is with the Department of Computer Science, HeidelbergUniversity,
Heidelberg 69118, Germany. E-mail: paech@informatik.uni-heidelberg.de.

Manuscript received 12 Dec. 2014; revised 31 Oct. 2015; accepted 28 Jan.
2016. Date of publication 10 Feb. 2016; date of current version 23 Sept. 2016.
Recommended for acceptance by R. DeLine.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2527791

1. http://google-styleguide.googlecode.com/svn/trunk/cppguide.
html#Comments, last visited 2014-09-12.

886 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016

0098-5589 � 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html#Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html#Comments

The remainder of the paper is roughly organized as
proposed in common guidelines for empirical studies [27],
[28], but has been slightly adapted for clarity of presenta-
tion. In the next section, we briefly review related work. In
Section 3, we outline our research questions. The details of
experiment planning and execution are described in Sec-
tions 4 and 5, respectively. Before a detailed analysis and
discussion in Section 7, we give a brief overview over the
raw data in Section 6. Threats to validity are discussed in
Section 8. Lessons learned, conclusions and future work are
presented in Sections 9 and 10, respectively.

2 RELATED WORK

There is a large body of knowledge on methods, languages
and tools to support program comprehension [29]. Although
readability and comprehensibility are related, they are con-
ceptually quite different. Readability is required for compre-
hensibility, but readability does not necessarily imply
comprehensibility. That makes it difficult to measure read-
ability objectively and independently of comprehensibility.

Smith and Taffler point out that in text readability studies
comprehension is frequently used erroneously as a proxy
for readability and that comprehension also is related to fac-
tors like context, education and experience [30]. In our
work, we consider readability as a property of the code and
comprehension as a characteristic of the reader. Klare points
out though, that there is a strong relationship between text
readability (as measured by readability formulas) and com-
prehension as well as reading speed [31]. Since reading
speed can vary significantly between individuals, it needs
to be calibrated carefully.

DuBay [32] defines readability as “what makes some
texts easier to read than others. It is often confused with leg-
ibility, which concerns typeface and layout”. Hargis [33]
emphasizes that “[r]eadability depends on things that affect
the readers’ eyes and minds. Type size, type style, and lead-
ing affect the eye. Sentence structure and length, vocabu-
lary, and organization affect the mind.”

The focus of the present study is on the latter, inherent
properties of the code, and we ignore legibility issues.
Although, for example code coloring, can make code

easier to read or understand, there are differences in read-
ability and comprehensibility that cannot be alleviated by
“things that affect the readers’ eyes”. While most editors
have support for the handling of legibility issues like
fonts and indentation, inherent code properties that affect
readability and comprehension cannot be easily resolved
using editors.

In the following subsections, we give a brief overview
over the research that is related to the present study.
Section 2.1 primarily focuses on recent studies on soft-
ware readability. Sections 2.2 and 2.3 discuss related
research on method chains and source code comments,
respectively.

2.1 Software Readability and Comprehension

Readability has long been recognized as an important fac-
tor in software development [34], [35], [36]. A recent study
at Microsoft showed that poor readability was ranked
as the most important reason for initiating refactorings
and improved readability the highest ranked benefit from
refactoring [20].

There is only little research on measuring software read-
ability [37], [38], [39]. Buse and Weimer proposed a measure
for software readability based on the ratings of perceived
readability of 120 students on 100 small code snippets in
Java [38]. The code snippets were taken, as is, from five
Open Source projects and are 4-11 lines in length, including
comments. Indentation and white-space was not adjusted
and snippets could comprise incomplete conditionals. A
predictor was built using 25 features of those snippets,
where the following features per line of code had the high-
est predictive power for readability (in decreasing order):
average number of identifiers, average line length, average
number of parentheses, maximum line length, and average
number of ‘.’. The readability measure shows strong correla-
tions with quality indicators like bugs indicated by Find-
Bugs on 15 Open Source Java projects.

Posnett et al. [22] found several weaknesses in Buse and
Weimer’s model, most importantly that it does not scale well
and that most of the variation could be explained by snippet
size. They proposed a simpler readability model for Buse

Fig. 1. Factors affecting the ease of program comprehension.

B€ORSTLER AND PAECH: THE ROLE OF METHOD CHAINS AND COMMENTS IN SOFTWARE READABILITY AND... 887

and Weimer’s dataset using 3 variables only; Halstead’s
Volume, lines of code, and token entropy.

Several studies have investigated identifier naming
issues, e.g., [40], [41], [42]. We acknowledge that naming
is an important factor for software readability and com-
prehension. In the present study, we focus on two addi-
tional important factors; comments and method chains.
It should be noted that we do not aim at a general read-
ability model like Posnett et al. or Buse and Weimer. A
good overview over program comprehension models
and early program comprehension experiments can be
found in [43], [44].

2.2 Method Chains

Method chaining is an object-oriented programming style
[23, Ch. 35]. A method that returns an object can be used as
the source for another method call, as in the general exam-
ple below.

object.method1(...).method2(...).method3();

Method chaining has been advocated as a good program-
ming style [23], [24] and is used frequently to support more
compact code as in the following examples.

/* (1) Method chain with identical method calls. */

StringBuffer sb = new StringBuffer(...);

sb.append(’’Hello ’’).append(aNameString).append(’’!’’);

/* (2) All method calls return the same type. */

Scanner reader = new Scanner(...);

String inputLine = reader.nextLine().trim().toLowerCase();

/* (3) Unclear return types. */

/* Might violate the Law of Demeter. */

if (scanner.recordLineSeparator) {

compilationUnit.compilationResult.lineSeparatorPositions

= scanner.getLineEnds();

}

This can be intuitive when methods are chained in a
systematic and predictable way, as in examples (1) and (2)
above or so-called fluent interfaces [24]. If methods are
chained ad hoc, as in example (3), method chaining might
lead to less intuitive code and also to violations of the LoD
[17]. In short, the LoD requires that a client object must
only send messages to objects that are in its immediate
scope, which enforces information hiding and makes all
coupling explicit.

Guo et al. show that violations of the LoD lead to more
defects [25]2. Guo et al.’s study also shows that violations of
the LoD are very common in the Eclipse plugins they evalu-
ated. Marinescu and Marinescu show that clients of classes
that exhibit design flaws are more fault-prone [45]. Thus,
some forms of method chaining are more fault-prone and
might be more difficult to understand.

2.3 Comments

Source code comments are highlighted in many coding
guidelines as an important tool for program comprehension
[46], [47]. There are, however, few empirical studies on
the effects of source code comments on program

comprehension. Furthermore, most of these studies are
more than 20 years old.

Experimental studies from the 1980s show that the effect
of source code comments on comprehension interacts with
program decomposition and program indentation. Higher
degrees of decomposition decreased the effects of comment-
ing on program comprehension [48], [49]. Experiments by
Norcio, revealed the best comprehension results for ind-
ented programs with single lines of comments interspersed
with the code [50].

In a more recent experiment, Takang et al. showed that
comments significantly improved program comprehension
independently of the identifier naming style used (full vs.
abbreviated names) [51]. This experiment also showed that
full name identifiers were perceived as significantly more
meaningful. There were no significant differences, though,
in the comprehension of the programs with full and abbre-
viated names, respectively. The authors surmise that the
programs used in the experiment might have been too
familiar and the time given too long to give significant
results in the test scores.

In another study, Nurvitadhi et al. investigated the utility
of class and method comments in Java [52]. Compared to a
program without any comments, method comments imp-
roved comprehension significantly, but class comments did
not. Thus, as for method chains, some forms of comments
might bemore helpful for code comprehension than others.

3 RESEARCH QUESTIONS

In the present study we investigate in which ways com-
menting and method chaining affect software readability
and comprehension.

RQ1: How does the amount and quality of source code
comments affect software readability and comprehension?

RQ2: How does method chaining affect software read-
ability and comprehension?

4 EXPERIMENT PLANNING

In the following, we describe the subjects, materials, tasks,
dependent and independent variables, as well as the experi-
ment design. We deliberately did not only measure code
comprehension through readability scores by the subjects.
Wewanted to get an understanding of what the subjects have
understood from the code. Therefore, we also used open
questionswhere subjects had to summarize their code under-
standing as well as cloze questions where students had to
recall the code to fill in gaps (see Sections 4.2.2 and 4.3.).

4.1 Subjects

The subjects were first and second year Computer Science
students from Heidelberg University. The first year stu-
dents participated in a course (with tutorials) covering a
general introduction to programming and C++ in particu-
lar. The second year students participated in a course (with
tutorials) covering a general introduction to software engi-
neering which included a crash course in Java at the begin-
ning. At the end of their courses, both groups got as a
homework exercise to participate in the experiment and to
reflect on the experiences with it. The students had to suc-
cessfully complete 50 percent of all homework exercises. As

2. Example code (3) is a simplified version of a violation of LoD in
the JDT core presented in [25].

888 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016

this was at the end of the course, only very few students
really needed to complete this homework to reach this
threshold. Thus, they were encouraged by specific emails to
participate. Participation was therefore mainly voluntarily.

It should be noted that 42.3 percent of the students
declared that they have high or very high practical experi-
ence from other languages than Java or C++. Furthermore,
19.2 percent of the students declared practical experience
(medium-very high) as a professional programmer (see
Fig. 13 in Appendix C, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2016.2527791).

4.2 Materials

The following subsections describe the code snippets, com-
prehension questions, and other questions used in the pres-
ent experiment. The full set of experiment materials can be
downloaded from http://www.bth.se/com/jub.nsf. The
key characteristics of the used code snippets are summa-
rized in Table 1.

4.2.1 Code Snippets

The code snippets used in the experiment should be as real-
istic as possible, but still sufficiently general, representative
and simple. The subjects should not need specific domain
or application knowledge to understand them. To increase
generalizability, we strived for code snippets that differ in
their expression of comments and method chains, as well as
in overall length and complexity. The code snippets should
also vary in terms of existing readability measures (e.g.,
[22]). We therefore mined public Java projects for actual
examples that we then adapted in the following way to suit
the experiment context:

� Delete complex syntactical structures that are irrele-
vant for those parts of the code that are studied, e.g.,
inner classes or try/catch blocks.

� Replace unnecessarily cryptic identifiers by more
intuitive and shorter ones. However, we tried to
retain even lengthy names to avoid the breaking of
naming patterns.

� Use camelCase-style for all identifiers.
� Remove all comments, except strategic comments3.
� Introduce line breaks to keep line lengths below 80.
� Format all code according to the same style (K&R-

style [53]).
Thus, we tried to minimize the influence of factors dif-

ferent from method chains and comments, such as nam-
ing style, line length or indentation. In contrast to the
study of Buse and Weimer [38], we strived for self-con-
tained code snippets (complete methods) with consistent
formatting and indentation. We wanted to ensure that the
snippets are readable as such to be able to isolate the
influence of method chains and comments. Table 1 sum-
marizes the key characteristics of code snippets S1-S5. An
example of a code snippet and some of its variants can be
found in Appendix A, available in the online supplemen-
tal material. As can be seen, the snippets vary in length
and complexity as well as in the number of method
chains and comments.

Each of the code snippets was then modified in a system-
atic way according to our experiment factors; method
chains and comments. Regarding method chains, we devel-
oped following variants:

1) MC (method chains). An original (adapted) method
containing at least one method chain with three or
more elements.

2) NoMC (no method chains). A variant of the original as
above, but with all method chains resolved. Method
chains with more than two elements were broken
up into several statements. If necessary, temporary

TABLE 1
Key Characteristics of the Code Snippets Used in the Experiment (Variant with MCs and Good Comments)

Snippet Source* LOC MC-un CD ExtCC PHD Description

S1 Web4J 22 1 0.405 1 2.19 Shortest method. One MC with four elements; get- and set-methods only.
No conditionals (ExtCC=1). High PHD-readability.

S2 UniCase 54 1 0.694 7 4.81 Longest method. Most heavily commented. Nested conditionals (four lev-
els). Three almost identical MCs with three elements each. Complex

according to ExtCC, but highest PHD-readability.
S3 UniCase 46 4 0.338 7 �8.50 Long method. Nested conditionals (three levels) inside a loop. 11 partly

similar method chains with three-four elements each; many get-methods,
most often empty parameter lists, but 1 nested MC. Complex according to

ExtCC and lowest PHD-readability.
S4 RaptorChess 36 4 0.341 4 �5.65 Medium sizemethod. Three loops, no nesting. FourMCswith four elements

each that all are comprised of append-calls, oftenwith complex parameter
lists. One nestedMC. Average complexity. LowPHD-readability.

S5 Eclipse.jface 36 2 0.564 4 �5.87 Medium size method. One loop with nested conditional. Three largely sim-
ilar MCs with three elements each; last MC-element is an attribute. Aver-

age complexity. Low PHD-readability.

*Fully qualified method names and links to the original source code can be found on the supplementary web page.
LOC: Total lines of code, incl. empty lines and comments.
MC-un: Number of unique MCs.
CD: Comment density; comment character per non-comment character inside method body.
ExtCC: Extended cyclomatic complexity. ExtCC extends cyclomatic complexity by taking into account the complexity of the boolean expression in each branch.
PHD: Posnett et al.’s readability score as described in [22 Sect. 4.5] Higher scores indicate higher readability.

3. A strategic comment describes the purpose of a piece of code and
is placed before this code.

B€ORSTLER AND PAECH: THE ROLE OF METHOD CHAINS AND COMMENTS IN SOFTWARE READABILITY AND... 889

http://doi.ieeecomputersociety.org/10.1109/TSE.2016.2527791
http://doi.ieeecomputersociety.org/10.1109/TSE.2016.2527791
http://www.bth.se/com/jub.nsf

variables were introduced. Existing variables were
used where possible.

Regarding comments, we developed the following
variants:

1) GC (good comments). An original (adapted) method
with useful strategic comments that give additional
information beyond the actual code it explains.

/* Add all available analysis data (sublines). */

for (SublineNode subline : move.getSublines()) {...}

2) BC (bad comments). A variant of the original as above,
but with all source code comments replaced by com-
ments that just repeat what the code does without
explaining its purpose.

/* Add sublines. */

for (SublineNode subline : move.getSublines()) {...}

3) NC (no comments). A variant of the original as above,
but with all source code comments removed.

In all variants we retained the comments preceding the
method header to convey the general purpose of the code of
a snippet in the same way. Considering all combinations,
we had 6 variants per snippet and thus 30 different snippets
altogether. A comprehensive summary of measures and
properties for all variants can be found in Table 6 in
Appendix B, available in the online supplemental material.

4.2.2 Comprehension Questions

For each code snippet, we developed cloze tests to mea-
sure comprehension. In a cloze test certain parts of the
text (code in our case) are blanked out and the subject has
to fill in the blanks with suitable code, but not necessarily
the original code. In contrast to free-form descriptions of
the code content (which we also asked from the subjects),
cloze tests allow a more standardized way of testing com-
prehension. If a subject has understood the overall pur-
pose, behavior and flow of the code, it will be easier to
provide an answer that is syntactically and semantically
correct. This is, of course, easier than recalling the code or
its structure verbatim. Such tests have long been used
successfully in text comprehension tests and have also
been shown applicable in tests of program comprehen-
sion [50], [54], [55].

In each code snippet, we blanked out the code that dealt
with method chains (in the MC versions) and the code
replacing the method chains (in the NoMC version), respec-
tively. To make it difficult for the subjects to identify pat-
terns in the blanked out parts of the code, we also blanked
out unrelated code in some snippets. This resulted in two to
six “gaps” for our snippets, depending on the complexity
and number of method chains that were present in the par-
ticular snippet. An example of the gap placement for S1 is
shown in Appendix A, available in the online supplemental
material.

4.2.3 Background/Experience Questions

As recommended by Siegmund et al., we used self-estimation
to judge subjects’ overall programming experience and
task-specific experience [56]. Furthermore, we asked subjects

for their gender, whether they have a reading disorder, and
for their identifier naming-style preference.

The actual questions used in the survey regarding task-
specific experience and task-specific experience can be
found in Fig. 14 in Appendix C, available in the online sup-
plemental material.

4.3 Tasks

Subjects were shown a series of code snippets where each
code snippet was shown twice. First, subjects were asked to
carefully read through a snippet and assess its readability
(reading task). Furthermore, subjects were asked to justify
their assessment and summarize the main steps of the
shown code (initial assessment). Second, we administered a
simple cloze test (see Section 4.2.2). The subjects were
shown the same snippet again, but with some parts left
blank, which they had to fill in with the correct code (com-
pletion task). After the completion task they were (again)
asked to assess the snippet’s readability and to justify their
assessment. They could also provide additional comments
(follow-up assessment).

4.4 Dependent and Independent Variables

The independent variable of this experiment is the variant
of the code snippet under investigation.

To capture code readability and comprehension, we mea-
sured the following dependent variables: Perceived read-
ability on a scale of 1..5 (similar to [38]) after the reading
task and after the completion task (R1 and R2, respectively);
time in seconds to read the code and to complete the code
(Tr and Ta, respectively); and accuracy of the completion
task (Acc). According to Kintsch and Vipond, “reading
time, recall and question answering are probably the most
useful measures available” for readability and comprehen-
sion [57].

R1 captures the first impression of perceived readability
for the subjects, while R2 captures the adjustment made to
this impression based on the experience with the cloze-
test. Ta and Acc indicate the “quality” (accuracy and
speed) of the recall during the cloze-test, and thus the com-
prehension. We recorded Tr and Ta, respectively as the
time taken from beginning a task to its end. However, we
could not control whether the subjects actually spent their
time on the tasks or not. For this reason, we excluded obvi-
ous outliers from the data.

Acc was measured in terms of how accurately the gaps of
a snippet variant were completed. The researchers devel-
oped a scoring scheme for assessing correctness (0-3 points
per gap) and assessed all gaps independently of each other.
Conflicts were resolved by discussion. Acc was then defined
as the ratio of scored points and total possible points, i.e. a
number in the range [0..1].

The free-form answers from the initial and follow-up
assessment (see Section 4.3) were not used in the present
analysis.

Furthermore, we collected personal data from the sub-
jects (gender, reading disorders), as well as data about
their general programming experience, task related experi-
ence, and identifier naming-style preference. These data
might affect how subjects perceive readability as well as
their task performance.

890 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016

An overview of all variables is shown in Fig. 2.

4.5 Design

Our experiment investigates two factors (method chains
and source code comments), with two and three treatments,
respectively.

Variants of code snippets were developed as outlined in
Section 4.2.1.

We used a 2x3 factorial design with blocking. To mitigate
ordering effects subjects were randomly assigned to one of
six predefined snippet sequences. In each sequence, all snip-
pets S1-S5 were shown in the same order, but in different
variants. No variant was shown twice in any sequence. The
sequences are shown in Table 2. The variants for method
chains and comments are numbered from 1 to 2 and 1 to 3,
respectively. Thus, Si_m:c describes the variant from snip-
pet Si using method chain variant m and comment variant c
(see also Section 4.2.1).

Subjects were randomly assigned to one of six predefined
snippet sequences to ensure that all subjects see each snip-
pet and each variant exactly once.

4.6 Piloting

Initially, we used six snippets with 36 variants in total. After
a pilot study, we removed one snippet to cut down the
expected total time for the experiment to at most 45
minutes, so that the experiment could be run within a tradi-
tional lecture.

5 EXPERIMENT EXECUTION

The experiment was administered as an on-line question-
naire and instrumented using LimeService4, see Fig. 3 for an
overview. The questions regarding task-related experience
and identifier naming-style preference were placed after the
experimental tasks, since they might have influenced the
subjects’ answers.

LimeSurvey was also used for time-logging. For each
subject we logged the time for each reading task and each
completion task. The students were informed about the
time-logging and that their answers and timing data “will
only be used to study the readability and comprehensibility
of code and not to assess your performance.”

To mitigate fatigue effects and to make the time measure-
ments more reliable, students were instructed to pause only
at pre-defined breakpoints. They were also instructed that

they cannot go back in the questionnaire and that they
should “not take notes or copy the code snippets (manually
or electronically), otherwise your answers would be useless
for the study”.

The instructions and full set of questions can be down-
loaded from http://www.bth.se/com/jub.nsf.

6 RESULTS

Overall, 255 subjects started the survey and 110 (43.1 per-
cent) successfully completed it. Of those, we deleted six out-
liers, i.e. subjects with extremely short times for code
reading and questions answering. The remaining 104 sub-
jects provided 520 datapoints in total; 104 per snippet and
between 14 and 23 for each individual snippet variant5. The
median time for these 104 subjects for completing the sur-
vey was 48.5 minutes (including pauses). For the present
analysis, we only included the data from those 104 subjects.

Fig. 4 gives an overview over the subjects’ demographics.
The data shows that the majority of subjects is male
(83.7 percent) and that the majority of subjects have a prefer-
ence for camelCase-style format (70.2 percent). In general,
subjects have a high overall programming experience
(43.3 percent), but a low overall task-specific experience
(53.8 percent).6 Only three subjects (2.9 percent) declared a
reading disorder. Since their data were no outliers, we
included them in the analysis.

Table 3 summarizes the data for perceived readability
(R1, R2), timing data (Tr; Ta; Sr; Sa) and answer accuracy
(Acc) for all 30 code snippet variants. The raw data for all
completed answers can be downloaded from http://www.
bth.se/com/jub.nsf.

7 ANALYSIS AND DISCUSSION

In the following, we first describe some preliminaries on how
we analyzed the results. Then we discuss the major results
with respect to the overall influence of method chains and
code comments, of subject characteristics and of the snippets
on perceived readability and comprehension. We also dis-
cuss the relationships between different experiment variables

Fig. 2. Overview over all variables considered in the experiment.

TABLE 2
Snippet Sequences Used in the Experiment

Snippet

Sequence S1 S2 S3 S4 S5

Seq 1 S1_1:1 S2_2:2 S3_1:3 S4_1:2 S5_2:3
Seq 2 S1_1:2 S2_2:3 S3_1:1 S4_1:3 S5_2:1
Seq 3 S1_1:3 S2_2:1 S3_1:2 S4_1:1 S5_2:2
Seq 4 S1_2:1 S2_1:2 S3_2:3 S4_2:2 S5_1:3
Seq 5 S1_2:2 S2_1:3 S3_2:1 S4_2:3 S5_1:1
Seq 6 S1_2:3 S2_1:1 S3_2:2 S4_2:1 S5_1:2

Si_m:c – i:snippet no; m:1=MC,2=NoMC; c:1=GC,2=BC,3=NC.
See Sect. 4.2.1 for an explanation of the acronyms.

4. http://www.limeservice.com.

5. The imbalance of datapoints per snippet variant is due to an over-
representation of a specific snippet series among the excluded subjects.

6. Overall programming experience is aggregated from the subjects’
responses regarding experience levels in Java, C++, and Other pro-
gramming languages. Overall task-specific experience is aggregated
from the subjects’ responses regarding knowledge/experience in OOD,
LoD, refactoring and plug-in programming in Eclipse, see Appendix C,
available in the online supplemental material, for details.

B€ORSTLER AND PAECH: THE ROLE OF METHOD CHAINS AND COMMENTS IN SOFTWARE READABILITY AND... 891

http://www.bth.se/com/jub.nsf
http://www.bth.se/com/jub.nsf
http://www.bth.se/com/jub.nsf
http://www.limeservice.com

and go into detail on different subject groups and snippet
variants in subsections. A summary of all relationships found
in the present experiment is shown in Fig. 5.

Perceived readability (R1, R2) was measured on a scale
from very difficult to very easy, i.e. these data are ordinal.
Subjects were asked to rate snippet readability based on
their own programming experience. Absolute individual
scores are therefore less relevant than relative differences.
Differences in perceived readability between groups of sub-
jects or snippets/snippet variants were tested using Chi-
Square tests (x2).

Stacked bar charts as in Figs. 6 and 7 are used to visual-
ize the distribution of actual scores of R1. Each bar repre-
sents a total (100 percent) and each part shows the
proportion of scores in a category. Each bar is centered at
0 percent which makes it easier to compare the relative per-
ceived readability of a total.

Since R1 and R2 are strongly and significantly related
according to Spearman’s rank correlation (r ¼ 0:848;a <
0:0001), we ignore R2 in our further analysis

Method chains and comments. Regarding RQ2, our data does
not show any significant differences in the perceived readabil-
ity (R1) for the MC variants. Regarding RQ1, there are signifi-
cant differences between the comment variants (x2 ¼ 16:1;
a ¼ 0:003). Code snippets with good comments (GC) are per-
ceived as the most readable and the variants without com-
ments (NC) are perceived as the least readable. The Acc
means for the MC and comment variants are all between 0.43
and 0.45. All differences are insignificant (see Fig. 6).

Subject characteristics. When looking at different subject
groups (see Fig. 7), we can identify differences in perceived
readability for several subject groups. For example, there is
a significant relationship between overall programming
experience and R1 (x2 ¼ 19:7;a ¼ 0:001) as well as between

task-specific experience and R1 (x2 ¼ 29:7;a < 0:0001).
ANOVA tests show that also the means for Acc are

significantly higher for the groups with high overall pro-
gramming and high task-specific experience (a < 0:01).

Regarding naming preferences, our data shows a sig-
nificant difference in R1 between the subject group that
has a naming preference and the groups that have none
(x2 ¼ 9:55;a ¼ 0:008). The difference between the two
preference groups (camelCase-style versus under_score-

style) is also significant (x2 ¼ 12:7;a ¼ 0:013). Overall, the
student group without a naming preference finds the
snippet variants more difficult to read than the other

Fig. 4. Gender, naming preference (cC=camelCase style, u_s=under_
score style) and overall experience levels (programming and task-
specific) for the subjects (in absolute numbers for all 104 subjects).

TABLE 3
Perceived Readability (R1, R2), Timing Data (Tr; Ta; Sr; Sa) and

Answer Accuracy (Acc) for All Snippets

Snippet N R1 R2 Tr Ta Acc Sr Sa

S1_1:1 16 2.81 2.38 79.11 135.25 0.40 8.30 4.86
S1_1:2 23 2.74 2.70 70.73 101.92 0.38 8.75 6.07
S1_1:3 14 2.71 2.57 82.21 81.02 0.38 6.35 6.44
S1_2:1 15 2.60 2.27 88.14 92.13 0.27 8.10 7.75
S1_2:2 21 3.00 2.71 101.62 108.17 0.41 6.65 6.25
S1_2:3 15 2.47 2.20 84.41 104.28 0.33 6.86 5.55

S2_1:1 15 2.60 2.53 183.55 113.67 0.50 7.77 12.55
S2_1:2 15 2.60 2.47 153.24 89.51 0.61 8.14 13.93
S2_1:3 21 2.29 2.24 113.28 80.97 0.65 8.08 11.30
S2_2:1 14 2.43 2.57 187.26 140.11 0.52 7.99 10.68
S2_2:2 16 2.00 1.94 120.97 206.93 0.51 10.89 6.36
S2_2:3 23 2.35 2.26 153.01 104.24 0.53 6.44 9.45

S3_1:1 23 3.35 3.00 136.66 87.09 0.48 8.56 13.43
S3_1:2 14 2.64 2.29 124.64 104.80 0.41 9.47 11.26
S3_1:3 16 2.25 2.25 153.84 91.50 0.46 5.86 9.85
S3_2:1 21 3.00 2.86 179.61 106.91 0.40 6.32 10.62
S3_2:2 15 2.33 1.87 79.05 141.04 0.37 14.48 8.12
S3_2:3 15 2.73 2.33 54.63 85.83 0.28 15.85 10.09

S4_1:1 14 2.79 2.29 143.10 67.07 0.37 6.32 13.48
S4_1:2 16 2.94 2.69 119.32 60.22 0.49 6.65 13.17
S4_1:3 23 2.30 2.09 98.62 55.68 0.43 7.31 12.95
S4_2:1 15 2.93 2.87 145.29 84.36 0.37 6.86 11.81
S4_2:2 15 3.00 2.80 72.49 50.74 0.44 12.21 17.44
S4_2:3 21 2.67 2.48 140.08 62.29 0.52 5.80 13.05
S5_1:1 21 3.38 3.38 114.36 71.54 0.47 8.00 12.79

S5_1:2 15 2.40 2.60 113.77 73.08 0.37 7.62 11.86
S5_1:3 15 2.93 3.00 74.18 45.27 0.28 9.32 15.26
S5_2:1 23 3.13 3.00 130.16 75.75 0.53 7.44 12.79
S5_2:2 14 2.93 2.57 118.97 92.26 0.39 7.74 9.98
S5_2:3 16 2.75 2.56 116.50 79.42 0.46 6.40 9.38

ALL 520 2.72 2.54 108.32 88.76 0.44 8.22 10.62

N: Number of datapoints (subjects).
R1,R2: Average perceived readability after the reading and completion task.
Tr; Ta: Median snippet reading and answering time in seconds.
Acc: Average answer accuracy in percent.
Sr; Sa: Median reading and answering speed in characters per second.

Fig. 5. Summary of relationships between experiment variables.

Fig. 3. Overview over the on-line questionnaire. Timing data was taken
for each of the “boxes”.

892 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016

groups and also has the lowest answer accuracy (Acc).
The differences between groups with respect to Acc are,
however, insignificant.

Fig. 7 shows that, overall, male subjects give higher
readability scores than females and have a higher answer
accuracy. Both difference are not statistically significant,
though.

The self-assigned experience levels for men and women
do not differ much, except for experience in programming
languages other than Java and C++ (“Other lang exp” in
Fig. 13, in Appendix C, available in the online supplemental
material). The aggregated overall experience levels are
slightly lower for women than for men. None of these dif-
ferences in experience (see Fig. 8) are statistically significant
though, according to a Fisher’s exact test.

Code snippets. For snippets S1-S5, our data shows signifi-
cant differences in the overall perceived readability (R1)
(x2 ¼ 22:8;a ¼ 0:004) as well as in their mean answer accu-
racy (Acc) (ANOVA p ¼ 0:0013 at a < 0:01) (see Fig. 9).
That is, our snippets were sufficiently different to lead to
significant differences in the independent variables.

Table 7 in Appendix D, available in the online supple-
mental material, shows the Spearman rank correlations (r)
for the scores and timing data (Table 3) and measurements
for all snippet variants (Table 6 in Appendix B, available in
the online supplemental material). It does not shows any
significant relationships at the a < 0:01-level between R1
and timing data (Tr; Ta; Sr; Sa) or Acc. That is, perceived
readability does not correlate with traditional measures of
text readability or comprehension. Studies on software
readability might therefore be improved by using measures

in addition to perceived readability (see also the discussion
on bias in Section 8.1).

R1 also does not show any significant relationships with
size, volume (Halstead’s Volume V), complexity (ExtCCc),
or comment density (CD). Regarding Posnet et al.’s readabil-
itymeasure (PHD), our dataset does not show any significant
relationship between PHD and any other measure, except V
(r ¼ 0:898;a < 0:001). One should note though, that V is a
factor in the formula to compute the PHDmeasure.

For our dataset, neither perceived readability (R1) nor
PHD are good predictors for other measures of readability
or comprehension. In particular, there is no significant rela-
tionship between size and R1, as for example for the Buse
and Weimer dataset (as shown in [22]).

However, our data shows that snippet size correlates
strongly and highly significantly with reading time (Tr)
(r ¼ 0:689;a < 0:001) and moderately and significantly
with Acc (r ¼ 0:512;a < 0:01). Furthermore, there is a mod-
erate and highly significant positive relation between Tr and
Acc (r ¼ 0:555;a < 0:001). That is, for our dataset, we can
see that larger snippets tend to have longer reading times,
but also higher answer accuracies. Neither of those have a
significant relationship with perceived readability, though.
Since our subjects had unlimited time for reading and
answering, potentially negative impacts of size on readabil-
ity and comprehension could be compensated by spending
more time on larger code snippets. This might have affected
their performance on the cloze test. On the other hand, our

Fig. 7. Distribution of scores for perceived readability (R1) for differ-
ent subject groups (from top to bottom): Overall programming expe-
rience, overall task-specific experience, identifier naming preference
and gender.

Fig. 8. Self-assigned experience levels for male and female subjects (in
absolute numbers for all 104 subjects).

Fig. 9. Distribution of scores for perceived readability (R1) for snippet
S1-S5.

Fig. 10. Distribution of scores for perceived readability (R1) for all snip-
pets by MC variant, grouped by subject group experience level.

Fig. 6. Distribution of scores for perceived readability (R1) for method
chain variants (MC/NoMC) and comment variants (GC/BC/NC). The
numbers in the middle show the number of datapoints for each variant.
The numbers in the two columns to the right show the average perceived
readability (R1, left column) and the average answer accuracy (Acc,
rightmost column).

B€ORSTLER AND PAECH: THE ROLE OF METHOD CHAINS AND COMMENTS IN SOFTWARE READABILITY AND... 893

data shows negative correlations between times and speeds
for reading (Tr; Sr; r ¼ �0:491;a < 0:05) and answering
(Ta; Sa; r ¼ �0:694;a < 0:001), respectively. I.e. on larger
snippets, the subjects were still faster in terms of snippet
characters per second.

Taken together, we can conclude that there are statis-
tically significant differences in the perceived readability
of the tested code snippets with respect to different com-
ment variants (RQ1). There are no differences in answer
accuracy for method chain or comment variants (RQ2).
However, there are statistically significant differences
between subject groups with low and high experience,
respectively.

In the following subsections, we look at the different sub-
ject groups and snippet variants in some more detail.

7.1 Method Chains: All Snippets

As already shown in Fig. 7, there is a notable difference
between the subject groups with high and low program-
ming and task-specific experience, respectively. Subjects
with high experience rate the code snippets, overall, as
more readable than subjects with low experience and have
higher Acc-values. Within an experience group the differen-
ces in R1 and Acc are marginal. An ANCOVA analysis for
Acc with overall general and task-specific experience lev-
els7, respectively, as covariates shows that the observed
means for Acc are almost identical to the adjusted means.

7.2 Method Chains: Individual Snippets

When we break down Fig. 10 to the level of individual snip-
pets, we get larger differences for R1 and Acc within subject
groups. These differences do not follow a consistent pattern
for all snippets, though. Furthermore, none of the differen-
ces within an experience group is statistically significant.

This observation also holds when looking at the method
chain variants independently of the comment variants.

A summary of the observations from breaking down the
analysis to snippet level and experience groups can be
found in Table 4. As already indicated in Fig. 9, there are
considerable differences between the snippets. For snippets
S2 and S3, the experiment results show an advantage for the
MC variants for R1 as well as for Acc. For snippets S1, S4
and S5, the results are almost the opposite. In large, the
snippet variants with higher R1 also have higher Acc.

From the available data it is not clear whether these dif-
ferences are related to specific properties of the actual
method chains in S2 and S3 on the one hand and in S1, S4
and S5 on the other. We can note though, that S3 is the snip-
pet with the most method chains and the only snippet
where the NoMC variant is smaller than the MC variant.

The role of such properties should be studied in more
detail.

7.3 Comments: All Snippets

For the comment variants, as for the MC variants, there are
notable difference between the groups with high and low
programming and task-specific experience, respectively
(see Fig. 11). Contrary to the MC variants, we can see con-
siderable differences within different experience groups.
Except for the low programming experience group, all

TABLE 4
Differences in R1 and Acc between Subject Groups with Low and High Experience for the Snippets’ MC Variants

Snippet All subjects High exp groups* Low exp groups* Comment

S1 Similar R1 for MC and
NoMC. Slightly higher
Acc for MC.

Inconsistent, but less read-
able variant has higher Acc.

NoMCmore readable
and slightly higher Acc.

Most groups consider NoMCmore read-
able. Slightly higher Acc for NoMC for
most groups.

S2 MCmore readable and
higher Acc.

MC more readable.
Inconsistent for Acc.

MC more readable
and higher Acc.

All groups consider MCmore readable.
Higher Acc for MC for all but the small-
est group (high task-spec exp).

S3 MCmore readable and
higher Acc.

Inconsistent. MC more readable
and higher Acc.

All but one group consider MCmore
readable. Higher or same Acc for MC for
all groups.

S4 NoMCmore readable and
slightly higher Acc.

NoMCmore readable,
but lower Acc.

NoMCmore readable
and higher Acc.

All groups consider NoMCmore read-
able. High and low exp groups contra-
dictory regarding Acc, but overall
slightly higher Acc for NoMC.

S5 Similar R1 for MC and
NoMC. Higher Acc for
NoMC.

NoMCmore readable and
higher Acc.

Inconsistent All groups, except the low task-specific
exp group consider NoMCmore read-
able. All but the low progr exp group
have higher Acc for NoMC.

*There are two such groups: High/low programming experience and high/low task-specific experience, respectively.

Fig. 11. Distribution of scores for perceived readability (R1) for all snip-
pets by comments variant grouped by subject group experience level.

7. For the ANCOVA analysis, we used the weighted sums of the
first six experience indicators in Fig. 13 in Appendix C, available in the
online supplemental material, for general experience and the remaining
four for task-specific experience.

894 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016

groups perceive GC as most readable and NC as least read-
able. This challenges some earlier work on comments dis-
cussed in Section 2.3 and suggests that the role and quality
of comments should be investigated in more detail.

For the low task-specific experience group, the differen-
ces are significant (x2 ¼ 19:4;a ¼ 0:0007). The differences in
Acc between experience groups as well as within experience
groups are small.

An ANCOVA analysis (as for the method chains in Sec-
tion 7.1) shows no significant differences in the Acc means
for the different comment variants.

7.4 Comments: Individual Snippets

When breaking down Fig. 11 to the level of individual snip-
pets, we get a more inconsistent picture. Table 5 on the next
page provides a summary of the observations for individual
snippets. Overall, we can see that either GC or BC were
rated as the most readable snippet variants. Regarding the
Acc-values all variants were rated best or worst for some
snippets. Unlike for the MCs, there does not exist a ten-
dency that variants with a high R1 also have a high Acc.
This raises the question whether the subjects actually con-
sidered the quality of the comments or just their presence or
amount when rating the readability of the code.

8 THREATS TO VALIDITY

8.1 Internal Validity

Internal validity is concerned with the observed relation-
ships between the independent and dependent variables,
i.e. to which extent the treatment and independent variable
actually caused the observed effects. Unknown factors

(confounding variables, bias, etc.) might have affected the
results and limit (internal) validity of the study. As dis-
cussed in Section 4.2.2, we tried to minimize learning effects
concerned with the cloze questions by varying the places of
the gaps. We also reduced the number of snippets to 6 after
piloting to bring down the expected total task time to under
45 minutes. Furthermore, we minimized fatigue effects by
allowing pausing. The snippets were always shown in the
same order (S1-S5), so that the results for the last snippets
could be affected by fatigue. However, we placed the largest
and most complex snippets in positions 2 and 3, respec-
tively to mitigate this problem.

As shown in the discussion of the results, programming
experience is a confounding factor for comprehension
which we controlled for explicitly. We could not control
cheating by our students. As the students participated vol-
untarily we see no reason for validity issues here.

A problem, that might have affected our results is bias.
Since our subjects are undergraduate students, their percep-
tion of what is readable or not might be biased by personal
beliefs or beliefs imposed on them (e.g., in their program-
ming education). This should, however, only affect our
measures of perceived readability. Since perceived readabil-
ity and other measures of readability and comprehension
do not show any significant relationships in our study, this
threat might be real. Therefore perceived readability might
not be sufficient as the sole measure of readability (see also
the discussion in Section 7).

8.2 External Validity

External validity is concerned with the generalizability of
the results to other contexts. Our study is restricted by the

TABLE 5
Differences in R1 and Acc between Subject Groups with Low and High Experience for the Snippets’ Comment Variants

Snippet All subjects High exp groups* Low exp groups* Comment

S1 BC easiest to read; NCmost dif-
ficult. Acc highest for BC;
almost the same for GC and NC

BC easiest to read; NC most dif-
ficult. Inconsistent regarding
Acc.

BC easiest to read; GC most
difficult with many “very
difficult” scores. Acc follows
same pattern, i.e.
BC>NC>GC.

BC has highest R1 and highest
Acc in all groups. Inconsistent
results for R1 and Acc regarding
GC and NC.

S2 GC easiest to read; Small differ-
ences between BC and NC.
Small differences in Acc
(NC>BC>GC).

Inconsistent regarding R1. Low-
est Acc for BC.

BC most difficult to read
with very many “very
difficult” scores. GC slightly
higher Acc as NC.

BC most difficult to read in 4 of
the 5 groups. Inconsistent regard-
ing Acc but overall high.

S3 GCmuch easier to read than BC
and NC, which are about the
same. Similar for Acc, but dif-
ferences are smaller.

GC easiest to read, many “very
easy” scores; BC most difficult.
Inconsistent regarding Acc but
overall high.

GC much easier to read than
BC and NC; NC most diffi-
cult with many “very
difficult” scores. Lowest Acc
for BC; Acc on an overall
low level.

GC consistently rated as easiest to
read; R1 inconsistent for BC and
NC, but NC has the most“very
difficult” scores in all groups.
Inconsistent and large variations
in Acc.

S4 BC easiest to read; NCmost dif-
ficult. Acc almost the same for
GC, BC and NC.

BC easiest to read, despite many
“very difficult” scores. Inconsis-
tent regarding DC and NC. Acc
highest for NC and lowest for
BC.

Inconsistent regarding R1,
but differences are small.
Very low Acc for GC; high-
est Acc for NC.

Large inconsistencies regarding
R1 and Acc, but consistently high-
est Acc for NC.

S5 GC easiest to read; BC most dif-
ficult. Highest Acc for GC;
almost the same for BC and NC.

GC easiest to read; inconsistent
regarding BC and NC. Highest
Acc for GC; lowest for NC.
Comparatively small differen-
ces in R1, but large differences
in Acc.

GC much easier to read than
BC and NC; BC most diffi-
cult. Highest Acc for GC.

GC consistently rated easiest to
read; BC most difficult in 4 of the
5 groups. Acc consistently highest
for GC in all groups; lowest Acc
for NC in 4 of the 5 groups.

*There are two such groups: High/low programming experience and high/low task-specific experience, respectively.

B€ORSTLER AND PAECH: THE ROLE OF METHOD CHAINS AND COMMENTS IN SOFTWARE READABILITY AND... 895

fact that the subjects were undergraduate students and only
few rated themselves with high experience. Results might
be different for professionals. The snippets used in the
study do not contain complex programming language fea-
tures. This limits generalizability to code with common data
structures and control logic. However, we believe that our
snippets are representative for professional code with these
constraints as we took them from known code bases and
only made slight adaptations. The limited number of base
snippets could also be seen as a threat to generalizability.
However, the goal of the study was not to develop a general
readability formula. We investigated the effect of specific
code variations only. The code variations were carefully
developed (see Section 4.2.1) and, as shown by the data, the
snippets differ in their readability. Limiting the number of
snippets allowed us to gather enough data points for the
variants for statistical analysis.

As mentioned in Section 7, unlimited time might be an
issue. In our experiment, reading and answer time were not
restricted. For professional programmers, time on task is
usually restricted. However, this allowed us to study the
influence of the reading and answering times on the accu-
racy of the results.

8.3 Construct Validity

Construct validity is concerned with the operationalization
of the study and to which extent the factors, measures, and
materials actually represent the intended real world con-
structs. As the good and bad comments were partly defined
by the researchers, it could be that they do not represent
realistic code comments. However, we preserved existing
comments as far as possible and used common commenting
guidelines. We believe that the differences as described in
Section 4 were quite typical.

Regarding measures, we deliberately used measures
other than perceived software readability to also include
other factors of comprehension. As the researchers devised
the gaps for the cloze questions and rated the accuracy, it
could be that by chance the gaps were too artificial. How-
ever, as mentioned in Section 4, we placed the gaps at very
different places. Furthermore, we evaluated accuracy indi-
vidually, based on assessment criteria defined and agreed
upon in advance. This process led to a high agreement and
only few answers required a discussion.

8.4 Conclusion Validity

Conclusion validity is concerned with the correctness of the
conclusions drawn in this study. We used standard statisti-
cal algorithms as recommended in text books on experimen-
tation in software engineering such as [28]. The online
questionnaire made sure that the questions were adminis-
tered uniformly. Ordering and learning effects were coun-
tered by grouping.

9 LESSONS LEARNED

We want to group the lessons learned from this study into
two groups: Lessons learned from the actual experiment
process and lessons learned from the actual results. Both
gave valuable insight into considerations for future experi-
ments in software readability and comprehension.

� It is very difficult to isolate and study a single com-
prehension factor, since there are so many factors
that interact with each other in ways that are not
well understood. The experimental code must show
as much variation as possible to be able to generalize,
but as little as possible variation to be able to get sta-
tistically significant results.

� Timing is important. Giving subjects unlimited time
for the experimental tasks makes measuring of com-
prehension very difficult. This cannot be made up
for easily by taking into account the time on task.

� Perceived readability (as R1) might be insufficient as
the only measure of readability and/or comprehen-
sion, since it can be affected by bias that is difficult to
control. In the present study, it seems that the sub-
jects were biased towards the existence of comments.

� Controlling for experience is very important even for
single cohorts of students, since experience is a sig-
nificant factor for comprehension.

10 CONCLUSIONS AND FUTURE WORK

In the present study, we have shown that code comments on
statement level affect the perceived readability of software,
but not comprehension measured in terms of accuracy of
answers to cloze questions. Regarding the former, our study
shows that code with bad comments was rated as more
readable than expected. In several cases the variants with
bad comments were actually rated as the most readable var-
iants. This suggests that the role of comments for code qual-
ity should be studied in more detail.

In our study, the absence or presence of method chains is
not significantly related to perceived readability or compre-
hension. Method chaining is often claimed to lead to more
compact and more readable code. This could not be corrob-
orated by our study. In fact, it is interesting to note that
even experienced subjects favored code without method
chains in several cases (see Table 4). The ambiguous results
of our study could be an artefact of differences in the code
snippets used in the experiment. Further studies are neces-
sary to provide empirical evidence for or against method
chaining as an object-oriented programming style.

The result that perceived readability and comprehension
(measured by answer accuracy—Acc) are not related is
somewhat disturbing. It shows that it is difficult to measure
readability and comprehension and to investigate their rela-
tionship. It could also mean that perceived readability
might not be sufficient as a sole indicator or predictor of
software quality. This should be studied in more detail.

REFERENCES

[1] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT
Professional, vol. 2, no. 3, pp. 17–23, 2000.

[2] S. W. Yip and T. Lam, “A software maintenance survey,” in Proc.
1st Asia-Pacific Softw. Eng. Conf., 1994, pp. 70–79.

[3] J. R. Foster, “Cost factors in software maintenance,” Ph.D. disserta-
tion, School Eng. Comput. Sci., Univ. Durham, Durham,U.K., 1993.

[4] V. Nguyen, “Improved size and effort estimation models for soft-
ware maintenance,” in Proc. 26th Int. Conf. Softw. Maintenance,
2010, pp. 1–2.

[5] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: A study of developer work habits,” in Proc. 28th Int. Conf.
Softw. Eng., 2006, pp. 492–501.

896 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016

[6] J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact
of software development problem factors on software main-
tainability,” J. Syst. Softw., vol. 82, no. 6, pp. 981–992, 2009.

[7] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact
of UML documentation on software maintenance: An experimen-
tal evaluation,” IEEE Trans. Softw. Eng., vol. 32, no. 6, pp. 365–381,
Jun. 2006.

[8] T. C. Lethbridge, J. Singer, and A. Forward, “How software engi-
neers use documentation: The state of the practice,” IEEE Softw.,
vol. 20, no. 6, pp. 35–39, Nov./Dec. 2003.

[9] B. W. Kernighan and P. J. Plauger, The Elements of Programming
Style. New York, NY, USA: McGraw-Hill, 1978.

[10] D. Spinellis, “Code documentation,” IEEE Softw., vol. 27, no. 4,
pp. 18–19, Jul./Aug. 2010.

[11] K. Petersen, “Implementing lean and agile software development
in industry,” Ph.D. dissertation, School Comput., Blekinge Inst.
Technol., Karlskrona, Sweden, 2010.

[12] P. W. Oman and C. R. Cook, “A programming style taxonomy,” J.
Syst. Softw., vol. 15, no. 3, pp. 287–301, 1991.

[13] H. Sutter and A. Alexandrescu, C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices. New York, NY, USA: Pearson Educa-
tion, 2004.

[14] A. Vermeulen, S. W. Ambler, G. Bumgardner, E. Metz, T. Misfeldt,
J. Shur, and P. Thompson, The Elements of Java (TM) Style. Cam-
bridge, U.K.: Cambridge Univ. Press, 2000.

[15] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of Patterns.
New York, NY, USA: Wiley, 1996.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA, USA:
Addison-Wesley, 1995.

[17] K. J. Lieberherr and I. M. Holland, “Assuring good style for object-
oriented programs,” IEEE Softw., vol. 6, no. 5, pp. 38–48, Sep. 1989.

[18] A. J. Riel, Object-Oriented Design Heuristics. Reading, MA, USA:
Addison-Wesley, 1996.

[19] M. Fowler, Refactoring: Improving the Design of Existing Code. Read-
ing, MA, USA: Addison-Wesley, 1999.

[20] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study
of refactoring challenges and benefits at Microsoft,” IEEE Trans.
Softw. Eng., vol. 40, no. 7, pp. 633–649, Jul. 2014.

[21] J. Kerievsky, Refactoring to Patterns. Reading, MA, USA: Addison-
Wesley, 2005.

[22] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of soft-
ware readability,” in Proc. 8th Working Conf. Mining Softw. Reposi-
tories, 2011, pp. 73–82.

[23] M. Fowler, Domain-Specific Languages. Reading, MA, USA: Addi-
son-Wesley, 2010.

[24] Y. E. Keskin. (2014, Mar.). Fluent interface for more readable code.
[Online]. Available: http://java.dzone.com/articles/fluent-
interface-more-readable-0

[25] Y. Guo, M. W€ursch, E. Giger, and H. C. Gall, “An empirical vali-
dation of the benefits of adhering to the law of Demter,” in Proc.
18th Working Conf. Reverse Eng., 2011, pp. 239–243.

[26] R. Green and H. Ledgard, “Coding guidelines: Finding the art in
the science,” Commun. ACM, vol. 54, no. 12, pp. 57–63, 2011.

[27] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experi-
ments in software engineering,” in Guide to Advanced Empirical
Software Engineering. New York, NY, USA: Springer, 2008,
pp. 201–228.

[28] C. Wohlin, P. Runeson, M. H€ost, M. C. Ohlsson, B. Regnell, and
A. Wessl�en, Experimentation in Software Engineering. New York,
NY, USA: Springer, 2012.

[29] M.-A. Storey, “Theories, tools and research methods in program
comprehension: Past, present and future,” Softw. Quality J.,
vol. 14, no. 3, pp. 187–208, 2006.

[30] M. Smith and R. Taffler, “Readability and understandability: Dif-
ferent measures of the textual complexity of accounting
narrative,” Accounting, Auditing Accountability J., vol. 5, no. 4,
pp. 84–98, 1992.

[31] G. R. Klare, “Readable computer documentation,” J. Comput. Doc-
umentation, vol. 24, no. 3, pp. 148–168, 2000.

[32] W. H. DuBay, The Principles of Readability. Costa Mesa, CA, USA:
Impact Inf., 2004.

[33] G. Hargis, “Readability and computer documentation,” J. Comput.
Documentation, vol. 24, no. 3, pp. 122–131, 2000.

[34] D. E. Knuth, “Literate programming,” Comput. J., vol. 27, no. 2,
pp. 97–111, 1984.

[35] J. L. Elshoff and M. Marcotty, “Improving computer program
readability to aid modification,” Commun. ACM, vol. 25, no. 8,
pp. 512–521, 1982.

[36] L. E. Deimel and J. F. Naveda, “Reading computer programs:
Instructor’s guide and exercises,” Softw. Eng. Inst., Pittsburgh,
PA, USA, Tech. Rep. CMU/SEI-90-EM-3, 1990.

[37] J. B€orstler, M. E. Caspersen, and M. Nordstr€om, “Beauty and the
beast—Toward a measurement framework for example program
quality,” Dept. Comput. Sci., Umea

�
Univ., Umea

�
, Sweden, Tech.

Rep. UMINF-07.23, 2007.
[38] R. P. Buse and W. R. Weimer, “Learning a metric for code

readability,” IEEE Trans. Softw. Eng., vol. 36, no. 4, pp. 546–558,
Jul./Aug. 2010.

[39] J. B€orstler, M. E. Caspersen, and M. Nordstr€om. (2015). Beauty
and the beast: On the readability of object-oriented example pro-
grams, Softw. Quality J.. [Online]. Available: http://link.springer.
com/article/10.1007/s11219-015-9267-5

[40] D. Lawrie, H. Feild, and D. Binkley, “Quantifying identifier qual-
ity: An analysis of trends,” Empirical Softw. Eng., vol. 12, no. 4,
pp. 359–388, 2007.

[41] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B.
Sharif, “The impact of identifier style on effort and
comprehension,” Empirical Softw. Eng., vol. 18, no. 2, pp. 219–276,
2013.

[42] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical
study,” in Proc. 14th Eur. Conf. Softw. Maintenance Reeng., 2010,
pp. 156–165.

[43] A. von Mayrhauser and A. M. Vans, “Program comprehension
during software maintenance and evolution,” IEEE Comput.,
vol. 28, no. 8, pp. 44–55, Aug. 1995.

[44] F. D�etienne, Software Design–Cognitive Aspects. New York, NY,
USA: Springer, 2002.

[45] R. Marinescu and C. Marinescu, “Are the clients of flawed classes
(also) defect prone?” in Proc. 11th IEEE Int. Working Conf. Source
Code Anal. Manipulation, 2011, pp. 65–74.

[46] S. W. Ambler, A. Vermeulen, and G. Bumgardner, The Elements of
Java Style. New York, NY, USA: Cambridge Univ. Press, 1999.

[47] R. C. Martin, Clean Code: A Handbook of Agile Software Crafts-
manship. Boston, MA, USA: Prentice-Hall, 2008.

[48] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of
modularization and comments on program comprehension,” in
Proc. 5th Int. Conf. Softw. Eng., 1981, pp. 215–223.

[49] T. Tenny, “Program readability: Procedures versus comments,”
IEEE Trans. Softw. Eng., vol. 14, no. 9, pp. 1271–1279, Sep. 1988.

[50] A. Norcio, “Indentation, documentation and programmer
comprehension,” in Proc. Conf. Human Factors Comput. Syst., 1982,
pp. 118–120.

[51] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility:
An experimental investigation,” J. Program. Lang., vol. 4, no. 3,
pp. 143–167, 1996.

[52] E. Nurvitadhi, W. W. Leung, and C. Cook, “Do class comments
aid Java program understanding?” in Proc. 33rd Annu. Frontiers
Educ., vol. 1, 2003, p. T3C-13.

[53] B. W. Kernighan and D. M. Ritchie, The C Programming Language,
vol. 2. Englewood Cliffs, NJ, USA: Prentice-Hall, 1988.

[54] C. Cook, W. Bregar, and D. Foote, “A preliminary investigation of
the use of the cloze procedure as a measure of program under-
standing,” Inf. Process. Manage., vol. 20, no. 1, pp. 199–208, 1984.

[55] W. E. Hall and S. H. Zweben, “The cloze procedure and software
comprehensibility measurement,” IEEE Trans. Softw. Eng., vol. SE-
12, no. 5, pp. 608–623, May 1986.

[56] J. Siegmund, C. K€astner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring and modeling programming experience,” Empirical
Softw. Eng., vol. 19, pp. 1299–1334, 2014.

[57] W. Kintsch and D. Vipond, “Reading comprehension and read-
ability in educational practice and psychological theory,” in Per-
spectives on Memory Research, L.-G. Nilss, Ed., Mahwah NJ, USA:
Lawrence Erlbaum Assoc., 1979.

B€ORSTLER AND PAECH: THE ROLE OF METHOD CHAINS AND COMMENTS IN SOFTWARE READABILITY AND... 897

http://java.dzone.com/articles/fluent-interface-more-readable-0
http://java.dzone.com/articles/fluent-interface-more-readable-0

J€urgen B€orstler received the PhD degree in
computer science from Aachen University of
Technology, Germany. He is currently a profes-
sor of software engineering at the Blekinge Insti-
tute of Technology (BTH), Sweden. He is a
member of SERL-Sweden, the Software Engi-
neering Research Lab at BTH. His main research
interests include empirical software engineering
and cover requirements engineering, object-ori-
ented methods, software process improvement,
software measurement, software comprehen-

sion, and computer science education. He is a founding member of the
Scandinavian Pedagogy of Programming Network and a senior member
of the Swedish Requirements Engineering Network. He is a member of
the IEEE.

Barbara Paech received the PhD degree in com-
puter science from Ludwig Maximilians University
Munich, Germany, in 1990, and a Habilitation in
computer science from Technical University
Munich in 1998. She holds the chair “Software
Engineering” at Heidelberg University, Germany.
Her teaching and research focuses on methods
and processes to ensure quality of software with
adequate effort. Since many years, she has been
particularly active in the area of requirements and
rational engineering. Based on her experiences

as the department head at the Fraunhofer Institute for Experimental
Software Engineering, her research is often empirical and in close coop-
eration with industry. She was spokeswoman of the section “Software
Engineering” in the German Computer Science Society for six years and
is founding member of the International Requirements Engineering
Board. Since 2016, she has been the head of the advisory board of study
affairs of the representation of German Computer Science study pro-
grams “Fakult€atentag Informatik.”

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

898 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

