
1374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Controller Synthesis for Autonomous Systems With
Deep-Learning Perception Components

Radu Calinescu , Senior Member, IEEE, Calum Imrie , Ravi Mangal , Genaína Nunes Rodrigues ,
Corina Păsăreanu , Misael Alpizar Santana , and Gricel Vázquez

Abstract—We present DeepDECS, a new method for the
synthesis of correct-by-construction software controllers for au-
tonomous systems that use deep neural network (DNN) classifiers
for the perception step of their decision-making processes. Despite
major advances in deep learning in recent years, providing safety
guarantees for these systems remains very challenging. Our con-
troller synthesis method addresses this challenge by integrating
DNN verification with the synthesis of verified Markov models.
The synthesised models correspond to discrete-event software
controllers guaranteed to satisfy the safety, dependability and
performance requirements of the autonomous system, and to be
Pareto optimal with respect to a set of optimisation objectives. We
evaluate the method in simulation by using it to synthesise con-
trollers for mobile-robot collision limitation, and for maintaining
driver attentiveness in shared-control autonomous driving.

Index Terms—Discrete-event controller synthesis, Markov
model, deep neural network, uncertainty quantification, neuro-
symbolic AI.

I. INTRODUCTION

IN a growing range of application domains, software-
controlled systems use deep neural network (DNN) classi-

fiers to perceive and respond to changes in their environment
autonomously. In an example of such an autonomous system
(AS) from healthcare, DNN classification and localisation of
blood vessels has been used to develop a robotic device for
introducing needles into deformable patient tissues to draw
blood or deliver medication autonomously [19]. In autonomous
driving, DNN classifiers are widely used for traffic-sign detec-
tion and recognition [82], for object sensing and classification
[38], and for other perception tasks. In finance, the decision-
making of autonomous trading agents relies on DNN classifiers
that perceive or predict market trends [71].

Manuscript received 27 May 2023; revised 12 March 2024; accepted
26 March 2024. Date of publication 10 April 2024; date of current version
14 June 2024. This work was supported by the EPSRC under project
EP/V026747/1 ‘UKRI Trustworthy Autonomous Systems Node in Resilience’,
the UKRI Global Research and Innovation Programme, and the Assuring
Autonomy International Programme. The work or Radu Calinescu was also
supported by the Institute for Software Engineering and Software Technology
“Jose María Troya Linero” at the University of Málaga. Recommended for
acceptance by S. Nejati. (Corresponding author: Radu Calinescu.)

Radu Calinescu, Calum Imrie, Misael Alpizar Santana, and Gricel Vázquez
are with the Department of Computer Science, University of York, YO10 5GH
York, U.K. (e-mail: radu.calinescu@york.ac.uk).

Ravi Mangal and Corina Păsăreanu are with Carnegie Mellon University,
Silicon Valley, Moffett Field, CA 94035 USA.

Genaína Nunes Rodrigues is with the Department of Computer Science,
University of Brasília, Brasília 70910-900, Brazil (e-mail: genaina@unb.br).

Digital Object Identifier 10.1109/TSE.2024.3385378

This integration of DNN perception into the AS control loop
poses major assurance challenges [3], [36]. In particular, the
long-established methods for formal software verification [27]
are not applicable to DNNs, and thus cannot be used to provide
safety and performance guarantees for AS comprising both tra-
ditional software and deep-learning components. Furthermore,
verification methods developed specifically for DNNs focus on
verifying robustness to changes in DNN inputs [45], [56] or
input clusters [37]. As such, DNN verification methods cannot
be used to establish system-level properties for the software
controllers of DNN-perception AS.

Our paper presents DeepDECS,1 a method for the synthesis
of discrete-event controllers (i.e., software components that
control the response of a system to events in its environment)
that addresses this significant limitation. As shown in Fig. 1,
DeepDECS generates discrete-event controllers aware of the
uncertainty induced by the DNN perception component of an
AS in three stages.

First, in a DNN uncertainty quantification stage (shown at
the top of Fig. 1), n DNN verification techniques (taken from
the existing repertoire of such techniques—see Section III-E)
are used to analyse the pre-trained DNN perception component
over a test dataset representative for the operational design
domain (ODD) of the AS. The verification results provide
separate quantifications of the DNN prediction uncertainty for
the inputs verified by each of the 2n combinations of verifica-
tion techniques. As shown by our theoretical and experimental
results, the DNN predictions have higher accuracy for inputs
verified by more techniques, enabling the controller to act con-
fidently after such trustworthy predictions, and conservatively
after predictions associated with inputs verified by fewer or
no techniques. As an analogy, consider medical diagnosis by a
doctor, and the questions “Are the patient’s symptoms familiar
to the doctor? (true/false)” and “Is the doctor well rested?
(true/false)?” Knowing the likelihood of a correct diagnosis for
all combinations of answers to these questions, e.g., based on
historical data, allows the doctor to decide when to trust his or
her diagnosis, and when to ask a colleague for a second opinion
and/or to request, for instance, a blood test before deciding a
treatment for the patient.

Next, a Model augmentation stage (depicted in the middle
of Fig. 1) uses the uncertainty quantification results—and a
parametric discrete-time Markov chain (pDTMC) that models

1Deep-learning aware Discrete-Event Controller Synthesis

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-2678-9260
https://orcid.org/0009-0004-3198-9226
https://orcid.org/0000-0001-6267-6995
https://orcid.org/0000-0003-1661-8131
https://orcid.org/0000-0002-5579-6961
https://orcid.org/0000-0002-6353-9770
https://orcid.org/0000-0003-4886-5567
mailto:radu.calinescu@york.ac.uk
mailto:genaina@unb.br
https://creativecommons.org/licenses/by-nc-nd/4.0/

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1375

Fig. 1. DeepDECS generation of discrete-event controllers aware of the
uncertainty introduced by the DNN perception component of an autonomous
system.

the AS behaviour assuming perfect perception—to assemble
a pDTMC system model that takes the DNN-induced uncer-
tainty into account. Finally, a Controller synthesis stage (shown
at the bottom of Fig. 1) uses this uncertainty-aware pDTMC
model to synthesise a set of discrete-event controllers guaran-
teed to satisfy the AS requirements (i.e., constraints and opti-
misation objectives) encoded in probabilistic computation tree
logic (PCTL).

To the best of our knowledge, the hybrid verification ap-
proach underpinning the DeepDECS neuro-symbolic controller
synthesis process is novel. As discussed in detail in our related
work section, while other approaches that employ deep-learning
classifiers for the discrete-event control of AS have been pro-
posed, these approaches focus on the development of end-to-
end DNN controllers for AS (e.g. [48], [65]), on quantifying
the uncertainty of DNNs to support the probabilistic safety
verification of autonomous systems (e.g., [5], [74]), and on
verifying the safety of AS with DNN-based components and
already implemented controllers (e.g., [22], [44], [46], [47],
[49], [57], [72], [77]).

The main contributions of our paper are:
1) A theoretical foundation that integrates DNN uncer-

tainty quantification, stochastic modelling and probabilis-
tic model checking, to enable the synthesis of correct-by-
construction neuro-symbolic controllers for autonomous
systems with deep-learning perception components.

2) An open-source software tool that automates the augmen-
tation of perfect-perception autonomous system models
with constructs that capture the aleatory uncertainty intro-
duced by the use of deep-learning perception components
within such systems. The uncertainty that DeepDECS
deals with is aleatory (i.e., it cannot be reduced) because

it comes from an already trained DNN that does not learn
at runtime. This differs from epistemic uncertainty, which
is uncertainty due to insufficient knowledge, and therefore
reducible by acquiring additional knowledge [26].

3) An extensive evaluation that shows the applicability of
our method to the synthesis of discrete-event controllers
for mobile-robot collision limitation, and for maintaining
driver attentiveness in shared-control vehicles equipped
with Level 3 (i.e., conditional automation) automated driv-
ing systems [70].

We structured the remainder of the paper as follows.
Section II introduces a running example that we use to il-
lustrate the application of DeepDECS. Section III provides
a brief introduction to the formal modelling and verification
paradigms integrated by DeepDECS. Sections IV and V present
the DeepDECS theoretical foundation, and its evaluation for
two autonomous systems from different application domains,
respectively. We compare DeepDECS to related work, and dis-
cuss its merits and limitations in Section VI. Finally, Sect-
ion VII provides a brief summary and discusses our plans for
future work.

II. RUNNING EXAMPLE

To illustrate the DeepDECS theoretical foundation and its ap-
plication, we will use a running example inspired by recent re-
search on DNN-based collision avoidance for autonomous air-
craft [54], [55], marine vehicles [85] and robots [28]. This run-
ning example involves the development of a collision-limitation
controller for a mobile robot travelling between locations A
and B, e.g., for infrastructure inspection, or to carry goods in
a warehouse (Fig. 2). Within this environment, the robot may
encounter and potentially collide with another moving agent.
We assume that collisions are not catastrophic, but should be
limited to reduce robot damage and delays. As such, the robot
uses DNN perception at each waypoint, to assess if it is on a
collision course. Based on the DNN output, its controller should
decide if the robot will proceed to the next waypoint or needs to
wait for a while at its current waypoint such that the following
system-level requirements are achieved:

• The robot journey is completed without any collision with
a probability of at least 0.9 (a constraint);

• An optimal trade-off is achieved between maximising the
probability of completing the journey without collisions
and minimising the duration of the journey (two conflict-
ing optimisation objectives).

III. PRELIMINARIES

A. Discrete-Event Controllers

Many computer and cyber-physical systems are used in ap-
plications in which they need to respond to events that occur
at discrete points in time. Examples of such events include the
arrival of a user request or reaching a predefined workload level
for a web server, and encountering an obstacle or arriving at a
waypoint for a mobile robot. More often than not, the systems
can react to these events by selecting one of several possible

1376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Fig. 2. Collision limitation for a mobile robot tasked with traversing a known environment through the use of waypoints. A mobile robot (darker blue)
travelling between locations A and B may collide with another mobile agent (red) when moving from its current waypoint I to the next. A two-class DNN
predicts whether the robot is on collision course based on the relative horizontal distance x and vertical distance y between the robot and the collider, and
the speed s, angle θ and angular velocity θ̇ of the collider.

responses. For instance, a web server may choose to process a
user request with high or low priority, and the mobile robot may
choose between several alternative routes around an obstacle.
When this is the case, the selection of a suitable response
is typically made by a system component termed a discrete-
event controller.

Often implemented as software components, discrete-event
controllers guide the way in which computer and cyber-physical
systems respond to events, so that these systems meet their
functional and non-functional requirements. Given their key
role in many important systems, the formalisation, analysis and
synthesis of these controllers—typically using state-transition
models such as automata [76], Petri Nets [67] or Markov
models [6], [35]—have received significant attention from the
research community.

The synthesis of discrete-event controllers presented in this
paper uses parametric discrete-event Markov chains. In this
modelling paradigm, each combination of values for the pa-
rameters of a Markov chain corresponds to a different con-
troller variant, and the controller synthesis problem involves
determining the parameter value combinations that satisfy a
set of system-level requirements. As such, we use the term
controller parameters to refer to these parameters, which rep-
resent transition probabilities for the Markov chain, as well as
the probabilities with which the controller selects between the
possible system responses to events.

Before providing the required background on discrete-event
Markov chains in the next section, we note that the discrete-
event control that is the focus of our work differs fundamentally
from continuous control techniques such as PID (proportional-
integral-derivative) control [52], which involves the continuous
adjustment of a control variable based on the error between
a measured system parameter (e.g., web server workload, or
room temperature) and its desired value, so that this value is
maintained by the system.

B. Discrete-Event Markov Chains

DeepDECS uses discrete-event Markov chains (DTMCs), an
established modelling paradigm for discrete-event controllers
(e.g. [2], [29], [34], [61]), to capture the uncertainty affecting an
autonomous system and its environment. DTMCs are finite state
transition systems used to model the stochastic behaviour and to

analyse the reliability, performance and other key properties of
a wide range of real-world systems. DTMC states correspond to
system configurations that are relevant for the properties under
analysis, and are labelled with atomic propositions that hold
in those states. State transitions model all possible transitions
between states, and are annotated with probabilities. Finally,
to allow the analysis of a broader set of properties, DTMC
states and transitions can be annotated with nonnegative values
termed rewards. These values are interpreted as “costs” (e.g.,
energy used by a robot) or “gains” (e.g. requests processed by a
web server).

Definition 1: A reward-augmented discrete-time Markov
chain over a set of atomic propositions AP is a tuple

M= (S, s0, P, L,R), (1)

where S �= ∅ is a finite set of states; s0 ∈ S is the initial state; P :
S × S → [0, 1] is a transition probability function such that, for
any states s, s′ ∈ S, P (s, s′) gives the probability of transition
from state s to state s′ and

∑
s′∈S P (s, s′) = 1; L : S → 2AP

is a labelling function that maps every state s ∈ S to the atomic
propositions from AP that hold in that state; and R is a set of
reward structures, i.e., function pairs (ρ, ι) that associate non-
negative values with the DTMC states (ρ) and transitions (ι):

ρ : S → R≥0, ι : S × S → R≥0. (2)

We note that the use of a set of reward structures R in
(1) supports the analysis of multiple properties of the system
modelled by the DTMC (e.g., resource use, time and risk).
Furthermore, the association of rewards with both states and
transitions enables the specification of different values for these
properties both when in a state and when transitioning between
states; as an example, a mobile robot may use energy e1 while
in a state s1, energy e12 to transition to another state s2, and
then energy e2 while in the new state s2.

DeepDECS models the possible variants (i.e., the design
space) of an AS controller as a reward-augmented parametric
discrete-time Markov chain (pDTMC) [23].

Definition 2: A parametric discrete-time Markov chain is a
DTMC (1) comprising transition probabilities and/or reward
function values specified as rational functions over a set of con-
tinuous variables {x, y, . . .}, i.e., functions that can be written

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1377

as fractions whose numerators and denominators are polyno-
mial expressions, e.g., (1− x)/y.

C. DTMC Modelling Language

We specify the discrete-time Markov models used by Deep-
DECS in the high-level modelling language of the PRISM
model checker [62]. In this language, a system is modelled by
the parallel composition of a set of modules. The state of a
module is given by a set of finite-range local variables, and its
state transitions are specified by commands that change these
variables and have the generic form:

[action] guard → e1 :update1 + e2 :update2 + . . .

+ em :updatem; (3)

where guard is a boolean expression over the variables of all
modules, and ei, i ∈ [m], is an arithmetic expression that can
only take values in the interval [0, 1] and is defined over the
same variables such that

∑m
i=1 ei = 1. If guard evaluates to

true, the value of ei, i ∈ [m], gives the probability with which
the updatei change of the module variables occurs. When
action is present, all modules comprising commands with this
action must synchronise by performing one of these commands
simultaneously.

D. Probabilistic Computation Tree Logic

DeepDECS uses probabilistic computation tree logic
(PCTL) [8], [41] extended with rewards [1] to formalise AS
requirements. Reward-augmented PCTL supports the spec-
ification of constraints such as ‘the robot should not in-
cur a collision until done with its mission with probabil-
ity at least 0.9’ (P[¬collision U done]≥ 0.9) and optimisa-
tion objectives such as ‘minimise the expected mission time’
(minimise Rtime[F done]).

Definition 3: State PCTL formulae Φ and path PCTL for-
mulae Ψ over an atomic proposition set AP , and PCTL reward
formulae ΦR over a rwd reward structure (2) are defined by
the grammar:

Φ ::= true | α | Φ ∧ Φ | ¬Φ | P[Ψ]∼ p
Ψ ::=XΦ | Φ U Φ | Φ U≤k Φ

ΦR ::=Rrwd[C≤k]∼ r | Rrwd[F Φ]∼ r
(4)

where α ∈AP is an atomic proposition, ∼∈ {≥, >,<,≤} is a
relational operator, p ∈ [0, 1] is a probability bound, r ∈ R

+
0 is

a reward bound, and k ∈ N>0 is a timestep bound.
The PCTL semantics [1], [8], [41] is defined using a satisfac-

tion relation |= over the states of a DTMC (1). Given a state s of
this DTMC M, s |=Φ means ‘Φ holds in state s’, and we have:
always s |= true; s |= α iff α ∈ L(s); s |= ¬Φ iff ¬(s |=Φ);
and s |=Φ1 ∧ Φ2 iff s |=Φ1 and s |=Φ2. The time-bounded
until formula Φ1 U

≤k Φ2 holds for a path (i.e., sequence of
DTMC states s0s1s2 . . . such that P (si, si+1)> 0 for all i > 0)
iff Φ1 holds in the first i < k path states and Φ2 holds in the
(i+ 1)-th path state; and the unbounded until formula Φ1 UΦ2

removes the bound k from the time-bounded until formula.
The next formula XΦ holds if Φ is satisfied in the next state.

The semantics of the probability P and reward R operators
are defined as follows: P[Ψ]∼ p specifies that the probability
that paths starting at state s satisfy a path property Ψ is ∼ p;
Rrwd[C≤k]∼ r holds if the expected cumulated reward up to
time-step k is ∼ r; and Rrwd[FΦ]∼ r holds if the expected
reward cumulated before reaching a state satisfying Φ is ∼ r.

Removing ‘∼p’ (or ‘∼r’) from (4) specifies that the calcu-
lation of the probability (or reward) is required. We use the
shorthand notation pmc(Φ,M) and pmc(ΦR,M) for these
quantities computed (using the established DTMC analysis al-
gorithms implemented by model checking tools such as PRISM
[62] and Storm [25]) for the initial state s0 of M.

E. Verification of DNN Classifiers

A K-class DNN classifier f is a function that maps a d-
dimensional input to a class from the set [K] = {1, 2, . . . ,K}:

f : Rd → [K]. (5)

DNN classifiers are learnt from data, and are not guaranteed
to always classify their input correctly. DNN verification tech-
niques can help assess the quality of a classifier for a given
input. Each DNN verification technique used by DeepDECS
(see Fig. 1) has the general form

verif : (Rd → [K])× R
d → B, (6)

where B= {true, false}, such that, for a classifier f ∈ R
d →

[K] and an input x ∈ R
d, verif (f, x) = true if the technique

deems the DNN f likely to classify the input x correctly, and
verif (f, x) = false otherwise. Two existing DNN verification
techniques that can be used with DeepDECS are described
below. However, DeepDECS can use any DNN verifier pro-
vided that it is fast enough to be used at runtime. The two
verifiers described here were chosen because they verify two
qualitatively different properties of DNNs and represent the
state-of-the-art for these respective properties. For a list of
other verifiers that could be used in conjunction with Deep-
DECS, the International Verification of Neural Networks com-
petition [9], [68] conducted every year since 2020 serves as a
useful resource.

1) Minimum Confidence Threshold: Given an input x ∈ R
d,

a K-class DNN classifier (5) operates by first computing a
discrete probability distribution δ(x) = (p1, p2, . . . , pK) over
the K classes, and then outputting the class argmaxKi=1 >
pi as its prediction. As δ(x) is typically a poor estimate of
the true probability distribution of x, the temperature scaling
mechanism introduced by Guo et al. [40] (and implemented by
Kueppers et al. [60]) can be used to calibrate the DNN, allowing
the definition of the following DNN verification method:

verif 1(f, x) =

{
true, if maxKi=1 pi ≥ τ
false, otherwise

(7)

where τ is a threshold that we set to 0.8 in our experiments
described later in the paper. The intuition behind this verifica-
tion method is that if a calibrated DNN is very confident in its
prediction, then the prediction is likely to be correct.

1378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

2) Local Robustness Certification: A DNN classifier (5) is
ε-locally robust at an input x if perturbations within a small
distance ε > 0 from x (measured using the �2 metric) do not lead
to a change in the classifier prediction. A second verification
technique can be defined using the GloRo Net framework of
Leino et al. [63]. Given a DNN, this framework augments
it with a local-robustness output by computing the Lipschitz
constant of the function denoted by the original DNN and using
it to verify local robustness. Adding this GloRo Net layer to
the perception DNN of an AS, we can define the following
verification method for the augmented DNN:

verif 2(f, x) =

⎧
⎨

⎩

true, if ∀x′ ∈ R
d. ||x− x′||2 ≤ ε

=⇒ f(x) = f(x′)
false, otherwise

(8)

We use ε= 0.05 for the experiments presented later in the paper.
The intuition behind this verification method is that if a DNN
is verified as locally robust at an input, i.e., a small change
in the input does not change the classification output, then the
prediction is likely to be correct.

IV. THEORETICAL FOUNDATION

We model the design space of an AS controller under devel-
opment as a pDTMC. The uncertainty introduced by the deep-
learning perception and the one inherent to the environment are
modelled by the probabilities of transition between the states of
this pDTMC. The controller synthesis problem involves finding
combinations of parameter values for which the pDTMC sat-
isfies strict safety, dependability and performance constraints,
and is Pareto-optimal with respect to a set of optimisation
objectives. These constraints and optimisation objectives are
formalised as PCTL formulae.

As shown in Fig. 1, DeepDECS derives the pDTMC under-
pinning its controller synthesis automatically from:

1) DNN verification results that quantify the uncertainty
introduced by the DNN perception;

2) an “ideal” pDTMC that models the AS behaviour assum-
ing perfect perception.

Given this pDTMC, Pareto-optimal DeepDECS controllers
are then synthesised by applying a combination of probabilistic
model checking and search techniques to this pDTMC.

As illustrated in Fig. 3, the cyber-physical components of an
autonomous system managed by a DeepDECS controller (e.g.,
the software and hardware components involved in stopping the
robot from our running example in Section II at a waypoint)
monitor their environment (e.g., the surroundings of the robot
from our running example and any nearby moving agents)
through sensors (1) and perform actions that affect it through
effectors (2). A DNN perception component uses a combination
(3) of preprocessed sensor data and data about these managed
components to classify the state of the environment (4). The
n verification techniques used for the DeepDECS controller
synthesis are also applied to the classification (4) and the DNN
input (3) that produced it. Using the online DNN verification
results (5) alongside the classification (4) and additional state

Fig. 3. DeepDECS controller deployment.

information (6) obtained directly from the managed cyber-
physical components, the DeepDECS controller updates (7) the
controllable parameters of these components in line with the
system requirements. Thus, a DeepDECS controller operates
by reacting to changes in the system, in the DNN outputs and,
unique to DeepDECS, in the results of the online verification
of the DNN classification.

We detail the DeepDECS stages in the rest of this section.

A. Stage 1: DNN Uncertainty Quantification

DNN perception introduces aleatory uncertainty since DNNs
cannot classify all inputs accurately. To quantify this uncer-
tainty, DeepDECS uses n≥ 0 DNN verification techniques
verif 1, verif 2,..., verif n, and a test dataset X ⊂ R

d that repre-
sents a statistically representative sample of the inputs that the
AS will encounter in operation. We note that X is one and the
same with the testing dataset used in the established supervised
machine learning practice [21], [53], [80]. The n verification
techniques are used to partition X into 2n subsets comprising
inputs x with the same verification results. We note that using
only a few verification techniques (e.g., n≤ 3) yields a small
number of such subsets. Formally, given a DNN f , DeepDECS
constructs the subset

Xv = {x ∈X | verif (f, x) = v} (9)

for every v = (v1, v2, . . . , vn) ∈ B
n, where verif (f, x) =

(verif 1(f, x), verif 2(f, x), . . . , verif n(f, x)). We use each
subset (9) to obtain a K ×K confusion matrix Cv such that,
for any k, k′ ∈ [K], the element in row k and column k′ of Cv
represents the number of class-k inputs from Xv that the DNN
classifies as belonging to class k′:

Cv[k, k′] = # {x ∈Xv | f∗(x) = k ∧ f(x) = k′} , (10)

where f∗(x) represents the true class of x and, for any set A,
#A denotes its cardinality.

AsX is representative of the DNN inputs that the AS encoun-
ters in operation, we henceforth assume that the probability that

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1379

a class-k input x is classified as belonging to class k′ when it
satisfies verif (f, x) = v is given by:

pkk′v = Pr (f(x) = k′ ∧ verif (f, x) = v | f∗(x) = k)

=
Cv[k, k

′]
∑

v′∈Bn

∑
k′′∈[K] Cv′ [k, k′′]

=
Cv[k, k

′]

#{x ∈X | f∗(x) = k} . (11)

Formally, the law of large numbers [39, Ch. 8] implies that this
result holds as #X →∞. We note that

∑

(k′,v)′∈[K]×Bn

pkk′v = 1. (12)

We note that DeepDECS works seamlessly in the degenerate
case when n= 0, i.e., when no DNN verification technique
is used. In this case, we have v = () and X() =X in (9), C()
from (10) is simply the standard confusion matrix for the DNN,
and the DeepDECS controller deployment from Fig. 3 uses no
online DNN verification. This DeepDECS variant is useful (and
thus included in the paper) because (i) it incurs no runtime
DNN verification overheads, (ii) it requires no additional system
coding/modifications, and (iii) it can be used when the DNN
inputs cannot be accessed for the deployed system (e.g., due to
licensing constraints).

Example 1: Consider the collision-prediction DNN fcollision
used by the mobile robot from our running example in Sec-
tion II, where, for any DNN input x, fcollision(x) = 1 pre-
dicts that the robot is on collision course, and fcollision(x) =
2 predicts that the robot is not on collision course. Sup-
pose that a representative 49000-sample2 test dataset X and
the DNN verification technique verif 1 from (7) are used
to quantify the uncertainty of fcollision. Further assume that
Xtrue = {x ∈X | verif 1(fcollision, x) = true} and Xfalse = {x ∈
X | verif 1(fcollision, x) = false} contain 28843 and 20157 of the
data samples from X , respectively (i.e., 28843 of the 49000
data samples from X are “verified”). In this DeepDECS stage,
separate confusion matrices Ctrue and Cfalse are obtained for the
test data samples from Xtrue and Xfalse, respectively. Assuming
that the two matrices are

Ctrue =
[
2302 180
1266 25095

]

and Cfalse =
[
2786 353
8447 8571

]

,

the first DeepDECS stage terminates by using (11) to calcu-
late the probabilities pkk′v that a class-k input x that satisfies
verif 1(fcollision, x) = v is classified as belonging to class k′:

p11true =
2302

2482
= .93, p12true =

242

2482
= .07,

p21true =
1266

26361
= .05, p22true =

25095

26361
= .95,

p11false =
2786

3139
= .89, p12false =

353

3139
= .11,

p21false =
8447

17018
= .50, p22false =

8571

17018
= .50

2All numbers used in the example are actual values from our evaluation
of DeepDECS for the mobile robot collision avoidance application (see also
Section V).

B. Stage 2: Model Augmentation

1) Controller Synthesis Problem: DeepDECS organises
each state s of the perfect-perception pDTMC model from
Fig. 1 into a tuple

s= (z, k, t, c), (13)

where z ∈ Z models the state of the system, k ∈ [K] models the
state of the environment, c ∈ C models the control parameters
of the system, and t ∈ [3] is a “turn” flag. This flag (i) parti-
tions the state set into states in which the system can change
(t= 1), states in which the environment is observed (t= 2)
and states in which it is the controller’s “turn” to act (t= 3);
and (ii) forces the pDTMC to visit these three types of states
in order:

∀s= (z, k, t, c), s′ = (z′, k′, t′, c′) ∈ S :
((t= 1 ∧ P (s, s′)> 0) =⇒ k′ = k ∧ c′ = c ∧ t′ < 3)
∧ ((t= 2 ∧ P (s, s′)> 0) =⇒ z′ = z ∧ c′ = c ∧ t′ = 3)
∧ ((t= 3 ∧ P (s, s′)> 0) =⇒ z′ = z ∧ k′ = k ∧ t′ = 1) .

(14)

We note that the use of a “turn” flag to distinguish between
different types of model states is common in the research on dis-
crete controller synthesis using probabilistic models (e.g., [20],
[81]), which we drew inspiration from for the DeepDECS state
partitioning. The outgoing transition probabilities from states
(z, k, 3, c) ∈ S are controller parameters to be determined. We
refer to them using the notation:

xzkcc′ = P ((z, k, 3, c), (z, k, 1, c′)) (15)

for all c′ ∈ C, where xzkcc′ ∈ {0, 1} for deterministic con-
trollers or xzkcc′ ∈ [0, 1] for probabilistic controllers, and∑

c′∈C xzkcc′ = 1.
We note that a perfect-perception Markov chain model is

just a regular Markov chain model of a system with stochastic
behaviour. As such, established practices can be used to obtain
this model, e.g., through automatic generation from software
artefacts such as activity diagrams [12], [30], or by following
the tutorials and examples from the numerous case studies on
the PRISM website https://prismmodelchecker.org/. In our ex-
perience, an engineer familiar with probabilistic model check-
ing can develop one of these models within a few hours for a
small to medium-sized system.

Example 2: We developed a perfect-perception pDTMC
model for the mobile robot from our running example in the
PRISM modelling language (Fig. 4(a)). This pDTMC mod-
els the logic underpinning the operation of the robot at a
generic intermediate waypoint I from Fig. 2. The model states
are tuples

(z, k, t,wait) ∈ {0, 1, . . . , 4} × [2]× [3]× B (16)

with the semantics from (13), where k = 1 and k = 2 corre-
spond to the mobile robot being on a collision course, and not
being on a collision course, respectively.

As shown by the MobileRobot pDTMC module, when reach-
ing waypoint I the robot first uses its sensors (lidar, cameras,
etc.) to look for the “collider” (state z = 0). If the collider is

https://prismmodelchecker.org/

1380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

dtmc

const double pcollider = 0.8;

module MobileRobot // ManagedComponents
z : [0..4] init 0; // 0:check collider, 1:collider detected,

// 2:check wait, 3:no collider, 4:done
[look] t=1 ∧ z=0 → pcollider:(z’=1) + (1-pcollider):(z’=3);
[check] t=1 ∧ z=1 → 1:(z’=2);
[retry] t=1 ∧ z=2 ∧ wait → 1:(z’=0);
[proceed] t=1 ∧ z=2 ∧ ¬wait → 1:(z’=3);
[travel] t=1 ∧ z=3 → 1:(z’=4);
[end] t=1 ∧ z=4 → 1:(z’=4);

endmodule

const double pocc = 0.25;

module Collider // Environment
k : [1..2] init 1; //1:on collision course (occ), 2:not occ

[monitor] t=2 → pocc:(k’=1) + (1-pocc):(k’=2);
endmodule

const double x1; // prob. of waiting when occ
const double x2; // prob. of waiting when not occ

module PerfectPerceptionController
wait : bool init false;

[decide] t=3 ∧ k=1 → x1:(wait’=true) + (1-x1):(wait’=false);
[decide] t=3 ∧ k=2 → x2:(wait’=true) + (1-x2):(wait’=false);

endmodule

module Turn
t : [1..3] init 1;

[check] true → 1:(t’=2);
[monitor] true → 1:(t’=3);
[decide] true → 1:(t’=1);

endmodule

rewards ”time”
[travel] true : 9.95;
[proceed] k=1 : 2.57;
[retry] true : 5;

endrewards

label ”collision” = z=3 & k=1;
label ”done” = z=4;

Fig. 4. DeepDECS pDTMC models from the robot collision limitation application.

present in the vicinity of the robot (which happens with prob-
ability pcollider, known from previous executions of the task),
the robot performs a check action (state z = 1). As defined in
the module Collider, this leads to the execution of a monitor
action to predict whether travelling to the next waypoint would
place the robot on collision course with the other agent (which
happens with probability pocc, also known from historical data)
or not. Each monitor action activates the controller, whose

behaviour is specified by the PerfectPerceptionController mod-
ule. A probabilistic controller with two parameters is used: the
controller decides that the robot should wait with probability x1

when a collision is predicted (k = 1) and with probability x2 if
no collision is predicted (k = 2). Depending on this decision,
the robot will either retry after a short wait or proceed and travel
to the next waypoint, reaching the end of the decision-making
process. Finally, when the collider is absent (with probability

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1381

1− pcollider in the first line from the MobileRobot module),
the robot can travel without going through these intermediate
actions.

Given a pDTMC with the characteristics described earlier,
the controller synthesis problem for the perfect-perception AS
is to find the combinations of values for parameters (15) for
which the pDTMC satisfies n1 ≥ 0 PCTL-encoded constraints

Ci ::= propi ∼i bound i, (17)

and achieves optimal trade-offs among n2≥1 PCTL-encoded
optimisation objectives

Oj ::= minimise propn1+j | maximise propn1+j (18)

where prop1 to propn1+n2
are PCTL-encoded AS properties,

∼i∈ {<,≤,≥, >}, bound i ≥ 0, i ∈ [n1] and j ∈ [n2]. The con-
straints (17) and optimisation objectives (18) taken together rep-
resent the system-level requirements considered by DeepDECS.

Example 3: The controller synthesis problem for the perfect-
perception variant of the mobile robot from our running exam-
ple involves finding the combinations of values for the param-
eters x1 and x2 of the pDTMC from Fig. 4(a) that ensure a
collision-free journey with probability of at least 0.9:

C1 : P[¬collision U done]≥ 0.9 (19)

and an optimal trade-off between maximising this probability
and minimising the travel time:

O1 : maximise P[¬collision U done]
O2 : minimise Rtime[F done]

(20)

2) pDTMC Augmentation: The controller of an AS with
deep-learning perception cannot access the true environment
state k from (13). Instead, DeepDECS controllers need to
operate with an estimate k̂ ∈ [K] of k, and with the results
v = (v1, v2, . . . , vn) ∈ B

n of the n verification techniques (6)
applied to the DNN and its input that produced the estimate k̂.
The states ŝ of a DeepDECS DNN-perception pDTMC model,

M̂= (Ŝ, ŝ0, P̂ , L̂, R̂) (21)

are tuples that extend (13) with k̂ and v:

ŝ= (z, k, k̂, v, t, c). (22)

To provide a formal definition for the derivation of this pDTMC,
we use the notation s(ŝ) = (z, k, t, c) to refer to the element
from Z × [K]×[3]× C that corresponds to a generic ele-
ment ŝ ∈ Z × [K]2 × B

n × [3]× C. With this notation, the el-
ements of M̂ are obtained from the perfect-perception pDTMC
M= (S, s0, P, L,R) of the AS and the probabilities (11)
as follows:

Ŝ = {ŝ ∈ Z × [K]2 × B
n × [3]× C | s(ŝ) ∈ S}; (23)

ŝ0 = (z0, k0, k0, true, . . . , true, t0, c0), (24)

where (z0, k0, t0, c0) = s0; and, for any states
ŝ= (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ,

P̂ (ŝ, ŝ′)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P (s(ŝ), s(ŝ′)), if t= 1 ∧ (k̂′, v′) = (k̂, v)
P (s(ŝ), s(ŝ′)) · pk′k̂′v′ , if t= 2

xzk̂vcc′ , if t= 3 ∧ (z′, k′, k̂′, v′, t′)

= (z, k, k̂, v, 1)
0, otherwise

(25)

where

xzk̂vcc′ = P̂ ((z, k, k̂, v, 3, c), (z, k, k̂, v, 1, c′)) (26)

are controller parameters such that xzk̂vcc′ ∈ {0, 1} for
deterministic controllers or xzk̂vcc′ ∈ [0, 1] for probabilistic
controllers, and

∑
c′∈C xzk̂vcc′ = 1. Finally, for any

state ŝ ∈ Ŝ,

L̂(ŝ) = L(s(ŝ)), (27)

and

R̂= {(ρ̂, ι̂) ∈ (Ŝ → R≥0)× (Ŝ × Ŝ → R≥0) |
∃(ρ, ι) ∈R :

(
∀ŝ ∈ Ŝ : ρ̂(ŝ) = ρ(s(ŝ))

)

∧
(
∀ŝ, ŝ′ ∈ Ŝ : ι̂(ŝ, ŝ′) = ι(s(ŝ), s(ŝ′))

)
}.
(28)

An alternative encoding of the controller design space using
a partially observable Markov decision process (POMDP) is
possible [17], [18]. However, we opted for the pDTMC formal-
isation because current POMDP-enabled probabilistic model
checkers [42], [69] do not support policy synthesis for com-
binations of requirements as complex as (17), (18).

Example 4: Fig. 4(b) illustrates the PRISM-encoded DNN-
perception pDTMC model obtained for the mobile robot from
our running example when a single (generic) verification
method is used in the DNN uncertainty quantification stage of
DeepDECS.

We end this section with a series of theorems that demon-
strate the correctness, and show several key properties of our
approach. First, Theorem 1 demonstrates that the pDTMC aug-
mentation method from Section IV-B2 yields – by construction
– a valid pDTMC (21) in which the controller actions are
oblivious of the true environment state k, which is unknown to
the controller. Second, Theorem 2 shows that the set CtrlDNN

of DNN-perception controllers for an autonomous system is
included in the set Ctrlperf of perfect-perception controllers
for that system (i.e., CtrlDNN ⊂ Ctrlperf). This is a relevant
property, as it provides a bound for what can be achieved
using DNN-perception controllers; in particular, if no perfect-
perception controller is adequate for the needs of an applica-
tion, there is no point in seeking a DNN-perception controller
that meets those needs, as no such controller exists. Next,
Theorem 3 demonstrates that the set of DNN-perception con-
trollers Ctrlperf contains controllers not present in the DNN-
perception controller set CtrlDNN (i.e., Ctrlperf \ CtrlDNN �=
∅). This property is relevant because it shows that one cannot
use DNN-perception controllers to match the performance of

1382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

every single perfect-perception controller. Finally, Theorem 4
shows that increasing the number of DNN verification tech-
niques used by DeepDECS is never detrimental, and may yield
a better set of DNN-perception controllers. As further detailed
in the discussion provided after Theorem 4, this last property is
relevant as it confirms that using additional DNN verification
techniques may produce better controllers.

The following result shows that the DeepDECS module aug-
mentation produces a valid pDTMC in which the probabilities
of control-parameter changes are independent of the true envi-
ronment state k.

Theorem 1: The tuple (21) with the elements defined by
(23)–(28) is a valid pDTMC that satisfies:

∀ŝ= (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ :

(c′ �= c ∧ P̂ (ŝ, ŝ′)> 0) =⇒
(
(z′, k′, k̂′, v′) = (z, k, k̂, v)

∧ t= 3 ∧ t′ = 1 ∧ ∀k′′ ∈ [K] : P̂ ((z, k′′, k̂, v, t, c),

(z, k′′, k̂, v, t′, c′)) = P̂ (ŝ, ŝ′)
)
. (29)

Proof: To demonstrate that (21) is a valid pDTMC,
we need to show that, for any state ŝ= (z, k, k̂, v, t, c) ∈ Ŝ,∑

ŝ′∈Ŝ P̂ (ŝ, ŝ′) = 1. We prove this and the following variant
of (14) (which is required for the subsequent proofs):

∀ŝ= (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ :
(
(t=1 ∧ P (ŝ, ŝ′)>0)

=⇒ ((k′, k̂′, v′, c′)=(k, k̂, v, c) ∧ t′<3)
)

∧
(
(t=2 ∧ P (ŝ, ŝ′)>0)

=⇒ ((z′, c′)=(z, c) ∧ t′=3)
)

∧
(
(t=3 ∧ P (ŝ, ŝ′)>0)

=⇒ ((z′, k′, k̂′, v′)=(z, k, k̂, v) ∧ t′=1)
)

(30)

for each possible value of t ∈ {1, 2, 3}.
For t= 1, (25) implies that

∑

ŝ′∈Ŝ

P̂ (ŝ, ŝ′) =
∑

ŝ′∈Ŝ

P (s(ŝ), s(ŝ′)) = 1

because the last sum adds up all outgoing transition probabili-
ties of state s(ŝ) from the perfect-perception pDTMC M. Con-
sider now any ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ such that P̂ (ŝ, ŝ′)>
0. According to (25), this requires k̂′ = k̂ ∧ v′ = v when t=
1. Additionally, since P̂ (ŝ, ŝ′) = P ((z, k, 1, c), (z′, k′, t′, c′)),
(14) implies that k′ = k ∧ c′ = c ∧ t′ < 3, as required by (30).

For t= 2, we have
∑

ŝ′∈Ŝ

P̂ (ŝ, ŝ′)

=
∑

(z′,k′,k̂′,v′,t′,c′)∈Ŝ

(
P̂ (ŝ, (z′, k′, k̂′, v′, t′, c′)) · pk′k̂′v′

)
=

∑

(z′,k′,t′,c′)∈S

(

P ((z, k, 2, c), (z′, k′, t′, c′)) ·
∑

(k̂′,v′)′∈[K]×Bn

pk′k̂′v′

)

=
∑

(z′,k′,t′,c′)∈S

(P ((z, k, 2, c), (z′, k′, t′, c′)) · 1) = 1.

Consider again a generic ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ such that
P̂ (ŝ, ŝ′)> 0. Since

P̂ (ŝ, ŝ′) = P ((z, k, 2, c), (z′, k′, t′, c′)) · pk′k̂′v′ ,

(14) implies that (z′, c′) = (z, c) ∧ t′ = 3.
Finally, for t= 3, we have

∑
ŝ′∈Ŝ P̂ (ŝ, ŝ′)=∑

c′∈C xzk̂vcc′=1 and the property (30) is explicitly stated in
(25). To show now that (29) holds, we note that, according to
definition (25), both transition probabilities from this relation
(i.e., P̂ (ŝ, ŝ′) and P̂ ((z, k′′, k̂, v, t, c), (z, k′′, k̂, v, t′, c′))) are
equal to xzk̂vcc′ .

Proving the next results requires the following lemma.
Lemma 1: Let x and x̂ be valid instantiations of the perfect-

perception controller parameters
{
xzkcc′ ∈ [0, 1]

∣
∣ (∃k ∈ [K].(z, k, 3, c) ∈ S) ∧ c′ ∈ C

}

from (15) and of the DNN-perception controller parameters
{
xzk̂vcc′ ∈ [0, 1]

∣
∣ (∃k ∈ [K].(z, k, k̂, v, 3, c) ∈ Ŝ) ∧ c′ ∈ C

}

from (25), respectively. Also, let Mx and M̂x̂ be the instances
of the perfect-perception pDTMC M and DNN-perception
pDTMC M̂ corresponding to the controller parameters x and
x̂, respectively. With this notation, we have

pmc(Φ,M̂x̂) = pmc(Φ,Mx), (31)

and

pmc(ΦR,M̂x̂) = pmc(ΦR,Mx), (32)

for any (quantitative) PCTL state formula Φ and reward state
formula ΦR if and only if the elements of x and x̂ satisfy

xzkcc′ =
∑

k̂∈[K]

∑

v∈Bn

pkk̂vxzk̂vcc′ (33)

for all (z, k, 3, c) ∈ S and c′ ∈ C.
Proof: Let PathsMx(s0) and PathsM̂x̂(ŝ0) be the set of

all Mx paths starting at s0 and the set of all M̂x̂ paths starting
at ŝ0, respectively. Equalities (31) and (32) hold iff, for any path
π = s0s1s2 . . . ∈ PathsMx(s0), set of associated paths Π̂ =
{
ŝ0ŝ1ŝ2 . . . ∈ PathsM̂x̂(ŝ0) | ∀i≥ 0 . s(ŝi) = si

}
, and i≥ 0,

the following property holds:

P (si, si+1) =
∑

ŝ0ŝ1ŝ2...∈Π̂

P̂ (ŝi, ŝi+1). (34)

This is required because, according to (27) and (28), the (i+ 1)-
th state of π and of any path π̂ ∈ Π̂ are labelled with the same
atomic propositions and assigned the same state rewards, re-
spectively; and, according to (28), the transition rewards for the
transition between their i-th state and (i+ 1)-th state are also
identical. Thus, if this equality holds, the path π and path set Π̂
are indistinguishable in the evaluation of PCTL state and state
reward formulae; and, if the equality does not hold, a labelling
function L and a PCTL state formula Φ (or state reward formula
ΦR) can be handcrafted to provide a counterexample for (31)
(or for (32)).

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1383

Given the definition of P̂ from (25), property (34) holds
trivially for any state si = (z, k, t, c) ∈ S with t= 1, and also
holds for states si with t= 2 because

∑

ŝ0ŝ1ŝ2...∈Π̂

P̂ (ŝi, ŝi+1) =
∑

ŝ0ŝ1ŝ2...∈Π̂

(P (si, si+1) · pkk̂i+1vi+1
)

= P (si, si+1) ·
∑

ŝ0ŝ1ŝ2...∈Π̂

pkk̂i+1vi+1

= P (si, si+1) · 1 = P (si, si+1),

where k̂i+1 and vi+1 represent the DNN prediction and veri-
fication result for each state ŝi+1 from the sum, respectively.
Finally, for t= 3, property (34) holds if and only if the perfect-
perception and DNN-perception controllers select each next
controller configuration c′ ∈ C with the same probability for
si and for all the states ŝi from Π̂ taken together, i.e., if and
only if (33) holds, which completes the proof.

The next two theorems show that for each controller that
satisfies constraints (17) and Pareto-optimises objectives (18)
for the DNN-perception AS there is an equivalent controller for
the perfect-perception AS, but the converse does not hold.

Theorem 2: For any AS requirements (17), (18) for which
there exists a DNN-perception controller that satisfies the con-
straints (17), there exists also a perfect-perception controller
that satisfies the same constraints and yields the same values
for the PCTL properties from the optimisation objectives (18).

Proof: We prove this result by showing that the applica-
tion of (33) to any valid instantiation of the DNN-perception
controller parameters xzk̂vcc′ produces a valid instantiation of
the perfect-perception controller parameters xzkcc′ . First, since
xzk̂vcc′ ∈ [0, 1] for any valid (z, k̂, v, c, c′) tuple, we have

0 =
∑

k̂∈[K]

∑

v∈Bn

(pkk̂v · 0)≤
∑

k̂∈[K]

∑

v∈Bn

pkk̂vxzk̂vcc′

≤
∑

v∈Bn

(pkk̂v · 1)≤ 1,

so xzkcc′ ∈ [0, 1] for any valid tuple (z, k, c, c′). Additionally,
for any valid combination of z, k and c, we have
∑

c′∈C

xzkcc′ =
∑

c′∈C

∑

k̂∈[K]

∑

v∈Bn

pkk̂vxzk̂vcc′

=
∑

c′∈C

⎛

⎝xzk̂vcc′

⎛

⎝
∑

k̂∈[K]

∑

v∈Bn

pkk̂v

⎞

⎠

⎞

⎠=
∑

c′∈C

(
xzk̂vcc′ · 1

)
=1,

which completes the proof.
Theorem 3: If a confusion matrix Cv0

from (10) satisfies
Cv0

[k1, k0]> 0∧Cv0
[k2, k0]> 0 for a combination of verifica-

tion results v0 ∈ B
n, two classes k1 �= k2 and a class k0, then

there is an infinite number of AS requirements (17), (18) for
which there exists a perfect-perception controller that satisfies
the constraints (17), and no DNN-perception controller exists
that satisfies the constraints and yields the same values as the
perfect-perception controller for the PCTL properties from the
optimisation objectives (18).

Proof: Consider two perfect-perception controller param-
eters xzk1cc′ and xzk2cc′ corresponding to a configuration c′

being selected by the controller when the environment state is
k1 and k2, respectively. Since Cv0

[k1, k0]> 0 ∧ Cv0
[k2, k0]> 0,

definition (11) implies that pk1k0v0
> 0 ∧ pk2k0v0

> 0, and we
consider the infinite set of (probabilistic) perfect-perception
controllers with xzk1cc′ = 1 and xzk2cc′ ∈ [0, pk2k0v0

). For any
such controller, consider the instantiation of equality (33) for
xzk1cc′ . The parameters of any equivalent DNN-perception con-
troller that are multiplied by non-zero probabilities pkk̂v on
the right-hand side of this instantiation must have value 1, or
otherwise the terms of the double sum from (33) will add up
to a value below 1 and the equality cannot hold. In particular,
we must have xzk0v0cc′ = 1 because this parameter is multiplied
by pk1k0v0

> 0. However, according to (33), this means that the
DNN-perception controller can only be equivalent to a perfect-
perception controller whose parameter xzk2cc′ satisfies

xzk2cc′ =
∑

k̂∈[K]

∑

v∈Bn

pk2k̂v
xzk̂vcc′ ≥ pk2k0v0

· xzk0v0cc′

= pk2k0v0
· 1 = pk2k0v0

.

This inequality is not satisfied by any of the perfect-perception
controllers from the infinite set we considered. As such, no
equivalent DNN-perception controller exists for any of these
perfect-perception controllers.

Theorem 3 demonstrates that the decision-making capabil-
ities of infinitely many perfect-perception controllers cannot
be replicated by DNN-perception controllers (unless, excep-
tionally, applying the n DNN verification techniques resolves
the uncertainty introduced by the DNN). Finally, the following
result shows that increasing the number of DNN verification
techniques is never detrimental and may yield better Deep-
DECS controllers.

Theorem 4: For any AS requirements (17), (18) and
DNN-perception controller generated using n DNN verifica-
tion techniques verif 1, verif 2, . . . , verif n such that the con-
straints (17) are satisfied, the DeepDECS pDTMC obtained
using any verification technique verif n+1 in addition to
verif 1, verif 2, . . . , verif n can be used to generate a controller
that satisfies the constraints and yields the same values for the
PCTL properties from the optimisation objectives.

Proof: Let M̂n and M̂n+1 be the DNN-perception
pDTMCs obtained using the DNN verification techniques
verif 1, verif 2, . . . , verif n, and the DNN verification tech-
niques verif 1, verif 2, . . . , verif n+1, respectively. Consider
any instantiation x̂n of the controller parameters (25) for M̂n

so that the constraints (17) are satisfied, and let x̂n+1 be the
instantiation of the controller parameters (25) for M̂n+1 such
that the elements of this instantiation satisfy

xn+1

zk̂(v1,v2,...,vn,false)cc′
= xn+1

zk̂(v1,v2,...,vn,true)cc′

= xn
zk̂(v1,v2,...,vn)cc′

. (35)

We will show that the controller defined by x̂n+1 over M̂n+1

is equivalent to the controller defined by x̂n over M̂n (and
therefore must satisfy the constraints (17) and yield the
same values for the PCTL properties from the optimisation
objectives (18)).

1384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

According to Lemma 1, the former controller is equivalent to
the perfect-perception controller whose parameters (15) satisfy:

xzkcc′ =
∑

k̂∈[K]

∑

v∈Bn+1

pkk̂vx
n+1

zk̂vcc′
. (36)

Taking into account (35), we obtain:

xzkcc′=
∑

k̂∈[K]

∑

(v1,...,vn)∈Bn

(
pkk̂(v1,...,vn,false)

xn+1

zk̂(v1,...,vn,false)cc′

+ pkk̂(v1,...,vn,true)
xn+1

zk̂(v1,...,vn,true)cc′

)

=
∑

k̂∈[K]

∑

(v1,...,vn)∈Bn

[(
pkk̂(v1,...,vn,false)

+ pkk̂(v1,...,vn,true)

)

·xn
zk̂(v1,...,vn)cc′

]
=

∑

k̂∈[K]

∑

v∈Bn

pkk̂vx
n
zk̂vcc′

because, according to (11),

pkk̂(v1,...,vn,false)
+ pkk̂(v1,...,vn,true)

=
C(v1,...,vn,false)[k, k

′] + C(v1,...,vn,true)[k, k
′]

∑
v′∈Bn+1

∑
k′′∈[K] Cv′ [k, k′′]

=
C(v1,...,vn)[k, k

′]
∑

v′∈Bn

∑
k′′∈[K] Cv′ [k, k′′]

= pkk̂(v1,...,vn)
.

According again to Lemma 1, this result implies that the
perfect-perception controller induced by (36) is also equivalent
to the controller defined by x̂n over M̂n. Hence, using (35)
to select the parameters of the controller obtained for n+ 1
DNN verification technique yields a controller equivalent to that
obtained using only the first n verification techniques.

The result from Theorem 4 (i.e., that including any addi-
tional verification technique cannot yield worse DeepDECS
controllers) may appear counterintuitive. To understand why
this is the case, consider a poor verification technique which
consistently tells that the DNN output is wrong when the DNN
classifies its input correctly, and the other way around. If this
happened, then the uncertainty quantification from the first
DeepDECS stage would simply indicate to our stage 3 con-
troller synthesis that the DNN should be trusted more when the
result of this verification is ‘false’. This scenario is similar to
a weather forecasting service that keeps predicting dry weather
on rainy days (and the other way around): its regular users will
know to take their umbrellas with them on days predicted to be
dry, and to leave their umbrellas at home on days predicted to be
rainy. Another type of “poor” verification technique is one that
selects its true or false output completely randomly. For such
a technique, the uncertainty quantification from the first Deep-
DECS stage will show that the technique provides no useful
information, and therefore the DeepDECS controller synthesis
will automatically ignore its output and only rely on the other
verification techniques. Adding this technique will neither help
nor harm the outcome of the DeepDECS synthesis. To return
to our analogy, the regular users of a weather forecasting ser-
vice that makes random predictions will learn to ignore that
service, and to base their decisions on other services they have
access to.

C. Stage 3: Controller Synthesis

The controller synthesis problem for the DNN-perception
system involves finding instantiations for the controller parame-
ters for which the pDTMC M̂ from (21) satisfies the constraints
(17) and is Pareto optimal with respect to the optimisation
objectives (18). Solving the general version of this problem
precisely is unfeasible. However, metaheuristics such as multi-
objective genetic algorithms for probabilistic model synthe-
sis [14], [32] can be used to generate close approximations
of the Pareto-optimal controller set. Alternatively, exhaustive
search can be employed to synthesise the actual Pareto-optimal
controller set for AS with deterministic controllers and small
numbers of parameters, or—by discretising the search space—
an approximate Pareto-optimal controller set for AS with prob-
abilistic controllers.

Example 5: Consider again the DNN-perception pDTMC
model of the mobile robot from our running example (Fig.
4(b)). One option for searching its controller design space for
parameter combinations (x1false, x1true, x2false, x2true) ∈ [0, 1]4

that satisfy the constraint (19) and achieve optimal trade-offs
with respect to the optimisation objectives (20) is via discretis-
ing the four controller parameters, with each parameter varied
between 0 and 1 with a step size of 0.1. The DNN-perception
pDTMC instance for every parameter combination obtained in
this way can then be analysed using the probabilistic model
checker PRISM, so that the combinations which violate the
constraint (19) are discarded, and the remaining combinations
are used to assemble a Pareto-optimal set of controllers.

We demonstrate the synthesis of DeepDECS controllers
through the use of both metaheuristics and exhaustive search
in the next section.

V. EVALUATION

A. Evaluation Methodology

We carried out experiments to answer the research questions
(RQs) summarised below.
RQ1 (Uncertainty quantification effectiveness): Are the
DNN input subsets (9) “endorsed” by verification techniques
a sizeable part of the inputs encountered in the operational
design domain of autonomous systems? Given a DNN classifier
f , DeepDECS distinguishes between “endorsed” DNN inputs
x, i.e., inputs for which verif i(f, x) = true for one or more
of the verification techniques verif 1, verif 2,..., verif n, and
inputs that do not have this property. The envisaged benefits of
using DNN verification techniques in DeepDECS can only be
achieved if the endorsed inputs are (i) associated with higher
accuracy levels than unendorsed inputs, and (ii) encountered
frequently by the autonomous system. By using established
DNN verification techniques within DeepDECS, we know that
prerequisite (i) is going to hold. Therefore, we assessed whether
prerequisite (ii) is also met.
RQ2 (Controller synthesis effectiveness): How do the con-
trollers synthesised by DeepDECS compare to those obtained
without using DeepDECS, and are they achieving better trade-
offs between the optimisation objectives (18) when more DNN

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1385

TABLE I
KEY CHARACTERISTICS OF THE APPLICATIONS USED FOR THE DEEPDECS EVALUATION

Collision Limitation Driver-Attentiveness Management

Application Domain Infrastructure Inspection/Goods Transportation Autonomous Driving

System type Mobile robot Embedded autonomous system

System-level properties†
Probability of collision-free journey
Journey time

Risk level
Driver nuisance

DNN perception component Binary DNN classifier Three-class DNN classifier
DNN training/testing data Obtained through simulation Obtained from user study with human drivers
†These are the properties that appear in the system-level requirements (i.e., constraints and optimisation objectives) guiding the DeepDECS
controller synthesis.

verification techniques are used? For the first part of this re-
search question, we compare DeepDECS to a baseline approach
in which controllers are synthesised based solely on the output
of the perception DNN used by an autonomous system. For the
second part of this research question, Theorem 4 shows that
using n+ 1 DNN verification techniques yields controllers at
least as good as the controllers obtained using only n of those
techniques, but does not guarantee that the former controllers
are actually better than the latter. As such, we examined exper-
imentally if using additional verification techniques produces
better controllers.
RQ3 (Overheads): What are the development-time and
run-time computational overheads to synthesise DeepDECS
controllers and to use online DNN verification tech-
niques within an autonomous system, respectively? We as-
sessed the execution time for the synthesis of the DeepDECS
Pareto-optimal controllers, and for the online verification of
DNN inputs.

To answer these research questions, we used DeepDECS to
synthesise discrete-event controllers for two autonomous sys-
tems from different application domains. First, we considered
the autonomous mobile robot from our running example and
the synthesis of its collision-limitation controller. Second, we
used our method to synthesise an attentiveness-management
controller for drivers of level 3 autonomous vehicles, i.e., ve-
hicles whose drivers must retain situational awareness at all
times, so that they can resume manual driving when needed.
Table I summarises the significant differences between the key
characteristics of these systems.

In each of the two case studies, we considered four DNN
uncertainty quantification setups. These setups correspond to
using every subset of the two DNN verification techniques
from Section III-E in the uncertainty quantification stage
of DeepDECS:

(i) no verification technique;
(ii) only verif 1 from (7);

(iii) only verif 2 from (8);
(iv) both verif 1 and verif 2.

We synthesised separate sets of Pareto-optimal DeepDECS
controllers for each of these setups, as well as a fifth set
of Pareto-optimal controllers corresponding to the perfect-
perception variant of the autonomous system. Finally, we
used the following Pareto front quality metrics to compare

the five sets of Pareto optimal controllers, and to evaluate
their quality:

1) Inverted Generational Distance (IGD) [84], which mea-
sures the distance between the analysed Pareto front and a
reference frame (e.g., the true Pareto front, the best known
approximation of the true Parero front, or an “ideal”
Pareto front) by calculating, for each point on the refer-
ence frame, the distance to the closest point on the Pareto
front. The IGD measure for the front is then computed as
the mean of these distances. Smaller IGD values indicate
better Pareto fronts. The IGD values from our case studies
were computed using the perfect-perception Pareto front
as the reference frame.

2) Hypervolume (HV) [87], which captures the proximity
of the analysed Pareto front to a reference frame and the
diversity of its points (where higher diversity is better)
by measuring the volume (or area for two-dimensional
Pareto fronts) delimited by these points and a reference
point defined with respect to the reference framework.
The HV values from our case studies were obtained us-
ing the perfect-perception Pareto front as the reference
frame and, in line with common practice [86], its nadir
(i.e., the point corresponding to the worst values for each
optimisation objective) as the reference point.

To ease the application of DeepDECS and support its adop-
tion, we implemented a Python software tool that automates
the DeepDECS model augmentation process. The tool takes as
input a perfect-perception pDTMC model and the confusion
matrices (10) and outputs a DNN-perception pDTMC model.
The tool is executed as
pythondeepDECSAugment.py perfect-

pDTMC.pm
confusion_matrices.txt DNN-pDTMC.pm

where:
• perfect-pDTMC.pm is a file containing the perfect-

perception pDTMC model;
• confusion_matrices.txt is a file containing the

confusion matrix elements Cv[k, k′], v ∈ B
n, k ∈ [K], k′ ∈

[K], from (10);
• DNN-pDTMC.pm is the name of the file in which the

DNN-perception pDTMC model will be generated.
The two applications of DeepDECS are detailed in the

remainder of this section. To enable the reproducibility of

1386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

our results, the DeepDECS project website [24] contains all
the data, models and code from our experiments, as well
as the software tool that automates the model augmentation
stage of DeepDECS, and a tutorial that provides step-by-
step instructions for the use of our tool-supported controller
synthesis method.

B. Application 1: Mobile-Robot Collision Limitation

Many of the steps from the DeepDECS synthesis of collision-
limitation controllers for the mobile robot from our running ex-
ample were already summarised in Examples 1 through 5 from
Section IV. The additional details provided below complement
the information presented in those examples.

1) DeepDECS Inputs: The four inputs required for the ap-
plication of DeepDECS (see Fig. 1) were:

• a collision-prediction DNN trained using data from a sim-
ulator we implemented for the scenario in Fig. 2;

• a test dataset collected using our mobile robot simulator;
• a perfect-perception pDTMC model of the robot journey;
• controller requirements specifying the minimum accept-

able probability of a collision-free journey, and demanding
an optimal trade-off between maximising this probability
and minimising the travel time.

Further details about these four inputs are provided below.
DNN perception component. The data for training the DNN
and quantifying its uncertainty were obtained using the 2D
particle simulator Box2D (https://box2d.org/), with the robot
and collider simulated by circular particles of 0.5-unit radius.
We ran simulations with the robot starting at the origin (0, 0)
with a heading of π

2 radians, and travelling in a straight line
to a goal destination (xgoal , ygoal), with a speed of 1 unit/s.
A journey was deemed completed when the robot reached a
goal area defined by (xgoal ± ε, ygoal ± ε) for a small ε > 0.
The robot advanced with an angular velocity

θ̇r = α · arctan
(
vx · ygoal − vy · xgoal

vx · xgoal + vy · ygoal

)

where vx and vy are the horizontal and vertical velocities of the
robot, respectively, and α > 0 is a constant. When the difference
between the robot’s and the target heading exceeded π

36 , the
robot’s linear speed was reduced to 0.1 unit/s, allowing it time
to correct its course. The collider had a random initial position

(x, y, θ) = (U(−xlim, xlim), U(0, ylim), U(−π, π))

where U is the uniform distribution function, and random linear
and angular speeds given by

(s, θ̇c) = (U(0, slim), U(−θ̇lim, θ̇lim)).

The parameter values used for the experimental setup are:
α= 0.5, xgoal = 0, ygoal = 10, ε= 0.05, xlim = 10, ylim = 10,
slim = 2 units/s, and θ̇lim = π

4 rads/s. Each collected datapoint
was a tuple

(xdiff , ydiff , s, θ, θ̇c, occ),

where xdiff and ydiff are the relative horizontal and vertical
distances between the robot and the collider, and occ is the

label specifying whether the two agents are on collision course
(occ = 2) or not (occ = 1). The datapoints were normalised
such that xdiff , θ, θ̇c ∈ [−1, 1] and ydiff ∈ [0, 1]. Multiple simu-
lations were performed to collect 10000 collision datapoints and
10000 no-collision datapoints, and the mean times to complete
a journey between two successive waypoints with and without
collision were recorded.

We used 80% of the collected datapoints to train a two-class
DNN classifier with the architecture proposed by Ehlers [28].
This architecture comprises a fully-connected linear layer with
40 nodes, followed by a MaxPool layer with pool size 4 and
stride size 1, a fully-connected ReLU layer with 19 nodes, and
a final fully-connected ReLU layer with 2 nodes. The DNN was
implemented and trained using TensorFlow in Python, with a
cross-entropy loss function, the Adam optimisation algorithm
[59], and the following hyperparameters: 100 epochs, batch size
128, and initial learning rate 0.005 set to decay to 0.0001.
Test dataset. We assembled the test dataset using the 20% of
the datapoints collected from the mobile robot simulations that
were not used for training the collision-prediction DNN.
Perfect-perception pDTMC model. See Example 2.
PCTL-encoded requirements. See Example 3.

2) DeepDECS Application
Stage 1: DNN uncertainty quantification. We obtained four
sets of DNN uncertainty quantification probabilities (11) using
the test dataset mentioned in Section V-B1 and each possible
subset of DNN verification techniques from Section III-E. The
probabilities of the DNN classifying class-k inputs associated
with every verification result v as class k′ are summarised in
Fig. 5(a), which shows that “verified” classifications (i.e., those
associated with v = (true) for setups (ii) and (iii), and v =
(true, true) for setup (iv)) are obtained for large percentages
of DNN inputs, and have a much higher probability of being
correct than “unverified” classifications.
Stage 2: Model augmentation. We used our model aug-
mentation tool to obtain the DNN-perception pDTMC model
for each combination of the verification methods (7) and (8)
from the perfect-perception pDTMC and the DNN uncer-
tainty quantification probabilities (11) obtained in stage 1.
Example 4 presents one such DNN-perception model; the mod-
els generated for all four uncertainty quantification setups ex-
plored in our experiments are provided on the DeepDECS
website [24].
Stage 3: Controller synthesis. The controller parameters
synthesised by DeepDECS were the probabilities x1v and x2v

for the robot to wait at its current waypoint when the DNN
predicts it is on collision course (class 1) and not on collision
course (class 2), respectively, where v = () for setup (i), v ∈ B

for setups (ii) and (iii), and v ∈ B
2 for setup (iv).

As mentioned in Example 5, the controller design space was
explored via discretising the controller parameters x1v, x2v ,
with each parameter varied between 0 and 1 with a step
size of 0.1. The DNN-perception pDTMC instance for every
parameter combination obtained in this way was analysed using
the probabilistic model checker PRISM.

The Pareto fronts for the controllers that satisfied constraint
(19) for each setup are presented in Fig. 5(b), together with

https://box2d.org/

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1387

Fig. 5. DeepDECS controller synthesis for the mobile robot collision limitation.

1388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

the Pareto front for the perfect-perception setup, which we
analysed for comparison purposes. Expectedly, the best re-
sults are achieved in the perfect-perception setup, and the
worst when no DNN verification technique is used. The use of
verification methods yields Pareto fronts located closer to the
perfect-perception Pareto front, with the best DNN-perception
Pareto front obtained when both verification methods are used.
These findings from the visual inspection of Fig. 5(b) are con-
firmed by the analysis (Fig. 5(c)) of the Pareto fronts using the
two established Pareto-front quality indicators (IGD and HV)
mentioned in Section V-A.

For comparison purposes, we also considered a baseline ap-
proach in which the Pareto-optimal controllers were synthesised
based on the DNN outputs alone, i.e. by assuming these outputs
to be always correct. We note that this is the only option when
the aleatory uncertainty introduced by the DNN is not quantified
as done in the first stage of DeepDECS. The expected Pareto
front for this baseline approach is shown as an inset plot in Fig.
5(b). For each point on this expected Pareto front, the plot also
shows the actual outcome delivered by the controller associated
with that point. Because the DNN uncertainty is not considered
by this baseline, the expected and actual outcomes are typically
different. Furthermore, because the DNN accuracy is worse
when the mobile robot is not on collision course than when it
is on collision course (i.e., 78% versus 91%, cf. Fig. 5(a)(i)),
the expected Pareto front is overly pessimistic, and only two of
its points satisfy constraint (19).

The synthesis of these Pareto-optimal controller sets was
performed on a HP Elitebook 840 G7 Laptop with i5 Intel
10th generation processor and 16GB memory, and the synthesis
times are reported in Fig. 5(d), alongside the mean execution
time for the online DNN verification technique(s) used by
DeepDECS.

C. Application 2: Driver-Attentiveness Management

We used DeepDECS to design a proof-of-concept
driver-attentiveness management system for shared-control
autonomous cars. Developed as part of our SafeSCAD project
[4], [13] and inspired by the first United Nations regulation
on vehicles with Level 3 automation [83], this system uses
(Fig. 6): (i) specialised sensors to monitor key car parameters
(velocity, lane position, etc.) and driver’s biometrics (eye
movement, heart rate, etc.), (ii) a three-class DNN to predict
the driver’s response to a request to resume manual driving, and
(iii) a deterministic controller to issue visual/acoustic/haptic
alerts when the driver is insufficiently attentive.

1) DeepDECS Inputs: The four inputs required for the ap-
plication of DeepDECS (see Fig. 1) were:

• an existing DNN trained and validated with driver data
from a SafeSCAD user study performed within a driving
simulator [73];

• a test dataset obtained also from the study in [73];
• a perfect-perception pDTMC model of the decision pro-

cess used for driver-attentiveness management;
• controller requirements that place constraints on, and re-

quire the minimisation of, the journey risk and the driver
nuisance caused by the use of alerts.

Fig. 6. Driver-attentiveness management for shared-control autonomous
driving. Data from car sensors (1) and driver biometric sensors (2) are supplied
to a DNN perception component that classifies the driver state as attentive,
semi-attentive or inattentive. The DeepDECS controller decides when optical,
acoustic and/or haptic alerts (3) should be used to increase the driver’s
attentiveness.

Further details about these four inputs are provided below.
DNN perception component. The datasets for training the
DNN and quantifying its uncertainty were taken from a user
study [73] conducted as part of our SafeSCAD project on the
safety of shared control in autonomous driving [4]. Each data-
point included: (i) driver biometrics (eye movement, heart rate,
and galvanic skin response); (ii) driver gender; (iii) driver per-
ceived workload and psychological stress (estimated using es-
tablished metrics); (iv) driver engagement in non-driving tasks
while not in control of the car (e.g., using a mobile phone, or
reading); and (v) vehicle data (distances to adjacent lanes and
to any potential hazard, steering wheel angle, velocity, and gas
and break pedal angles). We used 60% of the collected data
for training a three-class DNN classifier with the architecture
proposed by Pakdamanian et al. [73], and 15% for its calibration
and validation.
Test dataset. We used a test dataset comprising the 25% of the
data mentioned above that were not used for the DNN training,
calibration and validation.
Perfect-perception pDTMC model. We modelled the op-
eration of the driver attentiveness management system from
Fig. 6 using a perfect-perception pDTMC (available in our
GitHub repository [24]) whose states are tuples

(z, k, t, c) ∈ {0, 1, . . . , 7} × [3]× [3]× {0, 1, . . . , 7} (37)

with the semantics from (13). In this tuple, the system state
z ∈ {0, 1, . . . , 7} is a binary encoding of the alerts currently
activated, e.g., z = 5 = 101(2) corresponds to a scenario in
which the optical alert is active, the acoustic alert is inactive,
and the haptic alert is active; the classes k = 1, k = 2 and k = 3
correspond to the driver being attentive, semi-attentive and inat-
tentive, respectively;3 and the control variable c ∈ {0, 1, . . . , 7}

3We used a three-class DNN classifier as recommended by the authors of the
user study [73] that this application is based on. Advantageously, this allowed
the evaluation of DeepDECS for non-binary DNN classifiers in addition to
its evaluation for binary classifiers in Section V-B.

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1389

is the binary encoding of the alerts to be activated in response
to a new DNN prediction of the driver’s attentiveness level.
PCTL-encoded requirements. The system-level requirements
comprise two constraints that limit the maximum expected risk
and driver nuisance cumulated over a 45-minute driving trip,
and two optimisation objectives requiring that the same two
measures are minimised:

C1 : Rrisk[C≤ntrans(45)]≤ 100
C2 : Rnuisance[C≤ntrans(45)]≤ 6000
O1 : minimise Rrisk[C≤ntrans(45)]
O2 : minimise Rnuisance[C≤ntrans(45)]

(38)

where Rrwd[C≤ntrans(45)] denotes the reward rwd cumulated
over the number of DNN-perception pDTMC transitions corre-
sponding to a 45-minute journey.

2) DeepDECS Application
Stage 1: DNN uncertainty quantification. Fig. 7(a) shows
the four sets of DNN uncertainty quantification probabilities
(11) obtained using the test dataset from Section V-C1 for
each DNN verification setup. Similar to the robot collision-
limitation controller, setups (ii)–(iv), which use the DNN ver-
ification techniques verif 1 from (7) and/or verif 2 from (8),
led to large fractions of the test dataset being verified, and to
higher DNN accuracy for these subsets compared to the no-
verification setup. Furthermore, the “verified” DNN predictions
have a much higher probability of being correct than “unveri-
fied” ones.
Stage 2: Model augmentation. We used our Deep-
DECS model augmentation tool to derive the DNN-perception
pDTMC model for each setup (i.e., set of DNN uncertainty
quantification probabilities (11) from stage 1). The DNN-
perception pDTMC models for all uncertainty quantification
options explored in our experiments are provided on the Deep-
DECS website [24].
Stage 3: Controller synthesis. The controller parameters
synthesised by DeepDECS were the encodings x1v, x2v, x3v ∈
{0, 1, . . . , 7} of the alert combinations to be issued when the
driver is attentive, semi-attentive and inattentive, respectively,
where v = () for setup (i), v ∈ B for setups (ii) and (iii), and v ∈
B
2 for setup (iv). As the controller design space was too large

for exhaustive exploration, we used the EvoChecker probabilis-
tic model synthesis tool [32] to generate close approximations
of the Pareto-optimal controllers. EvoChecker performs this
synthesis using a multi-objective genetic algorithm (MOGA)
whose fitness function is computed with the help of a probabilis-
tic model checker. For all setups, we configured EvoChecker
to use the NSGA-II MOGA with a population size of 1000
and a maximum number of evaluations set to 20× 104, and the
model checker PRISM. The result of the DeepDECS controller
synthesis is presented in Fig. 7(b). A visual inspection of the
(approximate) Pareto fronts from this figure indicates that the
setups that employed verification techniques achieved Pareto-
optimal controllers closer to the perfect-perception Pareto front.
In particular, the knee points of the Pareto fronts from setups
(ii) and (iv) are much closer to the knee point of the perfect-
perception front than those from the other setups. These findings
are confirmed by the Pareto-front analysis that we conducted
using the quality metrics IGD and HV (Fig. 7(c)), which shows

that the quality metrics for these two fronts are the best out of
the four setups. We further note that the two best Pareto fronts
are almost indistinguishable visually, with the front obtained
using both verification techniques having only a marginally
better HV score than the one obtained using only verif 1.
This result is in line with Theorem 4, which states that using
more verification techniques is never detrimental but is not
guaranteed to yield better trade-offs between the optimisation
objectives.

As for the mobile robot application, we also considered
the baseline approach in which the Pareto-optimal controllers
were synthesised based on the DNN outputs alone, i.e., without
quantifying the DNN uncertainty. As a result, we obtained an
expected Pareto front whose points are associated with synthe-
sised controllers which yield actual outcomes different from
the expected ones, as shown by the inset plot from Fig. 7(b).
Furthermore, none of the points on the expected Pareto front
meets the two constraints from 38.

The EvoChecker executions used to generate the Pareto-
optimal controller sets from Fig. 7(b) were carried out using five
CPUs and 8GB of memory on the University of York’s Viking
high-performance cluster (https://www.york.ac.uk/it-services/
services/viking-computing-cluster), with a set time of five
hours. This result is shown in Fig. 7(d), which also reports
the mean time required to execute the online DNN verification
technique(s) on the regular computer with the specification
mentioned at the end of Section V-B2.

D. Discussion

Having applied our approach to two systems taken from
different application domains and exhibiting the different char-
acteristics summarised in Table I, we can now provide answers
to the research questions from Section V-A.
RQ1 (Uncertainty quantification effectiveness): As shown in
Figs. 5(a) and 7(a), for both DeepDECS applications and across
all setups that used DNN verification techniques, the DNN
inputs verified by at least one verification technique amounted
to well over half of test datasets representative for the opera-
tional design domains of the two autonomous systems, with the
exception of the setup from Fig. 7(a)(iii), for which a still large
fraction of slightly under half of the test dataset was verified.
These results show that a significant percentage of DNN inputs
encountered within the ODDs of the two applications are veri-
fied, confirming that the key second prerequisite from the RQ1
description in Section V-A holds.4

RQ2 (Controller synthesis effectiveness): As shown by the
inset plots from Figs. 5(b) and 7(b), the baseline approach
synthesised inferior controllers whose expected outcomes: (a)
barely met the required constraints for our first application, and
did not meet the constraints for our second application; and
(b) differed considerably from the actual outcomes produced

4Gven our use of established DNN verification techniques, the other prereq-
uisite from the RQ1 description also holds: the DNNs from both applications
exhibited much higher accuracies for their verified inputs, with differences as
significant as 50% versus 95% accuracy for the correct classification of class
2 unverified and verified inputs, respectively, in the setup from Fig. 5(a)(ii).

https://www.york.ac.uk/it-services/services/viking-computing-cluster
https://www.york.ac.uk/it-services/services/viking-computing-cluster

1390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Fig. 7. DeepDECS controller synthesis results for the driver-attentiveness management system.

by these controllers. Additionally, the controller Pareto fronts
from Figs. 5(b) and 7(b), and their quantitive evaluations from
Figs. 5(c) and 7(c) show that increasing the number of DNN

verification techniques used by DeepDECS yields controllers
with better trade-offs between the optimisation objectives (18).
Using either of the two verification techniques considered in

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1391

our evaluation produced significantly better results than the no-
verification setup, with verif 2 performing slightly better than
verif 1 for the collision limitation controller (Fig. 5(c)), and
verif 1 leading to much better results than verif 2 for driver-
attentiveness management controller (Fig. 7(c)). Using both
verification techniques at the same time produced even better
controllers in both DeepDECS applications, although the im-
provements over the setups with a single verification technique
were much smaller than those achieved by moving from no
verification to one verification technique. This result indicates
that including larger numbers of verification techniques yields
diminishing returns.
RQ3 (Overheads): For all four DNN verification setups, the
synthesis of the DeepDECS controller sets was completed in
under one hour on a standard laptop computer for the mobile
robot collision limitation (Fig. 5(d)), and controller sets of
significantly better quality than those obtained for the baseline
were generated in five hours on a modest five-CPU computer
cluster for the driver-attentiveness management (Fig. 7(d)). As
the DeepDECS controller synthesis is a one-off, development-
time activity, all of these computational overheads are perfectly
acceptable. As for the online computational overheads, carrying
out the verification of one DNN prediction on a standard lap-
top computer took between 0.2ms (when only the lightweight
DNN verification technique verif 1 was used) and 110.2ms
(when both verification techniques were used for the driver-
attentiveness management system). The former overhead is
clearly acceptable, whereas the latter is likely to be acceptable
for many practical applications; for instance, the United Nations
regulation on vehicles with Level 3 automation [83] (which in-
spired our second DeepDECS application) specifies that driver
unavailability should be established within 30s after the driver
lost concentration—a time interval that is over 270 times larger
than the 110.2ms DNN verification overhead.

The answers to our research questions show the effectiveness
of the hybrid, neuro-symbolic approach to controller synthesis
employed by DeepDECS, whose combined use of DNN verifi-
cation techniques and probabilistic model checking provides an
effective quantification of DNN classification uncertainty, and
guarantees that the synthesised controllers meet system-level
requirements, respectively.

Furthermore, DeepDECS is generalisable in two important
ways. First, our approach to quantifying DNN uncertainty
opens up the opportunity to leverage the broad range of re-
cently devised DNN verification techniques, [37], [40], [45],
[56], [63], [75], [78] that certify DNN properties like local
robustness and confidence, for the purpose of uncertainty quan-
tification. Second, DeepDECS is not prescriptive about the
type of machine learning that introduces uncertainty into au-
tonomous systems. As such, we envisage that it is equally
applicable to autonomous systems with other types of machine
learnt components for which local verification techniques ex-
ist to enable the quantification of their aleatory uncertainty.
Such machine learning techniques that utilise confidence mea-
sures to quantify the uncertainty of their predictions include
support vector machines and Gaussian processes. Finally, the
case studies presented in the paper indicate that DeepDECS

supports autonomous system controller synthesis for different
application domains.

DeepDECS also has a number of limitations. A key fac-
tor for its successful application is the test dataset used for
quantifying the uncertainty of the DNN used for perception by
the autonomous systems. The DeepDECS theoretical founda-
tion relies on the assumption that this test dataset is representa-
tive of the operational design domain (ODD) of the autonomous
system. The invalidation of this assumption will cause the Deep-
DECS process to generate suboptimal controllers, or controllers
that do not meet the required constraints (17). If the ODD
evolves slowly over time, this will also cause the initial test
dataset to no longer be representative. An example is an out-
doors vision system trained during summer, and subsequently
operating in winter, when snow has visually changed the land-
scape. Thus, DeepDECS only provides guarantees with respect
to the assumed ODD. Future investigation into DeepDECS
should incorporate an online monitoring component to instigate
the DeepDECS process with new data if the system operates
outside the ODD.

Another potential limitation of DeepDECS is its scalabil-
ity. The uncertainty quantification and model augmentation
stages of DeepDECS are scalable, as the former stage ap-
plies established, efficient DNN verification techniques in-
dependently to each sample within a dataset, and the latter
stage only needs to parse and expand 2n-fold certain com-
mands from the PRISM-encoded perfect-perception pDTMC
model, typically for n≤ 2 DNN verification techniques. How-
ever, the controller synthesis stage uses (probabilistic) model
checking, which is known to experience scalability problems.
While the synthesis of the Pareto-optimal sets of controllers
from our two case studies only took between a few seconds
and several hours, the controller design spaces of autonomous
systems grow linearly with the numbers of DNN classes K
and system states #Z, and exponentially with the number of
DNN verification techniques n. Encouragingly, the EvoChecker
probabilistic model synthesis tool [32] (which we used in
the second case study) was shown to generate close Pareto
front approximations for search spaces comprising over 1086

parameter-value combinations [33]. Nevertheless, further ex-
perimentation, in particular with DNNs predicting larger num-
bers of classes, will be needed to confirm the scalability of
DeepDECS.

E. Threats to Validity

Construct validity threats may arise due to assumptions
made about the autonomous systems used in our evaluation,
or about their deep-learning perception components. To limit
these threats, the two autonomous systems used in the paper
are adapted from existing research on collision avoidance for
autonomous vehicles/robots [28], [54], [55], [85] and driver-
attentiveness management [13]. Furthermore, their DNN per-
ception components have the architecture and outputs recom-
mended in the research literature on deep-learning classifiers for
collision prediction [28] and by a user study on deep-learning
classifiers for monitoring driver attentiveness [73].

1392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Internal validity threats may stem from bias in establish-
ing cause-effect relationships in the experiments from our
DeepDECS applications. To mitigate these threats, we as-
sessed DeepDECS for four combinations of two existing DNN
verification techniques, and we used two established Pareto
front quality metrics to evaluate the sets of Pareto-optimal
controllers produced by our approach. Furthermore, we have
enabled replication by making all our models, code and exper-
imental data available in the project’s GitHub repository [24].
External validity threats could affect the applicability of
DeepDECS to other autonomous systems than those used in our
evaluation. As summarised in Table I, we mitigated these threats
by evaluating the use of DeepDECS for two applications drawn
from different application domains, involving different types
of systems with requirements based on different properties of
those systems. Additionally, the DNN perception components
used by the two systems have different characteristics. Fur-
thermore, DeepDECS employs established probabilistic model
checking methods and tools that have been successfully used
across a wide range of application domains, and we can ex-
pect their generality to extend to our approach. Nevertheless,
additional experiments are needed to establish the applicability
and feasibility of DeepDECS in domains and for autonomous
systems with characteristics different from those used in
our evaluation.

Another external validity threat may arise if the modelling
of other autonomous systems requires the use of much larger
perfect-perception pDTMC models and/or these systems use
DNN classifiers with many more classes than for the two ap-
plications from our evaluation of DeepDECS. As our approach
uses established probabilistic model checking and synthesis
tools, evaluating their scalability is beyond the scope of our
paper. Such evaluations are already available, e.g., in [50] and
[32], [33], respectively, and (as explained at the end of Section
V-D) they suggest that DeepDECS should scale well to larger
systems. As always, further case studies are needed to examine
this hypothesis.

VI. RELATED WORK

The design of autonomous systems that use DNN classifiers
for perception in combination with discrete-event controllers
for decision-making has been studied before. The approach of
Jha et al. [51] synthesises correct-by-construction controllers
for autonomous systems with noisy sensors, i.e., with per-
ception uncertainty. Unlike DeepDECS, this approach only
considers systems that use linear models (i.e., not DNNs) for
perception, and assumes already known uncertainty quanti-
ties. Moreover, while we formulate the control problem as a
pDTMC, Jha et al. consider the simpler setting of deterministic
linear systems.

Michelmore et al. [65] analyze the safety of autonomous
driving control systems that use DNNs in an end-to-end manner
for both perception and control, i.e., the DNN consumes sensor
readings and outputs control actions. They use Bayesian meth-
ods for calculating the uncertainty in the DNN control actions,
and, when this uncertainty exceeds pre-determined thresholds,
the system defaults to executing fail-safe actions. In contrast,

we synthesise controllers that use the quantified uncertainty of
DNN perception to select optimal yet safe actions.

Similarly, Ivanov et al. [48] present a technique for learning
end-to-end DNN controllers for an autonomous system such
that the autonomous system satisfies non-probabilistic specifi-
cations of safety. In contrast to our work where the autonomous
system is verified with respect to an abstract, uncertainty-aware,
probabilistic model of the DNN, Ivanov et al. verify the au-
tonomous system with respect to the actual DNN. This makes
verification extremely expensive; applying their technique to
an autonomous system with a complex DNN (thousands or
millions of parameters) is practically infeasible.

Recent work by ourselves [74] and others [5] also proposes
to use confusion matrices for quantifying the aleatory uncer-
tainty of DNNs and to verify the probabilistic safety of the
autonomous system in an uncertainty-aware manner. Unlike
DeepDECS, these approaches assume that the controller has
already been synthesized. A number of other approaches [22],
[44], [46], [47], [49] [57], [72], [77] have been proposed in
recent years for verifying the closed-loop safety of autonomous
systems with DNN-based components and already synthesized
controllers. These approaches differ in the manner in which
they model the environment and perception components but,
in general, scalability is a challenge.

The related field of reinforcement learning (RL) is a
paradigm for generating policies to solve a task, and have in-
corporated deep-learning to solve complex problems [31], [66].
In recent years the deep-RL community has been interested
in ensuring the safety during both exploration and exploitation
phases [10]. Berkenkamp et al. [7] implemented a safe model-
based RL algorithm with verification in the loop, which pro-
vides assurances that the system would not enter unsafe states
while learning. Control barrier functions have been studied
[64] for safe RL which penalises the system if it approaches
an unsafe state. RL in general, however, produces one con-
troller compared to multiple correct-by-construction controllers
generated by DeepDECS. The multiple controllers with their
respective trade-offs yields flexibility to the user/stakeholders
to choose a controller that best satisfy their objectives. There
is also a higher level of explainability with DeepDECS, as the
controller is modelled via pDTMC rather than learned with a
DNN. Related to the idea of having DeepDECS operate in an
online setting, these safe RL approaches could be exploited. If
the deployed system detects it is outside the ODD, then it will
need to gather new data while maintaining safety, which these
algorithms are designed to provide.

Handling uncertainty in autonomous systems has been stud-
ied extensively by the recent research on self-adaptive soft-
ware, e.g., [15], [16], [43], [79], including in the context
of controller synthesis, e.g., [11], [58]. However, the ap-
proaches proposed by this research focus on uncertainty due
to failures, changes in the environment, interactions with
users, etc. In contrast, DeepDECS tackles the uncertainty
introduced by the deep-learning perception components of
autonomous systems.

In conclusion, synthesising safe and optimal controllers
that account for the uncertainty in the DNN outcomes is
a novel contribution of DeepDECS. Additionally, our DNN

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1393

uncertainty quantification mechanism, which uses the out-
comes of off-the-shelf DNN verifiers in a black-box manner, is
also new.

VII. CONCLUSION

We introduced DeepDECS, a new method for the synthesis
of correct-by-construction controllers for autonomous systems
with deep-learning perception. The new method uses (i) a suite
of techniques for the verification of deep neural networks to
quantify the aleatory uncertainty associated with DNN per-
ception, and (ii) a mathematically based stochastic modelling
paradigm to synthesise discrete-event controllers that take this
uncertainty into account. The controllers synthesised using our
method are guaranteed to satisfy the safety, dependability and
performance requirements of the autonomous system within its
operational design domain. Furthermore, they are guaranteed
to achieve optimal trade-offs between a set of pre-specified
optimisation objectives for the autonomous system.

To evaluate DeepDECS, we presented its application to the
synthesis of discrete-event controllers for mobile-robot col-
lision limitation, and for maintaining driver attentiveness in
shared-control autonomous driving. To ensure the reproducibil-
ity of our experiments, we made all the software, datasets,
models and results from these experiments publicly accessible
on our GitHub project website [24].

In future work, we will explore several opportunities for
extending the applicability, effectiveness and usability of Deep-
DECS. First, we will assess the possibility to use DeepDECS
controller synthesis for autonomous systems with other types
of machine learnt components (e.g., support vector machines,
reinforcement learning agents, and Gaussian processes). Sec-
ond, we plan to assemble a broad repertoire of DNN verifi-
cation techniques that can be used in the DeepDECS uncer-
tainty quantification stage, and to examine the usefulness and
limitations of these techniques when used for this purpose.
Third, we will explore options for complementing the current
DeepDECS capabilities with monitoring the environment of a
deployed autonomous system in order to identify changes from
its operational design domain, and to dynamically update the
synthesised controllers in line with such changes. Fourth, we
will investigate ways in which DeepDECS controllers can be
augmented with the ability to detect out-of-distribution DNN
inputs (e.g. through worsening DNN verification results over
time) and to mitigate their occurrence. Last but not least, we aim
to expand the evaluation of DeepDECS to additional application
domains and types of autonomous systems.

ACKNOWLEDGMENT

The authors are grateful to the developers of the DeepTake
deep neural network [73] for sharing the DeepTake data sets,
and to the University of York’s Viking research computing
cluster team for providing access to their systems.

REFERENCES

[1] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-time rewards
model-checked,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst.,
Berlin, Germany: Springer-Verlag, 2003, pp. 88–104.

[2] A. Arapostathis, R. Kumar, and S.-P. Hsu, “Control of Markov chains
with safety bounds,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 4,
pp. 333–343, Oct. 2005.

[3] R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the machine
learning lifecycle: Desiderata, methods, and challenges,” ACM Comput.
Surv., vol. 54, no. 5, pp. 1–39, 2021.

[4] Assuring Autonomy International Programme, “Safe-SCAD: Safety of
shared control in autonomous driving,” Univ. of York, York, U.K.,
2022. [Online]. Available: https://www.york.ac.uk/assuring-autonomy/
demonstrators/autonomous-driving/

[5] A. Badithela, T. Wongpiromsarn, and R. M. Murray, “Leveraging
classification metrics for quantitative system-level analysis with temporal
logic specifications,” in Proc. 60th IEEE Conf. Decis. Control (CDC),
Piscataway, NJ, USA: IEEE Press, 2021, pp. 564–571.

[6] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski, “Controller
synthesis for probabilistic systems,” in Proc. Exploring New Frontiers
Theor. Inform., IFIP 18th World Comput. Congr. TC1 3rd Int. Conf.
Theor. Comput. Sci. (TCS), Toulouse, France. Boston, MA, USA:
Springer-Verlag, 2004, pp. 493–506.

[7] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, vol. 30.

[8] A. Bianco and L. De Alfaro, “Model checking of probabilistic and
nondeterministic systems,” in Proc. Int. Conf. Found. Softw. Tech-
nol. Theor. Comput. Sci., Berlin, Germany: Springer-Verlag, 1995,
pp. 499–513.

[9] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu, “First three
years of the international verification of neural networks competition
(VNN-COMP),” Int. J. Softw. Tools Technol. Transfer, vol. 25, pp. 329–
339, Jun. 2023.

[10] L. Brunke et al., “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annu. Rev. Control, Robot., Auton. Syst.,
vol. 5, pp. 411–444, May 2022.

[11] R. D. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues, T. Vogel, and
P. Pelliccione, “A hybrid approach combining control theory and AI for
engineering self-adaptive systems,” in Proc. IEEE/ACM 15th Int. Symp.
Softw. Eng. Adaptive Self-Manag. Syst., 2020, pp. 9–19.

[12] R. Calinescu, K. Johnson, and Y. Rafiq, “Developing self-verifying
service-based systems,” in Proc. 28th IEEE/ACM Int. Conf. Automated
Softw. Eng., Piscataway, NJ, USA: IEEE Press, 2013, pp. 734–737.

[13] R. Calinescu, N. Alasmari, and M. Gleirscher, “Maintaining driver
attentiveness in shared-control autonomous driving,” in Proc. Int. Symp.
Softw. Eng. Adaptive Self-Manag. Syst. (SEAMS), Piscataway, NJ, USA:
IEEE Press, 2021, pp. 90–96.

[14] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska, and N.
Paoletti, “Efficient synthesis of robust models for stochastic systems,”
J. Syst. Softw., vol. 143, pp. 140–158, Sep. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218300967

[15] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns, “Un-
derstanding uncertainty in self-adaptive systems,” in Proc. IEEE Int.
Conf. Autonomic Comput. Self-Organizing Syst. (ACSOS), Piscataway,
NJ, USA: IEEE Press, 2020, pp. 242–251.

[16] J. Cámara et al., “The uncertainty interaction problem in self-adaptive
systems,” Softw. Syst. Model., vol. 21, no. 4, pp. 1277–1294, 2022.

[17] K. Chatterjee, M. Chmelík, R. Gupta, and A. Kanodia, “Qualitative
analysis of POMDPs with temporal logic specifications for robotics
applications,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), 2015,
pp. 325–330.

[18] K. Chatterjee, M. Chmelík, R. Gupta, and A. Kanodia, “Optimal cost
almost-sure reachability in POMDPs,” Artif. Intell., vol. 234, pp. 26–48,
May 2016.

[19] A. I. Chen, M. L. Balter, T. J. Maguire, and M. L. Yarmush, “Deep
learning robotic guidance for autonomous vascular access,” Nature
Mach. Intell., vol. 2, pp. 104–115, Feb. 2020.

[20] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis,
“Automatic verification of competitive stochastic systems,” in Proc.
18th Int. Conf. Tools Algorithms Construction Anal. Syst. (TACAS),
C. Flanagan and B. König, Eds., vol. 7214. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 315–330.

[21] F. Chollet, Deep Learning with Python. New York, NY, USA: Simon
and Schuster, 2021.

[22] M. Cleaveland, I. Ruchkin, O. Sokolsky, and I. Lee, “Monotonic safety
for scalable and data-efficient probabilistic safety analysis,” in Proc.
ACM/IEEE 13th Int. Conf. Cyber-Physical Syst. (ICCPS), Piscataway,
NJ, USA: IEEE Press, 2022, pp. 92–103.

https://www.york.ac.uk/assuring-autonomy/demonstrators/autonomous-driving/
https://www.york.ac.uk/assuring-autonomy/demonstrators/autonomous-driving/
http://www.sciencedirect.com/science/article/pii/S0164121218300967

1394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

[23] C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” in Proc. Int. Colloq. Theor. Aspects Comput., 2005,
pp. 280–294.

[24] “DeepDECS project website.” GitHub. [Online]. Available: https://
ccimrie.github.io/DeepDECS/

[25] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A STORM is coming:
A modern probabilistic model checker,” in Proc. 29th Int. Conf. Comput.
Aided Verification (CAV), 2017, pp. 592–600.

[26] A. Der Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does it
matter?” Structural Saf., vol. 31, no. 2, pp. 105–112, Mar. 2009.

[27] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 27, no. 7, pp. 1165–1178,
Jul. 2008.

[28] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in Proc. Automated Technol. Verification Anal., D. D’Souza
and K. Narayan Kumar, Eds., Cham, Switzerland: Springer-Verlag, 2017,
pp. 269–286.

[29] A. Filieri et al., “Software engineering meets control theory,” in Proc.
IEEE/ACM 10th Int. Symp. Softw. Eng. Adaptive Self-Manag. Syst.,
Piscataway, NJ, USA: IEEE Press, 2015, pp. 71–82.

[30] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Quality pre-
diction of service compositions through probabilistic model checking,”
in Proc. Int. Conf. Qual. Softw. Archit., Berlin, Germany: Springer-
Verlag, 2008, pp. 119–134.

[31] J. Garcia and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–
1480, 2015.

[32] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated
Softw. Eng., vol. 25, no. 4, pp. 785–831, 2018.

[33] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for quality-of-service software engineering,”
in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Piscataway, NJ, USA: IEEE Press, 2015, pp. 319–330.

[34] M. Gleirscher and R. Calinescu, “Safety controller synthesis for collab-
orative robots,” in Proc. 25th Int. Conf. Eng. Complex Comput. Syst.
(ICECCS), Piscataway, NJ, USA: IEEE Press, 2020, pp. 83–92.

[35] M. Gleirscher et al., “Verified synthesis of optimal safety controllers
for human-robot collaboration,” Sci. Comput. Program., vol. 218, Jun.
2022, Art. no. 102809.

[36] M. Gleirscher, N. Johnson, P. Karachristou, R. Calinescu, J. Law, and J.
Clark, “Challenges in the safety-security co-assurance of collaborative
industrial robots,” in The 21st Century Industrial Robot: When Tools
Become Collaborators. Intelligent Systems, Control and Automation:
Science and Engineering. Cham, Switzerland: Springer-Verlag, 2022,
pp. 191–214.

[37] D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “DeepSafe: A
data-driven approach for assessing robustness of neural networks,” in
Proc. Int. Symp. Automated Technol. Verification Anal. (ATVA), 2018,
pp. 3–19.

[38] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” J. Field Robot.,
vol. 37, no. 3, pp. 362–386, Apr. 2020.

[39] C. M. Grinstead and J. L. Snell, Introduction to Probability. Rhode
Island: American Mathematical Soc., 1997.

[40] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proc. 34th Int. Conf. Mach. Learn.,
JMLR.org, 2017, vol. 70, pp. 1321–1330.

[41] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects Comput., vol. 6, no. 5, pp. 512–535,
Sep. 1994.

[42] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker Storm,” Int. J. Softw. Tools Technol. Trans-
fer, vol. 24, pp. 589–610, Aug. 2022.

[43] S. M. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola,
and D. Perez-Palacin, “Uncertainty in self-adaptive systems: A research
community perspective,” ACM Trans. Auton. Adaptive Syst., vol. 15,
no. 4, pp. 1–36, 2021.

[44] C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra, “Verifying
controllers with vision-based perception using safe approximate abstrac-
tions,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 41,
no. 11, pp. 4205–4216, Nov. 2022.

[45] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Proc. Int. Conf. Comput. Aided Verification
(CAV), R. Majumdar and V. Kuncak, Eds., Cham, Switzerland: Springer-
Verlag, 2017, pp. 3–29.

[46] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee,
“Verisig 2.0: Verification of neural network controllers using taylor
model preconditioning,” in Proc. Int. Conf. Comput. Aided Verification,
Cham, Switzerland: Springer-Verlag, 2021, pp. 249–262.

[47] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I.
Lee, “Verifying the safety of autonomous systems with neural network
controllers,” ACM Trans. Embedded Comput. Syst., vol. 20, no. 1,
pp. 1–26, 2020.

[48] R. Ivanov, K. Jothimurugan, S. Hsu, S. Vaidya, R. Alur, and O. Bastani,
“Compositional learning and verification of neural network controllers,”
ACM Trans. Embedded Comput. Syst., vol. 20, no. 5s, pp. 1–26, 2021.

[49] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
Verifying safety properties of hybrid systems with neural network
controllers,” in Proc. 22nd ACM Int. Conf. Hybrid Syst., Comput.
Control, 2019, pp. 169–178.

[50] D. N. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelinga, and I. Zapreev,
“How fast and fat is your probabilistic model checker? An experimental
performance comparison,” in Proc. Haifa Verification Conf., Berlin,
Germany: Springer-Verlag, 2007, pp. 69–85.

[51] S. Jha, V. Raman, D. Sadigh, and S. A. Seshia, “Safe autonomy
under perception uncertainty using chance-constrained temporal logic,”
J. Automated Reasoning, vol. 60, no. 1, pp. 43–62, 2018.

[52] M. A. Johnson and M. H. Moradi, PID Control. London, U.K.:Springer-
Verlag, 2005.

[53] V. R. Joseph, “Optimal ratio for data splitting,” Statist. Anal. Data
Mining, ASA Data Sci. J., vol. 15, no. 4, pp. 531–538, 2022.

[54] K. D. Julian and M. J. Kochenderfer, “Reachability analysis for neural
network aircraft collision avoidance systems,” J. Guid., Control, Dyn.,
vol. 44, no. 6, pp. 1132–1142, 2021.

[55] K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural network
compression for aircraft collision avoidance systems,” J. Guid., Control,
Dyn., vol. 42, no. 3, pp. 598–608, 2019.

[56] G. Katz et al., “The Marabou framework for verification and analysis of
deep neural networks,” in Proc. Int. Conf. Comput. Aided Verification
(CAV), Cham, Switzerland: Springer-Verlag, 2019, pp. 443–452.

[57] S. M. Katz, A. L. Corso, C. A. Strong, and M. J. Kochenderfer,
“Verification of image-based neural network controllers using generative
models,” J. Aerosp. Inf. Syst., vol. 19, no. 9, pp. 574–584, 2022.

[58] M. Keegan, V. Braberman, N. D’Ippolito, N. Piterman, and S. Uchitel,
“Control and discovery of environment behaviour,” IEEE Trans. Softw.
Eng., vol. 48, no. 6, pp. 1965–1978, Jun. 2022.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Representations (ICLR), San Diego, CA,
USA, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://
arxiv.org/abs/1412.6980

[60] F. Küppers, J. Kronenberger, A. Shantia, and A. Haselhoff, “Multivari-
ate confidence calibration for object detection,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR) Workshops, Jun. 2020,
pp. 326–327.

[61] M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependability
analysis by probabilistic model checking,” Control Eng. Pract., vol. 15,
no. 11, pp. 1427–1434, Nov. 2007.

[62] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd Int. Conf. Comput.
Aided Verification, vol. 6806. Berlin, Germany: Springer-Verlag, 2011,
pp. 585–591.

[63] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural networks,”
in Proc. 38th Int. Conf. Mach. Learn. (ICML), 2021, pp. 6212–6222.

[64] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control
barrier function optimization approach,” Proc. Int. J. Robust Nonlinear
Control, vol. 31, no. 6, pp. 1923–1940, 2021.

[65] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, and
M. Kwiatkowska, “Uncertainty quantification with statistical guarantees
in end-to-end autonomous driving control,” in Proc. IEEE Int. Conf.
Robot. Automat. (ICRA), 2020, pp. 7344–7350.

[66] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[67] J. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event
Systems Using Petri Nets (The International Series on Discrete Event
Dynamic Systems), vol. 8. New York, NY, USA: Springer Science &
Business Media, 1998.

[68] M. N. Müller, C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The third
international verification of neural networks competition (VNN-COMP
2022): Summary and results,” 2022, arXiv:2212.10376.

[69] G. Norman, D. Parker, and X. Zou, “Verification and control of par-
tially observable probabilistic systems,” Real-Time Syst., vol. 53, no. 3,
pp. 354–402, 2017.

https://ccimrie.github.io/DeepDECS/
https://ccimrie.github.io/DeepDECS/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1395

[70] Taxonomy and Definitions for Terms Related to Driving Automa-
tion Systems for On-Road Motor Vehicles, SAE International Stan-
dard J3016_202104, 2018. [Online]. Available: https://www.sae.org/
standards/content/j3016_201806/preview/

[71] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep learning
for financial applications: A survey,” Appl. Soft Comput., vol. 93, Aug.
2020, Art. no. 106384.

[72] P. Habeeb, N. Deka, D. D’Souza, K. Lodaya, and P. Prabhakar, “Verifica-
tion of camera-based autonomous systems,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 42, no. 10, pp. 3450–3463, Oct. 2023.

[73] E. Pakdamanian, S. Sheng, S. Baee, S. Heo, S. Kraus, and L. Feng,
“DeepTake: Prediction of driver takeover behavior using multimodal
data,” in Proc. CHI Conf. Human Factors Comput. Syst., 2021,
pp. 1–14.

[74] C. S. Pasareanu et al., “Closed-loop analysis of vision-based autonomous
systems: A case study,” in Computer Aided Verification, C. Enea and
A. Lal, Eds., Cham, Switzerland: Springer Nature Switzerland, 2023,
pp. 289–303.

[75] C. Paterson, R. Calinescu, and C. Picardi, “Detection and mitigation
of rare subclasses in deep neural network classifiers,” in Proc. IEEE
Int. Conf. Artif. Intell. Testing, Piscataway, NJ, USA: IEEE Press, 2021,
pp. 9–16.

[76] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[77] U. Santa Cruz and Y. Shoukry, “NNLander-VeriF: A neural network
formal verification framework for vision-based autonomous aircraft
landing,” in Proc. NASA Formal Methods Symp., Cham, Switzerland:
Springer-Verlag, 2022, pp. 213–230.

[78] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain
for certifying neural networks,” Proc. ACM Program. Lang., vol. 3,
no. POPL, pp. 1–30, 2019.

[79] G. F. Solano, R. D. Caldas, G. N. Rodrigues, T. Vogel, and P. Pelliccione,
“Taming uncertainty in the assurance process of self-adaptive systems:
A goal-oriented approach,” in Proc. IEEE/ACM 14th Int. Symp. Softw.
Eng. Adaptive Self-Manag. Syst. (SEAMS), Piscataway, NJ, USA: IEEE
Press, 2019, pp. 89–99.

[80] E. Stevens, L. Antiga, and T. Viehmann, Deep Learning with PyTorch.
New York, NY, USA: Manning Publications, 2020.

[81] M. Svorenova and M. Kwiatkowska, “Quantitative verification and
strategy synthesis for stochastic games,” Eur. J. Control, vol. 30,
pp. 15–30, Jul. 2016.

[82] D. Tabernik and D. Skocaj, “Deep learning for large-scale traffic-sign
detection and recognition,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 4, pp. 1427–1440, Apr. 2020.

[83] “ECE/TRANS/WP.29/2020/81—United Nations Regulation on Uniform
provisions concerning the approval of vehicles with regard to Automated
Lane Keeping Systems.” UNECE. [Online]. Available: https://undocs.
org/ECE/TRANS/WP.29/2020/81

[84] D. A. V. Veldhuizen, “Multiobjective evolutionary algorithms: classifi-
cations, analyses, and new innovations,” Ph.D. dissertation, Air Force
Institute of Technology, Wright-Patterson AFB, OH, USA, 1999.

[85] Q. Xu, Y. Yang, C. Zhang, and L. Zhang, “Deep convolutional neural
network-based autonomous marine vehicle maneuver,” Int. J. Fuzzy
Syst., vol. 20, no. 2, pp. 687–699, 2018.

[86] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of Pareto-compliant indicators via weighted
integration,” in Evolutionary Multi-Criterion Optimization, S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, Eds., Berlin, Germany:
Springer-Verlag, 2007, pp. 862–876.

[87] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
algorithms — A comparative case study,” in Parallel Problem Solving
from Nature — PPSN V, A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P.
Schwefel, Eds., Berlin, Germany: Springer-Verlag, 1998, pp. 292–301.

Radu Calinescu (Senior Member, IEEE) is a Pro-
fessor in computer science with the University of
York, U.K. His research interests include formal
methods for self-adaptive, autonomous, secure and
dependable software, cyber-physical and AI sys-
tems, and in performance and reliability software
engineering. He is an Active Promoter of formal
methods at runtime as a way to improve the integrity
and predictability of self-adaptive, autonomous and
AI systems and processes.

Calum Imrie is a Researcher with the Centre for
Assuring Autonomy, the University of York, U.K.
He investigates robotics and autonomous systems
with a particular focus on the safety and assurance
of deploying these systems. This includes both the
learning phases, such as reinforcement learning, and
at runtime particularly for AI components, and self-
adaptive mechanisms. He has a special interest in
robotics and autonomous systems being utilized for
managing and protecting the environment.

Ravi Mangal received the Ph.D. degree in computer
science from Georgia Institute of Technology, in
2020. He is a Postdoctoral Researcher with Carnegie
Mellon University, the Security and Privacy Insti-
tute (CyLab). He is interested in all aspects of
designing and applying formal methods for assuring
the correctness and safety of software systems. His
research interests include developing algorithms and
methodologies for formally analyzing the safety and
trustworthiness of learning-enabled systems.

Genaína Nunes Rodrigues received the Ph.D. de-
gree from the University College London. She is an
Associate Professor with the University of Brasilia.
Her research interests include the mutual collabora-
tion between smart autonomous systems engineer-
ing and software engineering, mainly through model
checking, runtime verification, and goal-oriented
requirements engineering.

Corina Păsăreanu is an ACM Fellow and an IEEE
ASE Fellow, working at NASA Ames. She is affil-
iated with KBR and Carnegie Mellon University’s
CyLab. Her research interests include model check-
ing, symbolic execution, compositional verification,
probabilistic software analysis, autonomy, and secu-
rity. She is on the steering committees for the ICSE,
TACAS and ISSTA conferences, and is currently
an Associate Editor for IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING and for STTT, Springer
Nature.

Misael Alpizar Santana received the Ph.D. degree
from the University of York. He is currently a Post-
doctoral Research Associate with the Department
of Engineering, Durham University. His research
interests include machine learning, particularly deep
neural networks, secure and resilient autonomous
and AI systems, self-adaptation, and formal verifi-
cation.

Gricel Vázquez received the M.Sc. degree in com-
putational intelligence and robotics with the Uni-
versity of Sheffield with distinction. She is a Ph.D.
Student and a Research Associate in computer sci-
ence with the University of York, U.K. Her research
interests include model-driven engineering, formal
methods, task allocation and planning, and self-
adaptive and critical systems.

https://www.sae.org/standards/content/j3016_201806/preview/
https://www.sae.org/standards/content/j3016_201806/preview/
https://undocs.org/ECE/TRANS/WP.29/2020/81
https://undocs.org/ECE/TRANS/WP.29/2020/81

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

