
Overcoming the Equivalent Mutant Problem: A
Systematic Literature Review and a Comparative

Experiment of Second Order Mutation
Lech Madeyski, Member, IEEE , Wojciech Orzeszyna, Member, IEEE ,

Richard Torkar, Member, IEEE , and Mariusz J�ozala

Abstract—Context. The equivalent mutant problem (EMP) is one of the crucial problems in mutation testing widely studied over

decades. Objectives. The objectives are: to present a systematic literature review (SLR) in the field of EMP; to identify, classify and

improve the existing, or implement new, methods which try to overcome EMP and evaluate them. Method. We performed SLR based on

the search of digital libraries. We implemented four second order mutation (SOM) strategies, in addition to first order mutation (FOM), and

compared them from different perspectives. Results. Our SLR identified 17 relevant techniques (in 22 articles) and three categories of

techniques: detecting (DEM); suggesting (SEM); and avoiding equivalent mutant generation (AEMG). The experiment indicated that

SOM in general and JudyDiffOp strategy in particular provide the best results in the following areas: total number of mutants generated;

the association between the type of mutation strategy and whether the generated mutants were equivalent or not; the number of not killed

mutants; mutation testing time; time needed for manual classification. Conclusions. The results in the DEM category are still far from

perfect. Thus, the SEM and AEMG categories have been developed. The JudyDiffOp algorithm achieved good results in many areas.

Index Terms—Mutation testing, equivalent mutant problem, higher order mutation, second order mutation

Ç

1 INTRODUCTION

MUTATION testing is a fault-based technique which
measures the fault-finding effectiveness of test suites,

on the basis of induced faults [12], [21]. Mutation testing
induces artificial faults or changes into an application
(mutant generation) and checks whether a test suite is “good
enough” to detect them. However, there are mutations
which keep the program semantics unchanged and thus can-
not be detected by any test suite. The problem of detecting
equivalence either between two arbitrary programs or two
mutants is an undecidable problem [4], [8], [18], [56], [64]
and is known as the equivalent mutant problem (EMP).

Mutation testing provides a “mutation score” (MS), or
“mutation adequacy”, which is a testing criterion to mea-
sure the effectiveness or ability of a test suite to detect faults
[9], [12], [21], [79]:

MS ¼ MK

MT �ME
; (1)

whereMT is the total number of produced mutants,MK is the
number of killed mutants (where the difference in behavior
between the original program and the mutated one was
observed) andME is the number of equivalent mutants.

There is a range of mutation testing tools like Judy [52],
Javalanche [71] or mJava (MuJava) [46] with MuClipse [73].
Unfortunately, finding equivalent mutants still consumes a
lot of time and there is no automated way to detect all of the
equivalent mutants. Furthermore, as observed by Schuler
and Zeller [72], it takes an average of 15 minutes to assess
one single mutation for equivalence. Therefore, analyzing
real world software projects there is often a need (also in
this paper) to ignore equivalent mutants, which would
mean that we can only measure the mutation score indicator
(MSI) [47], [48], [49], [52]:

MSI ¼MK

MT
: (2)

It is still a valuable measure but not as desirable as obtaining
the mutation score (Equation (1)).

The rest of this paper is organized as follows: Section 2
presents a systematic literature review (SLR) of equivalent
mutant detection methods. The results of the systematic
review (Section 3) indicate that the most promising techni-
ques for handling EMP is higher order mutation (HOM) in
general, and second order mutation (SOM) in particular.
SOM testing strategies found in the systematic review are
presented in detail in Section 4. Those strategies were ana-
lyzed, extended, improved, and implemented in the Judy
mutation testing tool [52] and then empirically evaluated on
a number of open source software items. Section 5 presents
the design and execution of the experiment, while Section 6
presents the results of the analysis concerning various SOM

� L. Madeyski and M. J�ozala are with the Institute of Informatics, Wroclaw
University of Technology, Wyb. Wyspianskiego 27, Wroclaw 50370,
Poland. E-mail: lech.madeyski@pwr.wroc.pl.

� W. Orzeszyna is with the Institute of Informatics, Wroclaw University of
Technology, Poland, and with the Blekinge Institute of Technology,
Sweden.

� R. Torkar is with the Division of Software Engineering, Department of
Computer Science and Engineering, Chalmers University of Technology,
SE-41296 G€oteborg, Sweden.

Manuscript received 22 Apr. 2012; revised 21 Feb. 2013; accepted 25 Aug.
2013; date of publication 27 Sep. 2013; date of current version 24 Feb. 2014.
Recommended for acceptance by T. Menzies.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2013.44

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014 23

0098-5589 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

and first order mutation (FOM) testing strategies. Threats to
validity are discussed in Section 7, while Section 8 discusses
the results. Conclusions and future work are presented in
Section 9.

2 SYSTEMATIC REVIEW

The authors followed the instructions presented by Kitchen-
ham and Charters [40]. As far as we know, there is no previ-
ous systematic literature review regarding the equivalent
mutant problem. The only study which can be classified as
a systematic review is the paper by Jia and Harman [31],
which focused on mutation testing in general and not on
the EMP. In their insightful work, Jia and Harman only
mentioned some of the most crucial methods and, thus, the
relevant research questions posed by us could not be
answered by their review.

Most of the papers found in our preliminary search, e.g.,
[60], [70], [75], include sections such as “Related work,”
where the authors discuss some of the existing approaches.
However, they do not perform an SLR and, thus, only a
small number of the existing methods are introduced in an
ad hoc manner. We were, therefore, not convinced that a
representative sample had been presented previously.

The protocol of our systematic literature review is pub-
licly available online [62].

2.1 Research Questions

Research questions must determine the goal of an SLR [7],
[38], [40], [41], [43]. The objective of this study was to find a
method (or methods) with which we would be able to over-
come the equivalent mutant problem to a possibly most sig-
nificant extent.

� RQ1: Which of the existing methods try to solve the prob-
lem of equivalent mutants?

This is a very general question. In this case gen-
eral ideas are also expected. Some of them might
have been implemented and evaluated, while some
might be theoretical suggestions for further
refinements.

� RQ2: How can those methods be classified?
As a result, the classification of the existing meth-

ods to some general domains and areas is expected.

� RQ3: What is the maturity of the existing methods?
All existing methods will be grouped by their

maturity.

� RQ4: What are the theoretical ideas on how to improve
the techniques which have already been empirically
evaluated?

In this case, all the sources which the authors men-
tion in “Future work” are to be analyzed. Any possi-
ble suggestions which would lead to an increase
in the number of detected equivalent mutants are
welcome.

2.2 Search Terms

For each research question, related major terms were
developed. Synonyms, variations in spelling and structure
(e.g., terms with and without hyphenation) were consid-
ered and accounted for in the queries formed. After

constructing the preliminary search strings, pilot testing
against the search engines was also undertaken in order to
investigate the capability of the search engines, e.g. the
handling of Boolean combinations and sub-query nesting.
The resulting query was as follows:

equivalen* AND mutant* AND (mutation OR testing
OR analysis OR problem* OR issue* OR question* OR
(detect* OR find* OR recognize* OR catch*) AND
(method* OR technique*) OR (method* OR technique*)
AND (classification* OR ranking* OR classified OR cat-
egorization* OR categorization* OR systematization
OR type* OR kind*) OR (method* OR technique*) AND
(empirical* OR evaluat* OR implement* OR develop-
ment OR developed) OR (method* OR technique*)
AND (further OR next OR future OR new) OR
(method* OR technique*) AND (improv* OR progress*
OR enhanc* OR refin* OR increas*)).

The detailed forms (due to differences in search capabili-
ties between various databases) are presented in the SLR
protocol [62]. The title, abstract and keywords of the articles
in the electronic databases were searched according to those
search terms.

2.3 Resources to Be Searched

2.3.1 Database Search

The main information sources to be searched, in the first
iteration, were electronic databases: the ACM Digital
Library, IEEE Xplore, Science Direct, the Springer Link and
the Wiley Online Library.

Those databases were selected because they had been
used as sources for other reviews in this area [31]. Also, we
had a number of “key papers” [6], [20], [25], [56], [58], [59],
[72] and we verified that we could find all of them in the
above databases.

2.3.2 Gray Literature

In order to cover gray literature (not necessarily peer-
reviewed) [68], some alternative sources were investigated:

� Google scholar. We used three search terms for the
first phase, and for each of them checked the first 200
results. The search terms were slightly modified in
order to adopt them to Google scholar and to
improve the effectiveness of the search process. We
used the following search terms:

- equivalen* AND mutant* AND (mutation OR
testing OR analysis)

- equivalen* AND mutant* AND (method* OR
technique*)

- equivalen* AND mutant* AND (problem* OR
issue* OR question*)

� All the proceedings from “Mutation: The International
Workshop on Mutation Analysis” (five editions: 2000-
2010).

� Scanning lists of references in all primary studies1,
according to the snowball sampling method [19].

1. The research papers summarized in the review are referred to as
primary studies, while the review itself is a secondary study [7].

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

� Checking the personal websites of all the authors of
primary studies, in search of other relevant sources
(e.g., unpublished or latest results).

� Contacting all the authors of primary studies. The
authors were contacted in order to make sure that no
relevant material had been missed.

It is also worth mentioning that the Mutation Testing
Repository [32] provides a very thorough coverage of the
publications in the literature on Mutation Testing and,
therefore, is a highly recommended resource.

2.4 Results Selection Process

The following inclusion criteria were taken into account
when selecting the primary studies (it was enough for the
paper to pass one of them):

� Describes at least one method for detecting, suggest-
ing or avoiding equivalent mutants (this could
include proof of concepts, empirically evaluated sol-
utions, as well as theoretical ideas).

� Discusses the classification of the aforementioned
methods.

� Evaluates, analyses or compares the aforementioned
methods.

� Determines the current state of maturity of the meth-
ods dealing with EMP (theoretical ideas/proofs of
concept/empirically evaluated solutions).

� Proposes theoretical ideas on how to improve the
already evaluated methods dealing with EMP.

If the analyzed study referred to one of the previously
selected primary studies, then it additionally drew our
attention but it was not the inclusion criterion per se.

The following type of studies were excluded (exclusion
criteria):

� The article’s language was other than English.

� The full text of the article could not be found.

� The article concerned mutations in the fields of study
other than software engineering or computer science,
e.g., genetics.

2.5 Quality Assessment

In addition to the general inclusion and exclusion criteria, it
is important to assess the quality of primary studies [38].
Study quality assessment was adopted in order to deter-
mine the strength of the evidence and to assign grades to

the recommendations generated by the systematic review
[34]. The questionnaire used in this study was based on the
recommendations by Kitchenham and Charters [40] and
Khan et al. [34] with some specific additions resulting from
our research questions. The quality assessment question-
naire can be found in the SLR protocol [62].

3 REVIEW RESULTS

A detailed process of identifying relevant literature is pre-
sented in Fig. 1. The number of results found and used in
each phase of the SLR are shown in Fig. 1. In the end, we
found 22 primary studies. One of them [59] was a substan-
tial extension of the earlier conference paper [56]. All of the
primary studies, except for one [31], presented methods for
how to deal with the equivalent mutant problem. The
exception, Jia and Harman’s [31] study, is a valuable survey
of the development of mutation testing, which, however,
only lists and briefly describes some crucial approaches.

Below we have ranked the top-five authors, according to
the number of publications. The most active researchers in
the subject of EMP were thus:

1. M. Harman (University College London, UK) [1],
[22], [25], [30], [31].

2. J. Offutt (George Mason University, USA) [56], [57],
[58], [59], [61].

3. R. Hierons (Brunel University, UK) [1], [22], [25].
4. D. Schuler (Saarland University, Germany) [20], [70],

[72].
5. A. Zeller (Saarland University, Germany) [20], [70],

[72].
The literature published by those authors represent

55 percent of all primary studies.
In the following section, each of the previously presented

research questions is examined separately with the help of
the findings from the SLR (see Table 1).

3.1 Which of the Existing Methods Try to Solve the
Problem of Equivalent Mutants?

On the basis of the primary studies, we have found 17 meth-
ods for equivalent mutant detection (in chronological
order):

� Compiler optimizations techniques [6], [58] (1979).

� Using mathematical constraints to automatically
detect equivalent mutants [56], [59] (1996).

Fig. 1. Identifying relevant literature.

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 25

� Using program slicing to assist in the detection of
equivalent mutants [25] (1999).

� Selective mutation [55] (1999).

� Avoiding equivalent mutant generation using pro-
gram dependence analysis [22] (2001).

� Using Bayesian-learning based guidelines to help to
determine equivalent mutants [76] (2002).

� Co-evolutionary search techniques [1] (2004).

� Using equivalency conditions to eliminate equiva-
lent mutants for object oriented mutation operators
[61] (2006).

� Using semantic differences in terms of a running
profile to detect non-equivalent mutants [17] (2007).

� Margrave’s change-impact analysis [54] (2007).

� Using Lesar model-checker for eliminating equiva-
lent mutants [15] (2008).

� Examining the impact of equivalent mutants on cov-
erage [20] (2009).

� Distinguishing the equivalent mutants by semantic
exception hierarchy [28] (2009).

� Higher order mutation testing [30], [37], [57], [63]
(2009).

� Using a fault hierarchy to improve the efficiency of
the DNF logic mutation testing [33] (2009).

� Using the impact of dynamic invariants [70]
(2009).

� Examining changes in coverage to distinguish equiv-
alent mutants [69], [72] (2010).

The paper’s length limit does not allow us to explain the
details of the aforementioned methods, as the number of
the latter is quite large. The details of the methods, however,
are described in the references we cite above (each of the
techniques found in this review has at least one reference).
The readers interested in the basics of software testing in
general, and mutation testing in particular, are expected to
look through books [2], [78] which complement the above
mentioned references and extend the coverage of the topic.

Fig. 2 shows how the primary studies are distributed
according to programming language implementation. Java,
Fortran and C are the three languages with the highest
rank. Early work on dealing with equivalent mutants

Fig. 2. Percentage of primary studies (methods only) addressing the
equivalent mutant problem in different programming languages.

TABLE 1
Primary Studies

TI - Theoretical idea; PoC - Proof of concept; EE - Empirically evaluated.

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

(including some avoidance rules) were carried out using
Fortran [36]. For C programs, the tools Proteum [11], MILU
[29] or Csaw [17] were used; while for Java programs, it was
muJava [46] and the more recent Javalanche [71] and Judy
[52]. There were no publications describing solutions for the
EMP applied in C# and C++. For example in CREAM [13],
[14] (a mutational tool for C#), equivalent mutants were
identified by hand.

3.2 How Can the Equivalent Mutant Detection
Methods Be Classified?

There was no classification of equivalent mutant detection
methods proposed in any of the papers found. Even the latest
analysis and survey of the development of mutation testing
by Jia and Harman [31] has not provided any categorization
yet, only a list of some important approaches in chronologi-
cal order. Due to the amount of research in this field, some
sort of early classification would be helpful to summarize
existing the techniques and to help indicate future work.

Two approaches to grouping have been considered. The
first one—according to the application domain of the pro-
posed solution (e.g., compiler optimization techniques or co-
evolutionary approaches) and the second—according to the
character of the obtained results (e.g., direct indication, sug-
gestion, etc.) During the data extraction process we have
noticed that almost all of the included techniques in the pri-
mary studies have their origins in different and unique areas
of computer science. With such a classification, we would
get many categories containing primarily one or, at the most,
two methods. (That might be a good solution after some
time, if this area continues to grow.) Moreover, as shown in
the answer to the fourth question, the majority of the pro-
posed approaches combine solutions from more than one
field of study. Therefore, we would like to propose the classi-
fication of methods based on the collected data (especially as
found in the column “Method Effectiveness” in Table 1).

Our classification distinguishes between three main cate-
gories of methods used to overcome the EMP (for sake of
brevity when there is more than one publication discussing
the topic we have sometimes introduced a new description
of a method):

1. Detecting equivalent mutants techniques

a. Compiler optimizations techniques [6], [58]
(1979).

b. Mathematical constraints to automatically detect
equivalent mutants [56], [59] (1996).

c. Program slicing to assist in the detection of
equivalent mutants [25] (1999).

d. Semantic differences in terms of running profile
to detect non-equivalent mutants [17] (2007).

e. Margrave’s change-impact analysis [54] (2007).
f. Lesar model-checker for eliminating equivalent

mutants [15] (2008).
2. Avoiding equivalent mutant generation techniques

a. Selective mutation [55] (1999).
b. Avoiding equivalent mutant generation using

program dependence analysis [22] (2001).
c. Co-evolutionary search techniques [1] (2004).
d. Equivalency conditions to eliminate equivalent

mutants for object-oriented mutation operators
[61] (2006).

e. Fault hierarchy to improve the efficiency of DNF
logic mutation testing [33] (2009).

f. Distinguishing the equivalent mutants by
semantic exception hierarchy [28] (2009).

g. Higher order mutation testing [30], [37], [57],
[63] (2009).

3. Suggesting equivalent mutants techniques

a. Using Bayesian-learning based guidelines to
help to determine equivalent mutants [76] (2002).

b. Examining the impact of equivalent mutants on
coverage [20] (2009).

c. Using the impact of dynamic invariants [70]
(2009).

d. Examining changes in coverage to distinguish
equivalent mutants [69], [72] (2010).

Fig. 3 shows the distribution of primary studies over the
years. It is quite clear that recently researchers have focused
more on two categories of methods to overcome the EMP:
avoiding equivalent mutant generation and suggesting
equivalent mutants. We can only speculate as to the reason
behind that tendency, but a plausible explanation is that
detection techniques are also very hard to implement, and
few researchers in the past decade have tackled testing
problems which require hard programming. Beyond Off-
utt’s research on software testing coupling effects and
higher order mutation testing from 1992 [57], which actually
was not focused on the EMP per se (it was not considered to

Fig. 3. Classified solutions of equivalent mutant problem from 1992-2010 (cumulative view).

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 27

be the main benefit of this technique), we can claim that the
first and most obvious way of dealing with equivalent
mutants are the equivalent mutant detection techniques
(the first category). The most effective approach from this
category detects 47.63 percent of the equivalent mutants
and finds over 70 percent of unreachable statements [56],
[59]; however, such a solution still needs a lot of manual
and error-prone work. An advantage of detecting techni-
ques is that they give no false positives, as suggesting equiv-
alent mutants does. On the other hand, detecting techniques
can never be complete. In summary, all three categories are
thus complementary.

With the beginning of the 21st century, two new
approaches began to be considered. Ever since then, the
best method for suggesting equivalent mutants to a soft-
ware tester has been considered to be the technique of
assessing the impact of a mutant’s internal behavior as pro-
posed by Schuler and Zeller [72]. If it is observed that the
mutation changes coverage, it has a 75 percent chance of
being non-equivalent.

From the group of techniques which avoid equivalent
mutant generation, two recent studies provide interesting
results. Both of the papers are empirical evaluations of
higher order mutation testing. The method implemented by
Papadakis and Malevris [63] for the C programming lan-
guage leads to the reduction of approximately 80-90 percent
of the generated equivalent mutants. For the Java language,
according to Kintis et al. [37], the obtained results vary from
65.5 percent for HDomð50 percentÞ to 86.8 percent for the
SDomF strategy with the loss of test effectiveness being
only 1.75 percent for HDomð50 percentÞ and 4.2 percent for
SDomF .2

As Table 1 indicates, only a small number of studies pro-
vide explicit results, which, thus, makes it difficult to com-
pare methods.

3.3 What Is the Maturity of Existing Methods?

In order to categorize further the identified methods we
have distinguished between three categories: theory (six
studies), proof of concept (two studies) and empirically
evaluated methods (thirteen studies). In short, 62 percent
of the studies are classified as being empirically
evaluated.

Fig. 4 shows the number of techniques by year (1979-
2010). It is clear that the number of published studies in
recent years is growing and most of the recent techni-
ques are empirically evaluated. That provides some evi-
dence corresponding with the results obtained for
mutation testing in general by Jia and Harman [31] that
EMP, like the overall field of mutation testing, is moving
from theory to practical solutions.

3.4 What Are the Theoretical Ideas on How to
Improve Already Empirically Evaluated
Techniques?

Seven out of 13 (54 percent) publications which contain
empirical evaluation present ideas on how to improve the
proposed methods. Furthermore, the authors of three theo-
retical studies have also provided some ideas for future
work, hence, a total of 50 percent of the primary studies sug-
gests future improvements.

Some authors have ideas on how to use two methods in
tandem [22], [25], like for example Hierons et al. [25], in
which the authors want to use a constraint solving tech-
nique together with program slicing. Other ideas are based
on solving the problems which occurred in their specific
studies [15], [56]. A very common suggestion is to consider
some other possibilities [20], [28], [58], [70], [76], e.g.,
Schuler et al. [70] and Gr€un et al. [20] mention alternative
impact measures, while Ji et al. [28] propose also to consider
weak and firm mutations in higher order mutation testing.

Fig. 4. Solutions of the equivalent mutant problem by maturity from 1979-2010 (cumulative view).

2. HDomð50 percentÞ and SDomF are the names of the mutation
testing strategies evaluated by Kintis et al. [37]. It is worth mentioning
that 50 percent in the name of the former strategy comes from the fact
that besides SOMs generated by the strategy on a basis of FOMs, a ran-
domly selected subset of the 50 percent of the remaining FOMs is
included in the generated set of mutants. Hence the HDom(50 percent)
strategy produces both FOMs and SOMs.

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

3.5 Limitations of the Review

This section presents the limitations of our SLR, in order
to assess the validity of the outcome. The findings of this
systematic review may have been mainly affected by the
following limitations: difficulty in finding all the relevant
studies (including gray literature); bias in the selection
of the reviewed papers; inaccuracy in data extraction;
inaccuracy in classifying the reported approaches; inac-
curacy in assigning scores to each study of each element
for the quality assessment criteria; and possible misinter-
pretations due to the fact that English is not the native
language of the authors.

Finding all the relevant papers is known to be one of the
major problems of systematic literature reviews [42]. In this
case, we used an automated search of five main sources.
However, we did not look into every possible source. The
chosen databases were selected on the basis of the experien-
ces shared by other groups [31], [41], [42].

Our search strings were designed to find the maxi-
mum number of known approaches towards EMP but it
is still possible that we have left out the studies which
might describe their subject in terms other than
“equivalent mutant.”

Due to the growing interest and the number of publica-
tions in the research area of mutation testing, some relevant
papers may have been omitted. However, like other
researchers of SLR, we are confident that it is not a system-
atic error [26], [35].

In addition, we found it to be a good practice to include
gray literature search in order to make sure we covered non-
published work to some extent [39]. For that reason, when
considering gray literature, we took a large number of sour-
ces into account (e.g. Google Scholar, the personal webpages
of authors and snowball sampling). The final step was to con-
tact all relevant authors to review our list of primary studies.

In order to avoid subjective bias, it is helpful to follow
the best practices suggested by the SLR practitioners. For
example, it is recommended that three researchers be
involved in the literature review process [5]. For both
the screening and data extraction phases three people
were involved in order to avoid subjective bias and to
resolve doubts and discrepancies.

To ensure that the selection process during the detailed
assessment of the papers’ full text was entirely independent,
we recorded the motivations for its inclusion or exclusion;
then we verified the findings according to the inclusion and
exclusion criteria from the SLR protocol. During full text
screening we had some discrepancies, e.g. an article by
Mresa and Botacci [55] was initially excluded by one of the
researchers but we finally decided to include it due to
the description of selective mutation from the perspective of
the equivalent mutant problem.

The process of classifying the approaches towards EMP,
as well as classifying the maturity (theoretical ideas, proofs
of concept and empirically evaluated solutions), involved
subjective decisions on the part of the researchers. To mini-
mize these limitations, whenever there was a doubt on how
to classify a particular paper, we discussed the case in order
to resolve all discrepancies and doubts. During the data
extraction phase we found several papers which lacked suf-
ficient details regarding method effectiveness, i.e. in our

sample of 22 papers only eight papers provided details
regarding the method’s effectiveness. Due to that limitation,
we were unable to compare methods and offer a complete
view of their effectiveness.

Since English is not the native language of any of the
researchers involved in this study, there is a risk that some of
the papers have been misinterpreted during any of the stages
of the performed literature review. On the other hand, all the
decisions and results were checked by all of the authors.

3.6 Conclusions of the Systematic Review

The first part of the paper provided a detailed review of the
EMP area. As has been shown, the last 20 years have wit-
nessed a particularly large increase in the number of
approaches on how to solve the EMP, with many of them in
an advanced maturity stage.

So far, the paper has identified the existing methods for
EMP and provided data in order to highlight the growth of
the number of papers. The collected data also offer sugges-
tions on how to improve these techniques. In addition, we
have proposed a detailed categorization of the existing
approaches, i.e., detecting, suggesting and avoiding equiva-
lent mutant generation.

One contribution of our SLR, in comparison to Jia and
Harman’s survey [31], is a more complete list of the existing
solutions for the equivalent mutant problem. With a thor-
ough analysis of the available sources, including coming
into contact with all relevant authors and scanning their
personal websites, more methods have been identified. We
have investigated avoiding equivalent mutant generation
techniques as an additional group of approaches and found
some omitted methods in other categories. Obviously,
by focusing only on the equivalent mutant problem and
having more delimited research questions, our study
consequently supplies more detailed results from the EMP
perspective. It is important to mention, though, that taking
a subset of Jia and Harman’s results regarding EMP
will not give as complete a view on EMP as our SLR actu-
ally does.

The most promising technique for overcoming EMP
seems to be higher order mutation in general, and second
order mutation in particular. SOM has potential advantages
to be of benefit for mutation testing tools, e.g. reducing the
number of equivalent mutants [30], [57], [63] and reducing
test effort (testing time) due to a reduced number of pro-
duced second order mutants (SOMs) [30], [63]. Furthermore,
the manual assessment of mutant equivalence in the case of
second order mutants should be fast. If the first of two first
order mutants (combined to produce a second order mutant)
is non-equivalent then it is very likely that the second order
mutant will be non-equivalent too [65, Table I]. Hence, for
the remaining part of the paper, we will focus on the SOM
testing strategies, present implementations of the SOM strat-
egies in the Judy mutation testing tool for Java [52], and
empirically evaluate those implementations.

4 HIGHER ORDER MUTATION TESTING

STRATEGIES

Higher order mutation testing was initially introduced in
the context of the mutant coupling effect in 1992 by Offutt.

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 29

Offutt showed that “the set of test data developed for FOMs
actually killed a higher percentage of mutants when applied
to SOMs” [57].

Jia and Harman [30] distinguished between six types of
HOMs and created a categorization of HOMs. They intro-
duced the concept of subsuming and strongly subsuming
higher order mutants (subsuming HOMs are harder to kill
than FOMs from which they are constructed). The authors
suggested that it might be preferable to replace constituent
FOMs with a single HOM as a cost reduction technique. In
particular, strongly subsuming HOMs are highly valuable
to the mutation testing process. They are only killed by a
subset of the intersection of test cases which kill each con-
stituent FOM. As we may see via analysis of the types of
HOMs discussed by Jia and Harman [30], there is no simple
relation between killabilities (defined as how hard it is to
kill the mutant) of HOM and the FOMs the HOM is con-
structed from. Jia and Harman also concluded that “the
numbers of strongly subsuming HOMs is high and intro-
duced a search-based optimization approach to select valu-
able HOMs” [30].

It is also worth mentioning that there is some empirical
evidence to suggest that the majority of real faults are com-
plex faults [16], [66]. A complex fault is a fault that cannot
be fixed by making a single change to a source statement
[57]. Such complex faults could only be simulated by higher
order mutation [23]. The empirical results by Purushotha-
man and Perry [66] also reveal that there is less than 4 per-
cent probability that a one-line change will introduce a fault
in the code. All of those arguments make HOM an interest-
ing alternative to evaluate to FOM.

Langdon et al. [44] applied multi objective Pareto optimal
genetic programming to a generation of HOMs. Their algo-
rithm evolves mutant programs according to two fitness
functions: semantic difference and syntactic difference. In
their experiment, they found realistic HOMs which are
harder to kill as compared with first order mutants.

The opposite approach to selecting an optimal set of
HOMs, according to the results from the mutation analy-
sis of FOMs, is a technique used by Polo et al. [65]. They
introduced three different algorithms (Last2First, Differen-
tOperators, and RandomMix) to combine FOMs to generate
second order mutants. Empirical results suggest that
applying SOMs reduced the number of mutants by
approximately 50 percent, without much decrease in the
quality of the test suite.

Algorithms from the study by Polo et al. [65] were fur-
ther investigated by Papadakis and Malevris [63], in partic-
ular, from the perspective of EMP. The results of their
empirical study are promising: equivalent mutant reduction
between 85.65-87.77 percent and fault detection ability loss
from 11.45-14.57 percent. They indicate that SOMs can sig-
nificantly decrease the number of introduced equivalent
mutants and, because of approximately 50 percent mutants
reduction, be a valid cost effective alternative.

Kintis et al. [37] presented another empirical study of
higher order mutation testing strategies. They focused on
the fact that SOMs achieve higher collateral coverage for
strong mutation as compared with third or higher order
mutants. A set of new SOM testing strategies was intro-
duced and evaluated. The authors obtained the most

promising results using hybrid strategies. Equivalent
mutant reduction varied between 65.5 percent for
HDomð50 percentÞ and 86.8 percent for the SDomF strategy,
with a loss of test effectiveness from just 1.75 percent for
HDomð50 percentÞ to 4.2 percent for SDomF .

The short verbal description of algorithms given by
Polo et al. [65] appears to be open to interpretation. As a
result, there is no guarantee that our versions of the
Last2First and RandomMix algorithms act in exactly the
same manner as proposed by Polo et al. That sounds
like a disadvantage but, fortunately, appears to be an
advantage as well, because our version of the Differen-
tOperators algorithm (called JudyDiffOp) not only signifi-
cantly differs from the original one but also outperforms
Polo’s et al. version. To help other researchers and prac-
titioners replicate our study, we decided to include in
the paper a detailed pseudo-code of the algorithms eval-
uated in our study (Algorithms 1-4).

The first algorithm proposed by Polo et al. [65] is the Last2-
First algorithm. It needs the list of first-order mutants in the
order in which they were generated. Last2First combines the
first mutant with the last, then the second with the next-to-
last, and so on. Each first-order mutant is used once, except
when the number of first-order mutants is odd. In that case,
one mutant is used twice. The number of generated second-
order mutants is reduced to half of the number of first-order
mutants. The pseudo-code of the Last2First algorithm is pre-
sented as Algorithm 1.

In the DifferentOperators strategy the combination of
first-order mutants is made by selecting pairs that use
mutants produced by different operators. The short

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

verbal description of algorithms given by Polo et al. [65]
leads to a situation where that can be interpreted differ-
ently. In the version implemented in the Judy mutation
testing tool (hence called JudyDiffOp) each first-order
mutant is used as little as possible (i.e., both constituent
FOMs are used only once for producing a SOM). Our
version gives at least a 50 percent mutants reduction and
we find it hard to obtain the level of reduction as
achieved by [63], [65]; however, it appears that our ver-
sion outperforms Polo’s version. The pseudo-code of the
JudyDiffOpalgorithm is presented as Algorithm 2.

RandomMix is the last algorithm from the set proposed by
Polo et al. [65]. To allow for a comparison of the two previ-
ous algorithms with pure chance, that algorithm combines
any two first-order mutants, using each mutant once. Simi-
larly to Last2First, when the number of first-order mutants
is odd, one of the mutants is used twice. By definition Ran-
domMix reduces the number of generated second-order
mutants by half, with respect to first-order mutants. The
pseudo-code of the RandomMix algorithm is presented as
Algorithm 3.

In contrast to the Last2First algorithm, we would like to
introduce the NeighPair strategy. It combines FOMs which
are as close to each other as possible, i.e., a list of mutation
points for FOMs is created and neighboring pairs are
selected to construct SOMs. The number of generated SOMs
is, thus, reduced by half. The pseudo-code of the NeighPair
algorithm is presented as Algorithm 4.

It is also worth remembering that our SOM strategies do
not search for subsuming HOMs.

5 EXPERIMENTAL SETUP

The aim of the experiment was to answer the following
research questions:

� RQe1: What is the reduction in the number of mutants for
the SOM strategies as compared with FOM?

� RQe2: What is the reduction in the number of equivalent
mutants for the SOM strategies as compared with FOM?

� RQe3: What is the reduction in the number of live
mutants for the SOM strategies as compared with FOM?

� RQe4: What is the relative change in mutation scores for
each of the investigated SOM strategies as compared with
FOM?

� RQe5: What is the reduction of mutation testing time
using the SOM strategies as compared with FOM?

� RQe6: What is the potential reduction in the time required
to assess whether each of the mutants is equivalent or non-
equivalent?

5.1 Software under Test (SUT)

In most of the papers [23], [29], [30], [37], [44], [63]
related to higher order mutant generation strategies the
benchmark programs (SUT) were small (50-5,000 lines of
code, or LOC). Only Polo et al. [65] applied their strate-
gies to a SUT which had more than 10,000 lines of code.
However, the most important concern regards the scal-
ability of using mutation when we have thousands of
classes. Solving that is as much about automation (by

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 31

means of mutation testing tools which are able to
smoothly integrate with different software development
infrastructures) as about reducing the number of mutants
(which we will discuss in the paper). Judy mutation test-
ing tool for Java helped us to deal with both concerns.

For our experiment, we selected four open source proj-
ects, which are larger (in terms of lines of code) than those
analyzed by other researchers [23], [29], [30], [37], [44], [63],
have high quality test cases and high branch coverage. We
assumed that such programs would represent software
developed in the industry and allow us to draw unbiased
conclusions to some extent. Table 2 presents our software
under test. Apart from the LOC, branch coverage, number
of classes and test cases, we also included the mutation
score indicator [47], [48], [49], which is a quantitative mea-
sure of the quality of test cases, defined as the ratio of killed
mutants to all mutants (see Equation (2)).

This definition is different from mutation score, as MSI
ignores equivalent mutants. Hence, MSI can be seen as the
lower bound on mutation score.

The following projects have been selected for the
experiment:

� Barbecue3—is a library that provides the means to
create barcodes for Java applications.

� Apache Commons IO4—is a library of utilities to assist
with developing input/output functionality.

� Apache Commons Lang5—provides a host of helper
utilities for the standard java.lang package, including
operations on strings, collections, dates, etc.

� Apache Commons Math6—is a wide set of utilities for
mathematical and statistical operations.

5.2 Supporting Tool

For the experiment we have used Judy [52], a mutation test-
ing tool for Java, which supports all three mutation testing
phases: mutant generation, mutant execution and mutation
analysis. We have extended the latest version of Judy [53]
with second-order mutation testing mechanisms. The list
and description of all 48 mutation operators available in
Judy is presented in Table 3.

5.3 Experimental Procedure

In the first phase we implemented all of the investigated
strategies in Judy. Next, four 7-80 KLOC, open source pro-
grams were chosen (see Section 5.1) for an empirical evalua-
tion. We first applied FOM testing on each SUT. In this way
the number of all generated mutants, the number of all live
mutants, and the MSI metric were obtained. Then, the com-
parison was performed with each SOM strategy. Each of the
examined strategies were applied to each SUT, i.e., for four
programs we applied five strategies (i.e., four SOM strate-
gies as well as the FOM strategy).

To answer the second research question, all of the results
were verified manually in order to identify possible equiva-
lent mutants. However, determining the exact number of
equivalent mutants was not the purpose of this study. In
fact, it is a tedious and very time-consuming task [72], due to
the large number of mutants in real world projects and the
time necessary to assess whether each of the mutants is
equivalent or non-equivalent (about 15 minutes according to
Schuler and Zeller [72]). As the cost of manually collecting
data for too many mutants is prohibitive, we needed to set a
sample size out of convenience, i.e., we decided to manually
analyze 50 randomly selected live mutants per strategy per
SUT. As a result, we manually classified 1,000 mutants (five

TABLE 2
Software under Test

3. http://barbecue.sourceforge.net/.
4. http://commons.apache.org/io/.
5. http://commons.apache.org/lang/.
6. http://commons.apache.org/math/.

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

mutation strategies � four SUT � 50 mutants per sample) as
equivalent or non-equivalent. During this process we kept in
mind the characteristics of second order mutants’ constitu-
ents, as introduced by Polo et al. [65, Table I].

The next section presents the comparisons regarding the
reduction in the number of mutants (to answer RQe1), the
reduction in the number of equivalent mutants (RQe2),
the reduction in the number of live mutants (RQe3), the rel-
ative change in mutation scores (RQe4), the reduction of
time required for mutation testing (RQe5) and the potential
reduction in the time required to assess whether each of the
second order mutants is equivalent or non-equivalent in
comparison with first order mutants (RQe6).

6 EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results derived from the application of the
FOM testing and the four SOM testing strategies are pre-
sented and analyzed in this section.

6.1 Mutant Reduction

For each of the analyzed projects and investigated strate-
gies, the number of generated first order mutations was

compared with the number of produced second order muta-
tions. The results are presented in Table 4. Decreasing the
number of mutants (called mutants reduction) makes the
process of mutation testing more efficient, since execution
time decreases.

RandomMix, Last2First and NeighPair strategies
achieved a reduction (approx. 50 percent) consistent with
theory (see Section 4), as well as the results from the
studies of Polo et al. [65] and Papadakis and Malevris
[63] (except, of course, for the NeighPair algorithm, which
has not been previously evaluated). The highest mutant

TABLE 3
Mutation Operators Available in Judy Mutation Testing Tool

TABLE 4
Total Number of Mutants Using First Order Mutation and

Different Second Order Mutation Strategies

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 33

reduction was obtained by the JudyDiffOp strategy. The
explanation is simple, the JudyDiffOp strategy by defini-
tion does not create SOMs from two consecutive FOMs, if
the latter involve the same operator. Hence, the number
of SOMs created according to the JudyDiffOp strategy
is less, and the reduction is higher (i.e., well over
50 percent).

It is worth noting that Papadakis and Malevris [63]
only achieved a 27.68 percent reduction on average. This
discrepancy in the results most likely stems from the dif-
ferences in the implementations of the algorithms. In our
version of the DifferentOperators algorithm (i.e., JudyDif-
fOp), both constituent FOMs were used only once for
producing a SOM. This algorithm removes at least half
the number of generated mutants. Consequently, with
this version of DifferentOperators it is impossible to obtain
mutant reductions at a level similar to Papadakis and
Malevris [63]. Unfortunately, the authors of the original
algorithm did not make available its code or pseudo-
code, only a plain-text description, which is not precise
enough to replicate their version of the algorithm. We
can still declare with certainty that our modified version
of the DifferentOperators algorithm (called JudyDiffOp)
provides the highest mutants reduction. (We have
included the pseudo-code of our implementation as
Algorithms 1, 2, 3, and 4.)

On the basis of the empirical results (presented in this
section) and statistical analysis of mutants reduction

(described in detail in [51, Appendix A1]) one may come to
the conclusion labelled as Finding 1.

Other findings are discussed in subsequent sections.

6.2 Equivalent Mutant Reduction

This section presents the achieved reductions of the intro-
duced equivalent mutants. Two of the authors manually
classified samples of live mutants. Following the experi-
mental procedure described in Section 5.3, 1,000 mutants
were manually classified in total, i.e., 50 mutants for each of
the analyzed SUT (Barbecue, Commons IO, Commons
Lang, Commons Math) and each of the analyzed mutation
strategy (FOM, RandomMix SOM, Last2First SOM, JudyDif-
fOp SOM, NeighPair SOM). The obtained results are shown
in detail in Table 5. In each sample of 50 manually classified
unkilled mutants in the SUTs, we found between 11 (in
Commons Math) and 33 (in Barbecue) equivalent mutants
using FOM, but only seven to nine equivalent mutants
applying the RandomMix strategy, five to six equivalent
mutants applying the Last2First strategy, four to six equiva-
lent mutants applying the JudyDiffOp strategy, and 11-25
equivalent mutants applying the NeighPair strategy. Our
results are in line with the results obtained by Schuler and
Zeller [69], [72]. They found, by manual assessment of 140
uncaught mutations in seven Java programs, that 45 percent
of all uncaught mutations were equivalent. We also agree
with their explanation, which applies to our work as well,
that this high number, although it may come as a surprise,
comes from the fact that several non-equivalent mutants are
already caught by the test suite.

Equivalent mutant reduction with respect to the FOM
strategy is presented in Fig. 5. This figure brings out more

Fig. 5. Equivalent mutant reduction with respect to first order mutation.

TABLE 5
Number of Equivalent Mutants in a Sample (50 Unkilled

Mutants) Using First Order Mutation (FOM) and Different
Second Order Mutation (SOM) Strategies

34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

interesting findings and leads to four valuable conclusions.
First of all, we should admit that all three strategies pro-
posed by Polo et al. [65] reduce the number of equivalent
mutants. By applying them to larger and more complex
projects than in earlier publications, we provide even better
indications of their value.

For NeighPair—the new algorithm proposed by us—we
obtained disappointing results. Equivalent mutant reduc-
tion was observable only for Barbecue. For the Commons
IO and Lang projects, that strategy generated more equiva-
lent mutants than the FOM strategy. From the perspective
of equivalent mutant reduction, the NeighPair strategy gen-
erated the worst results.

Our second algorithm, JudyDiffOp, is based on the Differ-
entOperators idea by Polo et al. [65]. The algorithm generates
the least equivalent mutants and from the perspective of the
equivalent mutant problem seems to be the best choice. The
results published by Papadakis and Malevris [63] are in con-
tradiction with our results. In their study Last2First has the
highest reduction (87.77 percent), followed by RandomMix
(87.11 percent) and, finally, DifferentOperators (85.65 per-
cent). In our study, the differences between reductions
obtained for each strategy are not as small. A plausible
explanation for the aforementioned differences comes from
possible discrepancies between the textual descriptions
provided by Polo et al. [65] and the algorithms which are
described in the pseudo-code (Algorithms 1-4) and imple-
mented by us.

The last conclusion is that the highest reduction was
achieved for Barbecue; the smallest project (in terms of lines
of code), with the lowest branch coverage and lowest MSI.
The results obtained for Barbecue are close to the results pre-
sented by Papadakis and Malevris [63], who only analyzed
small projects (7 projects with a number of LOC below or
equal to 513 and one project with LOC below 6 KLOC). They
also achieved approximately 80 percent less equivalent
mutants. It was observed that equivalent mutant reduction
decreases with the increase in LOC (see Fig. 6) or branch cov-
erage (see Fig. 7) for all the strategies except NeighPair.

The observed results are in line with our expectations (as
the SOM approach hides equivalent mutants behind killable
mutants or, looking from a different perspective, excludes
equivalent mutants by combining them with the non-equiv-
alent ones) but SOM strategies still differ between each
other with regard to the number of equivalent mutants and
this information can be of practical importance.

On the basis of the empirical results (presented in this
section) and statistical analysis of the equivalent mutants
reduction (described in detail in [51, Appendix A2]) one
may come to the conclusion labelled as Finding 2.

Other findings, e.g. related to the loss in testing strength,
are discussed in subsequent sections.

6.3 Live Mutant Reduction

Table 6 presents the numbers of not killed (live) mutants
which had to be classified as equivalent or non-equivalent.
It is fairly easy to observe that the JudyDiffOp exhibits the
best results among these four algorithms.

On the basis of the empirical results (presented in this
section) and statistical analysis of the live mutants reduction
(described in detail in [51, Appendix A3]) one may come to
the conclusion labelled as Finding 3.

The magnitude of the observed effect is an indicator of its
practical importance which, in turn, comes from the
extremely high cost of manual classification of not killed
mutants (as equivalent or non-equivalent).

Fig. 7. The ratio of equivalent mutant reduction to the project’s branch
coverage.

TABLE 6
Number of Live (i.e., Not Killed) Mutants in the Population

Using First Order Mutation and Different Second Order
Mutation Strategies

Fig. 6. The ratio of equivalent mutant reduction to lines of code in the
project.

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 35

6.4 Relative Change in Mutation Score Estimations
(RCMSE)

We measured the relative change in mutation score estima-
tions for each SOM (HOM) strategy in comparison to FOM.
It allowed us to compare the FOM and the SOM results in
mutation score estimations employing results from manual
classification of 1,000 live mutants as equivalent or non-
equivalent. The detailed results of the manual classification
of live mutants are presented in Section 6.2, while the exper-
imental procedure (including sampling strategy) is
described in Section 5.3.

The basic terms needed to define our RCMSE metric
(the relative change in mutation score estimations) are as
follows: MK is the number of killed mutants in the ana-
lyzed mutation strategy (FOM or SOM), MT is the total
number of produced mutants (i.e., killed and live
mutants added up: MK þML) in the analyzed mutation
strategy (FOM or SOM) and bME is the estimated number
of equivalent mutants in the analyzed mutation strategy
(FOM or SOM). The estimated number of equivalent
mutants (bME) comes from the number of live mutants
(ML) and the ratio of equivalent mutants in the manually
classified sample (REsample). The ratio of equivalent
mutants in the manually classified sample is defined as
follows: REsample ¼

MEsample

SampleSize, where MEsample is the num-
ber of equivalent mutants in the manually classified sam-
ple, while SampleSize is the number of mutants in the
each manually classified sample, i.e. fifty mutants per
each of the analyzed projects and each of the analyzed
mutation strategy.

Let dMSFOM and dMSs be the estimations of the mutation
score for the FOM and SOM strategies, respectively,
obtained from the following equation:

dMS ¼ MK

MT � bME

¼ MK

MT � ðMA �REsampleÞ
¼ MK

MT � ðML �
MEsample

SampleSizeÞ
: (3)

Having all the basic ingredients defined we may define
our RCMSE metric as follows:

RCMSE ¼
dMSs �dMSFOM

dMSFOM
: (4)

Both, FOMs and SOMs were generated by using the Judy
mutation testing tool for Java. Mutation operators imple-
mented in Judy are presented in detail in Table 3. It is worth

mentioning that removing all equivalent mutants first is not
feasible if we analyze real world projects, i.e., the large num-
ber of mutants, as we did.

Our RCMSE metric is expressed as a ratio and is a unit-
less number. By multiplying this ratio by 100 it can be
expressed as percentage, so the term percentage change in
mutations score estimations may also be used.

Table 7 presents results regarding RCMSE and confirms
(as we expected) that there is some difference in mutation
score estimations between FOM and SOMs.

This finding can be seen as a disadvantage of the SOM
strategies, as it may suggest that our second order mutants
could be easier to kill than first order mutants. Furthermore,
the relative change grows over 0.1 in 11 of 16 subjects. There-
fore, we will further investigate this issue in Section 6.5.

6.5 Relative Change in Mutation Score Indicators
(RCMSI)

We measured the relative change in mutation score indi-
cators for the SOM strategy (or the HOM strategy in gen-
eral) in comparison to FOM. We named the metric the
relative change in mutation score indicators and defined
as follows:

RCMSI ¼MSIs �MSIFOM
MSIFOM

; (5)

where MSIFOM is the mutation score indicator (see Equation
(2)) calculated by means of the classic FOM strategy, while
MSIs is the mutation score indicator calculated by means of
the analyzed SOM/HOM strategy (s).

Our RCMSI metric is also expressed as a ratio and is a
unitless number. By multiplying this ratio by 100 it can be
expressed as percentage, so the term percentage change in
mutations score indicators may also be used. Summarizing,
our RCMSI metric allows us to compare the FOM and the
SOM results in mutation score indicators.

Table 8 presents results regarding RCMSI and confirms
(as we expected) that there is some difference in mutation
score indicators between FOM and SOMs.

TABLE 7
Relative Change in Mutation Score Estimations

TABLE 8
Relative Change in Mutation Score Indicators

36 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

The obtained results suggest that unit tests included in
the analyzed software projects killed proportionally
fewer first order mutants than second order mutants in
all of the projects and all of the SOM strategies. Further-
more, the relative change grows over 0.1 in 12 of 16 sub-
jects. These results strengthen the conviction from
Section 6.4 that our second order mutants appear to be
easier to kill then first order mutants. Hence, further
research will be focused on obtaining better higher order
mutants. A promising way to achieve that goal, sug-
gested by Harman et al. [23], [29], [30], [45], is to search
for the HOMs which can subsume their first order coun-
terparts (a subsuming HOM is harder to kill than the
FOMs from which it is constructed), thereby reducing
test effort without reducing test effectiveness.

6.6 Time of Mutation Testing Process

One of the main reasons why mutation testing is not
used in industrial projects is the fact that it is a highly
time-consuming process. Fortunately, in our case, the
number of generated mutants decreased by 50-72 percent
due to the applied SOM strategies (72 percent was
obtained in Barbecue project when the JudyDiffOp SOM
strategy was used, see Table 4). As a result, SOM caused
a useful reduction in the time needed for testing mutants
even though there is some overhead for generating the
second order mutants instead of the first order ones.
Fortunately, SOM generation time accounts for only
about 3 percent of the total time. The total time spent on
the mutation testing process is presented in Table 9.

The overall time for running the JudyDiffOp SOM
strategy dropped 67 percent on average, as compared
with first order mutation. It may be noticed that those
results are strictly related to the reduction of generated
mutants as presented in Table 4, e.g., the average reduc-
tion of mutants in the case of the JudyDiffOp SOM strat-
egy equals 63.5 percent.

On the basis of the empirical results (presented in this
section) and statistical analysis of the mutation testing time
(described in detail in [51, Appendix A4]) one may arrive at
the conclusion labelled as Finding 6.

6.7 Manual Mutants Classification Time

The time required for manual assessment (whether the
mutant is equivalent or non-equivalent) is well known as
one of the vital problems in mutation testing. As
observed by Schuler and Zeller [72], it takes on average
14 minutes and 28 seconds to assess one single first
order mutation for equivalence. We have measured the
classification time for FOMs as well as SOMs, as an
extension of Schuler and Zeller’s study and, as in their
investigation, the variance was high. The minimum clas-
sification time for FOM was 2 minutes 5 seconds, while
the maximum was 26 minutes 40 seconds. For SOMs, the
boundary classification time was 55 seconds and 26
minutes. The obtained results are shown in Table 10. We
assessed 200 FOMs (sample size of 50 mutants for each
of the four projects) and 800 SOMs (sample size of 50
mutants; four strategies for each of the four projects—all
randomly selected).

One can easily see that the average classification time
for the SOM strategies is shorter than for FOM. This might
be explained as the effect of the second order mutations’
characteristics, as described in detail by Polo et al. [65],
Table 1], e.g. if one of the constituent first order mutations
involves examining large parts of the program we can,
instead, focus on the second constituent FOM which might
be easier to assess. According to Polo et al. [65], the combi-
nation of two first-order non-equivalent mutants produ-
ces, in general, one second-order non-equivalent mutant.
The exception to that rule is possible, but extremely rare.

TABLE 9
Time Spent on Mutation Testing Process in Seconds

TABLE 10
FOMs and SOMs Classification Times [Min:Sec].

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 37

Furthermore, if one of the two first-order mutants is non-
equivalent, then the second order mutant is non-equiva-
lent as well (see [65, Table I]). As a result, the time spent
on the manual assessment of mutants may be minimized
in the case of a second-order mutation.

On the basis of the empirical results (presented in
this section) and statistical analysis of manual mutants’
classification times (described in detail in [51,
Appendix A5]), one may come to the conclusion labelled
as Finding 7.

6.8 Summary of the Experimental Results

The experiment indicated strongly that SOM in general and
JudyDiffOp strategy in particular increase most the efficiency
of mutation testing and provide the best results in all but
one (the relative change in mutation scores measured via
RCMSE and RCMSI) of the investigated areas:

1. There was a significant difference in the total num-
ber of mutants generated using the FOM and the
four SOM strategies (x2ð4Þ ¼ 16:00, p < 0:001).
Using JudyDiffOp SOM strategy (as well as the other
analyzed SOM strategies) instead of FOM signifi-
cantly reduced the total number of mutants, while
the effect size was large (r ¼ 0:65, Â ¼ 1).

2. There was a significant association between the type
of mutation strategy (i.e., FOM versus SOM) and
whether the generated mutant was equivalent or not
(x2ð1Þ ¼ 30:066, p < 0:001), while the effect size was
medium (the odds ratio was 2.57).

3. The number of not killed mutants was significantly
affected by mutation strategy applied (x2ð4Þ ¼ 14:20,
p < 0:001). JudyDiffOp SOM strategy significantly
reduced the number of not killed mutants in com-
parison to FOM, while the effect size was large
(r ¼ 0:65, Â ¼ 1).

4. The SOM strategies negatively affected mutation
scores measured via relative change in mutation
score estimations and relative change in mutation
score indicators, so there is still an area for
improvement of the SOM strategies.

5. The mutation testing time was significantly affected
by the mutation strategy applied (x2ð4Þ ¼ 13:60,
p ¼ 0:001). JudyDiffOp SOM strategy significantly
reduced the mutation testing time in comparison

with FOM, while the effect size was large (r ¼ 0:65,
Â ¼ 1).

6. Using SOM instead of FOM significantly reduced the
time needed for manual classification of mutants as
equivalent or non-equivalent (tð998Þ ¼ 6:68,
p < 0:001), while the effect size was medium
(r ¼ 0:21).

A visual summary of the experimental results related to
the number of mutants is presented in Fig. 8. The numbers
of killed and live mutants were added up across the four
analyzed projects. The numbers of equivalent and non-
equivalent mutants in the analyzed projects are estimated
on the basis of manually classified samples (1,000 mutants
were classified manually).

7 THREATS TO VALIDITY

When conducting an experiment, there are always threats to
the validity of the results (the validity threats for the system-
atic literature review have already been discussed sepa-
rately in Section 3.5). Here, the main threats are discussed
on the basis of the list of threats by Cook and Campbell [10]
and later described in the context of software engineering
by, for example, Wohlin et al. [77] and Madeyski [50].

The internal validity of the experiment concerns our abil-
ity to draw conclusions about the connections between our
independent and dependent variables [77]. There may be
threats related to the manual assessment of mutants’ equiv-
alence. This part might also be subject to errors and bias. To
reduce that threat, the manual cross verification of the
obtained results was undertaken between two researchers.

External validity refers to our ability to generalize the
results of our study [77]. We examined 50 sample mutations
for each strategy and for each of the four non-trivial open
source projects. The code size of the analyzed projects is
larger than in other studies (as shown in Section 5.1).

Even though the analyzed projects have disparate char-
acteristics, there is no guarantee that the same results will
be obtained for other, very different programs (e.g. with
poor code coverage or low fault detection effectiveness mea-
sured by the mutation score indicator). However, taking
into account the size of the effects and practical implications
of the presented results, the relevance to industry, which is
a part of external validity [50], seems to be plausible.

Threats to construct validity are “the degree to which the
independent and the dependent variables are accurately
measured by the measurement instrument used in the
experiment” [77]. The counting of generated mutants was
fully automated in the Judy mutation testing tool. Regard-
ing the manual assessment of mutants’ equivalence, the ulti-
mate measure of whether a mutant is non-equivalent is
whether or not we are able to write a test which detects a
mutation [72]. Preventing possible diffusion or imitation of
treatments (i.e., mutation testing strategies) was never an
issue since Judy mutation testing tool prevents it.

Threats to the statistical conclusion “refers to the appropri-
ate use of statistics to infer whether the presumed indepen-
dent and dependent variables covary” [10]. To address the
risk of low statistical power, we selected a sample size of
50 mutants for each of the four analyzed projects and five
strategies (1,000 manually classified mutants in total).

Fig. 8. Comparison of mutation strategies with regard to the number of
mutants in four analyzed projects.

38 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

Moreover, for the sampling method, true random numbers
were used. Even though it would have been appropriate to
choose a more sophisticated sampling technique with a
larger sample size, a researcher has to strike a balance
between generalizability and statistical power [3], as well as
the effort. Violating the assumptions of statistical tests was
minimized by means of non-parametric statistics, as well as
the careful checking of the assumptions in cases where
parametric tests were used (see [51, Appendix A] for further
discussion of issues related to statistical tests).

8 DISCUSSION

We interpret our results in such a way that using second
order mutant generation strategies, in particular the Judy-
DiffOp algorithm, has a positive influence on effectiveness
in solving the equivalent mutant problem. However, an
alternative explanation of the results could be that the SOM
approach hides some of the equivalent mutants behind killa-
ble mutants. This is something which needs further research
as it may mean that using SOMs to reduce the number of
equivalent mutants is not cost effective. Moreover, the
authors have discovered that manual classification of sec-
ond order mutants, against its equivalence, takes less time
than with first order mutants.

One contribution of the SLR in comparison to Jia and
Harman’s survey [31] is what we believe to be a more com-
plete list of existing solutions for the equivalent mutant
problem in particular. With a much deeper review of avail-
able sources, including coming into contact with all relevant
authors and scanning their personal websites, more meth-
ods were identified. We have, in particular, investigated the
idea of avoiding the equivalent mutant generation techni-
ques as an additional group of approaches and found some
omitted methods in other categories. Obviously, because of
the focus on the equivalent mutant problem, and having
more delimited research questions, our study results are, in
our opinion, of high quality from the perspective of EMP.
What is important, nevertheless, is that taking a subset of
Jia and Harman’s results will not give as complete a view
on EMP as our SLR.

We have, in addition, proposed the first ever categoriza-
tion of the existing techniques for EMP. With an increasing
number of publications in this field of study, such a classifi-
cation will, it is our hope, improve transparency and allow
for a better understanding of the benefits, disadvantages
and differences between methods. Also, because we
included theoretical and unproven ideas on how to improve
the existing methods and, furthermore, provided what we
believe to be a complete review of EMP, this SLR might be a
good starting point for future work.

Our contribution from the comparative experiment is
the idea, implementation and empirical evaluation of the
new as well as the existing strategies for generating sec-
ond order mutants.

The subsequent contribution of this experiment was the
independent investigation of the characteristics of practical
application of three existing strategies as proposed by Polo
et al. [65]. Polo et al. and Papadakis and Malevris [63] have
evaluated these strategies before, but only on small projects.
In our research, four larger open source projects were used.

Additionally, the authors of the previous studies, in particu-
lar [63], [65], used some approximation instead of manual
mutants evaluation (as we did).

One additional result of our experiment is the measured
time for manual mutant classification against its equivalence.
This was the second documented measurement of first order
mutants assessment. The first was made by Schuler and Zel-
ler [72] on 140 mutants. In our study, a bigger sample size
was used (200 FOMs). Moreover, we are the first who also
documented the manual second order mutants classification
(800 SOMs), that is, the basis to estimate the real cost of muta-
tion testing (including equivalent mutant elimination).

Our additional contribution which is directly connected
with the aforementioned contributions is a tool—Judy
mutation testing tool for Java—which is under development
with two early versions available online [53]. We believe
that our tool may have a positive impact on research and
practice in this area.

We believe that the above mentioned contributions make
this work important for future mutation testing research.
Identifying all methods for EMP, classifying them and col-
lecting the ideas for improvements is by itself valuable,
while the investigation of the behavior of the existing algo-
rithms should be relevant for companies interested in muta-
tion testing.

9 CONCLUSIONS AND FUTURE WORK

In our opinion, mutation testing is not widely used, mainly
because of the problem of efficiency, the generation of too
many equivalent mutants, and lack of reliable and usable
tools able to integrate with different software development
infrastructures and processes. This paper examined a sec-
ond order mutation approach to deal with those issues spe-
cifically. We evaluated the concept of using a set of second
order mutants by applying them to large open source soft-
ware and, thus, increasing the generalizability of this
approach. For our experiment we implemented, in the Judy
mutation testing tool, different algorithms: Last2First,
RandomMix, JudyDiffOp, and NeighPair. The first two algo-
rithms were proposed by Polo et al. [65]. The idea for the
third one (coined by Polo et al. [65]) was improved by us,
while the fourth one was completely new.

This study shows that second order mutation techni-
ques can significantly improve the efficiency of mutation
testing at a cost in the testing strength (see Sections 6.4
and 6.5). All four SOM strategies reduced the number of
generated mutants by 50 percent or more. Furthermore,
the amount of equivalent mutants has been notably
decreased for three of the four strategies. The best results
were achieved with the JudyDiffOp algorithm. An alter-
native explanation of the results could be that the SOM
approach hides some of the equivalent mutants behind
killable mutants and it may be subject to future research.
What is more, the measured time needed for the classifi-
cation of equivalent mutants, of both first and second
order, indicates quite strongly that the time needed to
manually evaluate mutants can be reduced even more
when using second order mutation.

The reduction of generated mutants caused a decrease
in the time needed for their execution, with approximately

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 39

30 percent of the original time for the most efficient algo-
rithm, i.e., JudyDiffOp.

It is also worth noting that second and higher order
mutation are not only valuable as a way to address EMP.
They also allow us to look at fault masking and to address
subtle faults [29]. Previously, this was thought simply
impossible because of the large number of mutants
required, but it has been shown that search based optimiza-
tion algorithms [24] can tame this space quite nicely, so that
we can search for good HOMs and need not consider all of
them [23], [29], [30].

There is still much work to be done in the field of
mutation testing. This paper shows, in our opinion, that
second order mutation can be an interesting solution for
common problems in mutation testing; however, that can
be developed further. Mutants of a higher than second
order should be tested on larger programs and other
strategies (e.g., employing search based approach) might
also be considered. Additionally, the combination of
higher order and selective mutation could reduce both
the number of equivalent mutants and the execution
time even further.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to all the
researchers who offered their invaluable help in the last
phase of the primary studies selection and devoted their
efforts to reviewing the preliminary lists of papers. The
authors would also like to thank Paul Ammann, Lydie du
Bousquet, Zhenyu Chen, Fabiano Cutigi Ferrari, Mark Har-
man, Rob Hierons, Garrett Kaminski, Jeff Offutt, Mike Papa-
dakis, Andreas Zeller for their valuable comments on
relevant literature and for enabling access to the papers
which were otherwise inaccessible. Finally, they would like
to thank the anonymous reviewers for their time and the
valuable comments they provided.

REFERENCES

[1] K. Adamopoulos, M. Harman, and R.M. Hierons, “How to Over-
come the Equivalent Mutant Problem and Achieve Tailored Selec-
tive Mutation Using Co-Evolution,” Proc. Genetic and Evolutionary
Computation Conf. (GECCO ’04), pp. 1338-1349, 2004.

[2] P. Ammann and J. Offutt, Introduction to Software Testing. Cam-
bridge Univ. Press, 2008.

[3] A. Arcuri and L. Briand, “A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineer-
ing,” Proc. ACM/IEEE Int’l Conf. Software Eng. (ICSE), pp. 1-10,
2011.

[4] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P.
Crescenzi, and V. Kann, Complexity and Approximation: Combinato-
rial Optimization Problems and Their Approximability Properties, first
ed. Springer-Verlag, 1999.

[5] M. Babar and H. Zhang, “Systematic Literature Reviews in Soft-
ware Engineering: Preliminary Results from Interviews with
Researchers,” Proc. Third Int’l Symp. Empirical Software Eng. and
Measurement (ESEM), pp. 346-355, Oct 2009.

[6] D. Baldwin and F.G. Sayward, Heuristics for Determining Equiva-
lence of Program Mutations. Yale Univ., 1979.

[7] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, and M. Kha-
lil, “Lessons from Applying the Systematic Literature Review Pro-
cess within the Software Engineering Domain,” J. Systems and
Software, vol. 80, no. 4, pp. 571-583, 2007.

[8] T.A. Budd and D. Angluin, “Two Notions of Correctness and
Their Relation to Testing,” Acta Informatica, vol. 18, pp. 31-45,
1982.

[9] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “The
Design of a Prototype Mutation System for Program Testing,”
Proc. AFIPS Nat’l Computer Conf., pp. 623-627, June 1978.

[10] T.D. Cook and D.T. Campbell, Quasi-Experimentation: Design and
Analysis Issues for Field Settings. Houghton Mifflin, 1979.

[11] M.E. Delamaro and J.C. Maldonado, “Proteum—A Tool for the
Assessment of Test Adequacy for C Programs,” Proc. Conf. Per-
formability in Computing Systems (PCS ’96), pp. 79-95, July 1996.

[12] R. DeMillo, R. Lipton, and F. Sayward, “Hints on Test Data Selec-
tion: Help for the Practicing Programmer,” Computer, vol. 11,
no. 4, pp. 34-41, Apr. 1978.

[13] A. Derezi�nska and A. Szustek, “CREAM - a System for Object-
Oriented Mutation of C# Programs,” Annals Gda�nsk University
of Technology Faculty ETI, No 5, Information Technologies
vol. 13, Gda�nsk 2007, pp. 389-406, ISBN 978-83-60779-01-9.

[14] A. Derezi�nska and A. Szustek, “Tool-Supported Advanced Muta-
tion Approach for Verification of C# Programs,” Proc. Int’l Conf.
Dependability of Computer Systems (DepCos-RELCOMEX ’08),
pp. 261-268, June 2008.

[15] L. du Bousquet and M. Delaunay, “Towards Mutation Analysis
for Lustre Programs,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 203, no. 4, pp. 35-48, 2008.

[16] S. Eldh, S. Punnekkat, H. Hansson, and P. J€onsson, “Component
Testing Is Not Enough—A Study of Software Faults in Telecom
Middleware,” Proc. 19th IFIP TC6/WG6.1 Int’l Conf., and Seventh
Int’l Conf. Testing of Software and Comm. Systems, pp. 74-89, http://
dx.doi.org/10.1007/978-3-540-73066-8_6, 2007.

[17] M. Ellims, D. Ince, and M. Petre, “The Csaw C Mutation Tool: Ini-
tial Results,” Proc. Testing: Academic and Industrial Conf. Practice
and Research Techniques—MUTATION, pp. 185-192, http://portal.
acm.org/citation.cfm?id=1308173.1308282, 2007.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman, 1990.

[19] L. Goodman, “Snowball Sampling,” The Annals of Math. Statistics,
vol. 32, no. 1, pp. 148-170, Mar. 1961.

[20] B.J.M. Gr€un, D. Schuler, and A. Zeller, “The Impact of Equivalent
Mutants,” Proc. IEEE Int’l Conf. Software Testing, Verification, and
Validation Workshops, pp. 192-199, 2009.

[21] R. Hamlet, “Testing Programs with the Aid of a Compiler,” IEEE
Trans. Software Eng., vol. SE-3, no. 4, pp. 279-290, July 1977.

[22] M. Harman, R. Hierons, and S. Danicic, “The Relationship
between Program Dependence and Mutation Analysis,” Mutation
Testing for the New Century, pp. 5-13, Kluwer Academic Publish-
ers, http://portal.acm.org/citation.cfm?id=571305.571310, 2001.

[23] M. Harman, Y. Jia, and W.B. Langdon, “A Manifesto for Higher
Order Mutation Testing,” Proc. Third Int’l Conf. Software Testing,
Verification, and Validation Workshops (ICSTW ’10), pp. 80-89, 2010.

[24] M. Harman, S.A. Mansouri, and Y. Zhang, “Search-Based Soft-
ware Engineering: Trends, Techniques and Applications,” ACM
Computing Surveys, vol. 45, no. 1, pp. 11:1-11:61, http://doi.ac-
m.org/10.1145/2379776.2379787, Dec. 2012.

[25] R. Hierons, M. Harman, and S. Danicic, “Using Program Slicing to
Assist in the Detection of Equivalent Mutants,” Software Testing,
Verification and Reliability, vol. 9, no. 4, pp. 233-262, 1999.

[26] E. Hossain, M.A. Babar, and H.-y. Paik, “Using Scrum in Global
Software Development: A Systematic Literature Review,” Proc.
IEEE Fourth Int’l Conf. Global Software Eng. (ICGSE ’09), pp. 175-
184, 2009.

[27] S.A. Irvine, T. Pavlinic, L. Trigg, J.G. Cleary, S. Inglis, and M.
Utting, “Jumble Java Byte Code to Measure the Effectiveness of
Unit Tests,” Proc. Testing: Academic and Industrial Conf. Practice and
Research Techniques—MUTATION, pp. 169-175, http://portal.acm.
org/citation.cfm?id=1308173.1308280, 2007.

[28] C. Ji, Z. Chen, B. Xu, and Z. Wang, “A New Mutation Analysis
Method for Testing Java Exception Handling,” Proc. IEEE 33rd
Ann. Int’l Computer Software and Applications Conf. (COMPSAC
’09), vol. 2, pp. 556-561, 2009.

[29] Y. Jia and M. Harman, “Constructing Subtle Faults Using Higher
order Mutation Testing,” Proc. IEEE Eighth Int’l Working Conf.
Source Code Analysis and Manipulation, pp. 249-258, 2008.

[30] Y. Jia and M. Harman, “Higher Order Mutation Testing,”
Information and Software Technology, vol. 51, pp. 1379-1393, Oct
2009.

[31] Y. Jia and M. Harman, “An Analysis and Survey of the Develop-
ment of Mutation Testing,” IEEE Trans. Software Eng., vol. 37,
no. 5, pp. 649-678, available earlier as a technical report, http://
www.dcs.kcl.ac.uk/pg/jiayue/repository/TR-09-06.pdf, 2011.

40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

[32] Y. Jia and M. Harman, Mutation Testing Repository, http://crest-
web.cs.ucl.ac.uk/resources/mutation_testing_repository/
index.php, 2012.

[33] G. Kaminski and P. Ammann, “Using a Fault Hierarchy to
Improve the Efficiency of DNF Logic Mutation Testing,” Proc. Int’l
Conf. Software Testing Verification andValidation (ICST ’09), pp. 386-
395, 2009.

[34] K.S. Khan, G.T. Riet, J. Glanville, A.J. Sowden, and J. Kleijnen,
“Undertaking Systematic Reviews of Research on Effectiveness
CRD,” Technical Report 4, Univ. of York, http://opensigle.
inist.fr/handle/10068/534964, 2001.

[35] S.U. Khan, M. Niazi, and R. Ahmad, “Barriers in the Selection of
Offshore Software Development Outsourcing Vendors: An
Exploratory Study Using a Systematic Literature Review,” Infor-
mation and Software Technology, vol. 53, no. 7, pp. 693-706, 2011.

[36] K.N. King and A.J. Offutt, “A Fortran Language System for
Mutation-Based Software Testing,” Software—Practice and Experi-
ence, vol. 21, pp. 685-718, June 1991.

[37] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating Mutation
Testing Alternatives: A Collateral Experiment,” Proc. 17th Asia
Pacific Software Eng. Conf. (APSEC), pp. 300-309, 2010.

[38] B. Kitchenham, “Procedures for Performing Systematic Reviews,”
technical report, Keele Univ. and NICTA, 2004.

[39] B. Kitchenham, P. Brereton, M. Turner, M. Niazi, S. Linkman, R.
Pretorius, and D. Budgen, “The Impact of Limited Search Proce-
dures for Systematic Literature Reviews—A Participant-Observer
Case Study,” Proc. Third Int’l Symp. Empirical Software Eng. and
Measurement (ESEM ’09), pp. 336-345, 2009.

[40] B. Kitchenham and S. Charters, “Guidelines for Performing Sys-
tematic Literature Reviews in Software Engineering,” Technical
Report EBSE 2007-001, Keele Univ. and Durham Univ. Joint
Report, 2007.

[41] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic Literature Reviews in Software Engi-
neering—A Systematic Literature Review,” Information and Soft-
ware Technology, vol. 51, no. 1, pp. 7-15, 2008.

[42] B. Kitchenham, R. Pretorius, D. Budgen, O.P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic Literature Reviews in Soft-
ware Engineering: A Tertiary Study,” Information and Software
Technology, vol. 52, pp. 792-805, Aug. 2010.

[43] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K.E. Emam, and J. Rosenberg, “Preliminary Guidelines
for Empirical Research in Software Engineering,” IEEE Trans. Soft-
ware Eng., vol. 28, no. 8, pp. 721-734, Aug. 2002.

[44] W.B. Langdon, M. Harman, and Y. Jia, “Multi Objective Higher
Order Mutation Testing with Genetic Programming,” Proc. Test-
ing: Academic and Industrial Conf.—Practice and Research Techniques
(TAIC-PART ’09) pp. 21-29,.

[45] W.B. Langdon, M. Harman, and Y. Jia, “Efficient Multi-Objective
Higher Order Mutation Testing with Genetic Programming,” J.
Systems and Software, vol. 83, no. 12, pp. 2416-2430, http://
dx.doi.org/10.1016/j.jss.2010.07.027, Dec. 2010.

[46] Y.-S. Ma, J. Offutt, and Y.R. Kwon, “MuJava: An Automated Class
Mutation System,” Software Testing, Verification and Reliability,
vol. 15, no. 2, pp. 97-133, 2005.

[47] L. Madeyski, “On the Effects of Pair Programming on Thorough-
ness and Fault-Finding Effectiveness of Unit Tests,” Proc. Eighth
Int’l Conf. Product-Focused Software Process Improvement, pp. 207-221,
http://madeyski.e-informatyka.pl/download/Madeyski07.pdf,
2007.

[48] L. Madeyski, “Impact of Pair Programming on Thoroughness and
Fault Detection Effectiveness of Unit Test Suites,” Software Process:
Improvement and Practice, vol. 13, no. 3, pp. 281-295, http://
madeyski.e-informatyka.pl/download/Madeyski08.pdf, 2008.

[49] L. Madeyski, “The Impact of Test-First Programming on Branch
Coverage and Mutation Score Indicator of Unit Tests:
An Experiment,” Information and Software Technology, vol. 52,
pp. 169-184, http://madeyski.e-informatyka.pl/download/
Madeyski10c.pdf, Feb. 2010.

[50] L. Madeyski, Test-Driven Development: An Empirical Evaluation of
Agile Practice. Springer, http://www.springer.com/978-3-642-
04287-4, 2010.

[51] L. Madeyski, W. Orzeszyna, R. Torkar, and M. J�ozala, “Appendix
to the Paper ‘Overcoming the Equivalent Mutant Problem: A Sys-
tematic Literature Review and a Comparative Experiment of Sec-
ond Order Mutation’,” http://madeyski.e-informatyka.pl/
download/app/AppendixTSE.pdf, 2012.

[52] L. Madeyski and N. Radyk, “Judy—A Mutation Testing Tool for
Java,” IET Software, vol. 4, no. 1, pp. 32-42, http://madeyski.e-
informatyka.pl/download/Madeyski10b.pdf, Feb 2010.

[53] L. Madeyski and N. Radyk, “Judy: A Mutation Testing Tool for
Java,” http://madeyski.e-informatyka.pl/tools/judy/, 2012.

[54] E. Martin and T. Xie, “A Fault Model and Mutation Testing of
Access Control Policies,” Proc. 16th Int’l Conf. World Wide Web
(WWW ’07), pp. 667-676, 2007.

[55] E.S. Mresa and L. Bottaci, “Efficiency of Mutation Operators and
Selective Mutation Strategies: An Empirical Study,” Software Test-
ing, Verification and Reliability, vol. 9, no. 4, pp. 205-232, 1999.

[56] A.J. Offutt and J. Pan, “Detecting Equivalent Mutants and the Fea-
sible Path Problem,” Proc. 11th Ann. Conf. Systems Integrity, Com-
puter Assurance, Process Security, Software Safety (COMPASS ’96),
pp. 224-236, 1996.

[57] A.J. Offutt, “Investigations of the Software Testing Coupling
Effect,” ACM Trans. Software Eng. Methodology, vol. 1, pp. 5-20,
Jan. 1992.

[58] A.J. Offutt and W.M. Craft, “Using Compiler Optimization Tech-
niques to Detect Equivalent Mutants,” Software Testing, Verification
and Reliability, vol. 4, no. 3, pp. 131-154, 1994.

[59] A.J. Offutt and J. Pan, “Automatically Detecting Equivalent
Mutants and Infeasible Paths,” Software Testing, Verification and
Reliability, vol. 7, no. 3, pp. 165-192, 1997.

[60] A.J. Offutt and R.H. Untch, “Mutation 2000: Uniting the
Orthogonal,” Mutation Testing for the New Century, pp. 34-44,
Kluwer Academic Publishers, http://portal.acm.org/citation.
cfm?id=571305.571314, 2001.

[61] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “The Class-Level Mutants of
MuJava,” Proc. Int’l Workshop Automation of Software Test (AST
’06), pp. 78-84, 2006.

[62] W. Orzeszyna, L. Madeyski, and R. Torkar, “Protocol
for a Systematic Literature Review of Methods Dealing
with Equivalent Mutant Problem,” Wroclaw Univ. of
Technology, http://madeyski.e-informatyka.pl/download/slr/
EquivalentMutantsSLRProtocol.pdf.

[63] M. Papadakis and N. Malevris, “An Empirical Evaluation of the
First and Second Order Mutation Testing Strategies,” Proc. Third
Int’l Conf. Software Testing, Verification, and Validation Workshops
(ICSTW ’10), pp. 90-99, 2010.

[64] C.H. Papadimitriou, Computational Complexity. Addison-Wesley,
1994.

[65] M. Polo, M. Piattini, and I. Garc�ıa-Rodr�ıguez, “Decreasing the
Cost of Mutation Testing with Second-Order Mutants,” Soft-
ware Testing, Verification and Reliability, vol. 19, pp. 111-131,
June 2009.

[66] R. Purushothaman and D.E. Perry, “Toward Understanding the
Rhetoric of Small Source Code Changes,” IEEE Trans. Software
Eng., vol. 31, no. 6, pp. 511-526, http://dx.doi.org/10.1109/
TSE.2005. 74, June 2005.

[67] J.A. Rosenthal, “Qualitative Descriptors of Strength of Association
and Effect Size,” J. Social Service Research, vol. 21, no. 4, pp. 37-59,
1996.

[68] J. Sch€opfel, “Towards a Prague Definition of Grey Literature,”
Proc. 12th Int’l Conf. Gray Literature: Transparency in Gray Literature,
Gray Tech Approaches to High Tech Issues, http://archive-
sic.ccsd.cnrs.fr/docs/00/58/15/70/PDF/GL_12_Schopfel_v5.2.
pdf, 2010.

[69] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mutants,”
Proc. Third Int’l Conf. Software Testing Verification and Validation
(ICST ’10), pp. 45-54, Apr. 2010.

[70] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient Mutation Test-
ing by Checking Invariant Violations,” Proc. 18th Int’l Symp. Soft-
ware Testing and Analysis (ISSTA’09), pp. 69-80, 2009.

[71] D. Schuler and A. Zeller, “Javalanche: Efficient Mutation Testing
for Java,” Proc. Seventh Joint Meeting of the European Software Eng.
Conf. and the ACM SIGSOFT Int’l Symp. Foundations of Software
Eng. (ESEC/FSE ’09), pp. 297-298, 2009.

[72] D. Schuler and A. Zeller, “Covering and Uncovering Equivalent
Mutants,” Software Testing, Verification and Reliability, vol. 23,
pp. 353-374, http://dx.doi.org/10.1002/stvr.1473, 2012.

[73] B.H. Smith and L. Williams, “An Empirical Evaluation of the
MuJava Mutation Operators,” Proc. Testing: Academic and Indus-
trial Conf. Practice and Research Techniques—MUTATION, pp. 193-
202, Sept. 2007.

[74] “Jumble: A Class Level Mutation Testing Tool,” SourceForge,
http://jumble.sourceforge.net, Apr. 2011.

MADEYSKI ET AL.: OVERCOMING THE EQUIVALENT MUTANT PROBLEM: A SYSTEMATIC LITERATURE REVIEW AND A COMPARATIVE... 41

[75] F. Steimann and A. Thies, “From Behaviour Preservation to
Behaviour Modification: Constraint-Based Mutant Generation,”
Proc. ACM/IEEE 32nd Int’l Conf. Software Eng. (ICSE ’10), vol. 1,
pp. 425-434, 2010.

[76] A.M.R. Vincenzi, E.Y. Nakagawa, J.C. Maldonado, M.E. Delam-
aro, and R.A.F. Romero, “Bayesian-Learning Based Guidelines to
Determine Equivalent Mutants,” Int’l J. Software Eng. and Knowl-
edge Eng., vol. 12, no. 6, pp. 675-690, 2002.

[77] C. Wohlin, P. Runeson, M. H€ost, M.C. Ohlsson, B. Regnell, and A.
Wessl�en, Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, 2000.

[78] W. E. Wong, Mutation Testing for the New Century. Kluwer Aca-
demic Publishers, 2001.

[79] H. Zhu, P.A.V. Hall, and J.H.R. May, “Software Unit Test Cover-
age and Adequacy,” ACM Computing Surveys, vol. 29, pp. 366-427,
Dec. 1997.

Lech Madeyski received the PhD and Habilita-
tion (DSc) degrees in computer science from the
Wroclaw University of Technology, Poland, in
1999 and 2011, respectively. He is currently an
assistant professor at the Wroclaw University of
Technology, Poland. His research focus is on
empirical, quantitative research methods, and
machine learning in the field of software engi-
neering. He is one of the founders of the Interna-
tional Conference on the Evaluation of Novel
Approaches to Software Engineering (ENASE)

series which started in 2006 in Erfurt. He is the author of a book on
empirical evaluation (via statistical analyses and meta-analyses) of
Test-Driven Development agile software development practice, pub-
lished by Springer in 2010. He is a member of the ACM and the IEEE.

Wojciech Orzeszyna received the MSc degrees
in software engineering from the Wroclaw Univer-
sity of Technology, Poland (supervised by Lech
Madeyski) and the Blekinge Institute of Technol-
ogy, Sweden (supervised by Richard Torkar), in
2011. He is currently a software developer work-
ing in industry. His research interests include soft-
ware craftsmanship, quality, and agile practices.

Richard Torkar received the PhD degree in soft-
ware engineering from the Blekinge Institute of
Technology, Sweden, in 2006. He is currently an
associate professor at the Blekinge Institute of
Technology, the Chalmers University of Technol-
ogy, and the University of Gothenburg, Sweden.
His focus is on quantitative research methods in
the field of software engineering. He is a member
of the ACM and the IEEE.

Mariusz J�ozala received the MSc degree in com-
puter science (supervised by Lech Madeyski)
from the Wroclaw University of Technology in
2011. He is currently a software developer at
Nokia Siemens Networks, where he develops a
test framework based on RCP platform. His
research interests include good programming
practices and agile methodologies.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

42 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

