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Abstract—Several variants of evolutionary algorithms (EAs) have been applied to solve the project scheduling problem (PSP), yet
their performance highly depends on design choices for the EA. It is still unclear how and why different EAs perform differently. We
present the first runtime analysis for the PSP, gaining insights into the performance of EAs on the PSP in general, and on specific
instance classes that are easy or hard. Our theoretical analysis has practical implications—based on it, we derive an improved EA
design. This includes normalizing employees’ dedication for different tasks to ensure they are not working overtime; a fitness function
that requires fewer pre-defined parameters and provides a clear gradient towards feasible solutions; and an improved representation
and mutation operator. Both our theoretical and empirical results show that our design is very effective. Combining the use of
normalization to a population gave the best results in our experiments, and normalization was a key component for the practical
effectiveness of the new design. Not only does our paper offer a new and effective algorithm for the PSP, it also provides a rigorous
theoretical analysis to explain the efficiency of the algorithm, especially for increasingly large projects.
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1 INTRODUCTION

OFTWARE project scheduling is traditionally one of the

major problems faced by software project managers [2].
It is a particularly demanding task [3] and, being a project
planning task, is vital to many software engineering activi-
ties [4]. Its process involves several duties [3]: identify proj-
ect activities; identify activity dependencies; estimate
resources for activities; allocate people to activities; and cre-
ate project charts. As explained by Sommerville [3], project
scheduling “involves separating the total work involved in
a project into separate activities and judging the time
required to complete these activities. Usually, some of these
activities are carried out in parallel. Project schedulers must
coordinate these parallel activities and organize the work so
that the workforce is used optimally.”

In this work, we concentrate on the problem of opti-
mally allocating people (employees) to activities (tasks)
using automated approaches. Similar to previous work [5],
[6], [7], we will refer to this problem as the project sched-
uling problem (PSP). Typical objectives to be optimized
when making allocations are to minimize the cost and
completion time of the software project. When allocating
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employees to tasks, employees can divide their attention
among several tasks at the same time in the PSP. This is
often modelled by dedication values [6] (Chang et al. [5]
call it commitment quotas) representing the percentage of
time an employee spends on a certain task. Employees
have a maximum dedication, which must be respected to
avoid overwork. The PSP also has other constraints. For
instance, the team assigned to a certain task must have all
the skills required for this task, and task precedence con-
straints among tasks must be respected. All these factors
contribute to the difficulty of the PSP, making it more
complex than classical scheduling problems.

The PSP is particularly challenging when the project is
large. The space of possible allocations of employees to
tasks is enormous, and providing an optimal allocation of
employees to tasks becomes a very difficult task [4]. So, it is
desirable to have automated methods to provide near opti-
mal schedules that meet all constraints and can aid a soft-
ware project manager in his/her decision of what schedule
to adopt in order to minimize cost and completion time of
the project. In addition, budget and schedule compression
has become the norm in today’s software industry [8], [9],
as a result of its intensified competitiveness due to move-
ments such as globalization, outsourcing and open-source
software [10], [11], [12], and [13]. As software companies
have to strive to get their jobs done faster for less money in
order to succeed [8], automated scheduling tools that can
provide insight into how to reduce cost and completion
time become increasingly important [14]. The advantages of
automated methods are:

e they help the software manager in producing sched-
ules that meet all constraints;
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e they provide a very useful insight into how to opti-
mize objectives such as cost and completion time, as
they may find solutions that no human has thought
of; and

e they speed up the task of allocating employees to
tasks, as they can generate schedules taking far less
time than a human would if he/she had to plan the
whole schedule from the beginning.

With Search-Based Software Engineering as a growing
field in Software Engineering [15], evolutionary algorithms
(EAs) [16] have been used to solve the PSP. Evolutionary
algorithms mimic the natural evolution of species,
“evolving” a population of candidate solutions, i.e. project
schedules. Different EAs were adopted for different var-
iants of the PSP, e.g., [5], [6], [17], [18], [19]. This also
includes multiobjective variants of this problem [4], [7],
[20], [21] as well as approaches using cooperative coevolu-
tion [22]. A comprehensive survey of related work was pre-
sented in the work by Di Penta et al. [4].

In order for search-based software engineering to be
applied in the real-world successfully, we need to under-
stand fundamentally what search algorithms can and can-
not do. However, despite the existing research, it is still
not well understood how design choices in EAs affect
performance for the PSP, including what problem fea-
tures make the PSP a challenging problem for EAs. This
lack of understanding makes it hard to make appropriate
design choices for EAs to solve the PSP, and it impedes
the design of better EAs for this problem. Fundamental
understanding of algorithms used in software engineer-
ing is essential to advance the science. Some progress was
made in the well-known work by Alba and Chicano [6].
They presented an effective EA and a systematic empiri-
cal performance analysis of the impact of problem fea-
tures on the performance of their EA.

Our work presents a novel perspective for designing
EAs for the PSP, based on rigorous mathematical argu-
ments. We use runtime analysis to gain insight into how
EAs perform on illustrative instance classes. This sheds
light on what instances are easy, and which ones are hard
to solve for EAs. It also helps to make more informed
design choices for the PSP. Based on that, we propose a
new design that is shown to be very effective both theoret-
ically and empirically. Our design is thoroughly analyzed
and shown to outperform others considering several crite-
ria that may influence a software manager’s choice of PSP
algorithm. Such an analysis is important to software engi-
neering in practice because applying an algorithm/tool
without understanding its benefits/limitations can lead to
wrong conclusions.

This paper is organized as follows. Section 2 briefly
explains the full process of software project scheduling,
and how the duty of allocating employees to tasks (PSP) is
integrated into it. Section 3 presents a formal definition of
the PSP investigated in this paper. Section 4 explains pre-
vious works on using search-based techniques for the PSP.
Section 5 presents our search-based approach for solving
the PSP. Section 6 presents a runtime analysis to gain
insights into the performance of EAs on the PSP in gen-
eral, and on specific problem instances that are easy
or hard. This rigorous theoretical analysis explains the
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efficiency of our approach. Section 7 provides an experi-
mental analysis to provide the software project manager
with insight into what algorithm to chose for the PSP. It
gives evidence demonstrating what algorithms are likely
to behave better according to different evaluating criteria
that may affect the project manager’s decision. Section 8
provides an additional discussion on the comparison of
different approaches. Section 9 presents the conclusions
and future work.

2 THE FuLL SOFTWARE PROJECT SCHEDULING
PROCESS

As explained in Section 1, the full software project schedul-
ing process involves several duties [3]: identify project
tasks; identify task dependencies; estimate resources
for tasks; allocate employees to tasks; and create project
charts. This paper investigates the duty of allocating
employees to tasks, which is called PSP for briefness. This
section explains how the PSP is integrated into the full pro-
cess of software project scheduling.

The PSP uses several pieces of information, which are
determined in the prior duties of identifying tasks, iden-
tifying task dependencies, and estimating resources for
tasks (estimating the effort required for the task, e. g., in
person-months). The identification of tasks and their
dependencies is performed by the software manager,
possibly with the help of the software architect. After
that, the software manager provides an estimate of the
effort required to complete each of these tasks. Models
such as COCOMO 81 [23] can be used as support tools
in predicting the required effort based on features such
as the estimated software size, development type and
several cost drivers, such as required reliability, size of
database, etc. Several other methods to estimate software
effort exist (e.g., [24], [25], [26], [27], [28]). Additionally,
the PSP also uses information about the employees, e.g.,
which employees are available for the project, and what
their salaries and skills are.

After these prior duties are completed, one can proceed
to the duty of allocating employees to tasks (PSP). This
paper is concerned with the problem of allocating employ-
ees to tasks in such a way to minimize the cost and comple-
tion time of the software project. In order to use an
algorithm to search for such good allocations, a method to
estimate the cost and completion time of the project is neces-
sary. Several cost and completion time estimation methods
exist [3], [23], [26], [29]. A feature that is common to most of
them is the use of the estimated required effort as one of the
main ingredients to estimate cost and completion time. In
order to guide the search towards good allocations, the
method used by the PSP must consider not only the
required efforts, but also the allocations of employees to
tasks. Considering the allocations is very important for soft-
ware projects, because its resources are mainly human
resources [30]. In this paper, schedule-driven estimation
[29] is used for that purpose.

After the allocation of employees to tasks is decided,
project charts can be produced. For instance, Gantt charts
can be created using information about the tasks and their
dependencies, required efforts and allocations.
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3 PROBLEM FORMULATION

This section provides a formal definition of the PSP as an
optimization problem, based on existing work [6]. It consists
of the following inputs:

e a set of employees ey, ..., e, with salaries si,...,s,,
and sets of skills skilly, . . ., skill,, respectively,

e asetof tasks ¢y,...,t, with required efforts effi, ...,
eff,,, and sets of required skills reqy, . . ., req,,, respec-
tively, and

e a task precedence graph (TPG)—a directed graph
with tasks as nodes and task precedence as edges.

The set of tasks and TPG can be referred to as the proj-
ect to be scheduled. The goal is to assign employees to
tasks in order to minimize the completion time as well as
the total cost for the project (i. e. salaries paid). Employees
can work on several tasks simultaneously, as indicated
by their dedication to certain tasks. The dedication is the
fraction of their time devoted to a particular task. The
completion time is the time the project is completed. It is
computed with a simple iterative algorithm (described in
detail as Algorithm 1 in Section 5.2) that takes into account
the task precedence graph, the effort for each task, and the
dedication for all employees.

The amount of dedication of an employee ¢; to a task ¢; is
determined by a value x;; € {0/k,1/k,... k/k}, where
k € IN reflects the granularity of the solution. For k£ =1 we
only have dedications 0 and 1. For, say, k= 10 we have
k41 =11 dedications of 0, 10, ...,100 percent. Employees
can only work on a task ¢; if all employees working together
have all the skills to do the task. More formally, we require

n
req; C | J{skill; | z;; > 0}. (1)

i=1

A maximum dedication for each employee was consid-
ered previously [6]. It reflects how much of a full-time job
an employee is able to work. This can reflect both part-
time jobs as well as the willingness to work overtime.
Alternatively, one could introduce the productivity of an
employee as a general indicator of her/his performance.
The productivity of a part-time employee could then be
decreased accordingly. It would also be feasible to associ-
ate different productivities with each skill so as to reflect
how good an employee is at using a particular skill. This
was done, for instance, in [18]. However, for the sake of
simplicity we leave these aspects for future work and con-
sider that all employees have the same maximum dedica-
tion of 1.

4 PREVIOUS WORK ON SEARCH-BASED
TECHNIQUES TO THE PSP

4.1 EAs for the PSP

Search-based techniques such as EAs [16] have been
showing success in solving resource-constrained schedul-
ing problems [31]. However, such resource-constrained
scheduling problems do not present some features that
are important in software projects, e.g., the fact that
employees can divide their attention among different
tasks at the same time.

The software engineering literature on PSP is more recent
than the literature on resource-constraint scheduling prob-
lems. For instance, Chang et al. [5] proposed an EA for a
problem formulation similar to that in Section 3. One of the
main differences is that they considered overwork as an
extra objective to be minimized.

Alba and Chicano [6] used the problem formulation
explained in Section 2 and proposed an EA which will be
referred to as the Genetic Algorithm (GA) in this paper.
Under this formulation, employees cannot exceed their
maximum total dedication to tasks given by the
company’s policy, but any amount of overwork within
the company’s rules is allowed. Later on, Luna et al. [7]
investigated a similar problem formulation in a multi-
objective scenario where cost and completion time were
not combined into a single fitness function. Their work
also introduced a repair operator to improve finding feasi-
ble solutions. These algorithms are explained in more
detail in Sections 4.2 and 4.3.

Di Penta et al. [4] formulated the PSP as the problem of
assigning employees to teams and deciding on the order
that work packages are selected to be processed in a
queue system. The queue system is then used to assign
work packages to teams. Different search-based techniques
such as single and multi-objective EAs were investigated.
The objectives are to minimize completion time and/
or fragmentation, rather than completion time and cost.
Fragmentation is the total amount of idle person-months
in the schedule, due to the precedence constraints of the
work packages to be processed.

Chang et al. [19] introduced a time-line to break down a
task into smaller components of time-sliced activities. In
this way, tasks can be interrupted after they start, and
employees do not necessarily need to work on a certain task
from its beginning until its end. Several other features were
also introduced, such as distinction between an employee
and a contractor, different rates of payment depending on
whether there is overwork, different proficiencies of the
skills, possibility of training during the project, etc. The
inclusion of all these features creates a problem formulation
closer to reality, but it also introduces a large number of
subjective input values required by the algorithm. It is
unknown to what extent the solutions provided by the EA
employed in their study are sensitive to the uncertainty of
these inputs.

Other examples of EAs for the PSP include the work of
Kapur et al. [18], multi-objective EAs [20], [21] and coop-
erative coevolution algorithms [22]. A comprehensive sur-
vey of related work was presented in the work by Di
Penta et al. [4].

Despite all the existing research, it is still not well
understood how design choices in EAs affect perfor-
mance, including what problem features make the PSP
hard for EAs. This lack of understanding impedes the
design of better EAs. In our work, we first tackle this
issue theoretically considering the problem formulation
proposed by Alba and Chicano [6] due to its popularity.
A new design is then proposed to overcome problems
specific to the existing algorithms designed for this prob-
lem formulation. Other problem formulations can be con-
sidered as future work.
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4.2 GA for the PSP

Alba and Chicano [6] proposed a GA where candidate solu-
tions for the PSP are represented as a matrix of binary val-
ues which encode the dedications z; ; for each employee e;
and task t;. The recombination operator is a 2D single point
crossover, which randomly selects a row and a column and
then swaps the elements in the upper left and in the lower
right quadrant of the two parents. They used bit-flip muta-
tion, binary tournament selection of two parents for recom-
bination, and survival selection based on elitist replacement
of the worst individual.

A candidate solution is considered infeasible if there is a
task with no employee associated, or the skills constraint
(eq. 1) is not satisfied, or there are employees working over-
time. Overtime can happen when tasks are executed in par-
allel, as the total dedication of employees in the candidate
solution can exceed 1. Based on that, the fitness function is
defined as follows:

@ ={ 1/

1/(q+p)

where ¢ = Weost - COSt + Wiime - time, p = Wpenal + Wynde - undt +
Wreqsk * T eqsk + Woyer - OVer, and Weost, Wiimes Wpenals Wundts> Wreqsk
and wyye, are pre-defined parameters, cost and time are the
cost and completion time of the solution, undt is the number
of tasks with no employee associated, reqsk is the number of
skills still required to perform all project tasks, and over is the
total amount of overwork time spent by all employees during
the project.

Their fitness function penalizes infeasible solutions, but
whether or not it gives hints as to how to reach feasible
solutions depends on the chosen values for several pre-
defined parameters (wpenal, Wundt, Wregsk and Wover). SO, a
wrong parameter choice could make the algorithm unable
to guide the search towards feasibility. Moreover, their
experimental analysis reveals that the overwork constraint
can cause their GA to have very low hit rate in finding
feasible solutions, i.e., the algorithm is unable to find feasi-
ble solutions in several occasions. This holds even for very
simple instances where the skill constraints have been
removed (every employee has all skills) and all employees
have the same salary.

if the solution is feasible,
otherwise,

4.3 A Repair Mechanism

After the preliminary version of this paper [1] was prepared,
we learned that Luna et al. [7] independently proposed
a repair mechanism that facilitates the search for feasible
schedules without overwork. Their repair mechanism con-
siders the maximum total dedication of any employee at
any point of time during the generated schedule:

M = max {e!"™(7)} +¢,

where e (7) is the total dedication of employee i at time 7,
and € = 0.00001 is a small constant used to prevent floating
point inaccuracies. If M > 1+¢, 1. e., if there is overwork,
dedications of all employees on all tasks are scaled down by
dividing them by M. This implies that overwork is eliminated,
but this is done at the expense of increasing the execution time
of all tasks by a factor of M.
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In many settings this approach might be suboptimal as
dedications are unnecessarily reduced during the periods of
the schedule where there is no overwork, as long as there is
overwork in at least some period of the project.

5 OuUR APPROACH

In order to overcome problems related to the hit rate and to
improve solution quality, we propose an improved design,
which consists of two main points. The first one is to nor-
malize employee’s dedications (Section 5.1) in order to
address the problem of overwork. It provides an alternative
solution to the repair mechanism from [7], trying to reduce
dedication values only where necessary, instead of reducing
all dedication values across the board. The second one is to
give a clear gradient for searching towards feasibility by
introducing a new type of penalty in the evaluation of cost
and completion time (Section 5.2). This improved design
can be used with different algorithms. Our experimental
analysis (Section 7) uses it with the (1+1) EA, RLS and
Pop-EA as explained in Section 5.3.

5.1 Normalizing Dedications

We alleviate the problem of overwork and hence remove
a crucial obstacle in the search process of EAs by using
the following approach (normalization): if at some point of
time the total dedication of an employee e; across all
active tasks is d; > 1 then her/his dedication for all tasks
at this point of time is divided by d;. This reflects a
very natural way of an employee dividing her/his atten-
tion to several tasks. Note that we do not normalize
“underwork,” i. e., total dedications less than 1. This
would otherwise remove the possibility of balancing cost
versus completion time.

Normalization allows for much more fine-grained
schedules as employees can automatically re-scale their
dedications as soon as tasks are finished or new tasks are
started. For instance, assume there are two tasks t1, 5 suit-
able for employee e; under the problem formulation
explained in Section 3. Assume also that the employee
works on both tasks at overlapping time intervals and nei-
ther normalization nor repair are used. If z;; +x12 > 1,
the employee works overtime whenever she/he works on
both ¢, and ¢, at the same time. If z;; + 212 <1, on the
other hand, resources are wasted when the employee
works on a single task. So, regardless of the values for z; ;
and z,, there will always be overwork or resources
wasted—unless both tasks start and finish at exactly the
same time. Note that, depending on x;; and x5, there
could be even both resources wasted when the employee is
working on a single task and overwork when working on
both tasks at the same time (whenever z1; < 1, 235 < 1,
and z1; + 212 > 1).

With normalization the semantic of dedication values
is changed slightly. For any employee working on two or
more tasks, equal dedication values mean that she/he
should divide her/his attention equally among all tasks.
Dedications 0.5 and 1 mean that she/he should devote
twice as much time for the second task as for the first
task. A smallest possible example is given in Fig. 1. In
this example, the schedule with neither normalization
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Fig. 1. Three Gantt diagrams, highlighting the dedication of employee ¢;
working on two tasks (f; and t;) simultaneously with z;; =1 and
19 = 1. Left: an infeasible schedule with overwork. Middle: the same
schedule after repair, without normalization. Right: the same schedule
with normalization.

nor repair is infeasible. In the repaired schedule, the
employee uses only 50 percent of her/his time to com-
plete the first task. Normalization, on the other hand,
would decrease dedications of 100 percent towards 50
percent as long as two tasks are performed, and then it
would automatically remove this scaling factor, so that
the dedication of the first task goes back up to 100 percent
after the other task is completed. We will come back to
the comparison of normalization and repair in Section 8.

5.2 Evaluating Costs and Completion Time
Algorithm 1 makes a schedule-driven estimation of cost and
completion time by implicitly constructing a Gantt diagram
as explained in the following. If the dedication matrix is the
genotype during optimization, the final schedule can be
called phenotype. The phenotype for any feasible genotype is
constructed iteratively (lines 8-28), and is assessed by stor-
ing the d; j-values from each iteration, along with the corre-
sponding time stamps. The algorithm checks which tasks
can be active at the current point of time (line 9). The nor-
malized dedication for all suitable employees is computed
for all these tasks (line 15). Then we determine the earliest
point of time ¢ at which a task is finished (line 19). All fin-
ished tasks are being marked as finished (line 25), so that
the next iteration can include new tasks, according to the
task precedence graph. If there are tasks that have been
started, but are not finished yet, their effort is updated to
the remaining effort needed for completing them (line 23).
This accounts for potentially piecewise evaluations of par-
ticular tasks. Along the way, all completion times and costs
in all iterations are added up (lines 20-21). The total comple-
tion time and cost are the output when all tasks have been
processed (line 29).

Before constructing the schedule, Algorithm 1 tests
whether the genotype is infeasible in that not every task can
be completed in finite time (lines 1-4). That is the case when
the skills constraint (eq. 1) is not satisfied. Note that this
includes the case in which there is a task with no employee
designated, as tasks with no employee associated can
be seen as tasks lacking all the required skills. If the geno-
type is infeasible, the algorithm returns very high costs and
completion times (line 6): (regsk -2 7, Z;’;l sqeff;, reqsk-
2k Y77, eff;), where reqsk is the number of required skills
missing. These values are chosen in such a way that any
improvement in decreasing the number of missing skills
results in a solution that has both lower costs and lower
completion times:

Lemma 1. The output of Algorithm 1 is such that for every
two solutions x,y, if y has fewer missing skills than z

(including no missing skills) then cost(y) < cost(x) and
time(y) < time(z).

Algorithm 1 Evaluate(cost, time, TPG)
Output: (cost, time)
1: Let reqsk = 0.
2: for all tasks ¢; do
3 reqsk = reqsk + |req; \ Ui, {skill; | z;; > 0}].
4
5

: end for
. if reqsk > 0 then

6:  Output | reqsk-2 > > seff;, reqsk - 2k 3 effj>;

i=1j=1 =1
stop. ’ ’

7. end if

8: while TPG # () do

9:  Let V' be the set of all unfinished tasks without
incoming edges in TPG.

10:  if V/ = () then

11: Output “Problem instance not solvable!” and
stop.

12:  end if

13:  for all tasks t; in V' do

14: for all employees e; do

15: Let d; ; : max(lﬁz%w wu)'

16: end for

17: Compute the total dedication d; := Y"1, d; ;.

18:  end for

19: Let t := man(effJ/d])

20:  Let cost = cost +¢ >0 si D10 dije
21:  Let time := time + ¢.

22: for all tasks ¢; in V' do

23: Let effj = effj —t- dj.

24: if eff; = 0 then

25: Mark t; as finished and remove it and its
incident edges from TPG.

26: end if

27:  end for
28: end while
29: Output (cost, time) and stop.

A proof of this lemma is given in the appendix. This
implies that any decrease in the number of required skills
missing strictly decreases both components through reqsk.
When cost and completion times are used in any reasonable
single- or multi-objective fitness function, this gives a clear
gradient for search algorithms towards feasibility, without
the need for pre-defined parameters to guide the search
towards feasibility as done in previous work [6]. It is also
worth noting that this strategy deals both with solutions
that are infeasible due to the skills constraint and due to
tasks with no employee associated. An EA using it can have
a very simple fitness function which does not need to treat
these two types of infeasible solution separately as done in
previous work [6].

5.3 New EA Designs

When designing an EA, one needs to chose the encoding
(internal representation of candidate solutions), mutation
(operator to create a new candidate solution by modifying
an existing one), crossover (optional operator to create new
candidate solutions by combining existing ones), and fitness
function (procedure to evaluate the quality of a candidate
solution). This section presents our design, as well as the
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algorithms used in our study. For general knowledge on
EAs, we refer the reader to [16].

5.3.1  Encoding and Mutation

A binary encoding was used previously [6] to represent x; ;.
This however means that the probability of turning one
numerical value into another by mutation depends on the
binary encoding of these two values. As a result, some
mutations (e. g., mutating 7/k £ 0111, towards 8/k £ 1000,
flipping 4 bits) are less likely than others (e. g., mutating
8/k 2 1000, towards 9/k 2 1001, flipping 1 bit).

We follow a different approach and work with a direct
encoding of dedication values: the search space is
{0/k,...,k/k}"". Mutation is performed by changing each
entry x;; of the dedication matrix with probability
P,, =1/(nm), independently from other entries. Changing
an entry x; ; means replacing it by a value chosen uniformly
at random from {0/k,1/k,... k/k}\ {z;;}. This implies
that each new value has the same chance of being created
by mutation. Note that mutation has a chance of changing
several dedication values at the same time, changing only a
single entry, or not changing any entries at all.

5.3.2 Crossover

In this paper, the crossover operator uses two parent candi-
date solutions to create two offspring candidate solutions
by selecting one of the following two strategies with an
equal probability:

e For each employee, select its corresponding dedica-
tions to tasks from one randomly chosen parent to
compose the first child, and from the other parent
to compose the second child. This can be seen as
exchanging “rows” of employee’s dedications if we
visualize the values z;; as a matrix of employees
by tasks.

e For each task, select its corresponding employees’
dedications from one randomly chosen parent to
compose the first child, and from the other parent to
compose the second child. This can be seen as
exchanging “columns” of dedications to tasks.

The above is different from the crossover operator used before
[6]. The reason is that their operator, which is a 2-D single
point crossover, allows part of the dedications of an employee
to tasks to be inherited by one child and the remaining part by
the other child. So, if a solution is good because the dedica-
tions of a certain employee are well balanced for the problem
instance, crossover can break this balance by mixing these ded-
ications with dedications of another employee. An illustrative
example of that in their algorithm is the fact that, even if the
parents do not contain overwork, crossover could easily gener-
ate children with overwork. A similar problem could happen
to the dedications of all employees to a certain task. Our cross-
over operator either exchanges full rows of employee’s dedica-
tions or full columns of dedications to tasks, in an attempt to
avoid breaking balances that may be important for the solu-
tions. As it is not known a priori whether the balance in terms
of rows or columns is more important, our crossover gives
50 percent of chance for exchanging rows and 50 percent
for columns.
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5.3.3 Fitness Function

A very simple fitness function can be used based on Algo-
rithm 1. The fitness function (to be minimized) used in our
experimental analysis is f(x) = Weost - COSt + Wiime - time,
where cost and time are obtained from Algorithm 1. The
only pre-defined parameters in this fitness function are the
weights weost and wiime, which are used to adjust the desired
relative importance of cost and completion time. So, it is
easier to configure than other fitness functions [6]. The run-
time analysis is not restricted to this fitness function.

5.3.4 Algorithms

As our main goal is to introduce runtime analysis for the
PSP, we follow many previous examples in this area [32],
[33], [34], [35] and use one of the simplest EAs in our the-
oretical studies: the (1 + 1) EA. It is simple because it uses
a “population” of just one individual and it does not use
crossover. One generation consists of mutation, and then
selection checks whether the mutation has found an
improvement. Algorithm 2 describes the (1+1) EA for
our search space, for minimizing some fitness function f.
The encoding, mutation and fitness function used in this
paper are described in Sections 5.3.1 to 5.3.3.

Algorithm 2 (1+1) EA for project scheduling

1: Initialise x.

2: repeat

3:  Create ' by copying x.

4 Apply mutation to z’ using probability P,,.
5. if f(2') < f(z) then z :=a’.

6: until happy

In practice, like all EAs, it will be stopped either after a
certain amount of time has elapsed, or when a satisfactory
solution has been found. For a theoretical analysis it is a
common practice to consider an EA as an infinite process
and to measure the expected time needed to find a global
optimum. Note that the expected number of components
changed in one iteration equals 1. The (1+1) EA is a
bare-bone version of EAs and captures their core working
principles in a very clear fashion. It can also be a very
effective EA, when considering the number of fitness
evaluations as the performance measure. For well-known
functions like ONEMaX and LEADINGONEs the (1 + 1) EA is
the best EA that only uses mutation for variation [36].

We will also investigate randomized local search (RLS). It
differs from the (1 + 1) EA in that during mutation exactly
one dedication value is changed. The entry is chosen uni-
formly at random. So, RLS can only make local steps, i. e., it
can easily get stuck in a local optimum. The (1 + 1) EA has
a global search operator, which allows larger jumps to be
made, so that the (1 4+ 1) EA can, in principle, escape from
any local optimum. However, large jumps are only made
with a small probability.

From a theoretical perspective the (1 4 1) EA is harder to
analyze than RLS. The reason is that a mutation changing
multiple dedication values simultaneously may have both
beneficial and detrimental effects. The mutant will be
accepted in the light of detrimental mutations if the com-
bined effect of all changes on fitness is non-negative. There
are situations where a mutation is accepted, even though
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TABLE 1
Summary of the Algorithms Used in Our Study
Algorithm Encoding | Mutation Crossover Parent selection Survival selection | Population size | Normalisation
(1+1) EA Direct | Uniform - - Elitist 1 Yes
RLS Direct | Uniform - - Elitist 1 Yes
1 entry
Pop-EA Direct | Uniform | Rows/columns | A binary tournaments! Elitist 1 Yes
(1+1) EA no-norm | Direct | Uniform - - Elitist 1 No
GA [6] Binary | Bit-flip |[2-D single point [ 2 binary tournaments! Elitist I No

! Number of tournaments per generation.

the mutant is “further away” from the optimum, in a sense
that less dedication values coincide with the respective val-
ues in the global optimum.

In order to check whether improvements in solution
quality can be obtained by using a population, our experi-
mental analysis also considers the (n+ A) population-
based EA (Pop-EA) presented in Algorithm 3. It differs
from the (1 + 1) EA in that it maintains a population of
candidate solutions, rather than a single solution. At each
generation, A parents are selected based on binary tourna-
ments. Crossover is applied to each pair of parents with a
pre-defined probability P.. Mutation is then applied to
each child as in the (1 + 1) EA. The mutation and cross-
over operators used in this paper are explained in Sections
5.3.1 and 5.3.2, respectively. An elitist approach that retains
the best 1 candidate solutions among the parents and chil-
dren is used to select candidate solutions that survive for
the next generation.

Algorithm 3 Pop-EA for project scheduling

1: Initialise population P with ; candidate solutions.
2: repeat
3:  Select A parents from P using binary tourna-
ment selection.
. for each pair of parents () and z(? do
5: With probability P, apply crossover between
() and 2 to generate 2/(!) and 2/().
Otherwise, /M) <+ (1) and 2/?) + z(2)
Apply mutation to 2’") and z'(?) using prob-
ability P,,.
8: P+ PU {2/ /@Y
9: end for
10:  Select the p best candidate solutions from P to
survive for the next generation, based on the
fitness function f.
11: until happy

A summary of these algorithms is presented in Table 1.
This table also shows two other algorithms that will be used
in Section 7.

6 RUNTIME ANALYSIS

In the following, we estimate theoretically the optimization
time of the (1 + 1) EA and RLS, defined as the first genera-
tion in which a global optimum is found.

The only assumption we make about the fitness function
f is that it is Pareto-compliant in a strict sense: if 2’ Pareto-
dominates z (i.e., cost(z') < cost(z) A time(z') < time(x))
and = does not Pareto-dominate 2’ then f(z') < f(z). That

is, any improvement in one or both objectives also
improves the fitness f. This is the case, for instance, when
the fitness is chosen as any weighted combination of cost
and completion time, and our results are independent of
the choice of these weights. In the special case where all
employees have the same salary, the costs are always the
same. Then f boils down to minimizing the completion
time; and as (1+1) EA and RLS only depend on the
order of search points, and not on their absolute fitness val-
ues, we can then, without loss of generality, take f(z) =
time(x).

For details about asymptotic notation (O, €, ©) used in
the following, we refer the reader to [37].

6.1 Optimal Completion Times

The two goals of minimizing costs and completion time are
often conflicting. We first look at the extreme case of mini-
mizing the completion time only. In every feasible solution
for each task the team has the required skills for the task.
This also holds if more employees join in working on a task,
regardless of their skills. The following theorem describes
the optimal solutions to this special case.

Theorem 2. For every solvable PSP instance, the completion time
is minimal if in the schedule all employees always work full
time. Then the completion time is 1/n - 377" eff;.

If normalization is used, a sufficient condition for mini-
mality is that all dedication values are 1.

The proof of the first statement is straightforward as all
employees will work full time until the project is completed.
It is obvious that this minimizes the completion time.

The second statement is not true without normalization,
as the all-1s matrix will lead to massive overwork on almost
all instances. Without normalization, the difficulty for opti-
mization is to find the ideal balance between different tasks,
while avoiding overwork. When normalization is used, this
difficulty disappears.

6.2 General Time Bounds

This section presents general time bounds for arbitrary
instances of the PSP and almost arbitrary EAs. The consider-
ations herein are based on the progress EAs, and, specifi-
cally, local and global mutation operators, can make at the
genotype level.

We first present a lower bound on the expected running
time, in case the problem only allows for a single optimal
solution. This lower bound indicates the least time we
should allow for running an EA on the problem. In a more
general sense, the analysis applies to the time for finding
any fixed target point.
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Theorem 3. Consider a PSP instance with n employees and m
tasks, nm > 1, with a single global optimum (a fixed target)
in the fitness function used. Consider an EA starting with a
population of random solutions (of arbitrary size) and after-
ward creating new solutions from previously created ones by
local or global mutations. The expected optimization time
(time to hit the target) of the EA, with or without normaliza-
tion, is at least Q(knm log(nm)).

A formal proof is given in the appendix. In simple terms,
the analysis shows that initially many dedication entries
will differ from their optimal values. In order to find the
global optimum (the target point), the EA needs sufficient
time to perform a successful mutation on all these entries,
where successful means that the correct value is being cho-
sen. This takes the time claimed in the theorem.

Theorem 3 does not guarantee that an EA will find an
optimum in the stated time, it just says that every EA needs
at least the stated time, and maybe much longer. Depending
on the problem instance, the EA may get stuck in local
optima, particularly if only local mutations are being used.

In contrast, global mutations guarantee that any particu-
lar solution can be created from any other one. This means
that an EA using global mutations will eventually find a
global optimum, albeit this time can be exponential. A proof
of the following theorem is given in the appendix.

Theorem 4. Every EA that constructs new solutions using global
mutations (potentially after applying recombination and/or
other operators) finds a global optimum for the PSP, with or
without normalization, in an expected number (knm)™™ of
constructed solutions.

Note that this upper time bound is very crude—it is
larger than the expected optimization time of random
search or exhaustive search. Many instances can be solved
much faster, as we will see in Section 6.4. However, Theo-
rem 4 reflects the truth that EAs may indeed perform worse
than random search. This happens when the algorithm gets
trapped in a local optimum which is very dissimilar to all
global optima, hence requiring many dedication values to
be changed simultaneously in one mutation. This is hard
to achieve for EAs. Section 6.5 contains an example of a
hard local optimum, where exponential time is needed to
escape from it (albeit the time is smaller than the bound
from Theorem 4).

6.3 Time to Feasibility

In order to see how efficiently our treatment of infeasible

solutions guides evolution towards feasible search points,

we estimate the expected time until feasibility is reached.

The following theorem makes a very reasonable assump-

tion: the total number of skills is not larger than some poly-

nomial in nm.

Theorem 5 ([1]). Consider RLS or the (1 + 1) EA, with or with-
out normalization, on any solvable instance where
ST Iskilly| < (nm)® for some constant § > 0. The expected
time until some feasible schedule is found is O(nmlog(nm)).

For a proof we refer to [1]. The upper bound is by a factor
of k smaller than the lower bound from Theorem 3. This
indicates that the time to feasibility is only a small fraction
of the optimization time.
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Fig. 2. Example of a linear schedule: all tasks have to be processed
sequentially.

6.4 Easy Instance Classes: Linear Schedules

Now we turn to a class of illustrative “easy” instances.
Assessing how effective an EA is on easy instances is an
excellent starting point for an analysis. It gives a good base-
line for comparisons with other results on the running
time, and most importantly we learn about the search
behavior of an EA. We need a good understanding of easy
instances before we can move on to more complicated
instance classes.

As easy cases we consider schedules with a “linear”
structure: the task precedence graph is a chain of m vertices,
or more generally any directed acyclic graph that contains
such a chain. In this case all tasks have to be completed
sequentially. Fig. 2 gives an example. We also assume that
all salaries are equal. So the problem boils down to minimiz-
ing the completion time.

Note that if normalization is switched on, it is never
actually applied as at each time only one task is processed.
The issue of whether normalization is used or not is irrele-
vant for linear schedules. The same holds for the repair
mechanism [7].

Also note that linear schedules can be optimized by mini-
mizing the completion times of all tasks individually. This
property is called separability: a function is separable if it can
be written as the sum of functions defined on disjoint sets of
variables. This is the case for the completion time of (feasi-
ble) linear schedules as the completion time can be written
as the sum of completion times for all single tasks.

We know from Theorem 2 that the optimal solution is a
dedication matrix where all entries are set to 1. This is the
only global optimum as otherwise increasing any dedication
value d;; < 1 would decrease the execution time for the jth
task, while keeping the other execution times unchanged.

RLS only changes one dedication entry at a time, which
implies that all tasks will be optimized separately. This
leads to the following result, which was proven in [1].

Theorem 6 ([1]). Consider an instance with n employees with
equal salaries and m tasks with arbitrary positive efforts. Let
the task precedence graph contain an m-vertex chain as sub-
graph. Then the expected optimization time of RLS, with or
without normalization or repair, is of order © (knm In(nm)).

We believe that the (1 + 1) EA is asymptotically as effi-
cient as RLS on linear schedules, i. e., the bounds from Theo-
rem 6 also hold for the (1 + 1) EA. However, proving this is
more difficult than for RLS. The reason is that global muta-
tions can change several dedications at the same time.
Mutations with beneficial and detrimental effects can be
accepted if there is a net improvement in fitness. Such situa-
tions can happen because jobs with large task efforts have a
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larger impact on the fitness than jobs with smaller efforts.
This can lead to situations where the fitness improves, but
the (1+ 1) EA actually moves away from the global opti-
mum. We are looking for a formal proof that the (1 + 1) EA
is efficient for arbitrary task efforts.

We first prove a polynomial running time bound for the
(1+1) EA on any linear schedule. We do not believe that
this bound is asymptotically optimal, but it gives a polyno-
mial upper bound for all instances. We then give better
upper bounds for special cases, supporting our belief that
the (1 + 1) EA is as efficient as RLS.

Theorem 7. Consider an instance with n employees with equal
salaries and m tasks with arbitrary positive efforts. Let the task
precedence graph contain an m-vertex chain as a subgraph.
Then the expected optimization time of the (1 4+ 1) EA, with or
without normalization or repair, is at most O((knm)?).

A proof is given in the appendix; it uses a structural
result about separable functions [38], saying that under cer-
tain conditions the expected time for the (1 + 1) EA optimiz-
ing a separable function is bounded from above by the sum
of expected times for minimizing the completion times of
all tasks sequentially.

If k=1, ie., only dedications 0 and 1 are allowed, the
analysis becomes easier. It is not hard to see that then the fit-
ness function is monotonic in the following sense: flipping
only 0-bits to 1 and not flipping any 1-bit to 0 results in a
strict fithess improvement. Such an operation implies that
the total dedication on every task is non-decreasing, and at
least one total dedication is increased strictly. By Doerr et al.
[39] this yields the following.

Theorem 8. Consider an instance with n employees with equal
salaries and m tasks with arbitrary positive efforts. Let the task
precedence graph contain an m-vertex chain as a subgraph. If
k=1 then the expected optimization time of the (14 1) EA
is O((nm)*?). Additionally, if the mutation probability is
changed to c¢/(nm) for a constant 0 < ¢ < 1, the expected
time is even bounded by O(nm log(nm)).

With & = 1 the upper bound of O((nm)*?) is the same
as O((knm)*?). Compared to the bound O((knm)®) from
Theorem 7, we have reduced the exponent of the running
time. The second statement about reduced mutation proba-
bilities indicates that the upper bound of O(knmlog(nm))
for RLS might also hold for the (1 + 1) EA, as we have no
reason to believe that a tiny reduction of the mutation rate
by an arbitrary constant factor (e. g., by 0.99) has a dramatic
effect on the expected optimization time here.

We consider one more setting which supports our belief.
The following result states that whenever we have a fixed
number of employees, a special case of dedication values 0
or 1, and an arbitrary number of tasks, then the expected
optimization time of the (1 + 1) EA is upper bounded just
like it is for RLS (cf. Theorem 6). The proof uses another
structural result about separable functions [38], stating that
in some settings the (14 1) EA will optimize all subfunc-
tions of a separable function in parallel.

Theorem 9. In the setting of Theorem 6, if additionally k=1
(i. e., we have dedications 0 or 1) and n = O(1), then the
expected optimization time of the (1 4 1) EA, with or without
normalization, is bounded by O(knm log(nm)).

| 50% | | 33%  [50%]
50% | T 67%
(@) 21,1 =1/2,z12=1/2 (b) T1,1 = 1/2,z12 =1
| 67% ] I 50% ]
3B% | 50% 50% i

(©) z11=1,z12=1/2 d) z11=Lz12=1

Fig. 8. Gantt diagrams of all feasible schedules for the example from
Theorem 10 and the employee’s dedication. (a) is a local optimum, (d) is
the only global optimum.

The upper bound is even O(mlogm) due to our assump-
tions on k and n, but to make a fair comparison we write it
so that it matches the upper bound for RLS from Theorem 6.
Again, the proof is given in the appendix.

All results above support our conjecture that the
(1+1) EA is as effective as RLS for linear schedules.

6.5 Difficult Instance Classes

We now look at difficult instances to get insight into what
makes the PSP hard. Linear schedules are easy to solve as
all tasks are processed sequentially. So we consider settings
with tasks being processed in parallel. We have already
seen in Section 5.1 that without normalization an EA strug-
gles in finding an optimal balance between dedications for
different tasks. With normalization this problem becomes a
lot easier. But we show in the following that even with nor-
malization, RLS and the (1 + 1) EA can still struggle in find-
ing an optimal balance.

In particular, RLS can get stuck in local optima even on a
very simple and tiny problem instance where costs are irrel-
evant. The instance contains two tasks with efforts 4 and 5,
respectively. There is only one employee, so trivially we
always get a fixed cost for any feasible schedule. Starting
with equal dedication values of 1/2, both tasks finish at sim-
ilar times. The task with higher effort takes two more time
steps, throughout which the employee only works half
time, see Fig. 3a. This increases the completion time, com-
pared to the optimal schedule where both dedications are 1,
see Fig. 3d. Any local operation either creates an infeasible
schedule or increases the imbalance between the two tasks.
This increases the time period at the end where the
employee only works half time and it makes the schedule
even worse, see Figs. 3b and 3c.

RLS has a positive probability of starting in the local opti-
mum, and no local mutation is accepted. Thus, we get:

Theorem 10. There is an instance with k = 2, only m = 2 tasks
and just n = 1 employee (see Fig. 3) where RLS with normali-
zation has an infinite expected optimization time.

This example shows that the global mutation operator
used in the (1+1) EA is important in general, as it may
be necessary to change several dedication values at the
same time.

Also note that in the instance from Fig. 3 without normal-
ization—with or without repair—an optimal completion
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time of 4+ 5 =9 can only be achieved if the granularity is
set such that dedication values 4/9 and 5/9 are feasible
choices. If this is not the case (i.e., if & is not a multiple of 9),
only completion times larger than 9 are possible. It is easy
to see that for every given value of £ we can find a similar
instance where every feasible schedule without normaliza-
tion has a strictly larger completion time than the optimal
schedule with normalization.

The above instance can also be generalized towards more
than two tasks. We do this in such a way that the (1 4+ 1) EA
has to make a very large mutation in order to escape from
a local optimum. Set eff; =effy =--- =eff,,,_; =3m and
eff,, =3m+ 1. There are no precedence constraints. Set
k =mand n = 1, that is, there is only one employee.

Similar to the instance from Theorem 10, setting all dedi-
cation values to 1/k = 1/m yields a local optimum. All other
solutions are worse—except for solutions where all dedica-
tions are larger than 1/m. In order to escape from the local
optimum, all dedication values need to be changed in a sin-
gle mutation. The expected running time then increases
exponentially in the number of tasks.

Theorem 11. For every m € IN there is an instance with m
tasks and one employee and an initial search point for the
(14 1) EA with normalization such that its expected opti-
mization time from there is at least m™.

A proof is given in the Appendix.

Note that Theorem 11 does not make a claim about the
expected optimization time with uniform initialization
as the probability of getting stuck in the local optimum
stated in the proof might be exponentially small. However,
Theorem 11 proves the existence of local optima which are
very hard to overcome.

Even though normalization makes it easier to balance
dedications, there is still a risk of non-optimal equilibria
between dedications for tasks processed in parallel. This
can present a major obstacle for EAs as many dedications
might need to be changed in a single mutation.

Finally, note that the instance from Theorem 11 can eas-
ily be modified by adding further tasks that have to be
processed sequentially, and after all existing tasks. Adding
these new tasks does change the number of tasks, but it
does not significantly affect the expected optimization
time. This means that for every given value of m we can
mix characteristics of our “hard” and “easy” instances. By
deciding how many tasks shall belong to the easy or hard
part, we can create instances of tunable difficulty. This
shows that there are not only easy and hard instances, but
there is a fine scale of expected optimization times that
can be observed for EAs.

7 EXPERIMENTAL ANALYSIS

Faced with several different possible choices of algorithms
that can be used for the PSP, it is desirable to provide the
software project manager with insight into what algorithm
to choose. This insight should be followed by evidence dem-
onstrating what algorithms are likely to behave better
according to different evaluation criteria that may affect the
project manager’s decision. With this as the main objective,
this section presents an empirical analysis of different
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algorithms based on the hit rate (number of runs in which a
feasible solution was found), solution quality and conver-
gence time. As a secondary objective, this section also pro-
vides information that can be used by other researchers
trying to improve these algorithms.

The algorithms included in the analysis are our three
algorithms with normalization ((1+ 1) EA, RLS and Pop-
EA), and two algorithms without normalization ((1 + 1) EA
no-norm and a state-of-the-art GA [6]),' as shown in Table 1.
Preliminary results using (1 + 1) EA have been presented in
[1]. We will refer to the algorithms with normalization sim-
ply as (14 1) EA, RLS and Pop-EA. When referring to the
(1+1) EA without normalization, we will explicitly state
that or use the term “no-norm.”

The (1 + 1) EA without normalization works similarly to
our (1+1) EA, but with an extra condition on the fitness
function to consider overwork. In this case, the fitness is
f(x) = wpess + over if the skills constraint (eq. 1) is satisfied
but there is overwork. The value over is the total amount of
overwork time spent by all employees during the project [6]
and Wpess = Weost, * 2 Z?:l Z;nzl sieffj + Wiime * 2k Z;n:l effJ

This section is further divided as follows: Section 7.1
presents the data sets used in the experiments; Section 7.2
presents the parameters; Section 7.3 presents the results in
terms of hit rate; Section 7.4 in terms of solution quality;
and Section 7.5 in terms of convergence time.

7.1 Data Sets

In order to make a fair comparison against the GA, we
used the same 48 instances (benchmarks 1-5) of the PSP as
before [6]. Benchmarks 4-5 can be found at http://tracer.
lcc.uma.es/problems/psp/generator.html. Benchmarks 1-3
were made available to us by Enrique Alba. As the num-
ber of problem instances is high, we avoid biasing the
conclusions and remove the possibility of hand-tuning the
algorithm to a particular problem instance. Moreover, we
can verify how the algorithms are affected by problem fea-
tures such as the number of employees, number of tasks,
number of employee’s skills and number of project
demanded skills.

Benchmarks 1-3 were used to analyze the effect of vary-
ing each of the three problem features (number of employ-
ees, number of tasks, and number of employee’s skills)
while maintaining the other features fixed. These data sets
use the same salary for all employees ($10,000), so that,
given a project, the cost of all solutions for this project is
always the same. In this way, the ideal cost per unit of time
is known and it is possible to evaluate how close a given
solution is to the optimum in terms of completion time.

Benchmark 1 is composed of four instances varying the
number of employees among 5, 10, 15 and 20. Benchmark 2
is composed of three instances varying the number of
tasks among 10, 20 and 30. Benchmark 3 is composed of
five instances varying the number of employee’s skills
among 2, 4, 6, 8 and 10 skills, which are randomly selected
from a set of 10 project skills. Each task requires five dif-
ferent skills in this benchmark. In benchmarks 1 and 2, all

1. Our implementation of the (1+ 1) EA, RLS and Pop-EA were
based on the Opt4] framework [40].
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TABLE 2

Hit Rate Out of 100 Runs for the (1 + 1) EA without Normalization, and an Existing GA (Obtained from [6])

(a) Benchmarks 1-3

93

Benchmark 1 Benchmark 2 Benchmark 3

Employees | (1+1) EA no-norm GA Tasks | (1+1) EA no-norm GA Employees’ skills | (1+1) EA no-norm GA

5 97 87 10 97 73 2 0 39

10 100 65 20 84 33 4 0 53

15 97 49 30 3 0 6 24 77

20 96 51 — - - 8 11 66

- — — — - - 10 100 75

(b) Benchmarks 4-5
Benchmark 4 Benchmark 5
Tasks 4-5 employees” skills 6-7 employees” skills 5 project skills 10 project skills
5,10,15 employees 5,10,15 employees 5,10,15 employees 5,10,15 employees
(T+I) EA no-norm  GA (TI+1) EA no-norm GA (T+1) EA no-norm GA (T+I) EA nonorm  GA
10 2,0,89 94,97,97 9,100,100 84,100,97 10,49,90 98,99,100 0,0,0 61,85,85

20 0,2,17 0,6,43 0,78,11 0,76,0 0,2,67 6,9,12 0,0,0 8,1,6
30 0,0,0 0,0,0 0,6,0 0,0,0 0,0,1 0,0,0 0,0,0 0,0,0

The hit rate for the algorithms with normalization was always 100.

employees have all necessary skills, i. e., the skills con-
straint (eq. 1) is always satisfied. Instances within each of
the benchmarks 1 and 3 represent the same project to be
developed (i. e., they have the same tasks and TPG) with
the number of tasks fixed to 10. Each instance of bench-
mark 2 represents a different project, as the number of
tasks is different. In benchmarks 2 and 3, the number of
employees is fixed to 5.

Benchmarks 4 and 5 are composed of instances that
represent different projects and each employee has a dif-
ferent salary. Each benchmark is composed of 18 instances
which vary all the previous problem features. The number
of employees can be 5, 10 or 15 and the number of tasks
can be 10, 20 or 30. In benchmark 4, the total number of
project skills is 10, and two ranges were considered sepa-
rately for the number of employees’ skills: 4-5 and 6-7. In
benchmark 5 the number of project demanded skills can
be 5 or 10, and the number of skills per task and employee
is in the range 2-3.

7.2 Experimental Setup

For a fair comparison between our algorithms and the GA,
we have used the following parameters, which correspond
to the parameters used previously in the literature [6]:

e Parameters for all our algorithms:

- constant for the granularity of the solution k = 7;
- Weost = 1076;
- Wtime = 1071;
- number of independent runs per problem
instance 100.
e Parameters specific to the non-population-based
algorithms:

- number of generations 5,064 (= number of fit-
ness evaluations considering the initial popula-
tion of size 64 used previously [6]).
e Parameters specific to the Pop-EA:
- size of the population 1 = 64, as in [6];

- number of children generated at each generation
A\ = 64;

- number of generations 79 (this is the rounded
number of fitness evaluations in our experi-
ments with the non-population-based algo-
rithms divided by the population size (79.125 ~
79), giving a total of 5,056 fitness evaluations).

The GA [6] always applies crossover, whereas our Pop-
EA uses a probability of crossover. This probability was set
to 0.75, which is the middle of the crossover rate interval
[0.6,0.9] suggested by Eiben and Smith [16]. The mutation
operator provided by the framework Opt4] selects any
value in {0/F,. .., k/k} uniformly at random. This does not
exclude the original value, hence each dedication value is
only changed with probability 1/(nm)-k/(k+1) in our
experiments with (1 + 1) EA and Pop-EA.

7.3 Hit Rate

An algorithm designed for the PSP should ideally provide
feasible allocations of employees to tasks. Algorithms
unable to provide feasible solutions are not useful for the
software project manager. With that in mind, this section
analyzes the hit rate (Table 2).

Our three algorithms with normalization always
achieved hit rate 100, i. e., all runs always found a feasi-
ble solution. The algorithms without normalization fre-
quently presented much lower hit rates, sometimes even
a hit rate of zero, i. e., even after running the algorithms
100 times, no feasible solution was found. In order to pro-
duce a boundary to capture the unknown population® of
hit rates, we calculated the modified (adjusted) Wald
binomial confidence interval [41] with 95 percent of confi-
dence for each hit rate. For hit rate of 100, the interval is
[96.83,100.00]. The upper limits of the confidence intervals
for the hit rates of 90 or less shown in Table 2 are all
lower than the lower limit of the interval for hit rates of
100, meaning that the differences between hit rates of 90
or less and the hit rate of the algorithms with normaliza-
tion are statistically significant.

As the (1+1) EA without normalization presented in
general much lower hit rates than the (1+1) EA with

2. The term population in this sentence refers to the statistical mean-
ing of population, against the known sample of hit rates.
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TABLE 3
Average Ranking of Algorithms According to Fitness
across Problem Instances

~ Avg Rank | Avg Rank | Std Deviation Algorithm
1 1.1875 0.5708 Pop-EA
2 2.0833 0.3472 (1+1) EA
3 2.7292 0.6098 RLS
4 4.0000 0.0000 (1+1) EA no-norm

Smaller ranking values are better rankings.

normalization, normalization plays an important role in
improving the algorithm’s performance. In addition, as the
hit rate of the (1 + 1) EA is the same as the hit rate of RLS
and Pop-EA, the choice among these three algorithms with
normalization did not alter the results in terms of hit rate
for these problem instances.

Another interesting observation is that our algorithms
with normalization always managed to achieve hit rate of
100 independent of the problem features. The previous
study [6] revealed that the GA’s hit rate varied depending
on the problem features. Our experiments using (14 1)
EA without normalization also presented different hit
rates for different instances. So, normalization also plays
an important role in making the hit rate of the algorithm
less dependent on the problem features. In other words,
it helps to improve robustness of the algorithm to differ-
ent problem instances. As the hit rate was the same for
all algorithms with normalization, they all presented simi-
lar robustness.

In summary, this section shows that the algorithms with
normalization obtained the perfect hit rate, for all tested
problem instances.

7.4 Solution Quality

Another criterion that should be considered by a software
manager when choosing a PSP algorithm is the quality of
the solutions provided, i.e., how good the cost and comple-
tion time of the solutions is. In this section, we analyze the
quality of the feasible solutions in terms of fitness, cost and
completion time.

7.4.1  Ranking of Approaches According to Fitness

The fitness function used in this paper is a measure of the
solution quality given the relative importance of cost and
completion time selected by a project manager. Following
Demasar’s recommendation for comparing two algorithms
over multiple data sets [42], we used the Friedman test to
compare the average ranking of the (1 + 1) EA, RLS, Pop-EA
and the (1 + 1) EA without normalization according to their
fitness across problem instances. The average ranking is
shown in Table 3. The GA has not been ranked here because
we do not have its corresponding fitness values from [6]. The
Friedman test detected statistically significant difference in
the average ranks (Fr = 246.30 > F'(3,141) = 2.67, p-value
less than 0.0001).

As the Friedman test detected statistically significant
difference, the Nemenyi post-hoc test [42] was then used
to compare the average rank of each algorithm against
each other. In this way, it is possible to know which of the
algorithms actually performed differently or similarly to
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TABLE 4
Nemenyi Post-Hoc Tests for Comparing Each Pair
of Algorithms’ Average Rankings

Algorithms Avg Rank Diff
Pop-EA vs (1+1) EA 0.8958
Pop-EA vs RLS 1.5417
Pop-EA vs (1+1) EA no-norm 2.8125
(1+1) EA vs RLS 0.6458
(1+1) EA vs (1+1) EA no-norm 1.9167
RLS vs (1+1) EA no-norm 1.2708

Differences of average ranks of at least the critical distance C'D = 0.6770
are statistically significant at the level of o = 0.05 and are highlighted
in bold.

each other. The test detected statistically significant differ-
ences between all algorithms at the level of a =0.05
except between (1+ 1) EA and RLS (see Table 4). These
results together with the average rankings show that Pop-
EA obtained the best average rank across problem instan-
ces, (1+ 1) EA without normalization obtained the worst,
and (1+ 1) EA and RLS obtained similar average ranks to
each other.

It is worth noting that the rank obtained by the (1 + 1)
EA without normalization was always the worst, for all
problem instances (the standard deviation of its ranking is
zero in Table 3). Normalization was able to improve fit-
ness, in such a way that our (1+1) EA achieved better
ranking than the (1+ 1) EA without normalization. So,
normalization played an important role to improve fitness.
The use of a population through Pop-EA improved the fit-
ness further.

Pop-EA obtained the best average ranking across prob-
lem instances. Out of 48 problem instances there were
only five instances where Pop-EA was not the best
ranked algorithm:

e benchmark 4’s instance with 10 tasks, six-seven

employees’ skills, 10 employees;

e Dbenchmark 4’s instance with 10 tasks, four-five

employees’ skills, five employees;

e benchmark 5’s instance with 10 tasks, five project

skills, 10 employees;

e benchmark 5’s instance with 20 tasks, 10 project

skills, five employees;

e benchmark 5’s instance with 20 tasks, 10 project

skills, 15 employees.

For these problem instances, either the (1+1) EA or
RLS obtained the best rank. These instances have varied
number of tasks, employees’ skills, project skills and
employees. It was not possible to identify a pattern that
reveals for what type of instances the Pop-EA was not the
best ranked algorithm. However, we show in Section 7.4.2
that the risk of using Pop-EA instead of (1 4+ 1) EA or RLS
is very small.

In summary, this section shows that normalization plays
an important role in improving the (1 + 1) EA’s fitness, and
that the use of Pop-EA was able to improve it further,
whereas RLS obtained similar fitness to the (1 + 1) EA. Pop-
EA usually obtained the best fitness.

7.4.2 Practical Effect of the Differences in Fitness

In addition to the statistical significance of the difference in
fitness, it is also important to analyze the practical
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TABLE 5
Statistics of the Practical Effect (Equation 2) of Differences in Solution Quality across Problem Instances

Best against worst fitness
ranked algorithm with normalisation

Best fitness ranked algorithm against
(1+1) EA without normalisation

Cost Duration Cost Duration
Minimum PE 0.0000% 0.0086% 0.1682% 9.9823%
Maximum PE 0.0238% 0.3414% 3.3208% 174.1823%
Average PE 0.0025% 0.1068% 1.2640% 51.6686%
Std Deviation PE 0.0043% 0.0845% 0.8177% 39.7585%
Maximum difference 172.8333 0.0479 57521.8065 94.0596
in units of time and cost

The actual maximum difference in units of cost and time is also shown. Statistics regarding the difference in cost do not consider problem instances
with fixed cost (benchmarks 1-3), and only feasible solutions are considered.

TABLE 6
Minimum and Maximum Values of Standard Deviation in Cost and Completion Time across Different Solutions
for the Same Problem Instance Divided by Average

Pop-EA | (1+1) EA RLS (1+1) EA no-norm
Minimum stdev / avg cost 0.0000% | 0.0010% | 0.0059% 0.2537%
Maximum stdev / avg cost 0.0148% | 0.0344% | 0.0378% 1.9022%
Minimum stdev / avg completion time | 0.0002% | 0.0183% | 0.0233% 4.6455%
Maximum stdev / avg completion time | 0.2768% | 0.1834% | 0.5850% 52.1864%

Statistics regarding minimum standard deviation of cost do not consider the problem instances with fixed cost (benchmarks 1-3), and only statistics

for problem instances with at least three feasible solutions are considered.

differences in solution quality when choosing an algorithm.
For example, a project manager could still opt for using an
algorithm likely to produce worse solution quality than the
best one if the difference in quality between these two algo-
rithms is unlikely to be high. A possible reason for a soft-
ware manager to opt for a worse algorithm would be if he/
she has easier access to the implementation of this algorithm
or the algorithm is far more efficient to execute than others.
If the software manager can use the algorithm most likely to
be the best, he/she should still be aware of the risk incurred
in this choice. For example, if an algorithm is likely to pro-
duce the best solution quality in most cases, and in a few
cases the solution quality is likely to be just slightly worse
than other algorithms, then the risk incurred in opting for
this “best” algorithm is very small. Thus, it is reasonable for
a software manager to always opt for it. On the other hand,
if this algorithm is likely to perform much worse than
another in a few cases, the risk in always choosing it is high.

We define the practical effect of differences in solution
quality for a certain problem instance i as:

PE, |measure(A) — measure(B)|

measure(A) ’ @)
where A is the algorithm with the best fitness for the problem
instance 4, B is an alternative algorithm, and measure is either
the average cost or completion time. This is a measure of how
large the difference in terms of cost/completion time is in rela-
tion to the cost/completion time of the best fit solution.

Table 5 presents the minimum, maximum, average and
standard deviation of the practical effect in terms of cost
and completion time across problem instances. We can
observe that the practical effect in terms of cost and comple-
tion time considering only the set of algorithms with nor-
malization is very low. For both cost and completion time,
the maximum practical effect is considerably less than one
percent. In contrast, the practical effects between the best
ranked algorithm with normalization and the (1+1) EA
without normalization are much larger.

For illustration purposes, Table 5 also shows the actual
maximum difference between the best and the worst fitness
ranked algorithms in cost and time. Considering that the sal-
ary of an employee is around $10,000 per unit of time, let’s
regard units of time as months. We can see that the maxi-
mum difference in cost between the best and the worst
fitness ranked algorithms with normalization is only approx-
imately $173, whereas the difference considering the (1 + 1)
EA without normalization is of approximately $57,521. In
terms of completion time, the differences are about one day
and a half, and more than seven years, respectively. This fur-
ther illustrates the practical effect of choosing between the
algorithms with and without normalization.

In summary, this section shows that it is important to
opt for algorithms with normalization in terms of practical
effect of solution quality, and that the risk incurred in
choosing one or another algorithm with normalization is
not high. For instance, a software manager could opt for
the Pop-EA, which has the best average rank in terms of
fitness and is very unlikely to perform much worse than
the other algorithms.

7.4.3 Variance of Cost and Completion Time

The variance in cost and completion time is another factor
that should be taken into account when choosing an algo-
rithm. If the solution quality when running an algorithm
with different random seeds varies a lot, it would be diffi-
cult for the software manager to know whether a certain
run is likely to have produced good or bad solutions.

The algorithms with normalization obtained very low
variances in cost and completion time across solutions.
Table 6 shows the minimum and maximum standard devia-
tion divided by the average. Statistics regarding the GA
were not available from [6]. The standard deviation in cost
was never more than 0.04 percent of the average cost and the
standard deviation in completion time was never more than
0.60 percent of the average completion time of the project for
the algorithms with normalization. When normalization
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TABLE 7
Quality of Feasible Solution Measured by the Cost
Divided by the Completion Time

(a) Benchmark 1: avg. cost/time. The optimal value is n - 10,000.

n || Pop-EA | (1+1) EA| RLS [(1+1) EA no-norm | GA [6]
5 || 49,998 | 49,978 | 49,901 36,581 44,790
10]] 99,981 | 99,940 | 99,828 75,559 86,957
15 || 149,964 | 149,900 | 149,660 114,754 126,779
20 || 199,919 | 199,830 | 199,614 151,235 166,667
(b) Benchmark 2: avg. cost/time. The optimal value is 50,000.
m Pop-EA | (1+1) EA| RLS | (1+1) EA no-norm | GA [6]
10 49,998 | 49,978 |[49,901 36,579 44,944
20 49,984 | 49,980 |[49,964 35,273 44,748
30 49,999 | 49,990 |[49,955 18,236 -
[Stdev][ 834 [ 643 [34.09 ] 10,234.18 [ -]
(c) Benchmark 3: avg. cost/time. The optimal value is 50,000.
sk Pop-EA [ (1+1) EA| RLS |[(1+1) EA no-norm | GA [6]
2 49,998 | 49,983 |[49,925 - 45,230
4 49,996 | 49,983 49,888 - 45,069
6 49,998 | 49,980 |[49,894 38,762 44,651
8 49,998 | 49,979 |[49,905 36,518 44,617
10 49,998 | 49,978 49,901 37,182 44,427
[Stdev][ 071 [ 230 [13.95] - [336.18 |

The averages were calculated considering only the runs in which a feasi-
ble solution was found. The best values are in bold. n, m and sk are the
number of employees, tasks and employees’ skills. Stdev is the stan-
dard deviation of the average values reported in the table.

was not used in the (1 + 1) EA, the variance in cost was from
0.25-1.90 percent of the total cost and the variance in comple-
tion time was 4.65-52.19 percent of the total completion time
whenever there were more than three feasible solutions. So,
considering the criterion variance, it would be good for a
software manager to opt for algorithms with normalization.

The reason for the low variances is because normali-
zation made it easier to find near optimal solutions, as
shown in Section 7.4.4. As it was easier to find near opti-
mal solutions, there were less cases where the solution
deviated considerably from the optimum, and thus the
variances were lower.

7.4.4  Distance to the Optimal Cost and Completion
Time

No matter whether a certain algorithm produces solutions
of better or worse quality than another, if all these solutions
are far away from the best cost and completion time, i. e., if
the cost and completion time of the solutions are very poor,
then these algorithms are not useful. As we know the opti-
mal cost and completion time for benchmarks 1-3, it is pos-
sible to evaluate how close the solutions found by the
algorithms are to these optima. Tables 7 and 8 show
some values descriptive of the solution quality for bench-
marks 1-3. The cost for all solutions of benchmarks 1, 3 and
the first instance of benchmark 2 were $980,000. The cost for
the second and third instances of benchmark 2 were
$2,600,000 and $2,700,000, respectively.

The cost per unit of time (cost/time) for benchmarks 2
and 3 is optimal at $50,000 (all employees working full
time), as there are five employees and all have the same
salary. Each problem instance of benchmark 1 has the
optimal cost/time increased by $50,000 in relation to the
previous instance, as the number of employees is
increased by 5. As we can see from Table 7, all our
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TABLE 8
Quality of Feasible Solution Measured by the Number of
Employees (n) Multiplied by the Completion Time (time)

Benchmark 1: average n - time
n Pop-EA | (1+1) EA| RLS | (1+1) EA no-norm | GA [6]
5 98.00 98.04 |98.19 113.96 109.40
10 98.02 98.06 |98.17 129.68 112.70
15 98.02 98.07 |98.22 128.06 115.95
20 98.04 98.08 |98.19 129.54 117.60
[Stdev][ 0.01 [ 0.02 [0.02] 7.60 [ 363 ]

The averages were calculated considering only the runs in which a feasi-
ble solution was found The best values are in bold. Stdev is the standard
deviation of the average values reported in the table.

algorithms with normalization obtained near-optimal sol-
utions for these benchmarks, and our Pop-EA obtained
solutions even closer to the optimum than the other algo-
rithms with normalization. The algorithms without nor-
malization, in contrast, obtained solutions further away
from the optimum.

It is worth noting that these results corroborate the analy-
sis presented in Section 7.4.1, which show that normaliza-
tion plays a key role in improving the solution quality
obtained by the (1+ 1) EA, and that Pop-EA manages to
improve it further through the use of a population. They
also corroborate the results in Section 7.4.2, which show that
the practical effect of using an algorithm with normalization
instead of without normalization was large, whereas choos-
ing among the three algorithms with normalization did not
change solution quality as much.

The results also show that the solution quality of our algo-
rithms with normalization were less affected by variations in
the number of employees, tasks and employees’ skills than
the other algorithms’. This is shown by their more similar
product 7 -time across instances of benchmark 1 (lower
standard deviation in Table 8), and by their more similar
cost/time across instances of benchmarks 2 and 3 (lower
standard deviation in (Tables 7b and 7c). These values were
more different across instances of a same benchmark for the
algorithms without normalization.

In summary, this section shows that the solutions found
by the algorithms with normalization for benchmarks 1-3
were near-optimal, whereas the solutions found by the
(14 1) EA without normalization and by the GA were fur-
ther from the optimal cost and completion time.

7.5 Evaluation of Convergence Time

This section complements the analysis of how much each
algorithm is influenced by the features of the problem
instances such as the number of employees and tasks. If
the solution quality varies a lot depending on the features
of the problem instance, then the choice for an algorithm
is more difficult and incurs more risk. Sections 7.3 and
7.4 show that the hit rate and the quality of the solutions
produced by algorithms with normalization were much
less affected by problem features than the ones produced
by the algorithms without normalization. However, even
if the hit rate and the solution quality obtained by a cer-
tain algorithm for different problem instances are not
affected by different features of these instances, that does
not necessarily mean that the algorithm is not affected by
such features.
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(a) Benchmark 1, Pop-EA

(b) Benchmark 1, (1+1) EA no-norm
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(c) Benchmark 4, 6-7 employees’ skills, 10
tasks, (1+1) EA no-norm

(d) Benchmark 4, 6-7 employees’ skills, (e) Benchmark 4, 6-7 employees” skills, (f) Benchmark 4, 6-7 employees’ skills, 30
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Fig. 4. Convergence plots.

An analysis of convergence time can show to what extent
the algorithms were affected by problem features, providing
useful insight into whether the algorithm would still be able
to provide good solutions if the problem grew a bit more.
Fast convergence to good solutions means that if the prob-
lem was a bit larger, the algorithm may still be able to find
good solutions within the budget of fitness evaluations.

We analyze the convergence plots of the algorithms
with the best and the worst fitness ranking: Pop-EA and
(1+1) EA without normalization, respectively (Sec-
tion 7.4.1). The plots were generated for each problem
instance and use the inverse of the average fitness across
multiple runs, rather than the fitness itself. This allows
extra visual comparison of the plots of the Pop-EA
against the plots of the GA published in [6]. These plots
are comparable because the inverse of the fitness function
of the Pop-EA is the same as the fitness function of the

GA when the solutions are feasible, and Pop-EA obtained
feasible solutions in 100 percent of the runs.

Examples of representative plots are shown in Fig. 4.
Pop-EA frequently starts with solutions of considerably
good fitness, whereas the algorithms without normalization
(both (14 1) EA without normalization and the GA) typi-
cally start with solutions of very low quality (1/fitness close
to zero). For example, Pop-EA’s inverse of fitness in
Figs. 4a, 4d, and 4e starts higher than the (1+ 1) EA no-
norm’s in Figs. 4b, 4c, and 4f, respectively. This is because
normalization eases the overwork constraint, allowing for
feasible solutions to be found very quickly, whereas the
algorithms without normalization need longer time to find
feasible solutions.

In addition to frequently starting off with solutions of
better quality, the Pop-EA also converges very quickly, usu-
ally within 1,280 fitness evaluations (20 generations). While
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(a) Infeasible schedule (b) Schedule after repair

(c) Schedule with normalisation

Fig. 5. An example of a schedule where repair leads to shorter completion times than normalization. Dedication values of three employees e, e, €3
are shown; all dedications not listed are 0. Left: an infeasible schedule with overwork. Middle: the same schedule after repair. Right: the same sched-

ule with normalization.

algorithms without normalization struggled to find feasible
solutions, Pop-EA was able not only to quickly find feasible
solutions, but also to converge faster to solutions of better
quality. This occurs both for benchmarks 1-3, for which it
is known that Pop-EA found near-optimal solutions (Sec-
tion 7.4.4), and for benchmarks 4 and 5. Even though we do
not know the optimal cost and duration for benchmarks 4
and 5, the fact that convergence was faster for all bench-
marks and the better fitness achieved by the Pop-EA in com-
parison to (1 + 1) EA without normalization suggest that
this fast convergence has led to solutions of good, possibly
near-optimal, quality, rather than being a premature con-
vergence to poor solutions.

The convergence time usually did not present consider-
able changes for instances with different numbers of
employees, employee’s skills and project skills. For exam-
ple, the convergence time is similar for different numbers of
employees in Fig. 4a. This confirms that Pop-EA was not
much affected by changes in these features for these prob-
lem instances. Changes in the number of tasks affected the
convergence time a bit more, with a tendency of smaller
numbers of tasks taking longer time to converge. This
behavior is exemplified by Fig. 4d versus Fig. 4e and Fig. 4g
versus Fig. 4h. This is a somewhat surprising behavior, as
one would expect instances with more tasks to be more dif-
ficult and the algorithm to take longer to converge. How-
ever, as the difference between the final and optimal
solution quality from 10 to 20 and 30 tasks in benchmark 2
(Table 7b) does not decrease monotonically, it is possible
that the difference in difficulty of these instances is due to
random factors involved in the instance generation. Note
that instances with different numbers of tasks have different
randomly generated TPGs, which may considerably change
the difficulty of the problem.

In summary, this section shows that Pop-EA managed to
quickly find feasible solutions; it presented generally lower
convergence time than the (14 1) EA without normaliza-
tion and the GA; and its convergence time was not much
affected by features such as numbers of employees, employ-
ee’s skills and project skills.

8 DISCUSSION

Our theoretical and empirical results have confirmed that
normalization is very effective in avoiding overwork, and
that EAs with normalization quickly and consistently
evolve schedules of good quality. However, one question
remains open: is normalization better than repair? More
precisely, is the completion time with normalization always
better than with repair?

It is tempting to think that the answer to the latter is yes.
After all, repair divides all tasks by the maximum overwork,
across the whole schedule, whereas normalization only
divides dedications where necessary. Intuitively, since nor-
malization divides dedications by less, normalized sched-
ules should be no longer than repaired ones. If z is a
feasible schedule, time(repair(x)) denotes the completion
time of the repaired schedule z, and time(normalize(z))
denotes the completion time of the normalized schedule z,
we might think that for all instances and all feasible

time(normalize(x)) < time(repair(z)).

However, it turns out that this is not true for all sched-
ules. Fig. 5 gives an example where, for a particular configu-
ration of dedication values, repair leads to a shorter
completion time than normalization. In this example repair
doubles all execution times. Compared to this schedule,
normalization allows e; to finish his/her job earlier. This
means that, because of the precedence constraints, e, starts
to work on three tasks simultaneously. The bottom two
tasks e, is working on therefore finish later, and this post-
pones the time e is allowed to start on her/his tasks. Over-
all, the completion time with repair is 8, and the completion
time with normalization is 9.

Theorem 12. There exists a PSP instance and a feasible solution
x such that

time(normalize(z)) > time(repair(z)).

So we cannot claim that normalization is always better
than repair, with regard to the completion time only.
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However, what can be said is that the optimal com-
pletion time with normalization is never more than the
optimal completion time with repair. This is because the
all-ones dedication matrix has every employee always
working full time, leading to a minimal completion time
(cf. Theorem 2).

Theorem 13. For every solvable PSP instance the shortest comple-
tion time of any feasible schedule with normalization is no
larger than the shortest completion time of any feasible schedule
with repair. Formally, if X is the set of all feasible schedules,

min{time(normalize(z))} < min{time(repair(z))}.
zeX reX

The disadvantage of using normalization is that sched-
ules become more complex as the dedication for particular
jobs may change as other jobs are started or finished.

9 CONCLUSIONS

Research in search-based software engineering has primar-
ily been experimental so far. Few theoretical studies
exist. This paper makes a concerted effort, through both the-
oretical analysis and experimental studies, in understand-
ing more deeply why and when an EA works (or fails) on
some PSP problems. The theoretical analysis has inspired
new designs of EAs, which have been shown to perform
better than existing work.

The new design includes normalization of dedication
values, a tailored mutation operator, and fitness functions
with a strong gradient towards feasible solutions. Normali-
zation removes the problem of overwork and allows an EA
to focus on the solution quality. It facilitates finding the
right balance between dedication values for different tasks
and allows employees to adapt their workload whenever
other tasks are started or finished. This is an advantage over
the repair mechanism [7] which decreases dedications uni-
formly for all tasks and at all times.

We have derived general upper and lower bounds for the
expected optimization time of broad classes of EAs. More
specific results were presented for RLS and the (1 + 1) EA,
including a general upper bound on the time a feasible solu-
tion is reached. For linear schedules both the (1 + 1) EA and
RLS are effective. However, despite using normalization
they still struggle to escape from local optima where many
dedication values form an equilibrium.

Our empirical study is based on comparisons among
three algorithms with normalization ((1+ 1) EA, RLS and
Pop-EA) and two algorithms without normalization ((1 + 1)
EA no-norm and a state-of-the-art GA). Our analyzes con-
firm that normalization is very effective in improving solu-
tions in terms of several criteria (hit rate, solution quality
and convergence time) that may influence a software man-
ager’s decision in adopting a certain algorithm. Our results
show that algorithms with normalization should be favored
over algorithms without normalization when considering
these criteria, and that normalization makes the EAs more
robust to different problem instances. The practical effect of
the differences in solution quality between algorithms with
and without normalization is high, whereas the differences
among the algorithms with normalization are small, with
the Pop-EA achieving the best results.

Future work includes experimental analysis of the run-
time or generation-to-success distributions [43], [44], empir-
ical comparison against the repair operator, case studies
using real-world software projects, and investigation of dif-
ferent problem formulations (e. g., when different combina-
tions of dedications affect the productivity). The solution
quality in single-objective EAs such as the ones investigated
in this work is inherent to the fitness, which considers the
relative importance between cost and completion time
based on their weights. We shall propose the use of other
weights for the fitness function and the extension of our
design to multi-objective formulations of the problem.

APPENDIX

This appendix contains proofs omitted from the main part.

Proof of Lemma 1. If y has missing skills then the claim is
obvious as then both cost and completion times are pro-
portional to the number of missing skills, reqsk.

Now assume that y has no missing skills and z has
reqsk missing skills. The completion time for any feasible
schedule is bounded by £’ eff;. This corresponds to a
schedule where all tasks are processed sequentially and
for each task there is only one employee working on it,
with the minimum dedication of 1/k. Paying all employ-
ees their full salary during the time needed for one
employee to work full time yields an upper bound of
>oisi ity sieff; on the costs. Those upper bounds for
completion times and costs are lower than all penalties
for infeasible solutions, hence we have

m m
time(y) < kz eff; < regsk - 21{:2 eff; = time(x),
= =1
as well as

cost(y) < s;eff; < regsk -2 Z Z sieff; = cost(x).

i=1 j=1

noom noom
=1

=1 j
O

Proof of Theorem 3. Let i be the number of solutions in
the initial population. For very large populations,
w > knmlog(nm)), we argue as follows: the probability
that a uniform random solution hits the target point is
(k+1)""". Hence, the probability that one of the first
knmlog(nm) constructed solutions hits the target point is
at most knmlog(nm) - (k+ 1) "". Hence, with probabil-
ity at least (1) this does not happen, and this gives a
lower bound of (1) - knmlog(nm) on the expectation as
claimed. In the following, we assume p < knm log(nm).

Call an entry of the dedication matrix bad if it dis-
agrees with the global optimum. Observe that in order to
find the optimum it is necessary to change all bad entries
at least once in a mutation. For an initial solution created
uniformly at random, each entry is bad at initialization
with probability k/(k + 1). The expected number of bad
initial entries is knm/(k+1). By classical Chernoff
bounds [45], with probability 1 — e~*"™) the initial num-
ber of bad entries is at least nm /3. The probability that all
of these will have at least nm/3 bad entries is at least
1T— e = 1 — e Qm)Hlog) — 1 — =) by the
union bound.
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Since both local and global mutations treat all matrix
entries in the same fashion, we can assume without loss of
generality that all initial solutions share the same nm/3
entries in the matrix which are bad. Then a necessary con-
dition for finding the target is that each of these entries is
turned good at least once in at least one individual.

Let ¢ := (knm — 1) In(nm/3). The probability of not
changing a particular entry in ¢ mutations is
(1 —1/(nm))". The probability that there is a bad entry
which is never turned good during ¢t mutations is at least

1 t\ nm/3
1—(1-(1-—
(- (5m))

>1— (1 — e 1n(nm/3))nm/3

where in the last step we have used (1 —1/z)" <e™! for
2 > 1. Using the union bound for the initialization, with
probability at least 1 —e~! — =" = (1) the EA has
not found an optimum after ¢t = Q(knm - In(nm)) steps.
This establishes the bound Q(1) - t = Q(knm - log(nm)). O

Proof of Theorem 4. With every constructed solution, global

mutation is applied to a parent or an intermediate solu-
tion resulting from recombination or other operators.
Call this solution « and fix a global optimum «*. If « and
z* differ in ¢ dedication entries, the probability of global
mutation turning x into x* is exactly

1 l 1 nm—{ 1 nm
(1 - — > (—
knm nm - \knm

as the probability of mutating a wrong entry of the dedica-
tion matrix and selecting the right one is 1/(nm) - 1/k. The
expected waiting time for an event that happens with prob-
ability at least (knm) ™" in each time step is at most the
inverse probability, (knm)"". O
In order to prove Theorem 7, we use the following
general result about separable functions (Theorem 12 in
[38], partly extended as described in Corollary 13 [38]).

Theorem 14 (Doerr et al. [38]). Let f=> ", w;f; where

w; € Z and all f; are defined on pairwise disjoint sets of varia-
bles. For each 1 <1 <, let f; fulfill the following assump-
tions. There are ¢; € N and 0 =a;p < ajn < -+ < ay; =
max{fz(x) | x € S} Forall 1 < 7 < £;, let dL] = Qi — Q1.
Assume  that d;; > dij for all 1<j < {;—1. Let
Aij = {$ es | Qij—1 < ﬂ(a:) < Cl,jj} fOi’ all 1< j<{i+1,
where a1 := oo. Assume that for all 1 < j<¥¢; and all
x € Ajj, the (14 1) EA optimizing f; with current search
point equal to x with probability p in one iteration finds a
search point y with fi(y) > fi(x) + d;j.

Then the expected optimization time of the (1 + 1) EA
on fisatmoste(l/p) >, 4.

Proof of Theorem 7. The time for reaching feasibility is

smaller than the time claimed, according to Theorem 5,
so we only need to consider the expected time after a fea-
sible schedule has been found.

For linear schedules with a feasible solution z the
completion time is a separable function in a sense
defined above:

m

time(z) = Z eff; - time; (),

i=1

where time; (v) = 1/ 3", z;; is the unweighted completion
time for the i-th task. Note that the optimal value of
time; (x) is 1/n, when all employees have dedication 1 on
task 7. Since Theorem 14 is defined for maximization with
the minimum fitness value for each subfunction being at 0,
an equivalent problem is maximizing f(z) = ., eff;-
fi(z) where f;(z) = k — time;(x). Note that all f; concern
mutually disjoint sets of dedication values, and f; attains its
minimum at 0, when only one employee has a positive dedi-
cation of 1/k.

In the notation of Theorem 14 for each 1 <i < m we

have ¢; := nk different f;-values a;p < a;; < -+ < Qipi_1
with 1 .
(LZ']‘ = k — = k‘ - J .
(G+1)/k j+1

The differences between subsequent a;;-values are decreas-
ing: for d;; := a;; — a;;—; and all 1 < j < n we have

J j—1
dij = k(11"
! <J+1 j )

k
ST D S GG T2

) = djjy1.

Now, if the (1+ 1) EA was optimizing f; as fitness func-
tion, it could increase the current f;-value by increasing the
dedication of any employee that does not yet have dedica-
tion 1. This happens with probability at least
1/(knm) - (1 =1/ (nm))"™ ' > 1/(eknm). By Theorem 14,
the expected optimization time of the (1+ 1) EA on f is
therefore at most e - eknm - 321" nk = O((knm)?). 0

For the proof of Theorem 9 we use the following theo-
rem on separable pseudo-Boolean functions, i. e., a sepa-
rable function defined on the space {0,1}"". This is the
case here as we assume k = 1.

The following theorem states that, roughly speaking,
under certain conditions the (1+ 1) EA can optimize
subfunctions of a separable function in parallel, with a
mild overhead of a logarithmic factor.

Theorem 15 (Doerr et al. [38]). Let f= Zf;l w; f; where

w; € Z and each f;:{0,1}" — {0,1,...,7} attains integer
values between 0 and r € N. Suppose f is separable, i. e., there
are mutually disjoint sets I, ..., I, € {1,... ¢} such that f;
only depends on bits in I,.

Assume 7 = o(log"/?¢) and let T* be an upper bound
on the expected optimization time of the (1 + 1) EA that
holds on every f;, 1 <1 < k, for every initial search point.
Then the expected optimization time of the (1 + 1) EA on
fisatmost (1 + o(1))(4€*rT* In?).

Proof of Theorem 9. Since all salaries are equal, the costs for

the project are fixed. Hence with every Pareto-compliant
fitness function the (1 + 1) EA behaves like it was mini-
mizing the completion time. The completion time can be
written as a function f =", w;f; where w;f; denotes



the completion time of the i-th task. This holds since all
tasks have to be processed sequentially. Taking w; = eff;,
this leaves f; reflecting the inverse of the total dedication
of all employees.

Considering the (1 + 1) EA with mutation probability
1/(nm) on only one task, we show that with n = O(1) we
have T* = O(m) as an upper bound on the expected time
until the completion time for this task is minimized,
regardless of the initial solution. This is because the prob-
ability of decreasing any non-optimal completion time is
at least 1/(nmk)-(1—1/(nm))" " >Q(1/n) and O(1)
decreases suffice to reach a minimum completion time.

We cannot directly apply Theorem 15 since f; may
attain non-integral values. However, we know that f;
attains only n values in {1/n,1/(n —1),1/(n —2),...,1}.
Considering f/:=n!- f; transforms these values into
{n!/n,nl/(n—1), n!/(n—2),...,n!}, all of which are
integral. Also note that n = O(1) implies n! = O(1). Con-
sidering w) :=eff; -4 and applying Theorem 15 to
f=w,fl with r =n! = O(1) and ¢ = nm yields an upper
bound on the expected optimization time of

(1+0(1))(4€* - n!- T*In(nm)) = O(mlogm).
a

Proof of Theorem 11. Consider the generalized instance

described in Section 6.5. The global optimum is to set all
dedications to 1, leading to a completion time of
>ty effj = 3m? + 1. The solution where d; ; = 1/m for all
1 < j<m leads to a completion time of 3m? + m; after
3m? steps the first m — 1 tasks are completed and then a
remaining effort of 1 for the last one is completed with
dedication 1/m.

We claim that every other solution having at least one
dedication value 1/m has a strictly worse completion
time. If the (1 + 1) EA starts with all dedication values
set to 1/m then in order to reach a better solution, all
entries need to be changed in one mutation. The proba-
bility of mutating all entries is (nm) "™ =m™™. The
expected time until mutation escapes from this local opti-
mum is therefore at least m™, and this establishes a lower
bound on the expected optimization time.

For proving the claim, we consider a modified instance
where we redefine eff,, := 3m, so that all tasks have equal
efforts. Since we have only decreased the effort of tasks,
and there are no precedence constraints, the completion
time for the original instance can only be larger.

Now assume a solution with ¢ dedication entries equal
to 1/m. All solutions with dedication values 0 are infeasi-
ble, hence we can assume that all other m — ¢ dedications
are greater than 1/m. As k = m, the next dedication value
larger than 1/m is twice as large as 1/m. Hence all tasks
with dedication 1/m take at least twice as long as all other
tasks. Therefore, there will be a time span of at least 3m? /2
time steps where only the latter ¢ tasks will be executed.
During this time, the employee only works with total dedi-
cation ¢/m, i. e., he/sheisidle during a (m — ¢)/m > 1/m-
fraction of the time. This amounts to a total idle time of at
least 3m /2. As the total workload that needs to be com-
pleted is 3m?, the completion time is at least
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3m? +3m/2 > 3m* 4+ m.

This proves the claim for the modified and the original
instance and the proof is complete. O
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