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Abstract—GNNs have shown remarkable performance in a va-
riety of classification tasks. The reliability of GNN models needs
to be thoroughly validated before their deployment to ensure their
accurate functioning. Therefore, effective testing is essential for
identifying vulnerabilities in GNN models. However, given the
complexity and size of graph-structured data, the cost of manual
labelling of GNN test inputs can be prohibitively high for real-
world use cases. Although several approaches have been proposed
in the general domain of Deep Neural Network (DNN) testing to
alleviate this labelling cost issue, these approaches are not suitable
for GNNs because they do not account for the interdependence
between GNN test inputs, which is crucial for GNN inference.
In this paper, we propose NodeRank, a novel test prioritization
approach specifically for GNNs, guided by ensemble learning-
based mutation analysis. Inspired by traditional mutation testing,
where specific operators are applied to mutate code statements
to identify whether provided test cases reveal faults, NodeRank
operates on a crucial premise: If a test input (node) can kill many
mutated models and produce different prediction results with
many mutated inputs, this input is considered more likely to be
misclassified by the GNN model and should be prioritized higher.
Through prioritization, these potentially misclassified inputs can
be identified earlier with limited manual labeling cost. NodeRank
introduces mutation operators suitable for GNNs, focusing on
three key aspects: the graph structure, the features of the graph
nodes, and the GNN model itself. NodeRank generates mutants
and compares their predictions against that of the initial test
inputs. Based on the comparison results, a mutation feature
vector is generated for each test input and used as the input
to ranking models for test prioritization. Leveraging ensemble
learning techniques, NodeRank combines the prediction results
of the base ranking models and produces a misclassification score
for each test input, which can indicate the likelihood of this
input being misclassified. NodeRank sorts all the test inputs based
on their scores in descending order. To evaluate NodeRank, we
build 124 GNN subjects (i.e., a pair of dataset and GNN model),
incorporating both natural and adversarial contexts. Our results
demonstrate that NodeRank outperforms all the compared test
prioritization approaches in terms of both APFD and PFD, which
are widely-adopted metrics in this field. Specifically, NodeR-
ank achieves an average improvement of between 4.41% and
58.11% on original datasets and between 4.96% and 62.15% on
adversarial datasets.
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I. INTRODUCTION

RECENT years have witnessed widespread adoption of
graph machine learning for modeling, predictive, and an-

alytics tasks on graph-structured data, while the emergence of
Graph Neural Networks (GNNs) [1] has led to the achievement
of the unprecedented performance of a variety of applications in
drug design [2], [3], [4], recommender systems [5], [6], and so-
cial network analysis [7], [8]. As they are increasingly adopted,
the debugging of GNNs becomes essential, especially in safety-
critical and security-sensitive domains. A key perspective in
that domain is developing effective and efficient techniques for
GNN testing to achieve quality assurance.

Unfortunately, Deep Neural Networks (DNNs), including
GNNs, are notoriously difficult to test due to the limitations
in the availability of a test oracle [9], [10], [11]. Indeed, DNN
testing is challenged by the fact that it is costly and time-
consuming to label test inputs: 1) automated labeling is not yet
mainstream; 2) datasets can be substantially large, and the data
can be complex, as in the case of GNNs; 3) labeling may require
deep domain-specific knowledge, which is prohibitively expen-
sive to acquire. Therefore, to achieve efficient and effective
testing of DNN-based systems, researchers and practitioners
generally focus on identifying only the relevant test inputs that
are likely to cause the system to behave incorrectly (i.e., bug-
revealing test inputs). Diagnosing those inputs is then expected
to provide insights for debugging the DNNs.

Prior work has developed various techniques to iden-
tify and prioritize bug-revealing test inputs, which allows
testers/developers to focus on the most critical inputs [10],
[11], [12], [13]. Such test prioritization techniques aim at opti-
mizing the time as well as the required resources for testing.
A large majority of DNN test prioritization approaches fall
within three categories [11]: coverage-based, confidence-based
and surprise-based approaches. Confidence-based approaches,
such as DeepGini [10], prioritize test inputs based on model
confidence: a test input is more likely to be incorrectly pre-
dicted via a DNN model if that model outputs similar prediction
probabilities for each class. Coverage-based approaches, such
as CTM [14], simply adapt coverage-based test prioritization
from traditional software systems testing into DNN testing and
have been shown to underperform against confidence-based
approaches [10]. Surprise-based methods [13], [15] perform
test prioritization based on the surprise of test inputs. This
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“surprise” is quantified by measuring the distance in neuron
activation patterns between a test input and the training data.
However, existing studies [16] have demonstrated that surprise-
based methods are less effective than confidence-based ap-
proaches. Furthermore, surprise-based methods typically come
with higher computational costs due to the need for more pa-
rameter tuning.

Although confidence-based approaches have demonstrated
effectiveness in the context of DNNs, they suffer from several
limitations when applied to GNNs. Notably, they do not account
for the interdependence inherent in graph-structured test inputs
composed of nodes and edges. These approaches were origi-
nally designed for DNNs, where tests are independent of each
other. Additionally, confidence-based approaches operate under
the assumption that test inputs for which the model exhibits low
confidence are more likely to be misclassified and, therefore,
should be given higher priority. However, in the presence of
adversarial attacks, the model’s confidence can be higher for
incorrect predictions, leading to erroneous outputs.

More recently, novel approaches such as PRIMA [11] are
being introduced in the literature of DNN testing, leverag-
ing techniques such as mutation analysis. However, PRIMA,
the state-of-the-art in DNN test prioritization, cannot be ap-
plied to GNNs since their mutation operators are not adapted
to graph-structured data and models. Dang et al. [17] pro-
posed GraphPrior, a test prioritization method specifically de-
signed for GNNs. Despite GraphPrior also relying on mutation
analysis, there are significant differences between NodeRank
and GraphPrior:

• Incorporating Input Mutations GraphPrior performs
test prioritization solely based on model-specific muta-
tions, whereas NodeRank not only considers model muta-
tions but also takes into account mutations specific to the
input. NodeRank considers two types of input mutations:
1) Node feature mutations, which are designed to perturb
the feature attributes of selected nodes, consequently influ-
encing the representation and information flow within the
graph; 2) Graph structure mutations, which aim to alter
the interdependence of the test inputs within the graph by
introducing additional edges, thus changing the structural
properties of the graph.

• Leveraging Ensemble Learning Techniques for
learning-to-rank In contrast to GraphPrior, which em-
ploys a single ranking model to learn the misclassification
probability of test inputs, NodeRank leverages ensemble
learning techniques to integrate multiple base ranking
models with the aim of optimizing its performance. Ex-
isting studies [18], [19], [20] have demonstrated that en-
semble learning typically achieves higher accuracy than
single ML models. Furthermore, our analysis delves into
the influence of different ensemble techniques on NodeR-
ank and illustrates that the sum-based ensemble technique
yields the best performance.

• Considering Different Killing Methods GraphPrior sim-
ply assumes that a mutated model is considered “killed”
if the predictions of the original model and the mutated
model for the test input differ. However, prior research

[21] has highlighted that in the context of DNN muta-
tion analysis, variations in the outputs between a mutated
model and the original model can occur solely due to
the inherent randomness in the training process rather
than because the mutant is actually discriminated from the
original model. Therefore, we utilized the killing method
provided by DeepCrime [21] for test prioritization and
generated relevant variants of NodeRank. In DeepCrime,
the killing process involves iteratively training both the
original model and the mutated model, then comparing
the distribution difference in their outputs to determine
whether the mutated model is “killed.” This approach can
contribute to mitigating the impact of randomness in the
training process. Based on the DeepCrime approach, by
comparing NodeRank variants utilizing model mutation
rules and those not utilizing model mutation rules, we
demonstrated that mutations generated by the model mu-
tation rules of NodeRank contribute to its effectiveness.

This paper. We propose NodeRank (Node Ranking for
graph-structure test inputs), a novel test input prioritization
approach targeting GNNs. NodeRank leverages the ideas
from traditional mutation testing [22], [23] to prioritize po-
tentially misclassified test inputs so that such tests can be
identified earlier with limited manual labeling costs. More
specifically, the core idea of NodeRank is that: a test is
considered more likely to be misclassified if this test can
kill many mutated models and produce different prediction
results with many mutated inputs.

NodeRank is a test prioritization approach that is model-
based, input-based, and mutation testing-based. It applies mu-
tation operations to GNN models and tests, generating mutation
features for test prioritization. Specific mutation operations ap-
plied are described below.

In NodeRank, we developed three distinct types of muta-
tions, namely graph structure mutation (GSM), node feature
mutation (NFM), and GNN model mutation (GMM), based on
the characteristics of GNNs and the graph test dataset. GSM
aims to modify the interdependence of the graph test inputs
by introducing additional edges, thereby altering the structural
properties of the graph. NFM, on the other hand, perturbs the
feature attributes of selected nodes, thereby influencing the
representation and information flow within the graph. Both
GSM and NFM can be categorized as input mutations as they
directly modify the characteristics of the dataset. In contrast,
GMM is specifically developed to mutate GNN models, with
the objective of modifying the message passing of the GNNs
by changing specific training parameters. The GMM mutation
type thus falls under the category of model mutations.

For each test input, NodeRank generates these three types
of mutations, as described above. Subsequently, by comparing
the prediction results before and after the mutation, NodeRank
generates a mutation feature vector for each test. Specifically,
for graph input mutation (i.e., GSM and NFM), if a mutated
input fails (i.e., the predictions for the mutated inputs and the
original inputs are different), the corresponding element in the
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relative feature vector is marked as 1; otherwise, it is marked as
0. For GNN model mutation (i.e., GMM), if a mutated model is
killed (i.e., the prediction results for this input via the mutated
models and the original models are different), the corresponding
element in the relative feature vector is marked as 1; otherwise,
it is marked as 0. The mutation feature vector of each test is
then fed into pre-trained ranking models, which are designed
to predict the likelihood of this input being misclassified. Our
ranking models are trained to automatically predict a misclas-
sification score indicating its likelihood of being misclassified
by the model.

To further enhance the performance of our ranking models,
we adopt ensemble learning techniques that combine the pre-
dictions from multiple base ranking models. The idea draws
inspiration from the field of ensemble learning [18], [19], [24],
which aims to improve overall performance by integrating
predictions from two or more base machine learning models.
Notably, ensemble learning methods have achieved state-of-
the-art outcomes across various machine learning applications
[25], [26], [27], [28]. In the NodeRank framework, we employ
three distinct ensemble methods [18], [29], [30] to effectively
combine the outputs of the individual ranking models.

It is important to note that, NodeRank differs from the state-
of-the-art test prioritization approach, PRIMA, in several do-
mains: the target (GNN vs. DNN) as well as the approach
(mutation rules and ranking strategies).

• Target. NodeRank is designed to address the test pri-
oritization problem in GNNs and, therefore, operates on
datasets that exhibit complex interdependence between
individual test inputs. In contrast, PRIMA is intended
for traditional DNNs, where each sample in the dataset
is independent.

• Mutation rules. NodeRank’s mutation rules can affect
the interdependency between test inputs from two perspec-
tives: First, NodeRank’s model mutation rules can directly
or indirectly affect the message passing between nodes in
graph data. More specifically, in the mutated GNN model,
the manner in which nodes acquire information from their
neighboring nodes is slightly different from that of the
original GNN model. Second, NodeRank’s node muta-
tion rules modify the interdependence between nodes by
adding edges to nodes. When adding a new edge from node
A to node B, a new connection is built, and the prediction
of node A is now impacted by the newly connected node
B, thus changing the node interdependence. In contrast,
the mutation rules of PRIMA are specifically designed for
independent test inputs and, therefore, do not impact the
relationships between tests.

• Ranking strategies. NodeRank leverages ensemble rank-
ing models to learn from mutation results for test pri-
oritization. These models are constructed by combining
different base ranking models, thereby improving the over-
all performance of the model [18], [19], [24]. In con-
trast, PRIMA employs a single ranking model for test
prioritization.

We evaluate the performance of NodeRank based on 124
subjects (i.e., a pair of dataset and GNN model). Our evaluation

considers both natural inputs and graph adversarial inputs,
which are generated by eight graph adversarial attacks [31],
[32], [33], [34]. We compare NodeRank with multiple test
prioritization approaches. Our experimental results demonstrate
that, on natural datasets, the average improvement of NodeRank
over the compared approaches, in terms of APFD, is between
4.41% and 58.11%. On graph adversarial inputs, the average
improvement of NodeRank over the compared approaches in
terms of APFD ranges from 4.96% and 62.15%.

NodeRank can be applied across diverse real-world contexts.
For instance, a typical use case of node classification in GNNs
is fraud detection [35] in banking transfer transaction systems.
Here, each account can be represented as a node, while the
transactional interactions between them can be represented as
edges. Through node classification, these accounts can be cate-
gorized as normal or fraudulent. When developers use GNNs to
predict whether each node (account) is a fraudulent account, the
GNNs can exhibit wrong prediction behavior, such as predicting
fraudulent accounts as normal accounts, which can lead to
losses for the bank. In this scenario, NodeRank can be utilized
to prioritize potentially misclassified accounts (with those more
likely to be misclassified ranked at the top). These sorted ac-
counts can be provided to bank staff, allowing them to quickly
perform manual checks on the accounts that are more likely to
be misclassified, thus reducing losses.

The contributions of this paper are as follows:
• Approach. We propose a novel approach, NodeRank, to

prioritize test inputs for GNN models. NodeRank intro-
duces three distinct types of mutation rules that target
the mutation of graph structure, node features, and GNN
models, respectively and adopt ensemble-learning-based
learning-to-rank to intelligently combine mutation results
for effective test input prioritization.

• Study. We conducted a large-scale study based on 124
subjects to evaluate the effectiveness of NodeRank on both
natural and adversarial inputs. The experimental results
demonstrate its effectiveness.

• Performance Analysis. We provide an extensive analy-
sis of the performance of NodeRank by investigating the
influence of the different ensemble learning strategies as
well as by performing an ablation study to showcase the
contributions of the different mutation feature sets.

Our dataset, code, and results are made publicly available in
a replication package1 for the community.

II. BACKGROUND

We now briefly introduce the key domain concepts for
our work.

A. Graph Neural Networks

Graph neural networks [36], [37], [38] have achieved
great success in solving machine learning problems on
graph-structured data [7], [39], [40]. Initial models learned

1https://github.com/yinghuali/NodeRank

https://github.com/yinghuali/NodeRank
https://github.com/yinghuali/NodeRank
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representations of target nodes by propagating neighborhood in-
formation through recurrent neural architectures in an iterative
manner until a stable fixed point is reached. Subsequently, sev-
eral variations have been proposed in the literature: Kipf et al.
[41] proposed Graph convolutional networks (GCN), which
adapt convolution techniques from classical convolutional neu-
ral networks, to graph data. GCN implements message passing
of multi-order neighborhoods by superimposing several convo-
lutional layers. More recently, other GNN architectures have
been proposed towards taking into account the advancements
in the field of deep learning: for example, Veličković et al. [38]
proposed graph attention networks (GAT) which uses attention
techniques to assign different weights according to the impor-
tance of nodes in the graph.

In GNNs, a graph is usually defined as a data structure
composed of nodes and edges. We denote a graph asG= (V,E)
where V = {1, 2, . . . , N} refers to the set of N nodes, and
E ⊆ V × V refers to the set of edges. In GNN datasets like
Cora (a node classification dataset), each node represents a
scientific paper, while edges represent citation relationships
between papers. In this dataset, test inputs typically refer to
new nodes (scientific papers) that have not been seen during
the training process. In the case of the Cora dataset, given a
test input (a scientific paper), a GNN model is used to classify
the paper into specific categories. In other words, the GNN
model predicts the categories that best describe the content
of the given paper. For instance, these categories can be “re-
inforcement learning” and “neural networks,” implying that
the paper belongs to the “reinforcement learning” or “neural
networks” category.
[GNN training process] GNNs undergo a training process
similar to other neural networks. The inputs required for
GNN training typically include: 1) Graph Structure. Graph
structure information encompasses the connections between
nodes in the graph; 2) Node Features. Each node typically
comes with associated feature vectors, which reflect the at-
tributes of the node; 3) Target Labels. In the training data
for GNN node classification, “Target Labels” refer to the cat-
egory to which each node belongs. These labels are typi-
cally predefined.

During the training process of GNNs, several components are
continually trained and optimized: 1) Model Parameters. The
primary aim of GNN training is to refine the model parameters.
These parameters include weights and biases linked to opera-
tions like graph convolutions and aggregation functions within
the GNN architecture. 2) Node Embeddings. GNNs com-
prise layers with associated parameters, and part of the training
process involves learning these node embeddings. Node em-
beddings are vector representations of individual nodes within
the graph. They capture a node’s structural and feature-based
information and evolve as the model trains; 3) Loss Func-
tion. The loss function plays a pivotal role in GNN training.
It quantifies the disparity between the model’s predictions,
typically pertaining to nodes or graph-level attributes, and the
actual ground truth labels for the given task. Throughout train-
ing, model parameters are iteratively adjusted to minimize this
loss function.

The specific training process for GNNs typically consists of
the following steps:

• Initialization: All GNN parameters are randomly initial-
ized, typically with small random values.

• Forward Propagation: For each node, its node embed-
ding is updated based on the information from its neigh-
bors. This is typically achieved using weight matrices and
aggregation functions (e.g., mean or max pooling). This
aggregation process can go through multiple layers, allow-
ing information to propagate further in the graph.

• Loss Calculation: This process calculates the loss value
based on the GNN’s output and the true labels.

• Backpropagation: This process computes the gradients of
the loss function with respect to each parameter.

• Parameter Weight Updates: This process updates each
parameter weight based on the gradient values.

• Iterate: This process repeats the above steps (forward
propagation, loss calculation, backpropagation, parameter
updates) until a stopping condition is met, such as reaching
a predefined number of iterations.

It is important to note that graphs used in GNN training differ
from normal graphs. Specifically, GNN training graphs include
feature attributes for nodes. Furthermore, in tasks like node clas-
sification, nodes in the graphs have category labels. In contrast,
normal graphs usually comprise only the topological structure
of nodes and edges, without specific labels or node attributes.
[GNN inference] In the context of GNNs, inference refers to
using a pre-trained GNN model to perform prediction on new
graph data. For example, in node classification tasks, the GNN
model utilizes its learned parameters and weights to classify a
given node. The input typically consists of the features of the
node and the graph structure of its belonged graph. The output
is the classification of the node.

B. Mutation Testing

Mutation testing [22] is a software testing method that aims
to evaluate the quality of the test suite by intentionally intro-
ducing small changes (called mutations) into the source code
and observing the test suite’s reaction. The core objective is
to determine the effectiveness of test suites in finding code
bugs. The intuition is that if a test case can detect intentionally-
introduced errors, this test case is more likely to detect real
bugs in practice. Mutation testing has achieved state-of-the-art
performance by providing a comprehensive evaluation of the
test suite via creating and testing multiple variations (mutants)
of the code, ensuring that the test cases are thoroughly covering
different scenarios and even edge cases, which is difficult to
achieve through traditional testing methods.

In mutation testing, kill and fail are terms used to describe the
results of running a test suite on a set of artificially created code
changes or ‘mutants’ to evaluate the quality of the test suite.
Specifically, a mutant is regarded as ‘killed’ if the behavior of
this mutant differs from that of the original code, indicating that
the test suite is capable of detecting the fault introduced by the
mutant. A test input is said to ‘fail’ if it is not passed by the
target program.
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Fig. 1. Overview of NodeRank.

C. Ensemble Learning

Ensemble learning [18] is a meta approach in machine learn-
ing where multiple, generally diversified, ML models are com-
bined to achieve better performance and generalization. Com-
mon examples of ensemble learning strategies include Majority
voting and Stacking. Majority voting is a straightforward ap-
proach that sums for each prediction class the number of yielded
predictions by the different models: the class with the majority
number of predictions is then outputted by the ensemble model.
On the other hand, Stacking utilizes a meta-model such as logis-
tic regression to learn how to optimally combine the predictions
from base ML models.

Ranking is crucial to many real-world applications, notably
in the field of information retrieval. In software engineering,
test prioritization assumes the possibility to rank test cases
according to their ability to reveal faults. In recent studies [18],
the ranking has been formalized as a machine learning prob-
lem, and ensemble ranking often employs ensemble learning
techniques to learn optimal weights for combining multiple
ranking algorithms.

III. APPROACH

A. Overview

NodeRank is a model-based, input-based, and mutation
testing-based test prioritization approach. By employing muta-
tion operations on both GNN models and test inputs, NodeRank
produces mutation features for each test input and predicts the
misclassification probability of the input in order to perform
test prioritization. Fig. 1 presents the overview of the different
steps in our NodeRank test prioritization approach. First, we
offer detailed explanations for certain elements in Fig. 1 and
provide reasons for the symbols utilized for them, with the goal
of enhancing the understanding of the figure.

• The second dotted square in Step 1 represents an N ×M
matrix. This matrix is used to encapsulate the feature

vectors of all nodes. Specifically, each row of the matrix
represents a node’s feature vector. There are N rows in
the matrix corresponding to the N nodes in the dataset.
M columns represent that each node has M features.

• The reason we use a dotted representation for node fea-
ture vectors and mutation features is that, in our experi-
ments, these features are both represented using matrices.
The dotted square can serve as a visual abstraction of a
matrix. A matrix comprises multiple values, and we use
dots to represent the values within the matrix abstractly.
For example, in the second dotted square in Step 1, the
third dot in the second row represents the value of the third
feature of the second node in the graph dataset.

• It is important to note that the meaning of the dotted
squares in Step 1 and Step 2 is different. However, since
they both represent matrices, we use dotted squares with
different colors to distinguish them. In Step 1, the dotted
square represents the node feature vector, while in Step 2,
the dotted square represents mutation features generated
from the mutation results.

• We utilize arrows to illustrate processes and operations.
For instance, in Step 1, the Graph data undergoes graph
structure mutation within Step 1 and feature generation in
Step 2, resulting in graph input mutation features. Another
example involves the Node feature vector in Step 1, which
undergoes node feature mutation in Step 1 and feature
generation in Step 2 to yield node mutation features.

• The chromosome symbols represent mutation results.
In Fig. 1, a chromosome with a break indicates the mu-
tations applied to the GNN model or inputs, resulting in
mutation results. These mutation results are subsequently
used for mutation feature generation in order to perform
test prioritization.

Moreover, each box represents a step in the NodeRank work-
flow. In the following section, we offer a general overview of
each step, as depicted in Fig. 1. Specific details for each step
can be found from Section III-B to Section III-D.
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❶ Generating mutants. NodeRank generates mutants for three
different inputs: the graph structure itself (which represents the
interdependence of samples in the datasets), the node features
(which represents sample data), and the GNN model (which is
learned and is the target of testing). To that end, we develop
specific mutation rules that are carefully designed for GNN
testing. Section III-B details those rules that must be applied
to generate mutants for a given test set T , the graph structure
G of the data, and the GNN model M under test.
❷ Extracting and combining mutation features. NodeRank
then obtains the model prediction towards the mutants and the
original test inputs. By comparing the predictions, NodeRank
generates the mutation feature vector for each input. The de-
tailed description is as follows. Given M ′, a mutant of M ,
NodeRank considers that a test input kills M ′ if the prediction
on this test input by M ′ is different from the prediction by M .
For a given mutant of a test input t ∈ T , NodeRank considers
that this mutant failed if it leads to a prediction that is different
from the prediction using t. Given G′, a mutant of G, NodeRank
considers that the mutant fails if the prediction of the GNN
using G′ is different from its prediction when using G.

Based on the execution outputs, NodeRank builds feature
vectors to train a ranking model. These are referred to as mu-
tation features and are of three types: Node mutation features,
graph structure mutation features, and model mutation features
(cf. Section III-C for details).
❸ Ranking test inputs using ensemble ranking models. Even-
tually, for each test input, NodeRank produces three vectors,
which represent three types of mutation features. These vectors
are then concatenated to produce a mutation feature vector v for
each test input t ∈ T . Given all test inputs from T , NodeRank,
therefore, leverages ensemble ranking models based on their
associated mutation features to predict ranking scores of the test
inputs. These scores, ordered in a descending way, are used to
prioritize the associated test inputs accordingly.

The findings presented in Section V provide compelling ev-
idence for the effectiveness of NodeRank, which can be at-
tributed, in part, to the careful design of mutation rules and
the effective ensemble strategy of ranking models. 1) Our de-
signed mutation rules can effectively generate informative mu-
tation features by leveraging the interdependence of test inputs.
The node mutation rules operate by introducing new edges
between nodes in the graph dataset, which impacts the interde-
pendence structure of the data. The model mutation rules affect
message passing between nodes in the GNN prediction process,
leading to small changes in node interdependence. 2) NodeR-
ank adopts an ensemble ranking model for test prioritization,
which leverages the strengths of multiple base ranking models
to improve the overall performance. By comparing different
ensemble strategies, we are able to identify the most suitable
approach for use in NodeRank’s test prioritization process.

In the remainder of the section, we will describe in detail
the mutation rules that we have designed for NodeRank (cf.
Section III-B), the construction process of the mutation feature
vectors (cf. Section III-C), the setup of the ensemble ranking
model (cf. Section III-D) and the application of NodeRank
(cf. Section III-E).

B. Specifying Mutation Rules

We design mutation rules that are adapted to the key main
ingredients of a GNN: the graph structure of the data, the nodes
in the graph, and the GNN model itself, which are explained in
detail as follows.

1) Graph Structure Mutation (GSM): Graph structure mu-
tation is designed to introduce slight changes to the input graph
by randomly incorporating new edges. Consequently, when
provided with a test input node, denoted as t ∈ T , we create
mutants by adding one or more edges between node t and a
randomly selected node, denoted as s ∈ T . For a given node
t ∈ T , the following mathematical formula provides an intuitive
representation of the GSM mutation:

G′ =G+

n∑

i=1

addEdge (G, t, si) (1)

where G represents the original graph. G′ represents the mu-
tated graph structure. In each iteration, we use the addEdge
function to generate an edge from node t to a randomly selected
node si ∈ T . We use the symbol “+” to denote the addition of
the newly generated edge to the original graph G. This process
is repeated n times, resulting in the addition of n edges to the
original graph G.

2) Node Feature Mutation (NFM): Given a test set and
the features of the test inputs, node feature mutation aims to
slightly change the features of the targeted nodes in order to
offset their position in the feature space. This offset implies the
modification of feature values in the different dimensions.

In the following, we introduce how node feature mutation is
performed in detail. Given the original test set T , which consists
of n nodes, each node t is characterized by m dimensions,
where each dimension corresponds to a specific feature value
of the node n. In this case, T can be represented as an n×m
feature matrix. To perform node feature mutation, we apply an
offset to this matrix. Specifically, assuming the degree of offset
is denoted as α, Formula 2 represents the mutation process
for the test set T . As observed in the formula, the initial step
involves multiplying the matrix of the original test set T by the
offset degree to calculate the ultimate offset to be applied to
T . Subsequently, the matrix of the mutated test set, denoted as
F (T ′), is derived by adding T ’s matrix to the offset α ∗ F (T ).

F (T ′) = F (T ) + α ∗ F (T ) (2)

where F (T ′) is the feature matrix of the mutated test set T ′,
F (T ) is the feature matrix of the original test set T , and α is
the coefficient of the degree of offset.

3) GNN Model Mutation (GMM): Given a trained graph
neural network model, the GNN model mutation aims to change
the training parameters slightly. Formula 3 offers an intuitive
representation of the GMM mutation. For integer or float type
parameters, the mutation operation involves making slight ad-
justments to the parameters. In the case of Boolean-type param-
eters, the mutation operation involves switching between True
and False. Therefore, the formula is as follows:

M ′ =

{
M(θ + β · θ) if θ ∈ R

M(¬θ) if θ ∈ {True, False}
(3)
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where M ′ refers to the mutated GNN model. M refers to the
original GNN model, θ refers to a parameter of the original
model M , and β refers to the coefficient of change, indicating
the magnitude of parameter change. The symbol ¬ signifies the
logical negation operation, which inverts the parameter θ. If the
original value is True, it becomes False, and if the original value
is False, it becomes True.

In NodeRank, we consider the following:
• Learning Additive Bias (LAB) [41], [42], [43] The LAB

parameter is a Boolean variable that determines whether
to introduce a predetermined offset to the representation
vectors of nodes in the GNN model. By enabling the LAB
parameter (set to True), a bias parameter is assigned to
each node’s representation vector. This allows the GNN
model to capture the intrinsic properties of the graph better
and improve the interdependence between nodes in the
prediction process.

• Negative Slope (NS) [42] NS is a float parameter that
controls the slope of the negative part of the activation
function used in the Gated Linear Unit (GLU) operation, a
commonly used non-linear function for message passing in
GNNs. In particular, GLU combines the node features with
the weighted sum of their neighboring nodes’ features,
which is the message passed between nodes in the graph.
The negative slope parameter of the activation function
in the GLU operation determines the rate of decrease for
negative input values and can affect the message passing
between nodes. As such, the value of NS plays a crucial
role in determining the sensitivity of the GNN model to
negative input values and the resulting impact on the in-
terdependence between nodes in the graph.

• Changing Multi-head Attentions (CMA) [42] CMA
is an integer type parameter that determines the number
of attention heads employed by the GNN model, with an
increase in CMA leading to an expanded model capacity
and improved capacity to capture the interdependencies
that exist among the nodes in the graph.

• Concat (CON) [42] The CON parameter is a Boolean-
type parameter that determines the method used to inte-
grate node embeddings from neighboring nodes. When set
to True, the concatenation operation is employed to com-
bine the node embeddings of adjacent nodes, resulting in
a more sophisticated and expressive node representation.
This, in turn, enhances the capacity of the GNN model to
capture more interdependencies between nodes.

• Adding Self Loops (ASL) [41], [42] The ASL parameter
is a Boolean parameter that governs the addition of self-
loops to the input graph in graph neural networks. By set-
ting ASL to ‘True’, self-loops are introduced to each node
in the graph, enabling the aggregation of intrinsic infor-
mation from nodes into their representation vectors. This
operation modifies the weighting of neighboring nodes
and can affect the interdependence of nodes during the
prediction process.

• Adding Layer Computations (ALC) [41] ALC is a
Boolean type parameter that determines whether or not
to include additional layers of computation in the GNNs.

When ALC is set to true, additional layers are introduced
to the network, which allows for more complex transfor-
mations of the node features. As a result, the message pass-
ing process becomes more refined and capable of capturing
more intricate dependencies among the nodes.

• Hidden Channel (HC) [41], [42], [43], [44] The HC
parameter is an integer configuration parameter that gov-
erns the dimensionality of the hidden representation in
each layer of the GNNs. As such, modifications to this
parameter can impact the interdependence of nodes in a
given graph by allowing the GNN to learn more expressive
and informative node embeddings.

We explain how the mutation rules of NodeRank utilize node
interdependence to generate mutations as follows:

• For Model-level mutants: NodeRank’s mutant rules can
directly or indirectly affect the message passing between
nodes in graph data. More specifically, in the mutated
GNN model, the manner in which nodes acquire informa-
tion from their neighboring nodes is slightly different from
that of the original GNN model.

• For Node-level mutants: NodeRank modifies the interde-
pendence between nodes by adding edges to nodes. When
adding a new edge from node A to node B, a new connec-
tion is built, and the prediction of node A is now impacted
by the newly connected node B, thus changing the node
interdependency.

Note that the mutation rules of NodeRank are specifically
developed for GNNs, and its applicability in the context of
DNNs has not yet been examined. Specifically, regarding node
mutation rules, NodeRank focuses on modifying the connection
relationships between nodes in a graph. However, in DNNs,
the samples within a dataset are independent and lack any
inherent connectivity, rendering the proposed mutation rules
unsuitable for such datasets. Moreover, the model mutation
rules of NodeRank are designed to impact the message passing
between nodes during the prediction process, either directly
or indirectly. In contrast, conventional DNNs generally consist
of independent samples within a dataset, implying that such
mutation rules are unlikely to influence the transmission of
information between distinct tests.

C. Constructing Mutation Features Vectors

Leveraging the three types of mutation rules introduced in
the previous steps, we generate a mutation feature vector for
each test input. To this end, we execute the three mutation rules,
thereby generating three distinct feature vectors for each input.
These feature vectors are concatenated to build the final muta-
tion feature vector. In the following, we explain the generation
of each feature vector of different mutation types.

Dataset mutation (NFM and GSM) Given a test input t and
a GNN model M , we denote the mutants of t as {t1, t2,..., tn},
which are obtained using NFM mutation rules. We associate a
vector V of size n to the test input t where n is the number of
mutants and V [k] maps to the execution output for the mutant
tk. If tk fails (i.e., the prediction of tk is different from that of
t), then V [k] is set to 1. Otherwise, it is set to 0. We use the
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same procedure to build a graph mutation features vector for t
using the GSM mutation rules. Formula 4 describes the process
of dataset mutation in our mutation testing operation.

V [k] =

{
1 if M (tk) �=M(t)

0 if M (tk) =M(t)
(4)

where M(tk) represents the prediction of the GNN model M
for mutant tk, and M(t) represents the prediction for the orig-
inal test input t.
Model mutation (GMM): Given a test input t, a GNN model
M and its mutants {M1, M2,..., Mn}, we associate to the test
input t, a vector V of size n (i.e., the number of mutants of
M ) where V [k] maps to the execution output for the mutant
Mk with test input t. If t kills the mutated model Mk (i.e., the
prediction of vk via the original model M and the mutated
model Mk is different), then V [k] is set to 1. Otherwise, it is
set to 0. Formula 5 presents the process of model mutation in
our mutation testing operation.

V [k] =

{
1, if M(t) �=Mk(t)

0, if M(t) =Mk(t)
(5)

where M(t) represents the prediction of the original model M
for the test input t.Mk(t) represents the prediction of the mutant
model Mk for the same test input t.

D. Building an Ensemble Ranking Model

Based on the previous step, NodeRank generates a feature
vector Vi for each test input ti ∈ T . This feature vector is then
used as the input to the ensemble ranking model for predict-
ing the misclassification probability of ti. The design of the
ensemble ranking models is motivated by the principles of
learning-to-rank [45] and ensemble learning [18]. In particular,
we adopt four base ranking models, including Logistic Regres-
sion [46], Random Forest [47], XGBoost [48], and LightGBM
[49], to form ensemble models that can leverage the strengths
of each individual model. NodeRank uses the sum-based en-
semble learning method [18], which combines scores of the
base ranking models for a given test input. By inputting Vi into
the sum-based ensemble ranking model, NodeRank obtains a
misclassification score for ti, which can be used to estimate the
probability that the GNN model M will misclassify ti.

Our experiments further consider two other ensemble learn-
ing methods (i.e., stacking-based [29] and voting-based [18])
to build variants of NodeRanks and assess the effectiveness of
our design choices (cf. Section IV-F).

E. Usage of NodeRank

The inputs of NodeRank are a test set T and a GNN model
M . The output is the prioritized test set TP . NodeRank gen-
erates mutants for the test set T and the GNN model M and
exploits the execution outputs of the GNN on these mutants to
build feature vectors that can be utilized to learn to prioritize test
inputs using ensemble ranking models. We present the training
process of each ranking model as follows.

❶ Dataset Split Given a GNN model M with dataset T , we
partition the dataset T into two subsets: a training set R
and a test set. Following common practice in the field [50],
we allocate 70% of the data to the training set and consider
the remaining 30% as the test set. We emphasize that the
test set is kept entirely separate from the training process
and is only utilized to evaluate NodeRank.

❷ Training set construction Based on the given training
set R, the objective of this step is to build a training set R′

for training the ranking models. Firstly, for each input ri ∈
R, three types of mutants are generated, and based on the
execution of these mutants, the mutation feature vector Vi

of ri is obtained. Subsequently, the mutation feature vector
of ri is utilized to build the features of the training set R′.
Secondly, the original GNN model M is used to classify
each input ri ∈R and compare it with the ground truth
of ri. This step helps identify whether ri is misclassified
by the GNN model M . If ri is misclassified by M , it is
labeled as 1, and if not, it is labeled as 0. This process aids
in building the labels of the ranking model training set R′.

❸ Training ranking models After building R′, we train the
ranking model based on it.

Notably, the training set R′ contains binary labels (i.e., 1 or
0), whereas the ranking models are expected to output contin-
uous values, referred to as misclassification scores. To address
this, we made certain modifications to the ranking algorithms
we employed, such as the random forest. During the classifica-
tion process, these algorithms calculate an intermediate value,
which is used to decide whether an input belongs to a particular
class. If the intermediate value exceeds a predefined threshold
of 0.5 (which is configurable), the input is classified into the
first class; otherwise, it is classified into the other class. Rather
than outputting the binary label, we directly output the interme-
diate value, representing the misclassification score. This score
indicates the likelihood of a test input being misclassified by the
GNN model, with a higher score indicating a greater probability
of misclassification.

IV. EVALUATION DESIGN

To assess NodeRank, we enumerate various research ques-
tions (cf. Section IV-A), which explore the performance metric
(cf. Section IV-B) for test inputs prioritzation on a diverse set of
GNN subjects (cf. Section IV-D). Beyond the prioritization per-
formance of NodeRank in uncovering model misclassification,
we also consider the performance under adversarial settings
(cf. Section IV-E). In this section, we also present how the
design of the different variants of NodeRank(cf. Section IV-F),
which vary based on the ensemble ranking strategy. Finally,
information about implementation and configuration setup is
provided in Section IV-G.

A. Research Questions

We investigate the following research questions:
• RQ1: What is the effectiveness of NodeRank?

Building on studies in traditional software testing [51],
[52], effective test prioritization techniques should be able
to prioritize possibly-misclassified test inputs.
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• RQ2: How does NodeRank perform on adversarial
inputs?
Graph adversarial attacks [32], [33] can induce GNN
models to be confident in their however-incorrect predic-
tions. Thus, existing confidence-based test prioritization
approaches are likely to fail. We demonstrate the superior
performance of NodeRank under such settings.

• RQ3: How does NodeRank perform with different
ensemble ranking strategies?
We investigate the performance of NodeRank variants im-
plemented by considering three different ensemble learn-
ing techniques.

• RQ4: Are all mutation feature categories useful in
NodeRank?
We conduct an ablation study on NodeRank to assess the
contribution of graph structure mutation features, node
mutation features, and graph model mutation feature on
the performance of NodeRank. Our ablation experiments
follow prior work by Meyes et al. [53].

• RQ5: Do the model mutation rules of NodeRank
contribute to its effectiveness?
In the original NodeRank, for a given test input, we employ
the killing approach from traditional mutation testing [54]
to generate model mutation features. These features are
then utilized to predict the misclassification probability for
this input. However, the model mutation features generated
by such a killing approach can contain information from
both the model mutation rules and the randomness inherent
in mutated model training, both of which can contribute
to the effectiveness of NodeRank. In this research ques-
tion, we aim to demonstrate that the model mutation rules
actually contribute to the effectiveness of NodeRank by
employing the killing approach in DeepCrime [21], which
takes into account the training randomness of the mutated
models during the killing process.

• RQ6: How do the parameter ranges of the newly
designed mutation operators impact the effectiveness
of NodeRank?
In NodeRank, we developed a set of novel mutation opera-
tors tailored for GNNs. In this research question, we inves-
tigate how the parameter ranges of these newly designed
mutation operators affect the performance of NodeRank.

B. Performance Metric

We evaluate the effectiveness of test prioritization based on
the common Average Percentage of Fault-Detection (APFD)
[14] metric. Specifically, higher APFD values indicate faster
misclassification detection rates. Given a GNN model M under
the test set T , the APFD values are calculated via Formula 6.

APFD = 1−
∑k

i=1 oi
kn

+
1

2n
(6)

where n is the number of test inputs in T ; k is the number of
test inputs in T that will be misclassified by M ; oi represents
the position of the ith misclassified test within the prioritized
test set. When the sum of the index values for the first k

misclassified tests, i.e.,
∑k

i=1 oi, is small, it indicates that the
prioritized test set has a higher order of the misclassified tests,
leading to a larger APFD score. Consequently, a higher APFD
score indicates better prioritization effectiveness.

Following prior work [10], we perform normalization on the
APFD values, making them fall in the range of [0, 1] to facilitate
comparison. We thus assume a test prioritization approach is
better if its APFD value is closer to 1.

To conduct a more detailed evaluation, we employ the Per-
centage of Fault Detected (PFD) metric [10] to quantify the fault
detection rate of each test prioritization approach across varying
ratios of prioritized test inputs. High PFD values indicate higher
effectiveness in identifying misclassified test inputs. PFD is
calculated based on Formula 7.

PFD =
Fc

Ft
(7)

where Fc is the number of misclassified test inputs that are
correctly detected. Ft is the total number of misclassified test
inputs.

In this study, we compare the PFD of NodeRank and the
uncertainty-based test prioritization approaches against differ-
ent ratios of prioritized tests. We use PFD-n to represent the
first n% prioritized test inputs.

C. Compared Approaches

This study utilized five compared approaches, including
a baseline approach (i.e., random selection) and four DNN
test prioritization techniques. The selection of these methods
was driven by several factors. Firstly, we aimed to consider
approaches that could be feasibly adapted for GNN test pri-
oritization. Secondly, the chosen techniques have been demon-
strated as effective for DNNs in the existing literature [10], [55],
[56]. Lastly, open-source implementations of these techniques
are available.

• DeepGini [10] employs the Gini coefficient as a statisti-
cal measure of the likelihood of misclassification, thereby
enabling the ranking of test inputs. The calculation of the
Gini score is presented in Formula 8.

ξ(x) = 1−
N∑

i=1

(pi(x))
2 (8)

where ξ(x) refers to the likelihood of the test input x being
misclassified. pi(x) refers to the probability that the test
input x is predicted to be label i. N refers to the number
of labels.

• Vanilla Softmax [55] calculates the difference between
the value of 1 and the maximum activation probability in
the output softmax layer. Formula 9 clearly depicts the
calculation process.

V(x) = 1− C
max
c=1

lc(x) (9)

where lc(x) belongs to a valid softmax array in which all
values are between 0 and 1, and their sum is 1.
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• Prediction-Confidence Score (PCS) PCS [55] measures
the difference between the predicted class and the sec-
ond most confident class in softmax likelihood. PCS is
calculated by Formula 10. Low PCS values indicate high
probability of being misclassified.

P (x) = lk(x)− lj(x) (10)

where lk(x) refers to the most confident prediction prob-
ability. lj(x) refers to the second most confident predic-
tion probability.

• Entropy Entropy [55] measures uncertainty in a classifi-
cation model’s prediction for a given test by computing the
entropy of the softmax likelihood.

• GraphPrior GraphPrior [17] is a test prioritization
method specifically designed for GNNs. GraphPrior gen-
erates mutated models for GNNs and regards tests that kill
many mutated models as more likely to be misclassified.

• Random selection [57] In random selection, the order of
execution for test inputs is determined randomly.

D. GNN Subjects

1) Graph Datasets: Our study utilizes four benchmark
datasets commonly used in the field of graph neural networks
(GNNs). The Cora and CiteSeer datasets are composed of ma-
chine learning publications, represented as nodes in a graph
structure, with edges representing citation links between the
publications. The PubMed dataset, on the other hand, contains
bio-medicine publications. The LastFM Asia Social Network
dataset, consists of the relationships between users on the
Last.fm music service in Asia, where users are represented as
nodes and their mutual follower relationships are represented
as edges. These datasets have been widely adopted in existing
research on graph neural networks [58], [59], [60], [61], [62].

Overall, we built 124 subjects to evaluate the effectiveness
of NodeRank, including 16 subjects of natural datasets and 108
subjects of adversarial datasets.

• Cora [63] Cora comprises 2,708 scientific publications
and 5,429 links between them. Publications are considered
nodes and are classified into seven classes.

• CiteSeer [63] CiteSeer is composed of 3,327 scientific
publications and 4,732 links between them. Publications
(nodes) are classified into six classes.

• PubMed [63] PubMed is composed of 19,717 diabetes-
related publications and 44,338 links between them. Pub-
lications (nodes) are classified into three classes.

• LastFM Asia Social Network [64] LastFM Asia Social
Network comprises 7,624 nodes and 27,806 edges.

2) GNN Models: We consider four GNN models which have
been widely studied in the literature of neural network testing,
specifically under adversarial attacks.

• Graph Convolutional Network (GCN) [41] is a class of
neural networks that use graph convolutions. GCN lever-
ages the information of edges to aggregate node informa-
tion to generate new node representations.

• Graph Attention Network (GAT) [42] introduces a
graph attention layer to weigh the importance of differ-
ent nodes within a neighborhood. Each node is assigned

an attention score so that more important neighbors can
be identified.

• Topology Adaptive GCN (TAGCN) [44] designs a set
of fixed-size learnable filters to perform convolution oper-
ations on graphs. These filters adapt to the topology of the
graph while it is scanned for convolution.

• Graph Sample and Aggregate (GraphSAGE) [43] gen-
erates node embeddings through sampling and aggregating
features of neighbor nodes. For computational efficiency,
GraphSAGE samples a fixed number of neighbors for
each node.

E. Graph Adversarial Attacks

In RQ2, we aim to investigate the effectiveness of NodeR-
ank on test inputs generated through diverse graph adversarial
attacks. Graph adversarial attacks refer to the manipulation of
the graph structure or node features to generate graph adver-
sarial perturbations that fool the GNN models. To evaluate the
performance of NodeRank against such attacks, we applied a
range of adversarial attacks in our experiments. We introduced
these attacks as follows.

• Delete internally, connect externally (DICE) [31] DICE
randomly inserts or deletes an edge for each perturbation.
DICE follows two crucial rules: 1) only removing edges
between nodes that are from the same class, and 2) only
inserting nodes that are from different classes.

• Min-max attack (MMA) [32] The min-max attack is
a type of untargeted white-box GNN attack, which for-
mulates the attack problem as a min-max optimization
problem. In this setup, the inner maximization objective
is to update the model’s parameters (θ) by maximizing the
attack loss, and it can be efficiently solved using gradient
ascent. Meanwhile, the outer minimization is achieved us-
ing the Projected Gradient Descent (PGD) [65] algorithm,
which iteratively perturbs the graph within a bounded �p
norm constraint to ensure that the generated perturbations
are not too large.

• Node embedding attack-Add (NEAA) [33] In the node
embedding attack-add, attackers have the ability to ma-
nipulate the original graph structure by adding new edges
while ensuring that a predetermined budget constraint is
not exceeded.

• Node embedding attack-Remove (NEAR) [33] In the
Node embedding attack-Remove, adversarial attacks are
aimed at modifying the original graph structure by se-
lectively removing edges while adhering to a budget
constraint.

• PGD attack (PGD) [32] The PGD attack leverages the
Projected Gradient Descent (PGD) algorithm to search for
optimal structural perturbations to attack GNNs.

• Random Attack-Add (RAA) [34] RAA randomly adds
edges to the input graph to generate perturbations.

• Random Attack-Remove (RAR) [34] RAR randomly
removes edges to the input graph to generate perturbations.

• Random Attack-Flip (RAF) [34] RAF randomly flips
edges to the input graph to generate perturbations.
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F. Variants of NodeRank

In this paper, when using NodeRank, we refer to the approach
that utilizes the Sum-based ensemble learning method (cf. Sec-
tion III-D) on top of the four considered base models, namely
Logistic Regression [46], Random Forest [47], XGBoost [48],
and LightGBM [49]. We also implemented two variants using
the stacking-based, and voting-based ensemble methods.

1) NodeRankS: With this variant, we implemented a
stacking-based ensemble method, which uses meta-learning
[66] to learn from the outputs of base ranking models to make
more accurate predictions. Given a GNN model M that clas-
sified nodes into n classes and a test set Ttest, NodeRankS

performs as follows: (1) first, each base ranking model RMi is
trained using mutation features of the training input set Ttrain of
M ; (2) then, NodeRank uses the output of each ranking model
to create a new dataset. More specifically, NodeRankS inputs
the mutation results of the training set to each ranking model
to obtain the outputs. For each training input, NodeRankS ob-
tains four probability scores, which will be considered as new
features, while the label is 1 or 0. Here, 1 means the training
input is misclassified by the GNN model M , while 0 means the
training input is correctly classified. Since the training set has
ground truth for each input, in this way, we build a new dataset.
(3) NodeRankS uses the new dataset to train the meta-learner.
Here, each input has four features, which are the outputs from
the four ranking models. The ground truth is whether an input is
misclassified by the GNN model M . (4) After training the meta-
learner, NodeRankS inputs the mutation results of the test set
Ttest to ranking models. Then, NodeRankS inputs the outputs of
ranking models to the meta-learner, which will provide a score
for each test input in Ttest. Based on the scores, NodeRankS

prioritizes all the test inputs.
2) NodeRankV: With this variant, we implemented the

majority voting-based ensemble learning method [67] to com-
bine the prediction results of different ranking models. Ma-
jority voting sums the predictions for each class and returns
the class with the majority vote as the ensemble prediction.
Given a GNN model M and a test set Ttest, NodeRankV per-
forms as follows: (1) first, each base ranking model RMi is
trained using mutation features of the training input set Ttrain

of M ; (2) For a test input in Ttest, NodeRankV inputs its
mutation features to N ranking models, obtaining N scores
(i.e., misclassification probabilities) for this input, denoted as
{S1, S2, · · · , SN}. Then, NodeRankS transforms each score
into 0 or 1. Scores below 0.5 are converted to 0, otherwise
to 1. In this way, NodeRankS obtains an N-length vector for
each input. For example, {0, 1, · · · , 0}. NodeRankS regards 1
voting for misclassification (i.e., the input will be misclassified
by the GNN model M ) and 0 voting for correct classification.
(3) After voting, for each input, NodeRankV sums its votes from
all ranking models. NodeRankV ranks all the test inputs based
on their votes for misclassification.

G. Implementation and Configuration

We implemented NodeRank in Python based on the
PyTorch [68] framework. We also integrate the available

implementations of the compared approaches [10], [16],
[69] into our experimental pipeline to adapt to the GNN
prioritization problem. Regarding the GNN models selected
as subjects in our study, the range of their accuracy is: GAT:
71%∼77%, GCN: 70%∼73%, GraphSAGE: 71%∼73%,
TAGCN: 72%∼81%. Regarding our mutation rules, for the
GNN model mutation, we generated 144 mutants on average.
For graph structure mutation, we generated 265 mutants on
average. For node feature mutation, we generated 147 mutants
on average. Concerning the configurations of node mutation
rules in the experiments of this paper, we made the following
design choice: We slightly modify attributes, with an offset
between 0.005 to 0.015.

We conducted all learning experiments on a high-
performance computer cluster, where each cluster node
runs a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA
Tesla V100 16G SXM2 GPU. For the data processing, we
conducted our experiments on a MacBook Pro laptop with
Mac OS Big Sur 11.6, Intel Core i9 CPU, and 64 GB RAM.
Overall, our experiments involved 124 subjects, of which 16
subjects were based on natural inputs and 108 subjects were
based on adversarial inputs.

V. EXPERIMENTAL RESULTS

For each research question, we present the experimental ob-
jective, design, and results before discussing the findings.

A. RQ1: Performance of NodeRank

Objective: We evaluate the performance of NodeRank in
prioritizing test inputs for GNNs. To that end, we also com-
pare NodeRank against five uncertainty-based test prioritiza-
tion approaches.
Experimental design: We use our initial subjects (4 datasets
and 4 GNN models, leading to 16 combinations of natural
inputs, i.e., without any adversarial attacks introduced). More-
over, we compare NodeRank with 6 test prioritization ap-
proaches, which include 1 test prioritization method for GNNs
(GraphPrior), 4 test prioritization methods for traditional DNNs
(i.e., DeepGini, VanillaSM, PCS, and Entropy), and a base-
line method (random selection). Specific details about these
compared methods can be found in Section IV-C. All sub-
jects are applied to NodeRank, as well as the six compared
approaches. Beyond effectiveness, we also investigated the ef-
ficiency of NodeRank by analyzing the time cost of each step
involved in its execution. Furthermore, due to the randomness
in the GNN model training process, we conducted a statistical
analysis to ensure the stability of our findings. Following the
prior work [70], we repeated all the experiments 30 times.
The following results are the averages obtained from the 30
repeated experiments.

To demonstrate the statistical significance of the improve-
ment of NodeRank relative to the compared test prioritiza-
tion approaches, we utilized the Mann-Whitney U test [71]
to compute the p-value of the repeated experimental results.
The Mann-Whitney U test is a statistical method used to de-
termine whether there is a notable distinction between two sets
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TABLE I
EFFECTIVENESS COMPARISON AMONG NODERANK, RANDOM, DEEPGINI, VANILLASM, PCS, AND ENTROPY IN TERMS OF THE

APFD VALUES ON NATURAL DATASETS

CiteSeer Cora LastFM PubMed
Approach

GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN

Random 0.4784 0.4893 0.4837 0.4882 0.4912 0.5268 0.4857 0.4782 0.4870 0.4981 0.5142 0.5049 0.4890 0.4972 0.5032 0.5123
DeepGini 0.6072 0.6197 0.6732 0.6260 0.7080 0.7037 0.7070 0.7650 0.5887 0.6991 0.7820 0.7368 0.6371 0.6995 0.6952 0.6140
VanillaSM 0.6519 0.6611 0.6831 0.6534 0.7325 0.7292 0.7283 0.7688 0.6696 0.7437 0.7850 0.7677 0.6630 0.7196 0.6981 0.6583
PCS 0.6528 0.6848 0.6767 0.6541 0.7132 0.7239 0.7303 0.7330 0.6925 0.7454 0.7463 0.7548 0.6569 0.6738 0.6660 0.6658
Entropy 0.6045 0.6181 0.6727 0.6165 0.7019 0.7007 0.7025 0.7564 0.5228 0.6411 0.7082 0.6011 0.6402 0.7004 0.6968 0.6155
GraphPrior 0.6754 0.6942 0.7103 0.6961 0.7853 0.7883 0.7651 0.7815 0.7746 0.7834 0.7914 0.7792 0.7546 0.7426 0.7534 0.7285
NodeRank 0.7319 0.7203 0.7325 0.7199 0.8326 0.8021 0.8121 0.8164 0.8146 0.8151 0.8063 0.8225 0.7714 0.7670 0.7895 0.7795

Note: The gray shade indicates the approach with the highest effectiveness.

of data distributions. The Mann-Whitney U test does not require
the assumption of normal distribution for the data. Therefore,
it can be used for both normal and non-normal distributed
data. The Mann-Whitney U test transforms the data into ranks,
calculates a test statistic based on these ranks, and uses this as a
basis for computing the p-value to assess if there is a statistically
significant difference between the two sets of data. A p-value<
0.05 is generally considered indicative of significance.

Furthermore, in addition to showcasing the average experi-
mental results, we also evaluate the variability of these results
in order to ensure a more fair comparison between the effective-
ness of NodeRank and existing test prioritization approaches.
The specific steps of these experiments are elucidated below:

• Effectiveness distributions between NodeRank and
the compared approaches As previously mentioned, we
conducted 30 repetitions of all experiments. Subsequently,
based on the results generated from these 30 repetitions,
we used box plots to illustrate the distribution of results for
various test prioritization methods. The rationale behind
employing box plots is that: 1) they offer an intuitive
representation of data distribution, including key statistics
like the median, quartiles, and identification of outliers.
This visual format enables a quick understanding of data
characteristics; 2) Box plots offer a visual tool for easily
comparing the distribution of experimental results across
various test prioritization approaches. When multiple box
plots are displayed side by side, the differences between
them can be clearly exhibited.

• Confidence interval between NodeRank and the com-
pared approaches Based on the results of 30 repeated
experiments, we calculated the confidence interval of each
test prioritization approach. Following the existing study
[72], we employed Formula 11 to compute the upper and
lower bounds of the confidence interval. We calculated the
confidence intervals for different test prioritization meth-
ods across two metrics (PFD and APFD) and two scenarios
(natural and adversarial datasets).

(
X̄ − Zα

2

σ√
n
, X̄ + Zα

2

σ√
n

)
(11)

where X̄ represents the average value, σ represents the
standard deviation, n represents the sample size, and Zα/2

represents the confidence coefficient.
Results: The experimental results of RQ1 are presented in
Tables I–VII, Figs. 2 and 3. We highlight the approach with

TABLE II
PERFORMANCE IMPROVEMENT OF NODERANK ON THE 16 INITIAL

SUBJECTS (I.E., 4 NATURAL INPUT SETS ON 4 GNN MODELS)

Approach # Best cases Average APFD Improvement(%)

Random 0 0.4954 58.11
DeepGini 0 0.6788 15.39
VanillaSM 0 0.7071 10.78
PCS 0 0.6981 12.20
Entropy 0 0.6513 20.27
GraphPrior 0 0.7502 4.41
NodeRank 16 0.7833 -

the highest effectiveness in grey to facilitate quick and easy
interpretation of the results. Table I presents the APFD scores of
NodeRank and the compared approaches on each subject (i.e., a
combination of a natural dataset and GNN model). We see that
NodeRank consistently outperforms all compared approaches
on all 16 subjects (i.e., 16 Best cases for NodeRank). Moreover,
the APFD range for NodeRank is 0.7199 to 0.8326, while
GraphPrior (the test prioritization method specifically designed
for GNNs) falls within the range of 0.6754 to 0.7883. Addi-
tionally, the APFD range for other test prioritization methods
varies from 0.4784 to 0.7850. Table II presents an in-depth
assessment of NodeRank’s effectiveness in comparison to other
approaches, including the number of best cases achieved by
each approach, the average APFD, and the improvement that
NodeRank offers over the compared methods. We see that
the average APFD for NodeRank is 0.7883, while the aver-
age APFD for GraphPrior is 0.7502. In contrast, the average
APFD range for other test prioritization methods falls between
0.4954 and 0.7071. When compared to GraphPrior, NodeR-
ank exhibits an average improvement of 4.41%, while its im-
provement relative to other comparative methods ranges from
10.78% to 58.11%.

We present further evidence of the high effectiveness of
NodeRank in the context of test prioritization by utilizing
the PFD (Percentage of Fault Detected) metric. The corre-
sponding experimental results are presented in Table III. Our
analysis demonstrates that NodeRank consistently surpasses
GraphPrior, all the confidence-based approaches, and ran-
dom selection in terms of average PFD, regardless of the
proportion of prioritized tests. Furthermore, the effectiveness
of NodeRank is visually apparent in Fig. 3. In the figure,
NodeRank is represented by the red line, GraphPrior by the
blue line, and the baseline method by the pink line. It is
evident that NodeRank consistently outperforms GraphPrior,
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TABLE III
AVERAGE COMPARISON RESULTS AMONG NODERANK AND THE COMPARED

APPROACHES IN TERMS OF PFD

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60

Random 0.0859 0.1758 0.2802 0.3859 0.4776 0.5753
DeepGini 0.1999 0.3393 0.4609 0.5796 0.6849 0.7705
VanillaSM 0.2104 0.3805 0.5254 0.6471 0.7253 0.8077
PCS 0.2103 0.3858 0.5267 0.6478 0.7513 0.8217
Entropy 0.1991 0.3402 0.4542 0.5772 0.6766 0.7683
GraphPrior 0.2355 0.4431 0.6024 0.7253 0.7827 0.8235

CiteSeer

NodeRank 0.2684 0.5078 0.6790 0.7752 0.8267 0.8697

Random 0.0938 0.1955 0.2996 0.3893 0.4971 0.5822
DeepGini 0.2555 0.4647 0.6193 0.7406 0.8293 0.8831
VanillaSM 0.2718 0.4906 0.6461 0.7676 0.8541 0.9170
PCS 0.2406 0.4386 0.6061 0.7513 0.8422 0.9103
Entropy 0.2551 0.4627 0.6100 0.7325 0.8250 0.8759
GraphPrior 0.3025 0.6021 0.7254 0.8013 0.8923 0.9215

Cora

NodeRank 0.3434 0.6764 0.8682 0.9113 0.9342 0.9468

Random 0.1021 0.1983 0.3041 0.4045 0.5039 0.5994
DeepGini 0.2476 0.4549 0.6042 0.7128 0.7898 0.8548
VanillaSM 0.2560 0.4939 0.6606 0.7814 0.8658 0.9177
PCS 0.2253 0.4593 0.6527 0.7883 0.8698 0.9143
Entropy 0.2472 0.4264 0.5190 0.6022 0.6705 0.7214
GraphPrior 0.3015 0.5324 0.7612 0.8563 0.8746 0.9237

LastFM

NodeRank 0.3487 0.6833 0.8621 0.9083 0.9297 0.9473

Random 0.1015 0.2023 0.3027 0.3989 0.4959 0.5957
DeepGini 0.2344 0.4026 0.5463 0.6407 0.7226 0.7959
VanillaSM 0.2270 0.4034 0.5649 0.6935 0.7851 0.8516
PCS 0.1968 0.3811 0.5422 0.6640 0.7630 0.8313
Entropy 0.2348 0.4028 0.5467 0.6424 0.7264 0.7994
GraphPrior 0.3021 0.5163 0.6582 0.7535 0.8192 0.8746

PubMed

NodeRank 0.3463 0.6258 0.7744 0.8359 0.8748 0.9062

Note: The gray shade indicates the approach with the highest effectiveness.

Fig. 2. Effectiveness distributions between NodeRank and the compared approaches on natural test inputs.

TABLE IV
CONFIDENCE INTERVAL OF NODERANK AND THE

COMPARED APPROACHES IN TERMS OF

APFD ON NATURAL TEST INPUTS

Approach Lower Bound Upper Bound

Random 0.4942 0.4966
DeepGini 0.6743 0.6832
VanillaSM 0.7032 0.7109
PCS 0.6945 0.7016
Entropy 0.6467 0.6558
GraphPrior 0.7467 0.7536
NodeRank 0.7798 0.7867

Note: The gray shade indicates the approach with
the highest effectiveness.

all the confidence-based approaches, and the baseline. These
experimental findings further confirm the high effectiveness
of NodeRank.

Table VI presents the results of statistical analysis. We use the
Mann–Whitney U test [71] as the metric to calculate the p-value
of the experimental results. Our objective is to demonstrate that
the improvement of NodeRank over other testing methods is
statistically significant. Within Table VI, we see that the range
of p-values is from 7.7245× 10−7 to 0.0092. These values are
all less than 0.05, indicating that the improvement of NodeR-
ank compared to other test prioritization methods is statistic-
ally significant.
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TABLE V
CONFIDENCE INTERVAL OF NODERANK AND THE COMPARED APPROACHES IN TERMS OF PFD ON NATURAL TEST INPUTS

PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60
Approach

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Random 0.0917 0.1008 0.1887 0.1989 0.2907 0.3024 0.3879 0.4007 0.4872 0.4994 0.5817 0.5933
DeepGini 0.2280 0.2411 0.4101 0.4197 0.5523 0.5628 0.6620 0.6743 0.7496 0.7609 0.8197 0.8305
VanillaSM 0.2346 0.2482 0.4373 0.4477 0.5928 0.6032 0.7175 0.7265 0.8016 0.8129 0.8675 0.8791
PCS 0.2124 0.2231 0.4112 0.4222 0.5760 0.5877 0.7071 0.7183 0.7998 0.8111 0.8637 0.8737
Entropy 0.2285 0.2398 0.4012 0.4128 0.5282 0.5378 0.6319 0.6426 0.7186 0.7309 0.7870 0.7953
GraphPrior 0.2811 0.2920 0.5175 0.5291 0.6826 0.6912 0.7773 0.7899 0.8359 0.8477 0.8814 0.8923
NodeRank 0.3215 0.3322 0.6167 0.6294 0.7910 0.8014 0.8534 0.8631 0.8865 0.8967 0.9118 0.9218

Note: The gray shade indicates the approach with the highest effectiveness.

TABLE VI
STATISTICAL ANALYSIS ON NATURAL TEST INPUTS (IN TERMS OF P-VALUE UNDER THE MANN–WHITNEY U TEST)

Mann–Whitney U test
NodeRrank
vs Random

NodeRank
vs DeepGini

NodeRank
vs VanillaSM

NodeRank
vs PCS

NodeRank
vs Entropy

NodeRank
vs GraphPrior

p-value 7.7245× 10−7 1.1175× 10−5 9.5154× 10−5 2.5438× 10−5 1.6231× 10−6 0.0092

TABLE VII
TIME COST OF NODERANK AND THE COMPARED APPROACHES

Time cost Approach

NodeRank Random GraphPrior DeepGini VanillaSM PCS Entropy

Mutant generation 35 min - 35 min - - - -
Feature extraction 30 s - 20 s - - - -
Ranking model training 3 min - 3 min - - - -
Prediction <1 s <1 s <1 s <1 s <1 s <1 s <1 s

Fig. 3. Test prioritization effectiveness among NodeRank and the compared approaches for CiteSeer with TAGCN and PubMed with GAT. X-Axis: the
percentage of prioritized tests; Y-Axis: the percentage of detected misclassified tests.

Moreover, Fig. 2 presents and compares the effectiveness
(in terms of APFD) of NodeRank with other test prioritization
methods using box plots. The box plots highlight the distribu-
tion of results of multiple repeated experiments for NodeRank
and other test prioritization methods. In Fig. 2, we see that,
in terms of the median, the median APFD value of NodeRank
exceeds that of other test prioritization methods across all nat-
ural datasets. Moreover, in the presented two specific examples
shown in the box plots, which respectively correspond to subject
CiteSeer, TAGCN, and subject LastFM, GCN, we can also see

that the median of NodeRank from repeated experiments is
the highest.

Regarding the quartile range, NodeRank’s quartile range (i.e.,
the height of the box) exhibits some variations across different
datasets, but overall, its upper quartile is higher than that of
other methods. Analyzing outliers, the box plots do not show
significant outliers, indicating that NodeRank’s performance
across different datasets is relatively stable, with no extreme
cases of inefficiency. In summary, we conclude that NodeR-
ank outperforms all compared testing prioritization methods in
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terms of APFD based on the distribution of data from mul-
tiple experimental results. This demonstrates that NodeRank
exhibits better effectiveness in test prioritization compared to
other methods.

Furthermore, we calculated the confidence intervals for all
test prioritization methods, and the experimental results are
presented in Tables IV and V. In Table IV, we see that NodeR-
ank’s APFD has the highest lower and upper bounds com-
pared to other test prioritization methods, with values of 0.7798
and 0.7867, respectively. Notably, NodeRank’s lower bound
(0.7798) even exceeds the upper bounds of all other compar-
ative methods. GraphPrior’s upper bound is 0.7536, while the
upper bounds for other test prioritization methods range from
0.4966 to 0.7109. Table V exhibits the confidence intervals of
all test prioritization methods in terms of PFD. The gray high-
lights indicate the test prioritization approaches that achieve the
maximum PFD in this scenario. In Table V, we see that NodeR-
ank also demonstrates the highest lower and upper bounds in
terms of PFD compared to other test prioritization methods
when prioritizing different ratios of tests. These experimen-
tal findings highlight that, in terms of confidence intervals,
NodeRank’s effectiveness exceeds that of the comparative test
prioritization methods.

In addition to its effectiveness, we also present an analysis
of NodeRank’s efficiency in Table VII. We offer a compre-
hensive breakdown of the time taken by each step in NodeR-
ank and compare it with GraphPrior, the confidence-based
test prioritization methods, and the baseline approach (ran-
dom selection). As shown in Table VII, the time required for
NodeRank is divided into four parts: mutant generation, feature
extraction, ranking model training, and NodeRank prediction.
Among these steps, mutant generation is found to be the most
time-consuming, taking approximately 35 minutes, followed by
ranking model training, which takes approximately 3 minutes.
Overall, NodeRank requires a total time of approximately 38
minutes. However, it is worth noting that the prediction time of
NodeRank is extremely fast, taking less than 1s once the rank-
ing model is trained, and the mutation features are extracted.
The overall runtime of GraphPrior is similar to NodeRank,
approximately 38 minutes. In contrast, the confidence-based
test prioritization methods have an overall runtime of less than 1
second. While NodeRank is less efficient than the uncertainty-
based test prioritization approaches (which takes less than 1s),
its time cost remains acceptable compared to the prohibitively
expensive manual labeling.

Answer to RQ1: On natural test inputs, NodeRank consis-
tently exhibits better effectiveness compared to GraphPrior,
all confidence-based approaches, and the baseline method
across all subjects, as evident from both APFD and PFD
metrics.

In terms of APFD, NodeRank showcases an average
improvement of 4.41% and 58.11% over the compared
approaches. Additionally, the efficiency of NodeRank is
within an acceptable range, thereby demonstrating its practical
usefulness.

B. RQ2: Prioritization of Adversarial Inputs

Objective: We evaluate the effectiveness of NodeRank on ad-
versarial test inputs. We assume that natural test inputs (cf.
RQ1) can easily discriminate which ones are more likely to
reveal bugs. In contrast, with adversarial inputs, by construc-
tion, they are all generated to make the probability of the wrong
classification label as high as possible. Thus, a test input prioriti-
zation on adversarial inputs may be challenged in ranking them
adequately. Yet, such prioritization is still necessary to ensure
a fast assessment of GNN model robustness.
Experimental design: To investigate the effectiveness of
NodeRank on adversarial datasets, we generated adversarial test
inputs using eight graph adversarial attack methods [31], [33],
[34]. We set the attack level to 0.3, which indicates that 30%
of the test inputs in the test set are adversarial tests. It is worth
noting that a high attack level, such as 90%, would result in a
significant proportion of adversarial test inputs. Under such cir-
cumstances, any prioritization method could potentially select
a larger number of bug cases, making it difficult to effectively
demonstrate the efficacy of NodeRank. Thus, to ensure a proper
evaluation of NodeRank and the compared approaches, we
selected a reasonable attack level (i.e., 0.3), which effectively
limits the proportion of adversarial test inputs.

Eventually, we construct 108 subjects (i.e., a combination
of a GNN model and an adversarial inputs set). Consistent
with the experimental design employed in RQ1, we evaluate
the prioritization effectiveness of NodeRank and the compared
approaches using both the APFD and PFD metrics. Similar
to RQ1, we conducted 30 repetitions of all experiments and
reported the average outcomes. Aside from presenting the aver-
age experimental findings, we assessed the variability of these
results to ensure a fairer comparison between the effectiveness
of NodeRank and existing test prioritization methods. Detailed
steps for these experiments can be found in the experimental
design of RQ1 (refer to Section V-A).
Results: The experimental results of RQ2 are presented in
Tables VIII–XIV, Figs. 4 and 5. Table VIII presents the APFD
scores of NodeRank and the compared approaches on DICE-
based graph adversarial inputs. Again, NodeRank performs the
best across all subjects. Experiment results on all the subjects
are available on our GitHub.2

Table IX presents the average APFD values for NodeRank
and the compared approaches, as well as the average improve-
ment of NodeRank over the compared approaches across dif-
ferent adversarial attacks. We can see that, across all cases,
NodeRank consistently outperforms GraphPrior, confidence-
based approaches, and random selection. Specifically, NodeR-
ank achieves an average APFD ranging from 0.7570 to 0.8041,
whereas GraphPrior averages between 0.7046 and 0.7625.
The remaining testing prioritization methods show APFD
ranges from 0.4922 to 0.7337. In terms of improvement over
GraphPrior, NodeRank demonstrates an average improvement
ranging from 4.69% to 8.78%. NodeRank’s improvement over
the other testing prioritization methods varies from 6.72%
to 62.15%.

2https://github.com/yinghuali/NodeRank/tree/main/results

https://github.com/yinghuali/NodeRank/tree/main/results
https://github.com/yinghuali/NodeRank/tree/main/results
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TABLE VIII
TEST PRIORITIZATION PERFORMANCE (APFD SCORES) ON DICE-BASED GRAPH ADVERSARIAL TEST INPUTS

CiteSeer Cora LastFM PubMed
Approach

GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN

Random 0.4867 0.4986 0.4937 0.5153 0.4938 0.5250 0.4817 0.5100 0.5031 0.4907 0.5004 0.4973 0.4997 0.4953 0.4929 0.4940
DeepGini 0.5893 0.6059 0.6550 0.6168 0.6878 0.6873 0.7061 0.7269 0.5883 0.6897 0.7685 0.7136 0.6363 0.6726 0.6846 0.6145
VanillaSM 0.6159 0.6418 0.6695 0.6335 0.7058 0.7113 0.7189 0.7359 0.6559 0.7294 0.7720 0.7502 0.6567 0.6875 0.6875 0.6488
PCS 0.6058 0.6494 0.6639 0.6304 0.6803 0.6974 0.7065 0.7066 0.6696 0.7289 0.7342 0.7428 0.6453 0.6379 0.6538 0.6509
Entropy 0.5874 0.6044 0.6536 0.6123 0.6827 0.6839 0.7025 0.7175 0.5364 0.6478 0.6961 0.5828 0.6384 0.6731 0.6860 0.6157
GraphPrior 0.7013 0.6955 0.7143 0.6745 0.7525 0.7436 0.7515 0.7537 0.7652 0.7561 0.7827 0.7732 0.7067 0.7037 0.7051 0.7038
NodeRank 0.7249 0.7128 0.7402 0.7171 0.8054 0.7963 0.8031 0.7859 0.8034 0.8059 0.8054 0.8040 0.7543 0.7465 0.7752 0.7699

Note: The gray shade indicates the approach with the highest effectiveness.

TABLE IX
OVERALL COMPARISON RESULTS ON GRAPH ADVERSARIAL DATASETS

Average performance score
(APFD)

Improvement(of APFD)
of NodeRank over the compared approachesAttack Approach

GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN

Random 0.4958 0.5024 0.4922 0.5042 55.71% 52.35% 58.68% 52.56%
DeepGini 0.6254 0.6639 0.7036 0.6679 23.44% 15.29% 11.03% 15.17%
VanillaSM 0.6586 0.6925 0.7120 0.6921 17.22% 10.53% 9.69% 11.14%
PCS 0.6503 0.6784 0.6896 0.6827 18.71% 12.82% 13.25% 12.67%
Entropy 0.6112 0.6523 0.6846 0.6321 26.31% 17.34% 14.08% 21.69%
GraphPrior 0.7314 0.7247 0.7384 0.7263 5.54% 5.61% 5.76% 5.91%

DICE

NodeRank 0.7720 0.7654 0.7810 0.7692 - - - -

Random 0.5283 0.5128 0.5161 0.4775 46.60% 47.62% 50.34% 60.27%
DeepGini 0.6591 0.6616 0.6960 0.6950 17.51% 14.42% 11.48% 10.12%
VanillaSM 0.6857 0.6923 0.7093 0.7104 12.95% 9.35% 9.39% 7.73%
PCS 0.6662 0.6980 0.7034 0.6952 16.26% 8.45% 10.31% 10.08%
Entropy 0.6551 0.6591 0.6938 0.6881 18.23% 14.85% 11.83% 11.22%
GraphPrior 0.7258 0.7126 0.7392 0.7266 6.70% 6.23% 4.96% 5.32%

MMA

NodeRank 0.7745 0.7570 0.7759 0.7653 - - - -

Random 0.5079 0.5053 0.5009 0.4938 54.54% 54.98% 59.19% 60.33%
DeepGini 0.6311 0.6869 0.7238 0.6864 24.37% 14.00% 10.17% 15.34%
VanillaSM 0.6686 0.7170 0.7301 0.7172 17.39% 9.22% 9.23% 10.39%
PCS 0.6630 0.6931 0.7062 0.7032 18.39% 12.99% 12.95% 12.59%
Entropy 0.6114 0.6708 0.7005 0.6410 28.38% 16.74% 13.83% 23.51%
GraphPrior 0.7421 0.7368 0.7521 0.7433 5.76% 6.28% 6.02% 6.51%

NEAA

NodeRank 0.7849 0.7831 0.7974 0.7917 - - - -

Random 0.4936 0.5016 0.4946 0.5134 61.93% 58.19% 62.15% 56.62%
DeepGini 0.6426 0.6955 0.7241 0.7005 24.39% 14.09% 10.76% 14.79%
VanillaSM 0.6850 0.7237 0.7337 0.7269 16.69% 9.64% 9.31% 10.62%
PCS 0.6841 0.7061 0.7096 0.7144 16.84% 12.38% 13.02% 12.56%
Entropy 0.6206 0.6771 0.6976 0.6523 28.79% 17.19% 14.97% 23.27%
GraphPrior 0.7352 0.7548 0.7625 0.7581 8.71% 5.12% 5.18% 6.06%

NEAR

NodeRank 0.7993 0.7935 0.8020 0.8041 - - - -

Random 0.5043 0.5114 0.5026 0.5090 56.81% 52.07% 57.02% 53.14%
DeepGini 0.6378 0.6764 0.7239 0.7137 23.99% 14.98% 9.02% 9.22%
VanillaSM 0.6839 0.7133 0.7336 0.7304 15.63% 9.03% 7.58% 6.72%
PCS 0.6805 0.7187 0.7176 0.7133 16.21% 8.21% 9.98% 9.28%
Entropy 0.6169 0.6593 0.6997 0.6644 28.19% 17.96% 12.79% 17.32%
GraphPrior 0.7491 0.7324 0.7403 0.7387 5.56% 6.19% 6.60% 5.52%

PGD

NodeRank 0.7908 0.7778 0.7892 0.7795 - - - -

Random 0.4981 0.4951 0.5027 0.5018 53.88% 55.10% 55.06% 54.15%
DeepGini 0.6299 0.6660 0.7084 0.6709 21.69% 15.30% 10.04% 15.29%
VanillaSM 0.6596 0.6964 0.7160 0.6972 16.21% 10.27% 8.87% 10.94%
PCS 0.6459 0.6824 0.6931 0.6836 18.67% 12.53% 12.47% 13.15%
Entropy 0.6166 0.6553 0.6910 0.6360 24.31% 17.18% 12.81% 21.62%
GraphPrior 0.7046 0.7261 0.7312 0.7258 8.78% 5.75% 6.60% 6.57%

RAA

NodeRank 0.7665 0.7679 0.7795 0.7735 - - - -

Random 0.4990 0.4964 0.5003 0.5004 54.31% 55.00% 56.69% 54.66%
DeepGini 0.6199 0.6660 0.7074 0.6724 24.21% 15.53% 10.81% 15.10%
VanillaSM 0.6519 0.6971 0.7157 0.6984 18.12% 10.37% 9.53% 10.81%
PCS 0.6415 0.6829 0.6937 0.6828 20.03% 12.67% 13.00% 13.34%
Entropy 0.6062 0.6550 0.6882 0.6374 27.02% 17.47% 13.91% 21.42%
GraphPrior 0.7109 0.7257 0.7369 0.7281 8.34% 6.02% 6.37% 6.29%

RAF

NodeRank 0.7702 0.7694 0.7839 0.7739 - - - -

Random 0.5134 0.5015 0.5043 0.5024 52.84% 53.84% 56.61% 56.35%
DeepGini 0.6312 0.6765 0.7063 0.6895 24.32% 14.04% 11.82% 13.92%
VanillaSM 0.6723 0.7080 0.7153 0.7115 16.72% 8.97% 10.42% 10.40%
PCS 0.6700 0.6990 0.6994 0.7039 17.12% 10.37% 12.93% 11.59%
Entropy 0.6144 0.6620 0.6875 0.6542 27.72% 16.54% 14.88% 20.07%
GraphPrior 0.7403 0.7325 0.7421 0.7362 5.99% 5.32% 6.42% 6.69%

RAR

NodeRank 0.7847 0.7715 0.7898 0.7855 - - - -

Note: The gray shade indicates the approach with the highest effectiveness.

Table XIII presents the results of statistical analysis on ad-
versarial datasets. The adopted approach (Mann-Whitney U
test method) for calculating the p-value is explained in RQ1

(Section V-A). Within Table XIII, we see that the range of
p-values is from 2.4541× 10−8 to 0.0057. All these values
fall below 0.05, indicating that the improvement of NodeRank
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Fig. 4. Test prioritization effectiveness among NodeRank and the compared approaches for CiteSeer with GCN attacked by MMA and LastFM with
GraphSAGE attacked by PGD. X-Axis: the percentage of prioritized tests; Y-Axis: the percentage of detected misclassified tests.

Fig. 5. Effectiveness distributions between NodeRank and the compared approaches on adversarial test inputs.

TABLE X
CONFIDENCE INTERVAL OF NODERANK AND THE

COMPARED APPROACHES IN TERMS OF APFD ON

DICE-BASED GRAPH ADVERSARIAL TEST INPUTS

Approach Lower Bound Upper Bound

Random 0.4976 0.4996
DeepGini 0.6610 0.6693
VanillaSM 0.6848 0.6925
PCS 0.6715 0.6788
Entropy 0.6409 0.6491
GraphPrior 0.7271 0.7334
NodeRank 0.7686 0.7749

Note: The gray shade indicates the approach with
the highest effectiveness.

in comparison to other test prioritization methods is statistic-
ally significant.

Table X presents the confidence intervals for all test priori-
tization methods in relation to the metric APFD. We see that
NodeRank’s APFD has the highest lower and upper bounds
compared to other test prioritization methods. Specifically, the
lower bound is 0.7686, and the upper bound is 0.7749. These
experimental results underscore that in terms of APFD and
considering confidence intervals, NodeRank demonstrates bet-
ter effectiveness compared to other test prioritization methods.

In addition to the APFD metric, we also computed the PFD of
NodeRank and compared approaches under adversarial attack
scenarios, and the results are presented in Table XI and Fig. 4.
As shown in Table XI, NodeRank outperformed the compared
approaches regarding PFD values for all attacks and any prior-
itization ratio of test inputs. Notably, NodeRank detected more
than 90% of the bugs when approximately 50% of the test inputs
were prioritized.

Furthermore, Fig. 4 offers two visual examples for assessing
the effectiveness of NodeRank compared to other approaches
on the CiteSeer and LastFM datasets. In the figure, NodeRank
is represented by a red line, GraphPrior by a blue line, and the
baseline method by a pink line. We see that NodeRank consis-
tently outperforms GraphPrior, as well as all confidence-based
approaches and the baseline method. These experimental results
demonstrate that the effectiveness of NodeRank exceeds that
of all compared approaches under adversarial attack scenarios,
indicating its efficacy in detecting bugs in adversarial datasets.

The box plot in Fig. 5 illustrates NodeRank’s effectiveness
(in terms of APFD) compared to other test prioritization meth-
ods using box plots on adversarial datasets. It presents the
distribution of results from multiple repeated experiments for
both NodeRank and the compared approaches. In Fig. 5, we
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TABLE XI
AVERAGE COMPARISON RESULTS AMONG NODERANK AND THE COMPARED

APPROACHES ON ADVERSARIAL DATA IN TERMS OF PFD

Attack Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60

Random 0.0977 0.1943 0.2930 0.3959 0.4985 0.5994
DeepGini 0.2119 0.3904 0.5359 0.6451 0.7359 0.8173
VanillaSM 0.2167 0.4054 0.5601 0.6894 0.7865 0.8582
PCS 0.1945 0.3708 0.5359 0.6704 0.7750 0.8524
Entropy 0.2113 0.3835 0.5149 0.6191 0.7064 0.7843
GraphPrior 0.2587 0.5023 0.6856 0.7835 0.8344 0.8923

DICE

NodeRank 0.2876 0.5594 0.7569 0.8473 0.8968 0.9267

Random 0.1059 0.2126 0.3165 0.4071 0.5129 0.6036
DeepGini 0.2261 0.4012 0.5465 0.6621 0.7572 0.8353
VanillaSM 0.2379 0.4246 0.5860 0.6964 0.7885 0.8628
PCS 0.2153 0.3976 0.5589 0.6900 0.7891 0.8649
Entropy 0.2248 0.3987 0.5424 0.6567 0.7496 0.8284
GraphPrior 0.2788 0.5081 0.6782 0.7823 0.8438 0.8935

MMA

NodeRank 0.2972 0.5710 0.7391 0.8277 0.8801 0.9155

Random 0.0974 0.2011 0.3017 0.3980 0.5045 0.6033
DeepGini 0.2306 0.4167 0.5634 0.6724 0.7646 0.8359
VanillaSM 0.2327 0.4302 0.5939 0.7215 0.8167 0.8857
PCS 0.2022 0.3949 0.5652 0.6996 0.7977 0.8725
Entropy 0.2307 0.4090 0.5342 0.6393 0.7276 0.7947
GraphPrior 0.2845 0.5127 0.6943 0.7857 0.8571 0.9146

NEAA

NodeRank 0.3055 0.5936 0.7978 0.8811 0.9184 0.9409

Random 0.0960 0.2001 0.2965 0.4005 0.5014 0.6057
DeepGini 0.2435 0.4366 0.5813 0.6934 0.7724 0.8416
VanillaSM 0.2482 0.4556 0.6148 0.7408 0.8262 0.8905
PCS 0.2143 0.4163 0.5933 0.7219 0.8206 0.8819
Entropy 0.2423 0.4274 0.5501 0.6551 0.7317 0.7954
GraphPrior 0.3071 0.5788 0.7834 0.8123 0.8662 0.9014

NEAR

NodeRank 0.3435 0.6520 0.8266 0.8796 0.9084 0.9337

Random 0.0988 0.2033 0.2992 0.4067 0.5123 0.6161
DeepGini 0.2350 0.4247 0.5702 0.6826 0.7706 0.8429
VanillaSM 0.2487 0.4558 0.6106 0.7315 0.8162 0.8824
PCS 0.2249 0.4209 0.5878 0.7259 0.8200 0.8845
Entropy 0.2341 0.4120 0.5393 0.6432 0.7333 0.7982
GraphPrior 0.2835 0.5241 0.6836 0.7826 0.8543 0.8992

PGD

NodeRank 0.3171 0.6083 0.7795 0.8531 0.8996 0.9304

Random 0.1035 0.1991 0.2959 0.3985 0.4956 0.6013
DeepGini 0.2110 0.3917 0.5392 0.6491 0.7483 0.8273
VanillaSM 0.2166 0.4052 0.5686 0.6990 0.7933 0.8627
PCS 0.1929 0.3734 0.5347 0.6755 0.7787 0.8552
Entropy 0.2108 0.3862 0.5192 0.6253 0.7203 0.7960
GraphPrior 0.2545 0.4523 0.6834 0.7436 0.8521 0.9034

RAA

NodeRank 0.2826 0.5518 0.7587 0.8543 0.9011 0.9271

Random 0.1007 0.1997 0.2970 0.3954 0.4968 0.5925
DeepGini 0.2108 0.3915 0.5335 0.6487 0.7412 0.8188
VanillaSM 0.2158 0.4044 0.5669 0.6972 0.7921 0.8606
PCS 0.1918 0.3728 0.5343 0.6705 0.7754 0.8516
Entropy 0.2105 0.3852 0.5136 0.6228 0.7142 0.7873
GraphPrior 0.2465 0.5014 0.6547 0.7362 0.8357 0.9033

RAF

NodeRank 0.2816 0.5535 0.7611 0.8628 0.9048 0.9326

Random 0.0970 0.2033 0.3058 0.4053 0.5117 0.6062
DeepGini 0.2273 0.4100 0.5573 0.6614 0.7532 0.8226
VanillaSM 0.2400 0.4305 0.5854 0.7114 0.8022 0.8650
PCS 0.2124 0.4057 0.5691 0.6981 0.8003 0.8677
Entropy 0.2268 0.4044 0.5376 0.6347 0.7227 0.7909
GraphPrior 0.2833 0.5344 0.6836 0.7843 0.8561 0.9013

RAR

NodeRank 0.3222 0.6164 0.7853 0.8533 0.8951 0.9210

Note: The gray shade indicates the approach with the highest effectiveness.

see that, across all adversarial datasets, NodeRank’s median
effectiveness, as indicated by the median line within the box,
surpasses that of other methods.

Regarding the quartile range, NodeRank’s quartile range
(i.e., the height of the box) exhibits some variations across
different datasets, but overall, its upper quartile is higher
than that of other methods. This difference is particu-
larly noticeable in the subjects “RAR, Cora, GAT” and
“NEAA, Cora, GCN”. In terms of the outliers, we see

that the box plots do not show significant outliers, indicat-
ing that NodeRank’s performance across different datasets
is relatively stable. Based on the above experimental re-
sults, we conclude that NodeRank outperforms all compared
testing prioritization methods in terms of APFD based on
the distribution of data from multiple experimental results.
This demonstrates that NodeRank exhibits higher effective-
ness in test prioritization compared to other methods on
adversarial datasets.
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TABLE XII
CONFIDENCE INTERVAL OF NODERANK AND THE COMPARED APPROACHES IN TERMS OF

PFD ON ADVERSARIAL DATASETS

PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60
Attack Approach

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Random 0.0951 0.1006 0.1915 0.1972 0.2903 0.2974 0.3912 0.3984 0.4948 0.5026 0.5949 0.6028
DeepGini 0.2090 0.2160 0.3857 0.3952 0.5309 0.5392 0.6420 0.6495 0.7331 0.7397 0.8150 0.8205
VanillaSM 0.2130 0.2206 0.4015 0.4090 0.5553 0.5637 0.6871 0.6922 0.7836 0.7904 0.8551 0.8626
PCS 0.1911 0.1972 0.3675 0.3745 0.5331 0.5407 0.6667 0.6753 0.7708 0.7770 0.8475 0.8559
Entropy 0.2067 0.2151 0.3801 0.3872 0.5114 0.5180 0.6161 0.6235 0.7033 0.7112 0.7814 0.7871
GraphPrior 0.2542 0.2622 0.4995 0.5046 0.6835 0.6902 0.7794 0.7874 0.8303 0.8375 0.8898 0.8944

DICE

NodeRank 0.2835 0.2908 0.5571 0.5618 0.7519 0.7618 0.8445 0.8511 0.8929 0.9012 0.9218 0.9306

Random 0.1019 0.1103 0.2084 0.2167 0.3115 0.3206 0.4049 0.4101 0.5094 0.5155 0.6014 0.6073
DeepGini 0.2214 0.2285 0.3972 0.4056 0.5426 0.5510 0.6574 0.6652 0.7549 0.7599 0.8306 0.8383
VanillaSM 0.2342 0.2412 0.4216 0.4279 0.5817 0.5888 0.6921 0.6997 0.7838 0.7908 0.8594 0.8676
PCS 0.2130 0.2192 0.3940 0.4009 0.5558 0.5617 0.6856 0.6938 0.7860 0.7937 0.8602 0.8693
Entropy 0.2222 0.2271 0.3951 0.4022 0.5390 0.5446 0.6537 0.6606 0.7449 0.7521 0.8246 0.8325
GraphPrior 0.2755 0.2818 0.5054 0.5128 0.6760 0.6810 0.7790 0.7854 0.8388 0.8474 0.8889 0.8982

MMA

NodeRank 0.2946 0.3019 0.5679 0.5752 0.7360 0.7434 0.8252 0.8304 0.8776 0.8831 0.9107 0.9193

Random 0.0926 0.1010 0.1969 0.2051 0.2991 0.3038 0.3948 0.4005 0.4995 0.5073 0.5983 0.6069
DeepGini 0.2261 0.2332 0.4130 0.4215 0.5605 0.5670 0.6703 0.6759 0.7610 0.7666 0.8323 0.8388
VanillaSM 0.2286 0.2365 0.4252 0.4325 0.5891 0.5969 0.7184 0.7248 0.8142 0.8213 0.8834 0.8887
PCS 0.1996 0.2058 0.3906 0.3991 0.5629 0.5696 0.6964 0.7029 0.7935 0.8006 0.8692 0.8761
Entropy 0.2282 0.2336 0.4045 0.4134 0.5319 0.5391 0.6357 0.6415 0.7243 0.7324 0.7903 0.7996
GraphPrior 0.2812 0.2866 0.5099 0.5165 0.6900 0.6968 0.7826 0.7885 0.8541 0.8615 0.9111 0.9189

NEAA

NodeRank 0.3018 0.3090 0.5915 0.5957 0.7930 0.8005 0.8771 0.8846 0.9140 0.9213 0.9362 0.9437

Random 0.0932 0.0985 0.1956 0.2033 0.2932 0.3008 0.3980 0.4035 0.4980 0.5063 0.6022 0.6097
DeepGini 0.2394 0.2463 0.4318 0.4408 0.5779 0.5833 0.6897 0.6963 0.7679 0.7752 0.8380 0.8437
VanillaSM 0.2444 0.2530 0.4509 0.4585 0.6116 0.6179 0.7381 0.7442 0.8240 0.8300 0.8859 0.8947
PCS 0.2105 0.2171 0.4134 0.4196 0.5908 0.5978 0.7198 0.7241 0.8180 0.8249 0.8769 0.8856
Entropy 0.2389 0.2449 0.4244 0.4301 0.5468 0.5549 0.6526 0.6573 0.7288 0.7343 0.7910 0.7998
GraphPrior 0.3042 0.3098 0.5740 0.5827 0.7797 0.7870 0.8093 0.8146 0.8614 0.8685 0.8979 0.9056

NEAR

NodeRank 0.3387 0.3467 0.6480 0.6548 0.8220 0.8295 0.8754 0.8842 0.9045 0.9114 0.9303 0.9362

Random 0.0956 0.1023 0.1984 0.2056 0.2963 0.3036 0.4032 0.4114 0.5088 0.5169 0.6124 0.6208
DeepGini 0.2301 0.2387 0.4197 0.4276 0.5672 0.5734 0.6800 0.6867 0.7668 0.7740 0.8388 0.8472
VanillaSM 0.2463 0.2531 0.4517 0.4605 0.6065 0.6148 0.7276 0.7339 0.8114 0.8187 0.8798 0.8854
PCS 0.2222 0.2290 0.4186 0.4230 0.5851 0.5914 0.7238 0.7284 0.8161 0.8235 0.8812 0.8884
Entropy 0.2306 0.2382 0.4092 0.4166 0.5347 0.5435 0.6400 0.6456 0.7287 0.7360 0.7953 0.8029
GraphPrior 0.2794 0.2868 0.5193 0.5282 0.6793 0.6866 0.7793 0.7869 0.8500 0.8576 0.8967 0.9019

PGD

NodeRank 0.3129 0.3205 0.6053 0.6128 0.7770 0.7842 0.8507 0.8574 0.8974 0.9023 0.9282 0.9351

Random 0.1004 0.1079 0.1949 0.2012 0.2916 0.2979 0.3960 0.4022 0.4935 0.4996 0.5981 0.6053
DeepGini 0.2083 0.2141 0.3871 0.3944 0.5367 0.5421 0.6457 0.6533 0.7452 0.7510 0.8234 0.8318
VanillaSM 0.2140 0.2188 0.4027 0.4081 0.5637 0.5727 0.6949 0.7032 0.7908 0.7959 0.8598 0.8670
PCS 0.1894 0.1959 0.3710 0.3765 0.5310 0.5396 0.6706 0.6798 0.7748 0.7832 0.8515 0.8588
Entropy 0.2080 0.2143 0.3830 0.3893 0.5161 0.5227 0.6208 0.6273 0.7164 0.7240 0.7930 0.8008
GraphPrior 0.2496 0.2588 0.4491 0.4566 0.6793 0.6862 0.7403 0.7462 0.8482 0.8541 0.8991 0.9074

RAA

NodeRank 0.2776 0.2875 0.5492 0.5564 0.7543 0.7626 0.8515 0.8578 0.8980 0.9036 0.9229 0.9306

Random 0.0978 0.1043 0.1971 0.2021 0.2937 0.2995 0.3913 0.3995 0.4947 0.5007 0.5898 0.5951
DeepGini 0.2087 0.2149 0.3882 0.3946 0.5311 0.5374 0.6457 0.6517 0.7369 0.7457 0.8155 0.8224
VanillaSM 0.2118 0.2197 0.4001 0.4070 0.5619 0.5691 0.6936 0.7011 0.7894 0.7944 0.8558 0.8643
PCS 0.1875 0.1947 0.3703 0.3774 0.5307 0.5389 0.6657 0.6739 0.7732 0.7800 0.8479 0.8558
Entropy 0.2062 0.2151 0.3808 0.3890 0.5104 0.5164 0.6205 0.6249 0.7101 0.7169 0.7843 0.7896
GraphPrior 0.2442 0.2491 0.4973 0.5040 0.6523 0.6570 0.7319 0.7395 0.8309 0.8394 0.9008 0.9062

RAF

NodeRank 0.2793 0.2842 0.5491 0.5558 0.7564 0.7654 0.8606 0.8648 0.9026 0.9076 0.9295 0.9369

Random 0.0940 0.1015 0.1992 0.2063 0.3030 0.3102 0.4031 0.4095 0.5072 0.5141 0.6023 0.6109
DeepGini 0.2229 0.2310 0.4059 0.4137 0.5532 0.5607 0.6576 0.6642 0.7484 0.7553 0.8176 0.8249
VanillaSM 0.2377 0.2449 0.4256 0.4329 0.5816 0.5902 0.7074 0.7160 0.7977 0.8044 0.8615 0.8678
PCS 0.2099 0.2160 0.4008 0.4083 0.5656 0.5716 0.6951 0.7004 0.7953 0.8049 0.8649 0.8723
Entropy 0.2236 0.2298 0.4001 0.4071 0.5350 0.5405 0.6326 0.6378 0.7182 0.7271 0.7866 0.7929
GraphPrior 0.2784 0.2861 0.5320 0.5376 0.6815 0.6870 0.7809 0.7866 0.8527 0.8606 0.8983 0.9038

RAR

NodeRank 0.3201 0.3254 0.6128 0.6212 0.7831 0.7875 0.8510 0.8556 0.8904 0.8977 0.9183 0.9242

Note: The gray shade indicates the approach with the highest effectiveness.

TABLE XIII
STATISTICAL ANALYSIS ON ADVERSARIAL DATASETS (IN TERMS OF P-VALUE UNDER THE MANN–WHITNEY U TEST)

Attack
NodeRrank
vs Random

NodeRank
vs DeepGini

NodeRank
vs VanillaSM

NodeRank
vs PCS

NodeRank
vs Entropy

NodeRank
vs GraphPrior

DICE 3.3978× 10−8 6.8803× 10−7 1.2979× 10−5 2.9367× 10−6 1.7078× 10−7 0.0021
MMA 2.4541× 10−8 6.4702× 10−5 4.6045× 10−4 1.2353× 10−4 2.0828× 10−5 0.0014
NEAA 4.5746× 10−8 3.3978× 10−7 2.3978× 10−5 4.2542× 10−6 1.4537× 10−7 0.0002
NEAR 2.6732× 10−8 6.1731× 10−7 1.1088× 10−6 5.3228× 10−7 3.3978× 10−7 0.0009
PGD 3.3274× 10−8 2.6274× 10−5 4.6045× 10−4 5.1867× 10−5 1.3448× 10−6 0.0017
RAA 8.2331× 10−8 3.4582× 10−7 5.5223× 10−6 1.7497× 10−6 1.1088× 10−7 0.0016
RAF 3.4582× 10−8 1.0307× 10−6 1.4624× 10−5 2.2701× 10−6 1.7078× 10−7 0.0057
RAR 6.4691× 10−8 3.9739× 10−7 5.5223× 10−6 1.3448× 10−6 9.5885× 10−7 0.0041

Moreover, Tables XII and XIV displays the confidence in-
tervals of all test prioritization methods. Table XII displays the
confidence intervals of all test prioritization methods in terms

of PFD. We see that, in terms of PFD, NodeRank also demon-
strates the highest lower and upper bounds compared to other
test prioritization approaches when prioritizing different ratios
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TABLE XIV
CONFIDENCE INTERVAL OF NODERANK AND THE

COMPARED APPROACHES IN TERMS OF APFD
ON ADVERSARIAL TEST INPUTS

Approach Lower Bound Upper Bound

Random 0.5013 0.5022
DeepGini 0.6705 0.6738
VanillaSM 0.6958 0.6987
PCS 0.6832 0.6861
Entropy 0.6501 0.6534
GraphPrior 0.7319 0.7344
NodeRank 0.7760 0.7783

Note: The gray shade indicates the approach with
the highest effectiveness.

of tests. These experimental findings emphasize that, from the
perspective of confidence intervals, NodeRank shows higher
effectiveness compared to other test prioritization methods.

Table XIV displays the confidence intervals in terms of
APFD. In Table XIV, NodeRank’s APFD shows the highest
lower and upper bounds compared to other test prioritization
methods, with values of 0.7760 and 0.7783, respectively. Re-
markably, NodeRank’s lower bound (0.7760) even surpasses the
upper bounds of all other comparative methods. GraphPrior’s
upper bound is 0.7344, while the upper bounds for other test
prioritization methods range from 0.5022 to 0.6987.

Answer to RQ2: On adversarial test inputs, NodeRank
consistently demonstrates better effectiveness in comparison
to GraphPrior, all confidence-based approaches, and the base-
line method across all subjects in terms of both the APFD and
PFD metrics. Regarding APFD, NodeRank exhibits an aver-
age improvement of 4.96% and 62.15% over the compared
methods.

C. RQ3: Influence of Ensemble Learning Methods

Objective. We investigate the impact of ensemble learning
strategies on NodeRank’s effectiveness in the learning-to-rank
process.
Experimental design. We employ NodeRank and its variants,
namely NodeRankV and NodeRankS (cf. Section IV-F for de-
tails), to prioritize test inputs for both natural and adversarial
scenarios, and evaluate their effectiveness in terms of APFD.
These variants differ in the ensemble learning strategies used
in the learning-to-rank process.
Results. Table XV presents the average effectiveness of NodeR-
ank and its variants, along with several compared approaches,
on both natural and adversarial datasets. The upper part shows
the average effectiveness under different models, while the
bottom part shows the average effectiveness across different
datasets. From Table XV, we can observe that the average
effectiveness of NodeRank and its variants outperform all the
compared approaches (i.e., GraphPrior, the confidence-based
approaches and random selection) in each case. Additionally,
the effectiveness of NodeRank is comparatively better than their
variants. Across different GNN models, NodeRank performs
the best in 100% of the cases on natural data. Furthermore,
on the adversarial data, NodeRank also outperforms in 100%

of the cases. From the perspective of datasets, on natural data,
NodeRank performs better than all the variants in each case. On
adversarial data, NodeRank has the highest average effective-
ness across all adversarial datasets. Overall, the final average
effectiveness of NodeRank is 0.7833 and 0.7772 on natural and
adversarial datasets, respectively. These experimental results
demonstrate that the sum-based ensemble learning strategies
used in NodeRank is more suitable for test prioritization.

Answer to RQ3: On both natural and adversarial datasets,
NodeRank offers a better effectiveness, in terms of APFD,
over other variants. We also note that any variant of NodeR-
ank outperforms all the compared approaches in GNN test
prioritization.

D. RQ4: Ablation Study of Mutation Operators

Objective: We investigate the effect of each category of mu-
tation operators (i.e., GSM, NFM, and GMM). To this end,
we analyze the contributions of the features generated by each
type of mutation operator and conduct corresponding ablation
studies. We proceed as proposed by Meyes et al. [53]: We
measure the impact of a component on an ML system by
removing or replacing this component and observing whether
the performance of the ML system is affected. The objective is
not to comprehensively check which feature set combinations
provide good performance but rather to check that each set
contributes to the performance.
Experimental design: We assume that the node mutation fea-
tures (NFM) as a key component of the NodeRank approach.
Then, the graph structure mutation (GSM) features, which are
obtained from the dataset, are considered the next most im-
portant feature set. Finally, the graph model mutation (GMM)
features are considered as the first that can be removed in the
ablation study, following the process in [53]. The experimental
steps for checking the contributions of each subset of mutation
features to the performance of NodeRank are thus as follows:

1) We compute the test prioritization performance of
NodeRank when all mutation features are used.

2) We compute the test prioritization performance of a vari-
ant of NodeRank where the ranking model is learned with
vectors that do not consider GMM features.

3) We compute the test prioritization performance of a vari-
ant of NodeRank where the ranking model is learned only
with NFM feature vectors (i.e., by removing the GMM
and GSM).

4) Finally, we also consider the case where no features are
used. NodeRank, therefore, does not implement ensemble
learning to rank. Instead, we consider a random ranking
approach to prioritize the test set.

Note that we do not attempt to perform experiments that
compare the value of the different feature sets. Indeed, the
mutation space of GNNs is complex, and mutations of differ-
ent types can produce feature vectors of various sizes, which
may implicitly impact the learning performance, making any
performance comparison biased or uninformative.
Results: The results of the ablation experiment are reported in
Table XVI. As expected, the Random prioritization approach,
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TABLE XV
PERFORMANCE (APFD SCORES) OF NODERANK VARIANTS ASSOCIATED TO DIFFERENT ENSEMBLE LEARNING

STRATEGIES (#BC ⇔ #BEST CASES) AND (AVG ⇔ AVERAGE APFD SCORE)

Natural inputs Adversarial inputs
Approach

#BC GAT GCN GraphSAGE TAGCN #BC GAT GCN GraphSAGE TAGCN

Random 0 0.4864 0.5028 0.4967 0.4959 0 0.5037 0.5023 0.5009 0.5014
DeepGini 0 0.6353 0.6805 0.7144 0.6855 0 0.6325 0.6737 0.7115 0.6850
VanillaSM 0 0.6792 0.7134 0.7236 0.7120 0 0.6686 0.7045 0.7202 0.7089
PCS 0 0.6789 0.7069 0.7048 0.7020 0 0.6610 0.6934 0.7003 0.6961
Entropy 0 0.6174 0.6650 0.6950 0.6474 0 0.6167 0.6607 0.6921 0.6477
GraphPrior 0 0.7475 0.7421 0.7501 0.7463 0 0.7298 0.7307 0.7428 0.7354
NodeRankV 0 0.7607 0.7505 0.7505 0.7481 0 0.7537 0.7483 0.7558 0.7475
NodeRankS 0 0.7551 0.7495 0.7512 0.7561 0 0.7516 0.7447 0.7527 0.7533
NodeRank 16 0.7876 0.7761 0.7851 0.7846 108 0.7795 0.7731 0.7872 0.7802

with Natural inputs with Adversarial inputs
Approach

CiteSeer Cora LastFM Pubmed Avg CiteSeer Cora LastFM Pubmed Avg

Random 0.4849 0.4954 0.5011 0.5004 0.4955 0.5028 0.5064 0.4990 0.4991 0.5018
DeepGini 0.6315 0.7209 0.7017 0.6615 0.6788 0.6277 0.7082 0.6927 0.6604 0.6722
VanillaSM 0.6623 0.7397 0.7415 0.6847 0.7071 0.6524 0.7244 0.7318 0.6807 0.6973
PCS 0.6671 0.7251 0.7348 0.6656 0.6981 0.6511 0.7043 0.7257 0.6578 0.6847
Entropy 0.6279 0.7154 0.6183 0.6632 0.6562 0.6253 0.7027 0.6173 0.6618 0.6518
GraphPrior 0.6842 0.7801 0.7821 0.7448 0.7478 0.6735 0.7624 0.7637 0.7332 0.7332
NodeRankV 0.6845 0.7873 0.7909 0.7471 0.7525 0.6941 0.7745 0.7839 0.7397 0.7481
NodeRankS 0.6917 0.7845 0.7893 0.7465 0.7532 0.6881 0.7742 0.7864 0.7398 0.7471
NodeRank 0.7261 0.8158 0.8146 0.7768 0.7833 0.7286 0.8011 0.8093 0.7690 0.7772

Note: The gray shade indicates the approach with the highest effectiveness.

TABLE XVI
FEATURE ABLATION STUDY RESULTS

with Natural inputs with Adversarial inputs
Approach

CiteSeer Cora LastFM Pubmed Avg CiteSeer Cora LastFM Pubmed Avg

Random prioritization (b/c No features) 0.4849 0.4954 0.5011 0.5004 0.4955 0.5028 0.5064 0.4990 0.4991 0.5018

DeepGini 0.6315 0.7209 0.7017 0.6615 0.6788 0.6277 0.7082 0.6927 0.6604 0.6722
VanillaSM 0.6623 0.7397 0.7415 0.6847 0.7071 0.6524 0.7244 0.7318 0.6807 0.6973
PCS 0.6671 0.7251 0.7348 0.6656 0.6981 0.6511 0.7043 0.7257 0.6578 0.6847
Entropy 0.6279 0.7154 0.6183 0.6632 0.6562 0.6253 0.7027 0.6173 0.6618 0.6518
GraphPrior 0.6842 0.7801 0.7821 0.7448 0.7478 0.6735 0.7624 0.7637 0.7332 0.7332

NodeRankNFM 0.5828 0.6328 0.5933 0.6085 0.6044 0.5710 0.6200 0.5897 0.6030 0.5959
NodeRankNFM+GSM 0.6315 0.6796 0.7025 0.6452 0.6647 0.6569 0.6876 0.7106 0.6504 0.6764
NodeRank (i.e., NodeRankNFM+GSM+GMM ) 0.7261 0.8158 0.8146 0.7768 0.7833 0.7286 0.8011 0.8093 0.7690 0.7772

Note: The gray shade indicates the approach with the highest effectiveness.

which employs no mutation features for learning to rank, per-
forms the worst in terms of APFD. In contrast, the NodeRank
approach that learns to rank by incorporating all three mutation
rule sets (pertaining to nodes, graph structure, and graph model)
exhibits the highest performance. Remarkably, the exclusion of
graph model mutation features leads to a decline in learning
performance by approximately 17.84% and 14.90% in terms
of APFD on natural and adversarial datasets, respectively. On
the other hand, employing only node mutation features yields
a significant improvement over Random prioritization, with
a performance gain of approximately 21.98% and 18.75% in
terms of APFD on natural and adversarial datasets, respectively.

Moreover, by comparing against the performance of
uncertainty-based DNN test prioritization approaches and
GraphPrior, we note that the combinations of the three
categories of mutation features were necessary to achieve
state-of-the-art performance in GNN test prioritization.

Answer to RQ4: The design choice in NodeRank to include
all three types of mutation operators was effective. Indeed,
although the node mutation operator can enable NodeRank
to outperform random prioritization, it is the combination of
NFM, GSM, and GMM operators that together lead to the
SOTA performance of NodeRank.

E. RQ5: Investigating the Contributions of Model Mutation
Rules on NodeRank Effectiveness

Objective: In this research question, our aim is to demonstrate
that the model mutation rules of NodeRank actually contribute
to its effectiveness. In the original NodeRank, we utilize the
killing approaches in traditional mutation analysis for DNNs.
This killing process is used to generate model mutation fea-
tures of a given test input. The features are then utilized to
predict the misclassification probability of this input. In this



LI et al.: TEST INPUT PRIORITIZATION FOR GRAPH NEURAL NETWORKS 1417

process, the model mutation features generated by killing may
contain information resulting from model mutation rules and
randomness in model training, both of which may contribute
to the effectiveness of NodeRank. In this research question,
by utilizing the killing approach in DeepCrime [21], which
considers the training randomness in the process of the killing,
we aim to demonstrate that the model mutation rules actually
contribute to the effectiveness of NodeRank.
Experimental design: To demonstrate the aforementioned ob-
jective, we designed three types of variants of NodeRank: 1)
NodeRankDeepCrime, a variant that utilizes DeepCrime’s killing
method to mitigate the influence of randomness when gener-
ating model mutation features. DeepCrime’s killing approach
takes into account the training randomness of the mutated
model. Specifically, this killing approach requires repeating
the training process n times for both the original model N =
〈N1, . . . , Nn〉 and its mutated model M = 〈M1, . . . ,Mn〉.
A test is considered killed if the difference between the
outputs of the original and mutated models is statistically
significant with non-negligible and non-small effect size. 2)
NodeRankRandom, which does not incorporate model mutation
rules and solely relies on random generation of model mutation
features, and 3) NodeRankwithoutGMM, which does not utilize
model mutation features. We validated whether model mutation
rules contribute to the effectiveness of NodeRank by comparing
the effectiveness of these three variants. If NodeRankDeepCrime

outperformed both NodeRankRandom and NodeRankwithoutGMM,
we consider that the model mutation rules contribute to the
effectiveness of NodeRank.

In the subsequent sections, we first describe the detailed
implementation of DeepCrime. Then, we present the details of
the variants of NodeRank and how we leverage these variants
to demonstrate that model mutation rules contribute to NodeR-
ank’s effectiveness.

1) Implementation of DeepCrime
Given an original GNN model N and a test t, the DeepCrime

approach follows the following method to determine whether a
test is “killed”.
❶ For the original GNN model N , we repeated its training

process n times, resulting in n GNN models: 〈N1, . . . , Nn〉.
Similarly, for the mutated model M , we repeated its train-
ing process n times, obtaining 〈M1, . . . ,Mn〉. Consis-
tent with previous research [21], we set n= 20 in our
experiments.

❷ For 〈N1, . . . , Nn〉, we used each GNN model to make
predictions on the test t and obtained the predicted
classifications for t from each model. Similarly, for
〈M1, . . . ,Mn〉, we used each mutated model to predict the
test t and obtained the predicted classifications for t from
each model.

❸ Prior work [21] suggests that the mutated model M is
considered “killed” if, for the given test t, the differ-
ence between the output of the original and mutated mod-
els, denoted as AN (t) = 〈AN1

, . . . , ANn
〉 and AM (t) =

〈AM1
, . . . , AMn

〉, is statistically significant with a non-
negligible and non-small effect size. Therefore, we mea-
sure whether the mutated model M is “killed” using

Formula 12.

isKill(N,M, t) =

⎧
⎪⎨

⎪⎩

true if effectSize(AN (t), AM (t))≥ β

and p−value(AN (t), AM (t))< α

false otherwise
(12)

In Formula 12, isKilled indicates whether the test t “kills”
the mutated model M . AN (t) represents a series of predic-
tions (outputs) for test t from the set of models 〈N1, . . . , Nn〉.
Similarly, AM (t) refers to 〈AM1

, . . . , AMn
〉, representing the

set of predictions (outputs) for test t from the set of models
〈M1, . . . ,Mn〉.

The term “effect size” [73] quantitatively measures the dif-
ference between two distributions of APFD results. One com-
monly used measure of effect size is Cohen’s d. This value
can be interpreted using thresholds provided by Cohen [74]:
|d|< 0.2 indicates a “negligible” effect, |d|< 0.5 indicates a
“small” effect, |d|< 0.8 indicates a “medium” effect, and oth-
erwise, it is considered a “large” effect. The prior study on DNN
mutation analysis [21] pointed out that the effect size should be
non-small. The β can have an impact on the effectiveness of the
killing method DeepCrime in the context of NodeRank for test
prioritization. In our experiments, we set β to be 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 0.9, covering a wide range of effect sizes. By
adopting different effect size values, we can observe whether,
under different effect sizes, the effectiveness of the NodeRank
variants using DeepCrime and mutation rules is better than the
variant not using mutation rules but instead randomly generat-
ing mutated models, thereby better validating the contributions
of model mutation rules.

2) Variants of NodeRank
In the following, we explain how we design variants of

NodeRank and how we utilize them to demonstrate the effec-
tiveness of NodeRank’s model mutation rule.
❶ In the first step, we generate three types of variants of

NodeRank: NodeRankwithoutGMM, NodeRankRandom, and
NodeRankDeepCrime. Regarding NodeRankDeepCrime, we
set different values for the effect size, ranging from
0.3 to 0.9. This aims to measure the effectiveness of
NodeRankDeepCrime across varying effect sizes, providing
a clearer demonstration of the effectiveness of our model
mutation rules.

❷ NodeRankwithoutGMM does not utilize model mutation fea-
tures for test prioritization. All other workflow processes in
this variant remain consistent with the original NodeRank.

❸ NodeRankRandom utilizes model mutation features for test
prioritization. However, the generated mutated models do
not correspond to actual mutations; instead, it chooses to
obtain different but equivalent GNN models as mutated
models. Due to the randomness in training GNN models
(such as the random initialization of model weights be-
fore training), different initializations can lead to different
optimization paths during training, resulting in different
weights at the end of training. Therefore, under the same
configuration and operating conditions, the generated mod-
els can vary. In NodeRankRandom, we generated a series of
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TABLE XVII
EFFECTIVENESS (APFD SCORES) OF NODERANK’S VARIANTS (NODERANKwithoutGMM DOES NOT GENERATE MUTATED MODELS.

NODERANKRandom DOES NOT USE MODEL MUTATION RULES TO GENERATE MUTATED MODELS. NODERANKDeepCime

USES MODEL MUTATION RULES TO GENERATE MUTATED MODELS)

Natural inputs Adversarial inputs
Approach

#BC GAT GCN GraphSAGE TAGCN #BC GAT GCN GraphSAGE TAGCN

NodeRankwithoutGMM 0 0.6607 0.6467 0.6701 0.6812 0 0.6772 0.6634 0.6826 0.6965
NodeRankRandom 0 0.6892 0.7143 0.7185 0.7162 0 0.6847 0.7112 0.7152 0.7144

NodeRankDeepCrime(effectSize ≥ 0.3) 0 0.7465 0.7448 0.7571 0.7597 0 0.7440 0.7416 0.7575 0.7542
NodeRankDeepCrime(effectSize ≥ 0.4) 0 0.7472 0.7445 0.7573 0.7599 14 0.7439 0.7417 0.7569 0.7543
NodeRankDeepCrime(effectSize ≥ 0.5) 8 0.7480 0.7449 0.7558 0.7602 7 0.7439 0.7418 0.7571 0.7542
NodeRankDeepCrime(effectSize ≥ 0.6) 0 0.7472 0.7444 0.7568 0.7601 38 0.7441 0.7420 0.7572 0.7541
NodeRankDeepCrime(effectSize ≥ 0.7) 2 0.7444 0.7402 0.7605 0.7603 15 0.7425 0.7398 0.7576 0.7540
NodeRankDeepCrime(effectSize ≥ 0.8) 2 0.7414 0.7353 0.7571 0.7622 21 0.7412 0.7372 0.7557 0.7540
NodeRankDeepCrime(effectSize ≥ 0.9) 4 0.7383 0.7331 0.7573 0.7601 13 0.7398 0.7338 0.7533 0.7537

with Natural inputs with Adversarial inputs
Approach

CiteSeer Cora LastFM Pubmed Avg CiteSeer Cora LastFM Pubmed Avg

NodeRankwithoutGMM 0.6315 0.6796 0.7025 0.6452 0.6647 0.6569 0.6876 0.7106 0.6504 0.6764
NodeRankRandom 0.6686 0.7382 0.7452 0.6859 0.7095 0.6619 0.7460 0.7498 0.6676 0.7063

NodeRankDeepCrime(effectSize ≥ 0.3) 0.6995 0.7785 0.7734 0.7565 0.7520 0.7012 0.7677 0.7694 0.7495 0.7470
NodeRankDeepCrime(effectSize ≥ 0.4) 0.6998 0.7787 0.7736 0.7568 0.7521 0.7017 0.7667 0.7694 0.7495 0.7469
NodeRankDeepCrime(effectSize ≥ 0.5) 0.6989 0.7794 0.7739 0.7567 0.7522 0.7012 0.7670 0.7695 0.7496 0.7468
NodeRankDeepCrime(effectSize ≥ 0.6) 0.6993 0.7787 0.7737 0.7568 0.7521 0.7015 0.7672 0.7696 0.7497 0.7471
NodeRankDeepCrime(effectSize ≥ 0.7) 0.6991 0.7797 0.7706 0.7560 0.7513 0.7016 0.7669 0.7682 0.7478 0.7461
NodeRankDeepCrime(effectSize ≥ 0.8) 0.6967 0.7753 0.7692 0.7547 0.7490 0.7005 0.7664 0.7659 0.7457 0.7446
NodeRankDeepCrime(effectSize ≥ 0.9) 0.6965 0.7746 0.7661 0.7515 0.7472 0.6991 0.7646 0.7640 0.7432 0.7427

Note: The gray shade indicates the approach with the highest effectiveness.

equivalent GNN models as mutated models using the same
configuration and operating conditions. All other workflow
processes in this variant remain consistent with the original
NodeRank.

❹ NodeRankDeepCrime uses DeepCrime’s mutation killing
approach as the killing approach to generate model mu-
tation features for test prioritization. All other work-
flow processes in this variant remain consistent with the
original NodeRank.

In summary, NodeRankwithoutGMM represents NodeRank with-
out the use of model mutation features. NodeRankRandom in-
corporates model mutation features, but the mutated models
are not generated by model mutation rules; instead, they al-
ter the initial random seed to produce different but equivalent
GNN models as the mutated models. NodeRankDeepCrime utilizes
model mutation rules to generate mutated models. After com-
pleting the above process, we consider that if the effectiveness
of NodeRankDeepCrime is higher than that of NodeRankRandom

and NodeRankwithoutGMM, the model mutation rules operated in
NodeRankDeepCrime contribute to its effectiveness.
Results: Table XVII presents the experimental results for RQ5.
We highlighted the approach with the highest effectiveness
in grey to facilitate quick and easy interpretation of the re-
sults. The table above showcases the average effectiveness of
NodeRankwithoutGMM, NodeRankRandom, and NodeRankDeepCrime

across different subjects in terms of models. The table below
shows the average effectiveness in terms of datasets.

The two tables show that in each case, NodeRankDeepCrime

performs the best. Furthermore, each variant of Node-
RankDeepCrime, regardless of different effect size settings,
exhibits higher effectiveness than that of NodeRankRandom.

According to the experimental design mentioned above, if
the effectiveness of NodeRankDeepCrime is higher than that of
NodeRankRandom and NodeRankwithoutGMM, we consider that
the model mutations (generated by model mutation rules) in
NodeRankDeepCrime contribute to mutated models. Therefore,
the above experimental results indicate that the model mutation
rule of NodeRank actually contributes to its effectiveness.

Answer to RQ5: The model mutation rules of NodeRank
actually contribute to its effectiveness.

F. RQ6: Influence of Mutation Operator Parameters on
NodeRank

Objective: In NodeRank, we designed a set of new mutation
operators specifically for GNNs. In this research question, we
explore the influence of the parameter ranges of mutation op-
erators on NodeRank.
Experimental design: First, we selected multiple mutation op-
erators with parameters of integer/float types. This choice was
made because, for Boolean-type mutation operators, mutations
involve toggling between True and False, resulting in only one
possible parameter value, rendering parameter changes unfea-
sible. Following the approach from the existing study [11], for
each investigated mutation operator, we systematically varied
its parameters multiple times while keeping the parameters of
other mutation operators in their initial states. Subsequently, we
recorded NodeRank’s effectiveness (measured by APFD) after
each parameter change. We used line graphs to visually depict
the impact of parameter changes on NodeRank’s effectiveness
for each mutation operator.
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Fig. 6. Impact of mutation operator parameters in NodeRank.

Specifically, NodeRank consists of three types of mutation
operators: Graph structure mutation (GSM), Node feature mu-
tation (NFM), and GNN model mutation (GMM). Since these
mutation operators aim to introduce subtle modifications to the
original test set or the GNN model, we aim to ensure that after
adjusting parameter ranges, the new parameter values also result
in relatively slight changes.

• Graph structure mutation (GSM) GSM includes a mu-
tation operator that involves slightly changing the structure
of the input graph by randomly adding edges. Conse-
quently, the parameter for this mutation operator is the
number of added edges. This parameter was set to 1, 2, 3,
and 4 to investigate the impact of the parameter range of
this mutation operator on the effectiveness of NodeRank.

• Node feature mutation (NFM) NFM includes a mu-
tation operator that changes the features of the targeted
nodes to adjust their positions in the feature space. Con-
sequently, the parameter for NFM is the node feature
offset. This parameter was set to 0.05, 0.10, 0.15, and 0.20
to investigate the impact of the parameter range of this
mutation operator on the effectiveness of NodeRank.

• GNN model mutation (GMM) GMM comprises multiple
mutation operators that aim to make slight changes to
the training parameters in NodeRank. We selected muta-
tion operators with integer/float-type parameters and ad-
justed their parameter ranges. These include “Negative
Slope” with parameter range adjustments of (0.1, 0.2, 0.3,
0.4) and “Hidden Channel” with parameter ranges of
(5, 10, 15, 20).

Results: The experimental results of RQ6 are presented in
Fig. 6. The experiments are conducted on 16 natural subjects.
Among them, Fig. 6(a) shows the impact of changing the pa-
rameter number of edges for the mutation operator targeting
graph structure. Fig. 6(b) illustrates the influence of the param-
eter node feature offset for the mutation operator targeting node
features. Fig. 6(c) demonstrates the impact of the parameter
negative slope for the mutation operator targeting the GNN
models. Fig. 6(d) displays the influence of the parameter Hidden
channel for the mutation operator targeting the GNN model.
In this context, the red line represents NodeRank. First, we
see that across all parameter settings of the mutation opera-
tor, NodeRank effectiveness consistently exceeds that of all
the comparative test prioritization methods (i.e., GraphPrior,
confidence-based approaches and random selection). Moreover,

we found that NodeRank performs stably when the parameter
values of the newly designed mutation operators change. For
example, when modifying the “Number of edges” parameter,
the APFD values of NodeRank vary within the range of approx-
imately 0.778 to 0.785. Similarly, when adjusting the “Node
feature offset” parameter, the APFD values of NodeRank fluc-
tuate between approximately 0.777 and 0.785.

Answer to RQ6: Across all parameter settings of the newly
designed mutation operator, NodeRank’s effectiveness con-
sistently outperforms that of other comparative test priori-
tization methods. Moreover, the effectiveness of NodeRank
remains stable when the parameter values change.

VI. DISCUSSION

A. Generality of NodeRank

Our proposed NodeRank and its variants perform test
prioritization for GNNs via ensemble-learning-based mutation
analysis. The evaluation on 124 subjects demonstrates their ef-
fectiveness on both natural and adversarial datasets. The scheme
of NodeRank, (i.e., slightly changing graph inputs and graph
models) can also be generalized to edge-level and graph-level
GNN tasks. In the future, we will carefully design relevant
mutation rules to further adapt NodeRank to other GNN tasks.

Additionally, we discuss the potential applicability of
NodeRank for regression tasks. However, currently, the mu-
tation rules and ranking models of NodeRank are designed
explicitly for classification tasks. To extend NodeRank to re-
gression tasks, modifications to the model mutation rules and
ranking models would be required. If appropriate model mu-
tation rules can be identified for regression tasks and suitable
ranking models can be designed, NodeRank could also be a
promising approach for regression tasks.

B. Challenges of NodeRank

NodeRank requires a sufficiently large training set to train
its internal ranking model. This training set includes labels
(i.e., samples that the model predicts incorrectly are labeled as
1, while correctly predicted samples are labeled as 0). If the
original model has very high accuracy, it can result in very few
training samples labeled as 1, potentially leading to an imbal-
anced dataset during the training of NodeRank’s ranking model.
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An imbalanced dataset can cause a decrease in performance
when dealing with samples labeled as 1, as there are not enough
examples to learn how to rank these samples correctly.

For example, in a scenario involving bank transfer transac-
tions, where each account represents a node and edges represent
transfer transactions between accounts, GNN models can be
used to identify fraudulent accounts (i.e., whether a node is a
fraudulent account or not). If the GNN model has a very high
accuracy (few nodes predicted incorrectly), it will result in very
few samples labeled as 1 in the NodeRank training set. This
directly affects the training of the ranking model in NodeRank.
Under these conditions, the effectiveness of NodeRank in pri-
oritizing the misclassified accounts will be affected.

C. Differences in Approaches for NodeRank

In this Section, we discuss the differences in approaches
for NodeRank from three perspectives, namely the differences
in evaluating NodeRank methods, the differences between
NodeRank and its variants, as well as different NodeRank ap-
proaches with different types of features.

[Differences in evaluating NodeRank methods] In addition
to evaluating NodeRank on natural datasets, we assess its ef-
fectiveness from three different perspectives, as presented in
RQ2 through RQ4. This is because these perspectives cover
key aspects and contribute to a comprehensive understanding
of NodeRank’s performance. In RQ2, we assess the efficacy
of NodeRank when confronted with adversarial test inputs.
In RQ3, we explore how ensemble learning strategies influence
NodeRank’s effectiveness within the context of learning-to-
rank. In RQ4, we examine the individual contributions of each
category of mutation features (GSM, NFM, and GMM) that
are generated for NodeRank’s learning-to-rank model. Below,
we provide a detailed explanation of the differences across
approaches for RQ2, RQ3, and RQ4, as well as why it is
important to assess the effectiveness of NodeRank from these
three different perspectives.

• RQ2 - Evaluation on Adversarial Test Inputs This
perspective focuses on assessing NodeRank’s performance
when confronted with adversarial test inputs. It is crit-
ical because it reveals NodeRank’s resilience and relia-
bility in handling challenging input data. In contrast to
the evaluation methods in RQ2 and RQ3, this assess-
ment is conducted using adversarial test inputs rather than
natural datasets.

• RQ3 - Impact of Ensemble Learning Strategies This
perspective investigates how different ensemble learning
strategies influence NodeRank’s effectiveness within the
context of learning-to-rank. This investigation is signifi-
cant as it helps us understand which strategies are more
suitable for NodeRank to perform test prioritization.

• RQ4 - Contributions of Mutation Features: In RQ4,
we delve into the individual contributions of each cate-
gory of mutation features (GSM, NFM, and GMM) on
NodeRank. Understanding these differences is essential
to identify which features are most critical for NodeR-
ank’s effectiveness, guiding further research and develop-
ment efforts.

[Differences between NodeRank and its variants] In RQ3,
we propose several variants of NodeRank. In RQ3, the variants
of NodeRank differ in the ensemble learning strategies used
to combine base ranking models. Apart from this distinction,
the workflows of the NodeRank variants remain identical to
NodeRank.

[Different NodeRank approaches with different types of
features] In RQ4, we design different NodeRank approaches,
which apply different types of mutation features for test prioriti-
zation. Specifically, NodeRankNFM only applies the NFM fea-
tures. NodeRankNFM+GSM applies both the NFM and GSM
features. Our aim is to investigate the contributions of each
feature type to the effectiveness of NodeRank.

D. Threats to Validity

Threats to Internal Validity. The internal threat to validity
mainly exists in the implementation of NodeRank, its variants,
and the compared approaches. To reduce the threat, we imple-
mented all approaches based on the widely used library Py-
Torch. Concerning the compared test prioritization approaches,
we considered the implementations released by the authors. An-
other internal threat lies in the randomness of the model training
process. To mitigate this threat, we conducted a statistical anal-
ysis involving performing ten repetitions of the model training
process for both the original and mutated models. We then
used these results to calculate the statistical significance of the
experiments. The selection of the mutation rules used in our
study represents another potential threat to the internal validity
of our research. Despite our best efforts to identify model mu-
tation rules, it is possible that there are other unknown training
parameters that could serve as mutation rules. To mitigate this
potential threat, we deliberately chose model mutation rules that
could directly or indirectly impact node interdependence in the
prediction process.
Threats to External Validity. The external threats to validity
mainly stem from the selection of the graph datasets as well as
the GNN models adopted for our study. This threat is mitigated
by the diversity of the subjects, as well as by the fact that
we consider assessing not only natural inputs but also advers-
arial inputs.
Threats to Construct Validity. Our mutation rules are similar
to the attacks used under graph adversarial settings. This may,
in theory, create a bias in the experimental results related to
adversarial test input prioritization. However, this threat is miti-
gated by two elements: first, we also apply NodeRank on natural
inputs; second, the objective of the mutation is eventually to
generate features for learning to rank initial inputs, not gener-
ating new samples that will be part of the test suite.

VII. RELATED WORK

A. Test Prioritization Techniques

Test prioritization focuses on finding the ideal ordering of
tests to detect more bugs in a limited time budget. In traditional
software testing, a variety of approaches [14], [75], [76], [77],
[78], [79] has been proposed. Mutation analysis has also been
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explored for test prioritization: Shin et al. [51] use a diversity-
aware mutation adequacy criterion and demonstrate its effec-
tiveness on large-scale developer-written test cases. Papadakis
et al. [80] proposed mutating Combinatorial Interaction Testing
models for test prioritization. Gökçe et al. [81] introduced a
prioritized testing approach aimed at enhancing the testing ca-
pacity of ESG-based testing algorithms. ESG-based algorithms,
as discussed by Belli et al. [82], focus on generating software
test suites that meet specific criteria related to both coverage
and execution cost. Gökçe et al.’s approach leverages adaptive
competitive learning algorithms for training the neural networks
utilized in this process. The core objective of their work is to
improve the test capacity of existing algorithms by prioritizing
the testing process. GÖKÇE et al. [83] introduced a model-
based approach to test prioritization. Their method focuses on
providing an effective algorithm for ordering test cases based
on the perceived degree of preference by the tester. Unlike
code-based approaches, which rely on prior knowledge such
as fault counts, or source code, GÖKÇE et al.’s approach is
radically different. It does not require prior knowledge about the
system under test (SUT), making it suitable for a wide range of
testing scenarios.

For DNNs, Feng et al. [10] have proposed DeepGini, which
prioritized test inputs based on model uncertainty: a test input
is more likely to be incorrectly predicted if the DNN model out-
puts similar probabilities for different classes. PRIMA [11] is
currently the state-of-the-art DNN test prioritization approach.
It is based on intelligent mutation analysis guided by learning-
to-rank. NodeRank shares similarities with PRIMA in the use
of mutation analysis. Unfortunately, PRIMA’s mutation rules
are not applicable to GNNs and their inputs. Our work is thus
the first approach that specifically leveraged mutation testing
adapted to GNNs in order to achieve test input prioritization.

B. Mutation Testing

Mutation testing is commonplace in traditional software en-
gineering [51], [80], where it constitutes a widely validated way
to assess the quality of test cases. Mutation rules for traditional
software have therefore been iteratively refined in the commu-
nity. Recent studies have extended the applicability of muta-
tion testing to various domains by focusing on adapting new
mutation rules. Beyond simple bugs, Loise et al. [23] proposed
15 security-aware mutant operators to improve security testing.
Beyond plain Java code, Deng et al. [84], [85] proposed novel
mutant operators that are specifically designed to test Android
applications (e.g., with event handling and activity lifecycle
mutant operators).

Furthermore, in addition to the context of traditional soft-
ware, several studies have investigated the application of mu-
tation testing to DNNs and have proposed different mutation
operators and frameworks. For instance, Ma et al. [86] proposed
DeepMutation, a method to assess the quality of test data for DL
systems using mutation testing. To achieve this, they designed
a collection of source-level and model-level mutation operators
to inject faults into the training data, programs, and DL models.
The effectiveness of the test data is evaluated by analyzing the

extent to which the injected faults can be detected. Later, Hu
et al. [87] extended their work into a mutation testing tool for
DL systems named DeepMutation++. This tool introduced new
mutation operators for feed-forward neural networks (FNNs)
and Recurrent Neural Networks (RNNs) and enabled the muta-
tion of run-time states of an RNN. Another notable contribution
is DeepCrime [21], a mutation testing tool that implements a set
of DL mutation operators based on real DL faults. Shen et al.
[88] proposed MuNN, a mutation analysis method for neural
networks. MuNN defined five mutation operators based on the
characteristics of neural networks.

C. Deep Neural Network Testing

In order to improve the test efficiency of DNNs, existing
studies [9], [10], [11], [87], [89], [90], [91], [92] has pro-
posed several approaches to optimize the test process, which
is mainly divided into two categories. The first one is test input
prioritization, which has been elaborated in the above section.
The second one is test selection, which focuses on selecting a
small group of test inputs to precisely estimate the accuracy
of the whole testing set to reduce labelling costs. Li et al.
[9] proposed Cross Entropy-based Sampling (CES) to select
representative test inputs for DNN accuracy estimation, which
minimizes the cross-entropy between the selected set and the
entire test set to ensure the distribution of the selected test set
similar to the original test set. Chen et al. [89] proposed PACE
for test selection and accuracy estimation. Pace clusters all the
inputs in a test set into different groups and leverages the MMD-
critic algorithm [93] to select prototypes from each group. In ad-
dition to improving DNN testing efficiency, existing studies
[15], [86], [94], [95], [96] have also focused on measuring DNN
testing adequacy. Pei et al. [95] proposed neuron coverage to
assess the extent to which a test set covers the DNN model
logic. Ma et al. [96] proposed DeepGauge, a set of coverage-
based metrics that consider neuron coverage a good indicator
to evaluate the adequacy of test inputs. Kim et al. [15] proposed
surprise adequacy, which assesses the adequacy of test inputs
by measuring their surprise with respect to the training set.

VIII. CONCLUSION

To relieve the labelling-cost problem and improve the effi-
ciency of GNN testing, we propose a novel test prioritization
approach, NodeRank, which prioritizes test inputs that are more
likely to be misclassified by the evaluated GNN model. NodeR-
ank filled a gap in the literature: prioritization approaches that
achieve state-of-the-art performance on DNNs are not suitable
for GNNs since they ignore the interdependence between test
inputs in graph-structured datasets. NodeRank leverages the
concepts of mutation testing to perform test prioritization, with
the aim of reducing the labelling cost in the process of eval-
uating a GNN model. Overall, NodeRank is a test prioritiza-
tion approach that is model-based, input-based, and mutation
testing-based. It utilizes mutation operations on both GNN
models and test inputs to generate mutation features for each
test input, facilitating test prioritization. The core idea is that: If
a test input (node) can kill many mutated models and produce
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different prediction results with many mutated inputs, this in-
put is considered more likely to be misclassified by the GNN
model and should be prioritized higher. The specific process
of NodeRank consists of two core steps: (1) NodeRank intro-
duced three types of mutation rules to generate mutants from
the perspective of the graph structure, node features, and the
GNN model, respectively. (2) After obtaining the mutation re-
sults, NodeRank generated mutation feature vectors and utilized
ensemble ranking models for test prioritization. Experimental
results on 124 diverse subjects, considering natural and ad-
versarial inputs, demonstrated the effectiveness of NodeRank.
More specifically, NodeRank outperformed all the compared
test prioritization approaches with an average improvement be-
tween 4.41% and 62.15%. Moreover, ablation experiments are
performed to check that the different types of mutation features
are all useful for the effectiveness of NodeRank.
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