
Safer User Interfaces: A Case Study
in Improving Number Entry

Harold Thimbleby

Abstract—Numbers are used in critical applications, including finance, healthcare, aviation, and of course in every aspect of

computing. User interfaces for number entry in many devices (calculators, spreadsheets, infusion pumps, mobile phones, etc.) have

bugs and design defects that induce unnecessary use errors that compromise their dependability. Focusing on Arabic key interfaces,

which use digit keys - , usually augmented with correction keys, this paper introduces a method for formalising and

managing design problems. Since number entry and devices such as calculators have been the subject of extensive user interface

research since at least the 1980s, the diverse design defects uncovered imply that user evaluation methodologies are insufficient for

critical applications. Likewise, formal methods are not being applied effectively. User interfaces are not trivial and more attention should

be paid to their correct design and implementation. The paper includes many recommendations for designing safer number entry user

interfaces.

“The most important property of a program is whether it accomplishes the intentions of its user.” Tony Hoare, 1969 [13]

Index Terms—Error processing, software/software engineering, user interfaces, human factors in software design, user interfaces, informa-

tion interfaces and representation (HCI)

Ç

1 INTRODUCTION

PROGRAMMING is difficult. Over 50 years ago what are
now called formalmethodswere developed so programs

could be implemented that reliably achieved what their
designers intended. Dijkstra memorably argued that debug-
ging could only find bugs [6]: being unable to find bugs did
not mean there were no bugs—no amount of debugging can
prove the absence of bugs. One therefore needs to prove a
program is correct. Hoare and others developed various rig-
orous formal techniques to reason correctly about programs
without relying on debugging.

Dijkstra’s comment recalls Popper’s scientific philosophy
of refutation [28]: Popper defined criteria for scientific theo-
ries and showed it is impossible to prove a theory correct by
experiment. Both Dijkstra and Popper are right for the same
reasons. It follows that in principle one cannot use empirical
experiments to establish a user interface is correct.

Yet, according to the international standard ISO 9241,
which defines best practice [14], user interfaces should be
implemented, tested on users, bugs fixed, and then re-tested
in an iterative, experimental cycle. This empirical process
involves human participants and statistics to ensure suffi-
ciently reliable conclusions are drawn despite natural varia-
tion in human behaviour and performance. Particular care
has to be taken to ensure that the participants appropriately
represent the final users of the system.

Building user interfaces to be used by people is a very
different type of problem than building programs to be run

by computers. Designers cannot plausibly anticipate all
user needs and requirements in detail, so a prototype is
developed and tested on users. Indeed, users may change
how they behave or change what they want after they start
using a prototype, so the process has to be iterated.

Yet some user interfaces are safety critical and must be
developed in ways that must avoid or mitigate safety issues.
A balance needs to be struck: formal methods should be
used to assure correctness and the absence of defects, and
conventional usability experiments should be used to polish
user interfaces and identify classes of defect that should
then be proved absent. For example user experiments or
expert heuristic analysis might identify the need for undo,
then formal methods can be used to ensure that undo is
available and works correctly in every state of the system.

Unfortunately, most user interface experts think formal
methods are inaccessible and inapplicable, and most formal
methods experts think user interfaces are trivial (which is
an ironic consequence of “ease of use”). And a third group,
many designers and programmers, just build user interfaces
that are subject to neither usability nor formal scrutiny
because they seem so simple they “obviously” work. User
interfaces for number entry are a case in point.

The present paper is concerned with user interfaces for
number entry, and specifically number entry using conven-
tional Arabic numeric keys, as illustrated in Fig. 1, or as can
be used with standard QWERTY keyboards. Such user
interfaces are used for many purposes: dates and times,
telephone numbers, passcodes for security systems, cash
machines, finance and mathematics generally, as well as in
numerous computer applications, from setting tab positions
in word processors to scaling images.

Handheld calculators are a very familiar application
of number entry, so theywill be used to illustratemanydesign
issues in this paper. By using real, clearly identified devices
we demonstrate the techniques discussed scale to design

� The author is with the Department of Computer Science, Swansea Univer-
sity, Swansea SA2 0SF, Wales, United Kingdom.
E-mail: harold@thimbleby.net.

Manuscript received 31 July 2014; revised 24 Nov. 2014; accepted 8 Dec.
2014. Date of publication 17 Dec. 2014; date of current version 17 July 2015.
Recommended for acceptance by H. Sharp.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2014.2383396

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015 711

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

issues that arise in real systems; the discussion is not limited
to idealised systems. Furthermore, as consumer products, cal-
culators are very easy to obtain to replicate and explore the
defects examined in this paper. A note at the end of this paper
briefly summarises all devicesmentioned in this paper.

1.1 Contributions of This Paper

We use the term rule to mean a design property that can be
used to express interaction properties precisely and that can
be reasoned with. If a user interface is correctly imple-
mented, then it will obey its rules, which in turn were
derived from design requirements, themselves established
by empirical experiments (or based in the relevant literature
or experience of the domain of application). Crucially,
designers (or the design tools they use) should be able to
think clearly about rules, for example considering whether
they are consistent and cover all possible cases of interaction.
Rules cannot be seen by users, thus designers have an obli-
gation to carefully select and implement appropriate rules.

We will show that rules user interfaces could obey can be
stated using a simple notation, which wewill introduce. One
can then reason how to design safer and more consistent
number entry user interfaces. Our notation is based on and is
equivalent to Hoare triples [13]. It would have been possible
to express the same issues in many other notations, such as
HOL, PVS, SMV, TLA and VDM. However, many formal
methods have steep learning curves, and there is a tendency
to promote one over another because once you know a nota-
tion, using it seemsmuch easier than learning an alternative.
In contrast, our lightweight notation takes little effort to learn
and can be used immediately. The disadvantage is that there
is no tool support; there is no automatic way to ensure cover-
age, type correctness or other properties. Nevertheless, it is
trivial to translate the notation into a tool-supported notation
or programming language (like SPARK, which has asser-
tions). The real contribution, then, is not so much the nota-
tion, but demonstrating that user interfaces are not designed
rigorously, and that they could be and should be.

2 MOTIVATING EXAMPLES

We start with some broad-ranging motivating examples,
which illustrate common design defects. Then, in contrast,

Section 3, shows that analogous problems were recognised
over 50 years ago in programming, and for which there are
now many ways to manage them or avoid them. Putting
user interface design and programming one-after-the-other
highlights that user interface design has not adopted the
established benefits of formal methods.

2.1 Problems of Unclear, Unstated Design
Requirements

Fu [7] points out a surprising lack of regard for the speci-
fication of requirements in medical device software, even
though the field is safety critical and regulated. Devices that
are not safety critical in a regulatory sense (such as hand-
held calculators), even though they may be used in medical
and other safety critical applications, fare even worse.

User interfaces implementing unstated, incomplete or
inconsistent requirements will have defects, and probably
unnecessary and confusing variation. Number entry has
interesting problems: it appears to be simple, so designers
may not bother to specify and analyse it adequately.

Numerical issues such as overflow interact with concrete
display representations, such as field widths. Many number
interfaces ignore excess input after the “end” of a number
and some ignore “incorrect” keystrokes—if the user inter-
face expects integers, 1.5 may be misread as either 1 or 15
depending on the implementation. Numbers may be syntac-
tically invalid or out of range, but most user interfaces ignore
errors (e.g., two decimal points) and happily process some
valid number (e.g., the prefix up to the second decimal point,
ignoring it and anything beyond it). No number entered
may be converted to a default value (typically zero or a pre-
vious value) without the user being aware. And so on.

Except when the display is full, number entry displays
behave as if digits are appended to whatever is displayed.
This behaviour can be implemented in many ways: primar-
ily, either as a string operation or as a numerical operation.
As string concatenation, the meaning of the decimal point is
that it is just a character. Alternatively, as a numerical oper-
ation, the decimal point is typically implemented as a flag
(or a transition in control flow) that changes the meaning of
subsequent digits. Amongst other differences, the behav-
iour of two decimal points will be different in the two meth-
ods of implementation. As a user will only rarely enter two
decimals, these differences will be unfamiliar and possibly
a surprise. Unpredictability is arguably one of the last
things a user wants after an error.

Many users spend most of their time in general purpose
environments, such asword processors andweb browsers. In
these environments, all input is simple text, so decimal points
are treated no differently to digits, and the delete key deletes
the previous keystroke. The user’s model that is acquired and
reinforced in this environment does not work on number-
based user interfaces: the keys (decimal point),
(change sign) and (delete) all behave differently.

Even simple-looking requirements for number entry may
be inconsistent. The Institute of Safe Medication Practices
(ISMP) has rules to improve the legibility of numbers [17]:
“naked decimal points” are forbidden (e.g., because .5 may
be mistaken as 5), and trailing zeros after a decimal point
are forbidden (e.g., because 5.0 may be mistaken as 50).
Unfortunately these well-meaning requirements cannot be

Fig. 1. Sketch of a simple numeric user interface of the type explored in this
paper. Many alternative keyboard layouts are shown in Fig. 2. Note that a
layout does not specify any interaction design decisions. For example, it is
not possible to tell what the key does; after pressing it, will 0. or 0 or
nothing be displayed? Perhaps the means “correct” rather than
“cancel” and the displaywill change to an earlier display, say 123 or 12....?

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

invariant: as a number is entered in a user interface it may
go through error-prone intermediate stages. If a user enters

and pauses while entering it (for how long?),
what should be displayed? If the ISMP rules are rigorously
followed, the intermediate number should be displayed as
5 , but this makes the behaviour of the next keystroke,
whether a digit or a delete key, ambiguous—which defeats
the point of the ISMP requirements! One solution is for the
display to flash or change colour so that invalid syntax can
be visible [43]. In other words, despite their goals, unmodi-
fied ISMP requirements cannot be considered user interac-
tion requirements: they are problematic in any number
display that can be interacted with.

2.2 Problems of Logs

Many devices record a log of what they do, and this may
be used to help understand incidents involving use of the
device. For example, in a hospital if a patient receives an
overdose of a drug, then the log of the infusion pump (a
device that delivers drugs automatically) may be con-
sulted to see if the pump delivered the overdose. This
would then be evidence that the user instructed the device
to do so.

Unfortunately if the infusion pump has a user interface
design (as many do) like the Casio HR-150TEC calculator
the following scenario is plausible:1

User keyed —that is, the user acci-
dentally keyed two decimal points and pressed to
delete the second decimal point.

User thought = 0.5 , because
would delete the preceding keystroke, as it does on any PC
application.

Device logged 5. The calculator records that the user
entered the number 5 on its log.

If the user keyed something like this, continuing with the
calculation would update the display and these keystrokes
would be lost; the final result would be incorrect, and the
log would show the user made an uncorrected mistake.
The point of using a calculator is that you do not know
what the answer is, and therefore few real users would be
able to tell the difference between a calculation based on 0.5
and one unexpectedly based on 5. Many devices are similar:
a number the user enters (e.g., a drug dose) is generally part
of a larger interaction sequence, and in general it is very
hard to spot an intermediate error.

One can imagine an incident investigator confronting a
nurse with the log: “You told the infusion pump to deliver
5 mL of the drug, which killed the patient.” The nurse might
say, “I thought I’d entered 0.5, but if the log says 5, I sup-
pose I must have made a mistake.” Thus the nurse incrimi-
nates themselves. In fact, the device may have implemented
delete like the HR-150TEC and, if so, its behaviour would
have induced the fatal error and misdirected blame on the
user. Until user interfaces are implemented correctly, their logs
cannot be believed.

In fact, the HR-150TEC displays a decimal point all the
time, regardless of whether the user has keyed one. It is
likely, then, that the program code implementing the num-
ber entry user interface does not represent decimal points
explicitly, and therefore it was problematic to implement the
delete key as a general delete key. Rather, it is easier to imple-
ment it as an operation on a numeric value, ignoring the deci-
mal point. This is exactly howdelete behaves on the Casio.

Interestingly, the entire explanation of the delete key
in the HR-150TEC user manual is the single concrete
example “7 8 ! 7 8” just correcting a single digit, and
from which a user would certainly be justified generalis-
ing its behaviour to deleting other keystrokes. Perhaps
the detailed behaviour of the delete key was overlooked?

2.3 Problems of Design Variation

There is considerable variability in user interface design for
managing error: almost all user interfaces handle correct
numbers correctly, but they vary widely on how they han-
dle error, as illustrated in the examples above. Such arbi-
trary approaches to handle error will induce transfer errors:
that is, over time, users acquire low level skills to correct
error: doing such-and-such corrects an error and the user
can continue. These strategies become automated and drop
out of conscious attention. Hence on a system that behaves
in a different way, in particular in any way that does not
draw the user’s attention to the differences, the user is likely
to automatically correct an error and make the situation
worse. From the perspective of the present paper, it appears
that the lack of consistency follows from failing to think
through error handling; for example, we can imagine simple
program code that implements “read a number” and, say,
simply terminates when it parses an unexpected character
as if it was the end of the number. In Section 3, below, we
consider a classic programming problem, much simpler
than reading a number, but nevertheless an error-prone
example that illustrates the need for clearer thinking.

The Casio fx-85GT implements the delete key so it deletes
both digits and decimal points; in the example above
(Section 2.2), the user would have entered 0.5, not 5, after
correcting multiple decimal points. This variation in user
interface design will induce transfer errors. A user familiar
with one Casio calculator will be induced to have problems
with another. Unnecessary design variation for the same task
seems to be confirmation that delete key behaviour has
been overlooked.

Variation also occurs between device manufacturers.
Below, three devices are compared handling the same
sequence of keystrokes:

1. As explained in the introduction, we use concrete examples from
specific devices, briefly summarised at the end of the paper, so that
they may be easily replicated by the reader. Casio is a leading manufac-
turer and its devices are widely available and much easier to obtain
than infusion pumps. All problems discussed arise on a wide variety of
devices and are not restricted to any one manufacturer.

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 713

2.4 Problems of Ambiguous Display Feedback

Part of the problem with decimal points is that the display
does not unambiguously show the user how many decimal
points have been keyed. Many number user interfaces
display 0. when they are switched on or cleared, and the
display does not change when the user keys or .
Unfortunately, this is ambiguous: if the user keys next,
the display may change to 0.5. or to 5. .

The fx-85GT has a left-justified display, which ensures
that deleting a key always removes the right-most character
from the display, whereas on the more common right-justi-
fied displays deleting a key moves the entire display con-
tents right. Deletion when the display shows 55. cannot
provide unambiguous feedback to show whether the 50
digit or the 05 digit was deleted.

Some calculators, including the HR-150TEC, use as
their representation of the delete key, which makes sense
as pressing moves the display contents to the right as
it deletes the right-most digit (provided the display is not
showing just 0.). However, on the HR-150TEC, the key

will move the display right even when it is an answer
to a calculation, in which case is not deleting what
the user keyed!

2.5 Problems of Negative Numbers

Not all number entry user interfaces support negative val-
ues, but for those that do there is a potential conflict with con-
ventional mathematical notation. On many calculators
starting a new expression with an operator like adds the
next value to the previous result, which implies that starting
a calculation with is ambiguous: it could mean start a
negative number or subtract a number from the previous
result. Most calculators resolve the problem by providing an
unconventional key for negating numbers, like or

Every calculator examined allows to be used any-
where within a number. Thus ,
and are equivalent ways to enter �50. How-

ever, there are major variations with how interacts

with delete (see Table 1), e.g.,

� On the Hewlett Packard EasyCalc 100 calculator, the
delete key ignores the key and deletes any pre-
ceding digit. Hence is �6, not 67.

� On the Apple iPhone, displays
-NaN (“NaN” stands for “not a number,” and being
visible to the user indicates a bug).

� On Apple OSX, the calculator does not allow this: it
will not display -0 ; entering results in 9 ,

so a prefix is ignored; yet
results in -8 , even though immediately after the
delete the display is an unsigned 0 . The internal
negative flag is incorrectly programmed.

� results in NaN on OSX but
Error on the iPhone. Two pieces of code with the
“same” functionality from the same manufacturer
exhibit different bugs.

� When we tried to understand the behaviour of
on the HR-150TEC, it froze until it was switched off
and on again.

� On the HR-150TEC, the sequence
results in 1 (when perhaps -1 was expected),
because the keystroke turns the 4 to -4 , then
the is the next number added to it. This unusual
behaviour ensures that learning one calculator will
be of little help for using another.

It is interesting that two Apple calculators work in diff-
erent ways for something so “simple,” but this is not
unusual—elsewhere in this paper different models from the
same manufacturer have incompatible user interfaces, and
Fig. 2 shows the “same” model from a single manufacturer
may be available in several incompatible variations.

The mixture of incompatible, confusing user interface
design and actual bugs suggests that manufacturers have
not attempted to specify the requirements for negative
numbers, made careful design trade-offs, nor attempted
to implement them carefully or correctly.

2.6 Problems of Input Field Overflow

Grete Fossbakk made a typing slip and accidentally trans-
ferred $100,000 of her money to an unknown person who
spent it [26]. With an accidentally repeated 5, she typed
12 digits into an account field, but unfortunately the first
11 digits of the number was a valid Norwegian account
number, even though the full 12 digit number itself was an
invalid account number.

The repeated 5 may have been caused by a faulty key-
board or software rather than a keying slip, though presum-
ably she was using her own PC and did not use the bank’s
PC, so the keybounce may have been technically her respon-
sibility (if one agrees with the various waivers manufac-
turers impose on users). In other areas, key bounce is
recognised by regulators as a regular and serious problem,
which has resulted in product recalls and seizures [15].

In user studies to explore how Fossbakk made the error
[26], 41 percent of numbers entered were too long. It is sur-
prising that the bank does not check for such a common

TABLE 1
There Is No Common Way of Handling Negative Numbers (Section 2.5)

“Any number” arises because the SmartCalc inserts Ans , a variable denoting the previous answer, making the input syntatically correct but numerically arbitrary.
“NaN”means “not a number,” a bug that should have been detected by the device and reported (e.g., as Error to the user) or should have been avoided altogether.

714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

error. Amusingly, in its defence the bank argued that there
should not be different rules of responsibility depending on
the length of a number!

In 2013, my own Lloyds Bank internet account uses an
HTML text field for account numbers, defined as:

<input type=”text” autocomplete=”off” ...

maxlength=”8”
/ >

The parameter maxlength=”8” ensures the browser
will discard any characters typed in excess of 8. Again, the
logs cannot show an auditor whether the user typed an
invalid account number that should have been rejected.

Number overflow can occur for many reasons. We
might be interested what proportion of the world’s pop-
ulation is Welsh (I live in Wales). The population
of Wales divided by the population of the world can be

found using a calculator: 3;063;500� 7;300;000;000. The
following results are obtained:

Casio HS-8V 0.04 . . .
Apple iPhone portrait 0.004 . . .

Apple iPhone landscape 0.0004 . . .
Hewlett Packard EasyCalc 100 0.0004 . . .

All ignore digits that do not fit into the display—and
none report an error when they discard digits. The display
is eight digits on the Casio HS-8V, but the world is 10 digits,
so the division is out by a factor of 100; the iPhone in por-
trait has a display with nine digits, so the answer is out by a
factor of 10; and the iPhone landscape display is larger than
10 digits, so it gets the answer right. The EasyCalc would
have similar problems with calculations involving more
than 12 digits, but the calculation here does not reveal it.

Fig. 2. Keyboard layout on a selection of number entry systems, showing that the same manufacturer and even the same model use different layouts
(e.g., see the two variants of the CME BodyGuard 545, top right). The variety of keyboard designs will cause confusion in use, training and mainte-
nance. The schematics make the decimal point much clearer than on most devices; the schematics do not show the variety of uses of the “spare”
button locations, which are variously blank, “info,” etc. The 4 and 5 represent up/down keys, in many cases dual uses for numeric keys, which is
known to cause confusion [16]. Note that telephones generally have a top line of 123 in contrast to calculators, which generally have a top line 789;
on mobile phones and wristwatches (which can run calculators as applications) this is likely to cause unnecessary confusion.

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 715

Whatever is going on inside the Apple iPhone, arguably
it could have detected an error since it provides two differ-
ent answers. It could report an error when there is a discrep-
ancy. Probably the iPhone has a single “calculator engine”
and in portrait mode the user interface fails to tell the engine
what the user keyed after the first nine digits. In this case,
the engine cannot do any better, as it is being let down by
the user interface, which in turn is letting the user down—it
is discarding input without any warning.

2.7 Problems of Behaviour Depending on Value

The Baxter Colleague 3 volumetric infusion pump has a
numeric user interface: if the user enters
then the display shows 10.1 ; if the user enters

then the display shows 1001 , with no warning or
error sound that the decimal point has disappeared. In other
words, when the number entered is “large” the user interface
silently ignores decimal points—the number entered will be
a factor of 10, 100, etc., higher than the intended. This is a
design defect found onmanymedical devices [22].

Instead of using numerical values, the Sigma Spectrum
uses a character count limit, so it might accept

but if is keyed, it will not accept fur-
ther digits; thus forcing the number displayed to end in a
decimal point (forbidden under Institute of Safe Medication
Practices rules [17]). Despite numeric rounding being well
known (and appropriate in the domain) it will treat 100.9 as
100 not 101.

2.8 Problems of Changing or Editing Values

Often a user will want to change a number; typically the
device will display the last number accepted in the same
place the user will edit or enter the new number. The Alaris
PC illustrates one problem: if the display shows 9 from pre-
vious use, then pressing will change the dis-
play to 0.1 , but if the 9 is a number currently being
entered, then pressing will change it to 90.1 .
Confusion arises because the Alaris PC does not distinguish
the previous and current numbers.

This is a failure of equal opportunity [30], which says
input and output should be exactly the same; here they
look the same but behave differently, which is a recipe
for confusion.

If the user enters a number that is out of range the device
will not accept it, yet the number is displayed in the same
place as the previous number, which was in range. Thus the
Alaris PC discards the final digit the user keys; if the user
tries to enter 88888 when 9999 is the maximum, the display
will show 8888, dropping the last keystroke. Underflow
presents similar problems: the display might show 0. ,
warn that 0. is less than the minimum (perhaps set at 0.1),
yet forbid the user keying which would make the num-
ber larger than the minimum—the problem is that once
underflow is detected, the number displayed has been
“accepted” and is no longer the number the user is entering
(yet the display is identical)!

The Alaris PC requires fractional numbers to be
entered starting with a decimal point; a leading zero is
therefore an error. Hence if the display is 123 and the
user keys , it is ignored except for a beep. Yet

continuing and pressing changes the display to 0.

as if the discarded zero was in fact processed. (This
design flouts the Institute of Safe Medication Practices
rules; see Section 2.1.)

The user interface would be simpler and more consistent
if the old values were never displayed when a user is enter-
ing (or about to enter) a new value, and if the number the
user is keying is always faithfully displayed, regardless of
overflow—then the standard correction keys will work as
the user expects. As implemented on the Alaris PC, the
device provides some correction, but thus making its behav-
iour unpredictable.

2.9 Problems of Unusual Behaviour on Errors

Many numeric user interfaces (such as the HS-8V) ignore
excess decimal points, so is treated as
1.23 without any error warning. The Graseby 3400 is
unusual: it treats decimal points as clearing the decimal
part of a number, so is treated as 1.3

[38]. In Excel, is treated as zero with-
out warning if it occurs in a SUM expression. Many PC appli-
cations end a number at the first non-numeric character,
thus ignoring the error—JavaScript, which underlies most
web applications, treats 1..2 as 1, because an unexpected
decimal point ends a number without warning. Many
examples are provided in [40], which more generally illus-
trates the large problem of system design that is heedless to
error of all sorts.

2.10 Problems of Confusing Key Clicks

Many devices (e.g., the Alaris PC) provide different sounds
when keys do different things; in particular an attentive
user can tell by the different sounds whether a key press is
being ignored. The Sigma Spectrum provides a “key click”
sound when any key is pressed whether or not the key does
anything; so (for example) keying 0.15 sounds exactly the
same as if all keys were handled correctly, but the device
only shows 0.1 .

2.11 Problems of Terminating Number Entry

Typically there is a key to confirm a number has been
completed; when this is pressed, the device records the
number and goes on to its next activity. Often any non-
numeric key confirms the number, but on some devices that
allow many numbers to be entered, such as the Sigma Spec-
trum, pressing changes the selected number—except
that it does not “confirm” any number. Instead, the number
reverts to the previous value before the user started entering
it. In other words, while a user might think is just a
“passive” cursor movement (i.e., with no side-effects) it
behaves instead like .

2.12 Problems of Time-Outs

Devices cannot tell whether a user has given up interacting
with them. Battery-powered devices have battery life to
conserve. Walk-up-and-use devices (like cash machines) do
not want the next user to continue with the interaction
started by the previous user. The solution is typically for the
device to switch off or revert to standby after no use for so-
many minutes.

716 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

The EasyCalc, despite having a photocell to provide
power, switches off after 5 minutes of inactivity. It does not
beep or otherwise warn the user it is about to switch off, and
on switching on the displayed number is lost but, strangely,
the memory register is not lost—so there is no technical rea-
son not to save the displayed number too. At least the dis-
play goes blank so the user can see the device has reset.

In contrast, the Graseby 3400 [38] has a 4 second time-out
that zeros the number currently being entered. Hence,
entering [delay] will enter 5 instead of 0.5 .2

If there is an argument for n second time-outs, then there
is a pretty good argument for nþ 1 seconds—and so on!
Since there is no perfect time-out interval, a better idea may
be to flash and beep and try hard to recover the user’s atten-
tion; if necessary there then might be a hard time-out, when
the device has reason to give up hope.

2.13 Problems of Feature Interaction

Features seem useful, so combining features seems even
more useful. Yet features may interact with each other
detrimentally.

The HR-150TEC has a double-zero key feature, to
speed up entering numbers with repeated zeros. Unfortu-
nately the key is handled specially by the delete key: pressing

then is treated as . The reasoning is presumably
that the may be pressed when was intended, so
corrects that specific error rather than deleting the previous
keystroke, which is its normal meaning. Do the new types of
error and confusion offset the gains of the button? Unfortu-
nately, having a key might sell more calculators, and
design trade-offs may then be secondary to sales.

2.14 Problems of Transient Error Warnings

Eye tracking experiments [25] show that the user does not
pay perfect attention to the display. It is therefore advisable
that error states are persistent and cannot be unset acciden-
tally, and it may be advisable for errors to be associated
with noises or vibration so that the user is made aware of
them more effectively than just displaying a visual symbol.

The Apple iPhone calculator given the incorrect calcula-
tion 1� 0:þ 42 ¼ will present the answer 42—but it tran-

siently displays Error when the key is pressed. The

user is likely to miss this warning, as they are concentrating
on pressing the correct keys not on tracking the display. If
the calculator had persistent error warnings, the warning
would still be there when the user is ready to read the
answer: the answer should be Error not 42 .

Many calculators display E (meaning “error”) on the
far left and will display any number right-justified in the
main part of the display. It is possible for a user to read
the number and think it is the answer without noticing the
E at the other end of the display. Therefore the main part
of the display should either be blank or, preferably, dis-
play Error or equivalent warning. In some applications
it may help the user further to display Error! Press AC ,
or otherwise clearly prompt the user that to proceed they

must clear the error. (The word “Error” can easily be writ-
ten using seven segment displays, so it could be reprog-
rammed for existing systems.)

2.15 Problems of Inconsistent Ergonomics

The ergonomics, layout, and presentation of number entry
user interfaces is clearly critical—poor lighting, poor tactile
feel, poor font have all be criticised (e.g., [41]). There is clas-
sic research such as [5] which could inform design (or more
research) so the diversity evident in Fig. 2 suggests that cri-
teria other than usability and dependability drive user inter-
face design for number entry—the diversity must increase
transfer errors. Plausible design considerations in use
include branding, compactness (i.e., weight, cost), business
engineering (once a user is familiar with a particular user
interface, any other user interface will seem hard and error-
prone in comparison), confusion marketing, etc.

When a user presses a key, the device should provide
feedback. Many devices have physical keys that feel they
“click” when they are pressed, and many devices generate
an audible click either from the mechanical movement or
generated by software. Of course, successfully pressing a
key is different from successfully achieving the intended
action on the device. For example, it would be confusing if
the display was full, but pressing gave all the feedback
as if it had been successfully entered. Devices should there-
fore provide more than “mechanical” feedback, and should
make appropriate non-keyclick sounds when keys fail to
work normally—if the display does not change when a key
is pressed, there should be a warning.

2.16 Idiosyncratic Variations

Burglar alarms are “walk up and use” user interfaces, so the
user might break off or start entering a number at any point,
and they are therefore often permissive [37] in when a num-
ber starts. Since a typical alarm code is four digits the last four
digits the user keys is taken to be the number entered. Thus
there is no overflow; themost significant digit just disappears
when the next digit is keyed. This style of “scrolling” interface
is also surprisingly common in other contexts where it is
clearly inconsistent with the rest of the user interface design,
andwhere there is nowalk up and use requirement.

Other variations are common too. Although the Apple
OSX System Preferences allows Arabic number entry, it
sets times in an idiosyncratic way. The display shows a
valid time, such as 9: 45 , and when the user selects it
to enter a number, either the hours or minutes is selected.
For example, 9: 45 shows the minutes is selected.
Pressing digits now replace the selected number; thus
pressing will change the display to 9: 09 ; not to
59, and with the 4 silently lost. To enter a time like 12:45
they have to select hours, press then change the
selection, then . Moreover, there is a time depen-
dency: if is entered, the time becomes 9: 2 then a
moment later, 9: 02 ; if before a time-out, pressing
will change the display to 9: 23 , but pressing it after
the time-out, there is a beep and the display is unchanged.
Within each component, digits move leftwards, suggesting
one might start entering a time like 12:45 in the minutes
component, but the colon does not work and just beeps. If
the user enters 12:45 with a delay between the and

2. A 4 second time-out seems very short for this user interface. It is
plausible that internal hardware uses a 4 second time-out (e.g., to check
that the motor has not stalled) and inappropriately, as a side-effect, the
same mechanism resets the user interface if it has “stalled.”

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 717

, the display becomes 12:04, then pressing the will
make it display 12:05 .

Then there are erroneous examples: if the user tries enter-
ing a “time” such as 57:96 the display will be 07:09—the
second digit of the first erroneous component is kept, but
the first digit of the second component is kept. If the user
enters 1,259, it may be displayed as 09:30 , with an
unchanged minutes setting. And so on.

We have not explained all of its features, and we are not
sure we have understood what we have explained. A user
has to read the display to check whether their intended
number has been entered correctly. Similar problems occur
in date setting user interfaces, with the added complication
that day, month and year numbers mutually interact in a
way that minutes and hours do not.

2.17 It Is Not Just Numeric Keypads ...

This paper focuses on numeric keypads, but there are many
other forms of user interface for number entry. For example:

� The GE Dash 4000 uses a knob to adjust number val-
ues; turning the knob clockwise will increase values,
anticlockwise will decrease values. So if a number
displayed is 40, turning the knob clockwise will
show successively 41, 42, 43, 44, 45, then 50, 55, 60.
Turning the number back, anticlockwise, will show
55, 50, 45, 40—skipping values, not reversing the
effects of the preceding clockwise rotation.

� The BBraun Infusomat [4] uses four keys to enter
numbers: two allowing a cursor to be moved left
and right, and two for digits to be increased or
decreased. If the display shows 0.__ a user can
move the cursor to the hundredths column,
increase the digit by 1, yet 0.1 0 , not 0.0 1 , will
be displayed—10 times out from what the user
entered, but without warning.

� Using handwriting with immediate recognition feed-
back improves error rate [45].

3 PROGRAMMING MAXIMUM

The preceding section raised concerns with user interfaces,
yet analogous concerns in programming are taken very seri-
ously. In this section we present a familiar programming
example to contrast the type of formal thinking routinely
applied to program code to gain the sorts of detailed
insights that are evidently lacking in user interface design.
We take it for granted that we should reason formally about
programs to ensure they are correct; we should not balk at
reasoning about user interfaces.

We could have chosen reading a number as an example,
but the code to do so would be distractingly long; instead,
suppose we wish to write some code in Java to simply find
the maximum value of an array a of integers. Here is how it
might be written:

1.1 int max = 0;

1.2 for(int i = 1; i < a.length; i++)

1.3 if(a[i] > max) max = a[i];

Testing is not sufficient. Many tests of this code will show
that it finds the maximum value correctly. It is possible that

“thorough” testing overlooks the critical cases that are incor-
rect. Indeed, there is a problem of circularity: if you write a
program to find the maximum value of an array, how are
you going to check it is doing the right thing, since checking
is subject to the same blindspots that led to any errors in the
program in the first place? One might resort to multi-version
programming (i.e., using many “independent” teams of pro-
grammers), but this has been robustly criticised as a flawed
approach [19].

Formal reasoning is essential. Thinking mathematically
about a program is more reliable than testing. Here, it
would reveal two flaws that testing may overlook. First,
if the array consists of only negative numbers, the code
cannot give a maximum value less than 0; it is therefore
incorrect. Secondly, the value a[0] is ignored. Both
problems can be corrected by replacing line 1.1 with int

max = a[0].
In fact, with line 1.1 as int max = a[0] the invariant max

= maximum(a[0..0]) is established, and each iteration of
the for loop ends with max = maximum(a[0..i]) estab-
lished, and i increases in steps of 1 up to a.length-1, so
on termination of the loop we have max = maximum(a

[0..a.length-1]), which is what we want.
Formal reasoning would also beg to include the require-

ment “and the array a is unchanged,” as the faulty code

2.1 int max = 0;

2.2 for(int i = 0; i < a.length; i++)

2.3 a[i] = 0;

is otherwise a correct way to ensure that max is the maxi-
mum value of the array!

In summary, we have shown, as is well known, that pro-
gramming is deceptively hard, and that formal reasoning
increases the confidence that programs indeed implement
what they are required to do and, concurrently, we also
improve our understanding of what we want them to do.
Conversely, without formal reasoning it is unlikely—literally,
there is no reason—a programwill do what is or should have
been intended, although itmight deceptively look like it does.

3.1 Lessons from Programming and Formal
Methods

We conclude Section 3 with four insights:

� User testing is not thorough (it does not guarantee
coverage) and it does not identify all possible prob-
lems of a design. Although user interface evaluation
is, or should be routine, it focuses on what users can
experience in a short time. This will help identify
confusions and help improve user experience (UX),
but it does not have the reach to identify all bugs
that will eventually affect some users.

� Without rigorous reasoning it is very unlikely any
user interface will do what it is intended to do. Bugs
in user interfaces are hard to see and understand—
and unlike program code, the behaviour of a user
interface cannot be seen or read as a text. It has to be
represented in other ways.

� Formal methods is not just reasoning rigorously
about programs, but also about what we want them
to do. In the maximum example, an “obvious”

718 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

invariant was not tight enough to specify what the
intended requirement of the program really was.

� An intermediate approach, between user testing and
formal methods, is to employ stochastic testing
based on human error models. Here, simulated user
trials explore large, complex state spaces. This has
speed and coverage advantages over human evalua-
tion, and is simpler than formal methods; its twin
disadvantages are that a simulation cannot have the
qualitative insights human users will have, and
unlike formal methods, it cannot help design out
errors as it can only help find them—and to find an
error, one needs a preconceived concept of what the
error might be. We do not discuss stochastic meth-
ods in the present paper, but see [2], [4], [39].

4 PREVIOUS WORK

For many years around the 1980s, calculators were a
standard object for research in human-computer interac-
tion (HCI); notable papers include [9], [23], [47]. The
primary concern was usability and understanding the
relation of the user’s model to the device model. It is sur-
prising that the problems reported in the present paper
were not highlighted by this original 1980s research. In
fact, HCI techniques seem insufficient to identify safety
problems. Moreover, the devices that are studied in HCI
are often devices that the experimenters are very familiar
with, and therefore there is a possibility that both experi-
menters and experimental participants share the same
blindspots.

Thimbleby and Cairns [3] showed that many user interfa-
ces for numeric data entry ignore syntactic issues (for exam-
ple, allowing numbers with more than one decimal point).
They showed that restricting user input to syntactically
valid numbers would reduce unnoticed errors. The numeric
syntax of [3] was later generalised to arbitrary regular
expressions [43]. Thimbleby [35], [36] reviewed problems
with calculators specifically, and with Thimbleby [45], [46]
proposed novel solutions that overcome many of the identi-
fied problems with calculators.

4.1 Formalising User Interfaces

Since the 1980s there have been attempts to formalise user
interface requirements [11], but these have not become
mainstream because the level of mathematical sophistica-
tion seems out of proportion to the potential gains in user
interface design quality. More recently developments in
automated reasoning tools, such as theorem provers,
have meant that original user interface program code can
be semi-automatically checked for user interface proper-
ties like “predictability” [21], [22]. There is an important
conference series on formal methods and user interfaces,
the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems [27] and its predecessor DSVIS [8].
While exciting that user interface properties can be
formally verified, the skill required is still considerable
and the resulting research remains opaque to many
practitioners.

The present paper focuses on formal reasoning for
number entry user interfaces. It identifies and solves

many problems that both the preceding HCI literature
and the formal methods literature has missed. This is an
interesting blindspot: if people cannot see problems, it
does not matter whether formal methods or empirical
methods are used—there is still a blindspot!

Our present interest in number entry user interfaces
arose through very detailed examination of user interfaces
for hospital infusion pumps, “simple” devices that deliver
drugs automatically to patients after nurses have entered
relevant dosages. After our first study [38], we have found
that almost all infusion pumps have number entry prob-
lems, and the problem extends to almost all number entry
interfaces of all sorts [3]. While our previous papers identi-
fied the problem and discussed its impact, we did not pres-
ent a way to reason more reliably about user interfaces so
the problems would not arise in the first place.

4.2 Human Error

Reason’s Human Error [29] is a landmark book. He taxoni-
mises human error: violations are actions that should not
happen (for example, the user sets out to perform a criminal
activity); then other forms of error can be broadly classified
as intentional or unintentional. An intentional error occurs
when the user mistakenly intends to do the wrong thing; in
the context of the present paper, intending to set an infusion
pump to 28.8 mL per hour and successfully doing so—
when the correct rate should have been 1.2 mL per hour—is
an intentional error.

Mistakes occur when the user correctly does the wrong
thing, perhaps due to a misunderstanding or lack of knowl-
edge. For example, a user might mistakenly believe that

deletes the last key they press. They would then be
mistaken on many (but not all) devices—see Section 2.2 for
examples.

In contrast, slips and lapses are unintentional errors that
the user is unaware of. If a user performs the wrong opera-
tion, this is a slip (e.g., pressing the wrong key because their
finger slipped); and if the user omits an action (e.g., by over-
sight) then this is a lapse.

These are human taxonomies; from the engineering
perspective, the issue is whether the errors can be blocked
or managed, and if so, whether the computer or other
agent manages the error. For example, a violation is
typically a security problem that can be mitigated by
requiring passwords and keeping logs (if the latter, so
that if a user chooses to perform a violation they know
they will have to face recorded evidence). Accidental
errors can be mitigated by practice, redundancy, safety
checks, undo functions, and so on. An example of redun-
dancy would be to require two users to enter a critical
number, and to have a reconciliation process if the num-
bers do not agree. Another example would be setting an
infusion pump not just to a rate, but also specifying the
drug, the patient weight, the concentration and the
intended duration, etc; if the infusion pump can work out
that a drug is to be infused at an inappropriate rate for a
patient it can block it.

An intentional error can follow an unintentional error
and vice versa. For example, making a slip or lapse while
using a calculator will result in the calculator showing the
wrong result. This result may then be the number that is

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 719

subsequently used. The use of the incorrect number is then
an intentional error.

Reason additionally defines latent errors, oversights in a
design that “wait” for unanticipated conditions. Program
bugs are obvious latent errors, but many are more subtle
and lie in the requirements.

Many human errors occur predictably. For example, if
we say we will see you at 7:00, that is all we need to say
to you. But if we tell our alarm clock “the same thing”
namely to ring at 7:00 it will take additional steps for it to
register the instruction. The alarm clock cannot tell the
difference between entering 7:00 and entering 7:00 and fin-
ishing. As it were, it might be “thinking” that we might
still adjust the time so we have to explicitly confirm it,
even though it is an unnecessary step in human-human
interaction. Similarly, on most calculators, one cannot cal-
culate 4þ 5 by just pressing , as a final step

is required. There is evidence that “device oriented

steps” are more error prone [1], but this research does not

define device oriented steps (e.g., is pressing a

requirement of the task, or a device oriented requirement
of a calculator?). Avoiding the step makes users more
accurate [45].

In this paper, focusing specifically on number entry,
violations and intentional errors are out of scope (they
are typically handled either before or after a number
has been entered); slips and lapses, on the other hand,
occur frequently during number entry, and we need
engineering techniques to help the user detect and man-
age them.

4.3 Error Correction

While human factors research focuses on the sources of
error, what happens next is often more important. A user
may make a slip for any reason, but if it is noticed and there
is a way to correct it, the final outcome will be correct.
Hence designers should focus on reducing adverse out-
comes (e.g., patient harm) [42]. Viewed from this perspec-
tive, an important distinction is whether error is noticed or
not and whether the user or the system first notices it, and if
so, what can be done about it.

An error may lead to a bad outcome. How this may
be quantified to inform design trade-offs depends on the
domain. For example, an incorrect bank account number
is either invalid or another account number (see Section
2.6) whereas if the number is a drug dose the relative
error or a measure of the patient outcome (e.g., in qual-
ity adjusted life years, QALYs) is more insightful. Else-
where we have compared user interfaces using expected
relative error [3], [4], [25].

5 RULES FOR NUMBER ENTRY

A computer program executes a sequence of statements,
much like a user executes a sequence of commands to con-
trol a user interface, typically by pressing keys or tapping
a screen. The program code A; B; C behaves like the user
“program” . Hoare’s insight [13] was that
a formalised process can be used to prove that if certain
conditions P hold and a program Q is executed and

terminates, then certain conditions R will hold. The rela-
tion may be written fPgQfRg in the modern Hoare triple
notation. Depending on the application, we may wish to
prove R holds, we may wish to derive a correct program
Q, or we may want to weaken P in some way so the pro-
gram can be used in more situations (so it is more robust),
and so on. Notably, the triple notation defines the relation
between program code and logic, and all of formal meth-
ods follows: one can refine a formal specification to a pro-
gram, one can talk about invariants, assertions and so on
with rigor and clarity.

We introduce the use of Hoare triples to help designers,
developers and programmers to reason about user interfa-
ces. Now note that the precondition P is a fact the user
“knows” and the goal the user wishes to achieve is a post-
condition R. More precisely what the user knows should
imply P , and R should imply what the user wishes to
achieve. In general the user will have to learn (mainly by
experimenting with interactive systems) how to translate
their tasks into sequences of Q to incrementally achieve sub-
goals that collectively achieve their tasks. There is a lot of
complex human factors qualifying all those claims [18]—
including the fact that the user may not often look at the dis-
play so will rely on keystroke rules alone [25]—but the con-
verse can be expressed without qualification: if the designer
does not know the triples, the user has no grounds for valid
reasoning, and the user interface cannot be used depend-
ably. It cannot be relied on to accomplish the intentions of
its user [13].

User actions Q are simple but P and R are complex:
Hoare’s notation then becomes hard to read as Q, often
being just a single keystroke, gets lost in the details. There-
fore we use an equivalent notation, inspired by the elegant
visual layout of Z schemas [11], [32], but with a wavey line
to avoid confusion with Z itself:

We will occasionally need local definitions to declare
names and types, and we write these below the schema, e.g.:

These definitions are not visible to the user: they allow us
to write triples concisely.

Next we show a very simple example, defining what
happens when the user presses when the display
shows 0. :

720 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

Few devices behave like this. Instead, to remain faithful
to what real devices typically do, we must tighten the pre-
condition:

or relax the postcondition:

Complex preconditions or postconditions show how the
notation highlights uncertainty that can cause confusion for
users. In the example here, the confusion can easily be pre-
vented by better design.

Most program code uses variables. Thus considering max

= a[i] as an example: while the program code does not
change, its meaning changes depending on the values of the
variables a and i. In contrast, users always execute a con-
crete sequence of actions or commands with no variables. A
user cannot do x as they have to do something specific; so a
variable like x can be used in our notation to represent what
a user could do. In particular, the user pressing x and the

user pressing are different—in the former case, the

notation means that user presses some key, namely the key
that is the value of x, and in the latter case, the notation

means that the user presses the specific key itself.3

In user interfaces, we are looking for the meanings of
user actions such as and programming language con-
cepts like “scope” become concepts like “mode” and
“window.” In the present paper, we focus on the mode of
number entry. More general analysis must be left for further
work—except to note that a reason for the success of object
orientation is that programming scope becomes tightly
related to modes that make sense to the user. For example, a
user interface field in which the user enters numbers will also
be a program object that encapsulates the implementation of
user actions in that field: that is, the meaning of, say, a := b

in the object determines the semantics of in the field.

We will often want to be more specific than “any key” as
a user action Q. Typically we will write x 2 f0123456789g,
for example, requiring x to be any digit key. For conve-
nience we define numerickey ¼ f0123456789�g, so a num-
eric key (as defined) is a decimal digit or a decimal point.
More generally we could use Hartson’s User Action Nota-
tion (UAN) [12], but it would introduce a notational com-
plexity beyond the needs of the present paper. The
generality of UAN is not needed here, nor explained
here, though if the notation used in this paper was imple-
mented in a tool it would make sense to use such an exist-
ing standard.

We distinguish between mathematical variables, which
are written in italics (like x; y; z) and user interface proper-
ties (like Display, Error, On), which are capitalised and writ-
ten in Roman. A mathematical variable anywhere in the
triple fPgQfRg denotes the same value everywhere in the
triple. However, a user interface property mentioned in P
means its state before the action Q, and mentioned in R
means its state after the action. It would be counter-intuitive
to refer to, for example, the display after the user’s action in
a precondition before it has occurred, and our notation
makes this complex idea impractical to express. Hence what
might have been written using just a postcondition,

On0 ¼ :On (meaning On is flipped by Q, say by pressing an

button), has to be written as a precondition On ¼ s

and a postcondition On ¼ :s.
Further conventions are familiar from programming lan-

guage notations:

’x’ means the literal symbol x. The notation generalises
in the usual way: ’abc’means the sequence of sym-
bols a then b then c.4 We use the term string to be the
type of a sequence of symbols, of any (natural num-
ber) length, including ” which is the string of length
0.

On (i.e., written in Roman) are variables representing
the state of persistent objects in the user interface.

x (i.e., written in italic) is a local variable representing
a value used in the specification of a user action. The
variable has no significance beyond of the scope of
the specification.

j x j means the string x has this number of symbols;
hence j”j ¼ 0 and j’900’j ¼ 3. (In the Java program
code above, the notation was x:length.)

2... finally we take some liberties. Generally e 2 S means
the element e is in the set S or is of type S (a type can
be thought of as the set of every possible value of
that type), but we will use 2 on collections that are
not sets, such as strings.

Sequences of symbols ’abc’ can either mean the user
pressed these keys or that these symbols are displayed for
the user to read. It is mnemonic to represent keys the user
pressed as , and symbols the user sees dis-
played as abc . Hence we may write Display ¼ 3 as a way
of writing Display = ’3’ or Display = meaning the display
is initially blank (showing”, i.e., the empty string).3. A user interface might be used to edit a computer program that

has variables, or a web form might have fields whose values can be
changed, or a user might refer to a knob as “variable”—but turning it
cannot be variable, it has to be turned a specific angle. Thus applications
may have variables, but user actions are never variables; they are always
concrete instances.

4. Invisible symbols, like tabs, and symbols such as ’ are conven-
tionally represented using backslash notations (e.g., ’n”) but this paper
is not concerned with these lexical issues.

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 721

The display on a typical device for number entry will be
composed of a numeric display (the main display) and vari-
ous indicators, such as error flags. We will refer to these as
Display, Error, etc, and treat them as variables; for example
a precondition Display = d means it is true that the display
is showing d before the user starts pressing keys.

In this paper we are not concerned with various ergo-
nomic issues, even though they are clearly important; for
example:

� The difference between zero, nothing and space is
complicated. The display notation would be inap-
propriate if the user interface has a space key (or
uses spaces instead of commas to separate digit
groups). One might use the conventional represen-
tation of space, but it is unlikely a user would

understand as “nothing”—without a symbol for

nothing a user cannot distinguish a display that is
off or broken from one that is on but displaying
nothing. Some user interfaces blink zeros when they
are showing “nothing.”

� We assume that if we write Display = d we mean the
display shows d and the user actually sees d. In some
cases, however, the display may be truncated or
have some sort of scrolling feature so that the user
sometimes sees a substring of d—the display 456

may mean 123,456 or 456,789, or almost anything.
We consider this unacceptable, but there are clearly
conditions where showing less than d is unavoid-
able. Some ergonomically-designed cue should be
used to indicate that there is additional information
that is not displayed.

� The decimal point may be different on the keys and
on the display (e.g., and . or , in some
countries).

� Decimal digits after a decimal point may be smaller
[41].

6 RULES FOR COMMON DESIGN DECISIONS

We now create rules that represent typical properties of
number entry user interfaces. If we were developing or
analysing an actual system we would create rules for
each possible action. Here we will discuss representative
rules for a range of real devices to explore what they say
users must know and whether they may be poor design
decisions as a result.

6.1 Doing Nothing—Time-Outs

If the user does nothing, then usually nothing happens. Our
convention will be that if nothing changes we do not need
to say so. Thus the following

is unnecessarily cluttered, and is more satisfactorily repre-
sented by

which looks much more like a definition of doing nothing!
For some user interfaces, if the user does nothing for

five minutes (or so) something happens, which might be
expressed informally as:

In this example, the precondition is true under all cir-
cumstances so it does not need specifying explicitly, and it
has been left blank. The postcondition :On means that after
completion of the action, “nothing for 5 minutes,” it will be
the case that the device is not on (On is false). Switching the
device off (:On) may be a safer choice than the design
choice of the Graseby 3400 (Section 2.12), where the device
remains on but the number displayed is set to zero without
warning the user.

While we do not think time-outs are necessarily a
good idea, not reasoning about them and their applica-
bility to the domain the number entry is intended for is
worse; here, the time-out has an explicit rule designers
can consider carefully.

6.2 Clear Rule

The next simplest rule is that pressing the All Clear key
clears the display; on most calculators, pressing makes
the display show 0. . Hence

{true} { Display = 0. }

or in our notation (and simplifying the true precondition):

In fact, also switches the device on—perhaps it
seems obvious that if the display shows something the
device is on, but we should make it clear:

722 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

The semicolon above is an useful way of writing “and”
with a low operator precedence; had ^ been used, brackets
would have been needed to write ðDisplay ¼ 0. Þ ^On. The
semicolon does not mean the display shows 0. then the cal-

culator is on; it means that after has been pressed, then

the post conditions—the display shows 0. and the calcula-
tor is on are both true.

6.3 Basic Append Rule

If the user presses a numeric key x (a digit or decimal point)
we would expect the key to appear in the display.
Expressed more formally:

This simple rule does not capture what most devices do.
If the device is off, then it will display nothing and after
pressing x it will still display nothing. Hence:

This is still incomplete. If the display is full when it
shows d, it cannot show d and x together. Let us suppose
max is the maximum capacity of the display (for example,
max = 8 characters on the HS-8V), then we can consider two
possible solutions for the rule:

or

In form (a), two rules are required, whereas (b) combines
the two rules into a single rule where the ambiguity is more

obvious. The bracket notation is syntactic sugar:

a : b
c : d
. . .

8
<

:
� ða ^ bÞ _ ðc ^ dÞ _ . . .

The point of the schemas is to help us reason clearly about
a user interface, analogously to how a user would think—
certainly if we cannot express our thoughts precisely, the
user will not be able to! In particular, if a user wishes to think
clearly, the notation captures everything that is in principle
relevant to their reasoning. We notice than in case (a) we are
assuming the user knows whether the display is full before
pressing a key; we suspect that is unlikely. Case (b) is pre-
ferred as it makes clear that when the user presses x, there
may be either of two outcomes. Whether these are desirable
outcomes wewill return to in amoment.

We ignored that on many displays the decimal point
occupies no extra space. On the EasyCalc, the seven seg-
ment display is large enough for 12 digits and 12 decimal
points, one per digit (though it displays only one decimal
point at any given time). If we wanted to be precise about
the size of the display and the ability to include an “extra”
decimal point, instead of using the notation jdj we should
define a function like widthðdÞ. This would also be useful
for displays that use variable-width digit fonts (e.g., where
1 is narrower than 2).

6.4 Numeric Append Rule and Ambiguity

A number entry user interface displays numeric values, and
the append rule described above is na€ıve. For example in
the special case that the initial display is the 0 , we have

This is correct even in the special case x is , though if

x ¼ then the final display would probably be 0. As we

explained above, assumptions in the precondition are awk-
ward. The rule is complex and better expressed as follows:

Here canonicaliseðstring; keypressÞ is a function that takes
a displayed string and a key press and yields a string repre-
senting the canonical numerical value of its argument. Here
are some examples of its behaviour:

� canonicalise (0 ,) = 0

� canonicalise (0 ,) = 1

� canonicalise (0.00 ,) = 0.000

� canonicalise (12 ,) = 123

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 723

The function canonicalise is not only a function that
could be implemented as some program code but it also
represents rules in the user model. The user models the
device as “if the display is x and I press y then the display
will become canonicaliseðx; yÞ.” Of course the user model
won’t be expressed in such words, but the meaning will
be—or should be—equivalent.

What does canonicalise do with repeated decimal points?
Many calculators ignore extra decimal points, so we have
cases like:

� canonicalise (1.2 ,) = 1.2

Unfortunately the display 0. is ambiguous; we do not
know, for instance, whether

� canonicalise (0. ,) =

In other words, canonicalise is not functional. Being non-
functional means that what canonicalise does depends on
more than its parameters (the display and the key pressed)—
in other words, it becomes non-deterministic or unpredict-
able. Therefore the triple (c) above needs correcting.

The reason the ambiguity occurs is that when Display =
0. the user cannot tell whether has already been
pressed or not. If a decimal point has been pressed, the next
digit is a fractional decimal digit, whereas if the decimal
point has not been pressed yet, the next digit will be a units
digit. The following two triples make this clear:

As mentioned above, hiding ambiguity in the precondi-
tions is poor practice, not least because it creates two rules
for one user action in this case;5 a clearer formalisation is as
follows:

Now we have one rule, and the now obvious choice in
the postcondition highlights a problem for a user. Most

calculators always display a decimal point, which is the
cause of this ambiguity. Ambiguity is bad [24], and it is
encouraging to see how easy it is to avoid in this case.
There is an obvious solution: do not display a decimal
point when one has not been pressed. If we do this, Dis-
play = 0. implies the decimal point has been pressed,
and hence the condition “decimal pressed” is true, and
conversely when Display = 0 then the condition
“decimal pressed” is false.

6.5 Persistent Error

The HS-8V and the EasyCalc behave differently when the
display is full. When the display is full on the HS-8V, fur-
ther keystrokes are ignored and there is no error; on the
EasyCalc E is displayed to indicate an error. We can repre-
sent this thus:

The EasyCalc is somewhat more sophisticated than
this: if a decimal point has been entered, then the excess
digits (or further decimal points for that matter) are
treated as “insignificant” and ignored (as would happen
on the HS-8V too) but if a decimal point has not been
entered, an error occurs since discarding a digit would
display a number that was wrong by a factor of about 10.

We could write either Error = true or Error = E , etc.,
meaning more specifically that a region of the display
reserved for error notifications is displaying E. We prefer to
use the logic form as it does not presuppose a particular
way of representing errors to the user (E or Error etc.),
and it allows the variable Error to appear in logical expres-
sions directly without referring to the concrete choice of
warning.

Now we have introduced Error in the modelling, all pre-
vious rules for the EasyCalc need modifying:

and the rule for more specifically becomes:

So on the EasyCalc, when an error is detected, the user is
warned and the warning is persistent until the user clears
the error condition by pressing . Or so it seems . . .

5. In fact, if written in this style, there are lots of rules for
because these are only the two rules for when the display is 0. , and
they say nothing about what happens when it displays other values.

724 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

6.6 Delete Rule

The EasyCalc has a delete key, , which deletes numeric
keys. One would imagine its behaviour is as follows:

Notice that in this triple we had to specify the types of z
and d since they cannot be inferred from the context. The tri-
ple does not specify what happens when Display cannot be
partitioned as zd—which happens when the display is
showing nothing—but in fact if the EasyCalc is switched on
it always can be.

However, the EasyCalc does not work like this: the delete
key ignores the decimal point. Its definition is therefore
more complex, and at a first attempt might be written as fol-
lows:

We illustrate the behaviour of the Easycalc delete() with a
few cases:

� delete(0.) = 0.

� delete(1.) = 0.

� delete(1.2) = 1.

� delete(23.) = 2.

This quirky behaviour has the result that a sequence of
keystrokes xd for any digit d will be equivalent to x
(i.e., the single digit d was deleted), as expected, but that

any sequence equivalent to xd n will be equivalent

to x too. In other words, the delete key deletes more than
the last keystroke if the last keystroke was a decimal point.
If the user tries to correct the slip of keying n ¼ 2 decimal

points instead of the single one intended by pressing

once, the preceding digit will disappear! Even pressing a
single decimal point in error cannot be corrected. Ironically,
the delete key is there to correct errors, not add to them.

Delete on the EasyCalc is quirky in another way too. If
the display is full, then the delete key resets the error—how-
ever, others types of error are not reset by the delete key.

The EasyCalc does not count howmany excess keystrokes
the user keyed. So for example if the user keyed 15 keystrokes
(much larger than max ¼ 12) then a single is sufficient to

clear the error—yet strictly the user should have pressed
delete at least 3 ¼ 15� 12 times to clear the error.

6.7 Rules for Consistency

While the schemas bring out the meanings of individual
user actions, they have the disadvantage that they do not
help describe consistent features across an interface. We
might want error handling to be consistent, but if it is
repeated in every schema then there is a danger that clerical
errors will slip in.

There are two solutions, to use theorem proving tools (to
establish the consistency properties) or to use abstraction.
We have already used abstraction in using features like the
function canonicalise: it appears in many places but in each
case has the same meaning. Abstraction introduces named
features that can be instantiated in multiple schemas.

If a user performs any action, presumably they want an
effect, or possibly the action was in error (say, pressing a let-
ter key during number entry) and they want assurance there
was no effect. Instead of repeating this rule in many sche-
mas, it could be stated once:

This says Warn is true if the user’s action does not change
the display.

Earlier (Section 6.5) we proposed persistent errors: when
an error flag is set, actions are inhibited. Whatever choice is
made, it should be consistent. For example:

This schema also asserts that if a device is off nothing
happens anyway, regardless of whether there is an error.

In Section 6.5 there were two rules for errors, one for
and one for all other keys. Instead, the rules can be

combined:

In contrast to a definition of a function like canonicalise,
this definition has pre and post-conditions. The rule can
now be applied to any action:

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 725

The definition fPagdefine QaðxÞfRag applied in a triple
fPgQa : QfRg means fP ^ PagQfR ^Rag, with the usual
renaming of x as Qwithin Pa and Ra.

6.8 A Rule for Sequence

In many programming languages, the semicolon separates
statements that are executed in sequence. The Hoare triple
for it, fPgQ;SfTg, follows from the premises fPgQfRg and
fRgSfTg, sharing the midterm R. The rule of inference for
semicolon is written out in standard form as:

fPgQfRg ^ fRgSfTg
fPgQ;SfTg

Now consider a program

readAndDo(Q); readAndDo(S)

which uses the standard ; operator to implement a pro-
gram enabling a user doing Q followed by doing S. Hence,
the rule for the meaning of the user doing Q then S must be

This rule states that a properly specified user interface
remains properly specified as the user performs a sequence
of actions.

7 DISCUSSION

Section 3 argued that it is deceptively easy to write program
code to find the maximum value of an array. Bugs in pro-
gram code can be avoided using formal methods, a familiar
point that has been widely presented in the literature (e.g.,
[6]), however the advantages are only achieved if we have
formal requirements. For maximum the requirements are so
obvious we did not define maximum! But in user interface
design, the requirements are often implicit, complex, and
partially unknown. Unsurprisingly, there are numerous
bugs and inconsistencies in user interfaces (Section 2),
for the same reasons as any other bugs in programs
(Section 3)—lack of clear requirements combined with lack
of formal reasoning. Section 5 then showed how formal rea-
soning can be used in user interface design, hence helping
avoid bugs. The formalisation made requirements and
trade-offs between requirements explicit, but it left begging
the question what requirements do we really want?

7.1 What Do We Want?

User interfaces seem simple because one cannot see every-
thing that can happen: this is a problem for users, designers
and programmers. It is not clear we really know what we

want to do, nor that we can reliably implement it. Often
users cannot articulate exactly what they want to do, and
even if they did, it might be different from what they need
since many properties of human behaviour are unavailable
to consciousness.

We were critical of user interface design defects because
we claimed they were obviously the consequences of poor
programming practices, needing but showing little evidence
of formal reasoning. This is a superficial stance. We could
equally have tried to formally specify what numeric user
interfaces actually do, and then we could have presented
these specifications as correctly implemented. Indeed, for-
mal methods has no value system it imposes: it does not
judge what the right system is, merely that if you decide
what the right system is you canmore reliably obtain the sys-
tem youwanted. It is therefore useful to distinguish between
epistemology (knowing what we want to do) and logic
(knowing we are reasoning correctly about what we want to
do) [31]. Indeed Aristotle would go further: knowledge is
only useful if we act on it. Hence, howdowe persuade others
to do good (rhetoric) and how do we act appropriately in the
communities of designers and developers (politics) so better
user interfaces are designed and manufactured (and out-sell
theworse ones)? These critical topics build on the foundation
of formalmethods, reliable reasoning about user interfaces.

Evidently, our discussion glossed the value system. We
took it as self-evident and not needing elaboration that a
user interface for number entry should be predictable. Hav-
ing made that value judgment, we can then refine it into
some logical framework, then design user interfaces that are
predictable in the chosen sense. A formal methods approach
then facilitates this second process: correctly implementing
what one wants to implement.

What, then, is predictability? We have discussed predict-
ability and its variations at length elsewhere and success-
fully linked it to formal reasoning [11], [21], [22], [34]. For
our present purposes we can summarise predictability
informally [33]:

Predictability: A user can successfully use the system
with their eyes shut right until the moment they
want answers.

This simple formulation is consistent with eye tracking
experiments [25]: users infrequently fixate on (look at) the
display because they need to fixate on finding and pressing
the right keys. Effectively, their “eyes are shut” in terms of
reading information on the display.

If the user thinks “ does something,” it should always
do that thing; otherwise they would have to open their eyes
to see the difference. In other words the user interface has
no modes that change the meaning of the user’s actions,
and there must be features like a key that completely
resets the user interface so that the user can start fresh with-
out having to read the display. Realistically, we also know
users will make slips, occasionally pressing the wrong keys.
When they press the wrong key, they will want to correct
what they have done. Thus, the delete and clear keys must
be predictable, and not depend on the last or previous key-
strokes (e.g., whether they were decimal points or not). If
the user makes a slip that they do not notice, then the device
should (if possible) keep track of the error until the user

726 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

metaphorically opens their eyes. This form of predictability
favours the string interpretation of number entry user inter-
faces (Section 2.1).

Predictability does not apply only to isolated devices:
predictability is with reference to what the user knows, and
what the user has learned from use of other related systems.
We need to reduce transfer errors, which occur when a user
performs the right actions on the wrong device. We should
be developing a new, more dependable and predictable
user interface standard. Perhaps there should be a confor-
mity certificate or badge with all new, improved user inter-
faces? The certificate or other identifying markings should
be indelible so that they are present not just during pur-
chase or procurement, but to reassure users any time in the
future life of the product [44]. Ideally, in critical domains,
only certified improved user interfaces should be used.

7.2 Completeness of Requirements

Always, the completeness of what we want must be ques-
tioned. Requirements and specification may seem correct
and consistent, but there are often additional factors that
have not been considered—“unknown unknowns.” They
will be implemented following arbitrary and often unno-
ticed choices. For example, on many devices, when the
delete key is pressed the display content visually moves
right. In the special case that all digits displayed are the
same, “moving right” is visually indistinguishable from
deleting the left-most digit, which is unfortunate because
the right-most digit has been deleted. This confusion is
eliminated by left-justifying the display, or by animating it
moving right (which is not possible on seven segment dis-
plays). Indeed, the Hewlett-Packard 20S (produced 1988-
2003) had a left-justified display and a delete key, so there is
a precedent. The point is that a design choice can be made
with no representation in the program or requirements. Too
often design decisions are justified after the fact for no rea-
son better than avoiding the cost of improving them.

When a program fails to work this cannot be denied: the
program code must be wrong; but when a user interface
fails there is a temptation to say the user is wrong, then the
program behind the user interface does not need correcting,
since the user needs to learn how to use it properly. Neither
users nor designers want to be told they are “wrong” and it
is easy to see that a culture of denial arises. Moreover, peo-
ple do not make mistakes they notice—mistakes happen
because the errors are unnoticed: all of us are therefore very
weakly aware of problems with user interfaces.

Another reason for denial is that finding user interface
bugs is tedious, and few users (or empirical experiments)
are persistent enough to uncover bugs thoroughly—and
when bugs are found they may be hard to notice and are
certainly hard to reproduce frommemory. Often users think
bugs are their own fault and having problems with com-
puters is embarrassing, so bugs are under-reported and
hence requirements persist in being incomplete.

7.3 Misconceptions of Usability

After just programming and not thinking about user inter-
face properties, the next most common problem is confusing
speed, error tolerance and flexibility for usability. For

example, allowing a user to change the sign of a number any-
where might appear to be more usable than a more restric-
tive approach. However, occasionally, the user (and, as we
have seen, the programmer too) will get confused and the
consequence is an error which might result in a catastrophe.
The minor delay treating change sign properly is negligible
compared to the delay of sorting out a catastrophe. In other
words, usability has to be seen in a larger context: speeding
up number entry should not be confusedwith usability.

7.4 The Need for Experiments and Standards

The HR-150TEC has a double zero key that probably
speeds up number entry. It reduces keystrokes needed for
numbers with consecutive zeros, but it slows down the user
because there are more keys to choose from and the user
has to be more careful to press the correct key from the
larger number of keys. It also introduces a new uncertainty:
what does do? Potentially, correcting errors is so
slow that on average any gain is lost; we do not know.

The HR-150TEC implements delete as deleting digits
ignoring decimal points, so = (except when the
display is too small to display all the zeros). I happen to
think this is wrong, but the HR-150TEC is marketed to
accountants, and I am not an accountant and I have insuffi-
cient insight into how they expect numbers to work. One
should do experiments to establish how the intended users
actually work: find out which design lowers errors; sec-
ondly, establish whether the potential confusion of a feature
warrants removing the feature from the design. One should
also conform to standards: for medical devices, placing
next to is known to be a bad design choice [10]; the HR-
150TEC places next to it (see Fig. 2 and Section 2.13),
and may be a worse decision.

8 CONCLUSIONS

User interfaces for number entry present a confusing variety
of inconsistent design decisions, even across models from
the same manufacturer. One imagines that user interface
design for number entry is thought to be so easy that it is
“just” programmed, and what happens happens without
further thought.

User interface design has long emphasised “user centred
design” where improvements are sought through experi-
ments with users [20]. Our example of number entry shows
that for at least 30 years, user experiments with many num-
ber entry systems have failed to identify easily-fixed defects.

� User interface design—HCI, human computer inter-
action—needs to mature and include formal meth-
ods in its armoury of tools.

This paper introduced a notation to help do this. More-
over, the solutions suggested here can be implemented with
little disruption, little more than upgrading firmware.

There is nothing special about number entry, other than
frequently occurring in safety critical applications. Number
entry seems simple, but few user interfaces manage to
implement it well, even though the syntax for Arabic
numerals is theoretically sorted out. Many other types of
user interface, from TV remote controls to spreadsheets,
from wifi to document processing, all have defective user
interfaces, but their bugs are harder to articulate and

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 727

perhaps much harder to reach consensus over: it is easy to
say that should behave like 27:5, but it is
much more tedious to write down rules for a user’s wifi
configuration. The user interface should not be ignored by
formal methods.

� Formal methods needs to develop notations and
tools to help specify and manage user interaction.

If we do this, and in particular design out errors users are
unlikely to notice, then we will get closer to Hoare’s vision,
“it will be possible to place great reliance on the results of
the program” [13].

APPENDIX

Brief Description of User Interface Models

In addition to common PC user interfaces, a variety of devi-
ces were referenced in the body of the paper. All devices
discussed in this paper, summarised in the table below,
have number entry user interfaces with numeric keys very
similar to that shown in Fig. 1, except the BBraun Infusomat
(which has four arrow keys) and the GE Dash 4,000 (which
has a knob).

Infusion pumps and syringe drivers are medical devices
used for automatically delivering drugs to patients. They
may contain calculators to calculate doses and delivery rates.
A syringe driver holds a syringe whereas an infusion pump
is typically used to deliver drugs from a bag. A syringe
driver typically knows the length, diameter and make of the
syringe and possibly the drug itself, whereas with an infu-
sion pump the drug bag is separate, so typically an infusion
pump only knows the rate of flow, not the volume or drug.

Device Type

Abbott Gemstar Infusion pump
Abbott AimPlus Infusion pump
Alaris PC Infusion pump
Apple iPhone Smart phone (touch screen)
Baxter Colleague 3 Infusion pump
BBraun Infusomat Infusion pump (arrow keys)
BBraun Vista Basic Infusion pump
Canon F-502G Calculator
Casio DJ-120D Calculator
Casio fx-85GT Calculator
Casio HR-150TEC Calculator (paper roll record)
Casio HS-8V Calculator
Casio MU-120T Calculator
Casio OfficeCalc 100 Calculator
CME BodyGuard 545 Infusion pump
DRE Avanti Plus Infusion pump
DRE SP1500 Plus Syringe driver
GE Dash 4000 Patient monitoring system (knob)
Graseby 500 Infusion pump
Graseby 3400 Syringe driver
Graseby Omnifuse Syringe driver
HP 20S Calculator
HP EasyCalc 100 Calculator
HP SmartCalc 300s Calculator
Samsung Android Tablet (touch screen)
Sigma 6000 Plus Infusion pump
Sigma 8000 Plus Infusion pump
Sigma Spectrum Infusion pump
SK Medical SK-500III Syringe driver
SK Medical SK-600III Infusion pump
Upreal UPR-900 Infusion pump
Upreal CTN-TCI-V Syringe driver

ACKNOWLEDGMENTS

This research was funded by the United Kingdom Engineer-
ing and Physical Sciences Research Council (EPSRC)
Grant numbers [EP/G059063, EP/K504002, EP/L019272/
1]. Paul Cairns, Abigail Cauchi, Michael Harrison, Paolo
Masci, Gordon Pace and Richard Young all made many
very valuable comments for which the author is grateful.
The Medical Device PnP group at Massachusetts General
provided laboratory facilities for which we are grateful.

REFERENCES

[1] M. G. A. Ament, A. L. Cox, A. E. Blandford, and D. P. Brumby,
“Making a rask difficult: Evidence that device-oriented steps are
effortful and error-prone,” J. Exp. Psychol.: Appl., vol. 19, no. 3,
pp. 195–204, 2013.

[2] P. Cairns, M. Jones, and H. Thimbleby, “Usability analysis with
Markov models,” ACM Trans. Comput.-Human Interaction, vol. 8,
no. 2, pp. 99–132, 2001.

[3] P. Cairns and H. Thimbleby, “Reducing number entry errors:
Solving a widespread, serious problem,” J. Roy. Soc. Interface,
vol. 7, no. 51, pp. 1429–1439, 2010.

[4] A. Cauchi, A. Gimblett, P. Curzon, P. Masci, and H. Thimbleby,
“Safer ‘5-key’ number entry user interfaces using differential for-
mal analysis,” in Proc. BCS Conf. Human-Comput. Interaction, 2012,
vol. 26, pp. 29–38.

[5] R. L. Deininger, “Human factors engineering studies of the design
and use of pushbutton telephone sets,” Bell Syst. Tech. J., vol. 39,
no. 4, pp. 235–255, 1960.

[6] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1976.

[7] K. Fu, “Trustworthy medical device software,” in Public Health
Effectiveness of the FDA 510(k) Clearance Process, Inst. Medi., Nat.
Academies Press, 2011.

[8] S. W. Gilroy and M. D. Harrison, Interactive Systems, Design Specifi-
cation, and Verification: 12th International Workshop, Lecture Notes
in Computer Science, Springer-Verlag New York, 2005.

[9] F. G. Halasz and T. P. Moran, “Mental models and problem solv-
ing in using a calculator,” in Proc. ACM SIGCHI Conf. Human Fac-
tors Comput. Syst., 1983, pp. 212–216.

[10] S. Halls, Design for Patient Safety: A Guide to the Design of
Electronic Infusion Devices. National Patient Safety Agency,
2010.

[11] M. D. Harrison and H. Thimbleby, Formal Methods in Human
Computer Interaction. Cambridge, U.K.: Cambridge Univ. Press,
1990.

[12] H. R. Hartson and P. D. Gray, “Temporal aspects of tasks in the
user action notation,” Human-Computer Interaction, vol. 7, no. 1,
pp. 1–45, 1992.

[13] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580 & 583, 1969.

[14] International Standards Organization, Ergonomics of Human-Sys-
tem Interaction—Part 210: Human-Centred Design for Interactive Sys-
tems, ISO 9241–210, 1st ed., 2010.

[15] Institute for Safe Medication Practices. (2006, Sep.). ALERT:
Potential for ‘Key Bounce’ with infusion pumps. ISMP Canada
Safety Bull. [Online]. 6(6). Available: www.ismp-canada.org

[16] Institute for Safe Medication Practices. (2007). Fluorouracil Incident
Root Cause Analysis [Online]. Available: www.ismp-canada.org

[17] Institute for Safe Medication Practices, List of Error-prone Abbrevia-
tions, Symbols and Dose Designations [Online]. Available: www.
ismp.org/tools/abbreviations

[18] P. N. Johnson-Laird, Human and Machine Thinking. Hillsdale, NJ,
USA: Lawrence Erlbaum Assoc.. 1993.

[19] J. C. Knight and N. G. Leveson, “A reply to the criticisms of the
Knight & Leveson experiment,” SIGSOFT Softw. Eng. Notes,
vol. 15, pp. 24–35, 1990.

[20] T. K. Landauer, The Trouble with Computers. Cambridge, MA, USA:
MIT Press, 1995.

[21] P. Masci, R. Ruk�s _enas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li,
P. Curzon, and H. Thimbleby, “The benefits of formalising inter-
active number entry case studies with drug infusion pumps,” in
Innovations in Systems and Software Engineering, London, U.K.:
Springer-Verlag, 2013, pp. 1–21.

728 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, JULY 2015

[22] P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby,
“Formal verification of medical device user interfaces using PVS,”
Proc. 17th Int. Conf. Fundamental Approaches Soft. Eng. FASE’14,
doi: 10.1007/9783642548048_14, 2014.

[23] R. E. Mayer and P. Bayman, “Psychology of calculator languages:
A framework for describing differences in users’ knowledge,”
Commun. ACM, vol. 24, no. 8, pp. 511–520, 1981.

[24] D. A. Norman, “Design rules based on analyses of human error,”
Commun. ACM, vol. 26, no. 4, pp. 254–258, 1983.

[25] P. Oladimeji, A. Cox, and H. Thimbleby, “Number entry
interfaces and their effects on errors and number perception,”
in Proc. IFIP Conf. Human-Comput. Interaction, 2011, pp. 178–
185.

[26] K. A. Olsen, “The $100,000 keying error,” IEEE Comput., vol. 41,
no. 4, pp. 1005–108, Apr. 2008.

[27] F. Patern�o, C. Santoro, and J. Ziegler, eds., Proc. ACM SIGCHI
Symp. Eng. Interactive Comput. Syst., ACM, New York, NY, USA,
2014.

[28] K. R. Popper, Conjectures and Refutations: The Growth of Scien-
tific Knowledge, 2nd ed. Evanston, IL, USA: Routledge, 2002.

[29] J. Reason, Human Error. Cambridge, U.K. Cambridge Univ. Press,
1990.

[30] C. Runciman and H. Thimbleby, “Equal opportunity interac-
tive systems,” Int. J. Man-Mach. Stud., vol. 25, no. 4, pp. 439–
451, 1986.

[31] J. Rushby, “Logic and epistemology in safety cases,” in Proc. 32nd
Int. Conf. Comput. Safety, Rel. Security, 2013, pp. 1–7.

[32] J. M. Spivey, Z. Notation: A Reference Manual, Prentice Hall Interna-
tional series in Computer Science. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1988.

[33] H. Thimbleby, “Guidelines for ‘manipulative’ text editing,” Behav.
Inf. Technol., vol. 2, no. 2, pp. 127–161, 1983.

[34] H. Thimbleby, User Interface Design. Reading, MA, USA: Addison-
Wesley, 1990.

[35] H. Thimbleby, “A new calculator and why it is necessary,” Com-
put. J., vol. 38, no. 6, pp. 418–433, 1995.

[36] H. Thimbleby, “Calculators are needlessly bad,” Int. J. Human-
Comput. Stud., vol. 52, no. 6, pp. 1031–1069, 2000.

[37] H. Thimbleby, “Permissive user interfaces,” Int. J. Human-Comput.
Stud., vol. 54, no. 3, pp. 333–350, 2001.

[38] H. Thimbleby, “Interaction walkthrough: Evaluation of safety crit-
ical interactive systems,” in Proc. 13th Int. Conf. Des., Specification,
Verification Interactive Syst., 2007, pp. 52–66.

[39] H. Thimbleby, Press On. Cambridge, MA, USA: MIT Press, 2007.
[40] H. Thimbleby, “Heedless programming: Ignoring detectable error

is a widespread hazard,” Softw.—Prac. Exp., vol. 42, no. 11,
pp. 1393–1407, 2012.

[41] H. Thimbleby, “Reasons to question seven segment displays,”
in Proc. ACM Conf. Comput.-Human Interaction, 2013, pp. 1431–
1440.

[42] H. Thimbleby, “Improving safety in medical devices and sys-
tems,” in Proc. IEEE Int. Conf. Healthcare Informat., pp. 1–13.

[43] H. Thimbleby and A. Gimblett, “Dependable keyed data entry
for interactive systems,” Electronic Commun. EASST, vol. 45,
pp. 1/16–16/16, 2011.

[44] H. Thimbleby, A. Lewis, and J. G. Willians, “Making healthcare
safer by understanding, designing and buying better IT,” Clinical
Medicine, 2015 (in press).

[45] W. Thimbleby, “A novel pen-based calculator and its eval-
uation,” in Proc. 3rd Nordic Conf. Human-Comput. Interaction,
2004, pp. 445–448.

[46] W. Thimbleby, and H. Thimbleby, “Mathematical mathematical
user interfaces,” in Proc. Eng. Interactive Comput. Syst., 2008,
pp. 519–535.

[47] R. M. Young, “The machine inside the machine: Users’ models of
pocket calculators,” Int. J. Man-Mach. Stud., vol. 15, no. 1, pp. 51–
85, 1981.

Harold Thimbleby PhD, CEng, FIET, FLSW,
FRCP (Edinburgh), Hon. FRSA, Hon. FRCP is at
Swansea University, Wales. He gained his PhD
degree in 1981. His research focuses on human
error and computer system design, particularly
for healthcare. In addition to over 388 peer
reviewed publications, he has written several
books, including Press On (MIT Press, 2007),
which received the American Association of Pub-
lishers best book in Computer Science Award.
He received the British Computer Society Wilkes

Medal. He is emeritus Gresham professor of Geometry (a chair founded
in 1597), and has been a Royal Society-Leverhulme Trust senior
research fellow and a Royal Society-Wolfson Research Merit Award
holder. He has been a member of the United Kingdom Engineering and
Physical Sciences (EPSRC) research council Peer Review College
since 1994. See his website, www.harold.thimbleby.net, for more
details.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

THIMBLEBY: SAFER USER INTERFACES: A CASE STUDY IN IMPROVING NUMBER ENTRY 729

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

