
1080 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Active Code Learning: Benchmarking
Sample-Efficient Training of Code Models
Qiang Hu , Yuejun Guo , Xiaofei Xie , Maxime Cordy , Lei Ma , Member, IEEE,

Mike Papadakis , and Yves Le Traon , Fellow, IEEE

Abstract—The costly human effort required to prepare
the training data of machine learning (ML) models hinders
their practical development and usage in software engineering
(ML4Code), especially for those with limited budgets. Therefore,
efficiently training models of code with less human effort has
become an emergent problem. Active learning is such a technique
to address this issue that allows developers to train a model with
reduced data while producing models with desired performance,
which has been well studied in computer vision and natural
language processing domains. Unfortunately, there is no such
work that explores the effectiveness of active learning for code
models. In this paper, we bridge this gap by building the
first benchmark to study this critical problem - active code
learning. Specifically, we collect 11 acquisition functions (which
are used for data selection in active learning) from existing works
and adapt them for code-related tasks. Then, we conduct an
empirical study to check whether these acquisition functions
maintain performance for code data. The results demonstrate
that feature selection highly affects active learning and using
output vectors to select data is the best choice. For the code
summarization task, active code learning is ineffective which
produces models with over a 29.64% gap compared to the
expected performance. Furthermore, we explore future directions
of active code learning with an exploratory study. We propose
to replace distance calculation methods with evaluation metrics
and find a correlation between these evaluation-based distance
methods and the performance of code models.

Index Terms—Active learning, machine learning for code,
benchmark, empirical analysis.

Manuscript received 8 June 2023; revised 27 February 2024; accepted
29 February 2024. Date of publication 13 March 2024; date of current
version 16 May 2024. The work of Yuejun Guo was supported by the
European Union’s Horizon Research and Innovation Programme, as part of
the Project LAZARUS under Grant 101070303. This work was supported by
Luxembourg National Research Funds (FNR) through CORE Project C18/IS/
12669767/STELLAR/LeTraon. Recommended for acceptance by D. Hao.
(Corresponding author: Lei Ma.)

Qiang Hu, Maxime Cordy, Mike Papadakis, and Yves Le Traon are
with the University of Luxembourg, L-1359 Belval, Luxembourg (e-mail:
qianghu0515@gmail.com; maxime.cordy@uni.lu; mike.papadakis@uni.lu;
yves.letraon@uni.lu).

Yuejun Guo is with Luxembourg Institute of Science and Technology,
L-1359 Belval, Luxembourg (e-mail: yuejun.guo@list.lu).

Xiaofei Xie is with Singapore Management University, Singapore 188065
(e-mail: xiaofei.xfxie@gmail.com.

Lei Ma is with the University of Tokyo, Tokyo 113-0033, Japan, and also
with the University of Alberta, Edmonton, AB T6G 2R3, Canada (e-mail:
ma.lei@acm.org).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TSE.2024.3376964, provided by the authors.

Digital Object Identifier 10.1109/TSE.2024.3376964

I. INTRODUCTION

LEVERAGING machine learning (ML) to help developers
solve software problems (ML4Code) [1] has been a hot

direction in both software engineering (SE) and ML communi-
ties in recent years. Deep learning (DL), one of the advanced
ML techniques, has achieved great success in various software
tasks, such as code summarization [2], code clone detection [3],
and vulnerability detection [4]. Typically, developing a code
model involves two main steps: first, building a pre-trained
model that learns general code information; second, fine-tuning
this model using datasets that target a specific downstream task.
Both components contribute to the success of ML4Code and are
still under exploration for further improving the performance of
code models.

Generally, pre-trained code models can be easily accessed
from open resources, e.g., Hugging Face [5], or built by us-
ing self-supervised learning without data labeling effort. This
means that for developers planning to use code models, the
first step of pre-trained model preparation is not challeng-
ing and can be fully automated. However, collecting datasets
to fine-tune pre-trained models is not easy. The main reason
is that the general fine-tuning process follows the procedure
of fully-supervised learning, which requires carefully labeled
training data. Unfortunately, the data labeling process is time-
consuming and labor-intensive [4].

To alleviate the aforementioned heavy effort of training data
labeling, active learning [6] is used to enable sample-efficient
model training in other famous fields, e.g., computer vision [7]
and natural language processing [8]. The key idea of active
learning is to iteratively select a subset of training data to label
and use them to train the model. The existing studies [9] have
shown that labeling only a few (less than 10%) training data can
train a model with similar performance as the model trained by
using the entire training data. In this way, the labeling effort
can be significantly reduced and made flexible to a fixed bud-
get. However, despite being well-studied in many application
domains, the usefulness of active learning in ML4Code is still
unknown. Researchers mainly focus on designing new model
architectures, proposing novel code representation methods,
and studying more software tasks. The study of how to lighten
the model training cost is missed. There is a need to provide a
benchmark to support the exploration of this important problem.

In this paper, we aim to bridge this gap and build a benchmark
to study how active learning can help us efficiently build code

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8251-1669
https://orcid.org/0000-0002-5535-2420
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0001-8312-1358
https://orcid.org/0000-0002-8621-2420
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0002-1045-4861
mailto:qianghu0515@gmail.com
mailto:maxime.cordy@uni.lu
mailto:mike.papadakis@uni.lu
mailto:yves.letraon@uni.lu
mailto:yuejun.guo@list.lu
mailto:xiaofei.xfxie@gmail.com
mailto:ma.lei@acm.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1081

models – active code learning. We collect acquisition functions
(i.e., active learning methods) that can be used for code data
from existing studies [9], [10]. In total, we implement 11 acqui-
sition functions (including random selection). These functions
can be categorized into five output-uncertainty-based functions,
four clustering-based functions, and one function that uses both
the input and output information for the selection. Then, based
on these collected acquisition functions, we conduct experi-
ments on six datasets (including classification tasks and non-
classification tasks) and four famous pre-trained code models
to answer the following research questions:

RQ1: What features should be used for clustering-based
acquisition functions? Feature selection [11] is an important
problem for clustering methods. However, it is unclear which
features should be used for clustering-based methods in active
code learning. Our first study is to explore how different fea-
tures affect the effectiveness of active code learning. Here, we
consider three types of features, code tokens, code embedding
vectors, and model output vectors. Findings: The results show
that clustering-based methods are sensitive to the used features.
Interestingly, in more than half of cases (60%), output vector-
based acquisition functions achieve significantly better results
than code token and code embedding-based functions.

RQ2: How do acquisition functions perform on code
models? After determining features to use, we compare all the
acquisition functions across different tasks. Findings: Firstly,
contrary to the previous study [10], which suggests that simple
techniques perform better for active learning, we found that
clustering-based methods consistently outperform simple un-
certainty methods in our considered binary classification code
tasks (Clone detection and vulnerability detection). Secondly,
unlike prior research [9], [10], which shows that only a small
set of training data (less than 10%) is sufficient to produce good
models, our results on non-classification tasks (code summa-
rization and code translation) indicate that existing methods
are not yet capable of achieving this goal. There is at least a
30% performance gap between the models trained by active
learning (with 10% data) and the models trained using the
entire training data. Finally, our case study reveals that smaller
token distribution differences between the selected code data
and the whole training data and higher code token (and label)
diversity contribute to the acquisition functions to produce code
models with better performance. In total, in the first two studies,
we trained 9900 models considering each labeling budget. The
training process takes more than 5000 GPU hours.

Exploratory study. Additionally, using our benchmark, we
conduct a study to further explore potential directions for
proposing new acquisition functions. We focus on clustering-
based methods since existing methods can not perform well
on non-classification tasks. Concretely, due to clustering-based
methods tending to select diverse data (data have a bigger
distance to each other), we first check if there is a correlation
between the distance of selected data and the accuracy of the
trained model. Then, we propose a novel view to consider the
distance of code for active learning – using evaluation metrics
(e.g., CodeBERTScore) as distance calculation methods. Based
on the evaluation, we found that, for non-classification code

Fig. 1. Overview of active learning.

tasks, 1) there is no correlation between the distance (calculated
by Cosine similarity and Euclidean distance) of selected data to
each other and the accuracy of models. 2) There is a weak corre-
lation between the evaluation metrics-based distance of selected
data to each other and the accuracy of models, indicating that
future proposed methods can be based on evaluation metrics-
based distance.

To summarize, the main contributions of this paper are:
• This is the first work that builds a benchmark for

sample-efficient training across both classification and
non-classification code tasks. The source code as well as
the datasets can be found on our project site [12].

• Our analysis, grounded in the empirical study from this
work, reveals a significant divergence from established
findings [9], [10] in image and text data when applied to
code data.

• We design a novel strategy that uses evaluation metrics to
quantify the distance between code pairs to support future
research when proposing new acquisition functions.

II. BACKGROUND

A. Active Learning

Active learning is a well-known technique that enables
sample-efficient model training. Fig. 1 depicts the overview
workflow of active learning. Given an unlabeled dataset and a
model under training, the first step of active learning is to choose
the features used for conducting data sampling. Generally, two
types of features can be used, 1) the data features itself (e.g., im-
age pixels, and code tokens), and 2) features extracted from the
model (e.g., output probabilities, and code embeddings). After
obtaining the features, acquisition functions are used to select
the most valuable data for labeling. Here, important means the
model can learn more information from this kind of data and
achieve better performance on test data. Finally, developers
label these selected data and use them to train the model. In
this way, developers can train a model under a fixed labeling
budget. When a new budget is allowed, developers repeat this
process and further enhance the trained model.

The acquisition function is the most important part of ac-
tive learning which decides the quality of labeled training
data. Existing acquisition functions can be roughly divided into
two groups, output-uncertainty-based functions, and clustering-
based functions. Output-uncertainty-based functions obtain the
model predictions of the unlabeled data first and then use some
uncertainty metrics (Entropy of output probabilities) to rank
these data and select the most uncertain ones for training.

1082 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

TABLE I
OUR CONSIDERED ACQUISITION FUNCTIONS. BOTH: CLASSIFICATION AND NON-CLASSIFICATION TASKS

Method Name Support Tasks Description

Random Both Randomly select a budget of data.
Least Confidence (LC) [13] Classification Select the data with the least top-1 probability.

DeepGini [14] Classification Select data with minimum Gini impurity
N∑

i=1
(pi (x))

2.

Bayesian Active Learning by Disagreement (BALD) [15] Classification Select data minimum disagreement
count(mode(y1

x,...,yT
x))

T
over T dropouts.

Entropy [13] Classification Select data with the minimum Shannon entropy on output probabilities.
Margin [13] Classification Select data with a minimum difference between the top-1 probability

and top-2 probability.
Contrastive Active Learning (CAL) [16] Classification Select a subset that 1) is far away from the labeled data,

2) included data samples have big output divergence.
K-Means (KM) [7] Both Use the K-means clustering method to divide data into K groups and select

the center of each group.
K-Center (KC) [7] Both Iteratively select data that are far from the labeled data.
BADGE [17] Both Select data by using K-means on the gradient embedding level.
Coreset [7] Both An advanced version of K-Center with a distance upper bound.

The intuition behind this type of function is that uncertain data
are usually close to the decision boundaries of the model, thus,
training the model using these data can force the model to
build clear boundaries and improve its correctness. Clustering-
based functions assume that the models have better performance
if they learn more diverse data information. Thus, people use
different distance methods to measure the distance of data
to each other and select the central data for model training,
e.g., using K-means to do data clustering and then select the
center data.

In this work, we follow the previous works [9], [10] and
collect and implement 11 acquisition functions for active code
learning. Let X be the training data and x ∈X be an input
sample. N is the number of classes. y and yx are the ground-
true label and predicted labels. pi(x) represents the predicted
probability of x belonging to the ith class. Table I presents these
acquisition functions with their brief descriptions. For detailed
information on each function, please refer to the original paper.

B. Machine Learning for Code (ML4Code)

ML4Code [1] is a new but hot direction in the current soft-
ware engineering research field. The basic idea of ML4Code is
to train a machine learning model to solve software problems,
for example, program repair, vulnerability detection, and code
summarization. Machine learning models and training data play
key roles in ML4Code. For machine learning models, due to
the naturalness of software, researchers believe model architec-
tures that are good at handling text data are also promising for
solving code data. Thus, the famous code models mainly come
from modifying natural language models. For instance, Code-
BERT [18] is a bi-modal extension of the Bidirectional Encoder
Representations from Transformers (BERT) [19] which was
proposed for natural language processing. The training data are
usually processed by some code representation techniques to
transfer the raw data to a machine-readable format, e.g., transfer
the strings of code to a sequence of tokens with integer format.
How to design this transformation (i.e., code representation) is
another research topic that highly affects the performance of
trained models.

In this work, we focus on the most practical paradigm of
ML4Code – building models of code for specific downstream
code tasks by fine-tuning pre-trained code models. Existing
studies [18], [20] already demonstrated that fine-tuning pre-
trained models can achieve better results than training the
models from scratch. Here, the pre-trained code model has
been trained on multi-language datasets, therefore, they already
learned general information of code, e.g., the pre-trained Code-
BERT model learns knowledge from six datasets with different
programming languages. As a result, developers only need to
prepare their dataset for a specific task and use it to fine-tune
the pre-trained model.

III. BENCHMARK

After collecting massive acquisition functions whose effec-
tiveness on image data and text data has already been demon-
strated in previous studies, we plan to study their unknown use
case – if they are still useful for efficient training models of
code. As mentioned in Section I, we have two main questions
want to answer, 1) since features used for clustering-based ac-
quisition functions are important and highly related to the final
performance of active learning, we explore for each acquisition
function, which kind of feature is suitable for conducting code
selection. 2) As the previous study [10] claimed that – simple
methods perform well on active learning, we want to check if
this conclusion still holds on active code learning. Concretely,
we compare output-uncertainty-based functions (i.e., simple
methods mentioned in [10]) with clustering-based functions
with carefully chosen features.

A. Study Design

To address the question of suitable feature selection (RQ1),
we first prepare different versions of clustering-based acquisi-
tion functions based on the features they use. Note that, output-
based acquisition functions directly use the output-probability
to measure the uncertainty of the corresponding inputs. Since
the output probability has a fixed format, one-hot vectors, there
are no feature selection problems in such acquisition functions.
Then, we conduct active learning on different code tasks using

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1083

TABLE II
DETAILS OF DATASETS AND MODELS. ACCURACY (%) FOR PROBLEM CLASSIFICATION AND VULNERABILITY DETECTION,

F1-SCORE (%) FOR CLONE DETECTION, AND PPL/BLEU FOR CODE SUMMARIZATION AND CODE TRANSLATION

Classification
Task Dataset Language Train/Dev/Test CodeBERT GraphCodeBERT CodeT5
Problem Classification Java250 Java 62500/-/12500 98.10% 98.49% 98.39%
Clone Detection BigCloneBench Java 90102/4000/4000 97.15% 97.05% 97.87%
Vulnerability Detection Devign C 21854/2732/2732 63.76% 62.26% 62.85%

Non-Classification
Task Dataset Language Train/Dev/Test CodeBERT GraphCodeBERT RoBERTa
Code Summarization CodeSearchNet JavaScript 58025/3885/3291 3.85/14.34 3.79/14.89 5.15/13.34
Code Summarization CodeSearchNet Ruby 24927/1400/1261 4.04/12.80 3.99/13.54 5.15/11.25
Code Translation CodeTrans Java-C# 10300/500/1000 1.44/78.57 1.43/79.15 1.44/76.99

these functions and compare the performance of trained models.
we can draw conclusions about which features are most suitable
for each acquisition function. Here, we focus on three types
of features from different perspectives, 1) code embeddings,
2) sequence of code tokens, and 3)model output vectors.

• Code Embeddings It is common to consider code em-
beddings as the input of clustering methods since code
embeddings produced by pre-trained code models can
present the general information of code. Code embedding
is similar to the image data after image pre-processing. In
our study, code embeddings extracted from the fine-tuned
code models which can better represent the downstream
task are used as the features.

• Sequence of code tokens Regardless of the code repre-
sentation techniques, the raw program will be converted
into a sequence of integer values. Thus, it is also possible
to use these sequences as the inputs of the clustering meth-
ods. It is similar to using the pixel numbers of images as
inputs. The only difference is that code tokens often with
bigger data space, i.e., the image pixels are from 0 to 255,
while the range of code tokens depends on the vocabulary
size, which is generally much bigger than 255, e.g., the
vocabulary size of our used CodeBERT model is 50265.

• Model outputs Different from the above two features
that have been widely explored in other fields and can be
easily considered for active code learning, in our study,
we propose to use the model outputs as the input features
of clustering methods. The intuition behind this idea is
that the output can be seen as the understanding of the
model on this input data which should be useful for data
selection. Specifically, for classification tasks, we use the
one-hot output probabilities as the features, and for the
non-classification tasks, the output vectors produced by
decoders are used as the features.

For the comparison of each acquisition function (RQ2), the
main goal is to find the recommended function that has consis-
tently better performance than others in active code learning.
At the same time, we also compare the output-uncertainty-
based functions and clustering-based functions to determine if
the previous findings [10] hold true in active code learning.
Here, based on the first study, we use suitable features as the
input for clustering-based acquisition functions and perform
code selection.

B. Dataset and Model

Table II presents the datasets and models we used in the study.
We follow the previous works [21], [22], [23] and consider five
code tasks and one dataset per task including a multi-class clas-
sification task (problem classification), two binary classification
tasks (clone detection and vulnerability detection), and two non-
classification tasks (code summarization and code translation).

• Problem classification is a multi-class classification task.
Given a program, the model predicts the target problem
that the program solves. We use the dataset JAVA250 [24]
provided by IBM for this task. JAVA250 contains 250 code
problems, e.g., problem: write a program which prints the
heights of the top three mountains in descending order.

• Clone detection is a well-studied task in the software
engineering field to lighten the effort of software mainte-
nance. The main purpose of this task is to check if two
programs are semantically equivalent. Thus, code clone
detection is often seen as a binary classification problem.
In our study, we use the dataset provided by Big-
CloneBench [25] which contains a large number of Java
code clone pairs. Besides, for the computation friendly, we
follow the previous work [22] and only use a subset of data
from BigCloneBench.

• Vulnerability detection is a security-critical task that
aims at localizing the vulnerable functions in source code
to protect the software. Given a program, the code model
identifies whether the program is vulnerable or not, which
is also a binary classification problem. We use Devign [26]
for this task which is constructed by four C libraries.

• Code summarization is a common code task for helping
developers understand code snippets. Given a program, the
model generates natural language comments to describe
the functionality of this program. We use two datasets
provided by Microsoft [27] in our study.

• Code translation transfers programs from one language
to another which is a typical task for software migration.
In this work, we study this task using the dataset provided
by [27] which focuses on translating Java programs to
C# programs.

For the code models, we focus on pre-trained code models
since they achieved much better results than models trained
from scratch [18], [20] and are widely studied now. We follow
the previous work [22] and use two well-known pre-trained

1084 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

code models in our study, CodeBERT [18] and GraphCode-
BERT [20]. Besides, we added one advanced pre-train model
CodeT5 [23] in our work. Note that, we found CodeT5 is
already well pre-trained for our studied two non-classification
tasks, using active learning to fine-tune it can not significantly
improve its performance, e.g., the pre-trained CodeT5 model
already has around 16 BLEU score on code summarization task
(JavaScript), and after the fine-tuning, the BLEU score is also
less than 17. Therefore, we only train CodeT5 for classification
tasks and build another model RoBERTa (Robustly Optimized
BERT) [28] for non-classification tasks. Other models can be
easily added and evaluated to our provided project. Consid-
ering the downstream tasks, the pre-trained model is used as
an encoder to generate code embeddings, and a decoder is
followed to produce the final results for a specific code problem.
For example, a dense layer is used as the decoder to produce
the output probabilities of classification tasks. The same as
the original works of our considered code models, during the
fine-tuning, we also fine-tune the parameters of pre-trained
encoders to ensure a better performance on downstream tasks.
Then, we briefly introduce the two pre-trained models here,
and the detailed model information can be found on our project
site [12].

• CodeBERT is a bimodal model that shares a similar ar-
chitecture with the well-known BERT model in the field
of natural language processing. The CodeBERT model
is initialized through pre-training with six code datasets
featuring various programming languages such as Java and
Python. During the training process, programs are trans-
formed into sequences of tokens, which is similar to text
data. As a result, CodeBERT is able to learn the semantic
information of code data.

• GraphCodeBERT is a newer pre-trained code model that
incorporates both sequences of tokens and data-flow infor-
mation to learn code knowledge. This allows pre-trained
code models to understand the structural information of
programs and generate more precise code representations.
In our study, the base model is learned by this combination
of code information and fine-tuned for our considered
downstream tasks only using the code token information.
The reason is that we found in some downstream tasks,
adding the data-flow information to fine-tune the model
harms the performance of models, e.g., for the problem
classification task, adding data-flow information and with-
out data-flow information, the accuracy of fine-tuned mod-
els is 82.30% and 98.39%, respectively.

• RoBERTa is a variant of the BERT [19] model. The differ-
ence lies in the pre-training strategy. Compared to BERT,
the training of RoBERTa lasts longer with bigger batches
and additional new training data. Rather than perform-
ing masking once during data pre-processing, as done in
BERT, RoBERTa employs the dynamic masking strategy
where the masking is performed every time when feeding
a sequence to the model during pre-training. Additionally,
both the masked language modeling (MLM) objective and
the next sentence prediction (NSP) loss are applied in the
BERT pre-training procedure, while RoBERTa removes

the NSP loss to improve the downstream task perfor-
mance. Furthermore, RoBERTa is trained with a larger
byte-level Byte-Pair Encoding (BPE) vocabulary while
BERT uses the character-level BPE vocabulary. RoBERTa
is widely used as the basic baseline for code learning
[18], [20]. In this work, we employ RoBERTa for non-
classification tasks.

• CodeT5 is a variant of the Text-To-Text Transfer Trans-
former (T5) [29] model specifically tailored for code un-
derstanding tasks. It adopts the same architecture as T5
but incorporates code-specific knowledge. CodeT5 is pre-
trained on a large corpus of code with accompanying
natural language comments. It employs the Masked Span
Prediction (MSP) objective during pre-training. Addi-
tionally, two auxiliary tasks, Identifier Tagging (IT) and
Masked Identified Prediction (MIP), are applied to fuse
more code-specific structural information into the model.
It achieved superior results in multiple downstream tasks
such as code translation and defect detection. In this work,
we employ CodeT5 for classification tasks.

C. Evaluation Metrics

Our study contains three types of code tasks. For each task,
we use the most practical metrics to evaluate the trained models.

Accuracy on the test data is the basic way to evaluate the
performance of multi-class classification models. It calculates
the percentage (%) of correctly classified data over the entire
input data.

F1-score is a commonly used metric for binary classification
problems. It calculates the harmonic mean of the precision
and recall scores. Given that, true positive (TP) represents the
number of samples correctly predicted as positive, false positive
(FP) represents the number of samples wrongly predicted as
positive, and false negative (FN) represents the number of sam-
ples wrongly predicted as negative, F1-score is calculated as:

F1− score=
TP

TP + 1
2 (FP + FN)

Perplexity (PPL) is a widely used metric to evaluate lan-
guage models. PPL can be seen as the loss of language models
that can record the logs of the training process. A lower PPL
score means a better performance of the model. Recently, re-
searchers applied PPL to record to evaluate the code summa-
rization models [30]. Specifically, PPL is calculated by:

PPL (X) = exp

{
−1

t

t∑
i=0

log pθ(xi|x<i)

}

where X = (x0, x1,...,xt) is the set of code tokens, and
logpθ(xi|x<i) is the log-likelihood of the ith token conditioned
on the preceding tokens x<i by the model.

BLEU (Bilingual Evaluation Understudy) is a metric
to evaluate the quality of the generated text to another (the
reference). Simply, BLEU score is calculated by:

BLEU =BP × exp

N∑
n=1

wn log pn

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1085

Fig. 2. Results of different feature-based active code learning on classification tasks.

The value of N depends on the used N-gram precision, and
the weights wn = N / 4. In our study, 4 is used. pn is the ratio
of length n sub-sequences in both the candidate sequence and
the reference. BP is the brevity penalty calculated by:

BP =

{
1, if c > r

e1−r/c, if c≤ r

where c is the length of the generated sequence and r is the
length of the reference sequence.

Besides, to perform a significance test for the comparison
between different acquisition functions, we conduct statistical
analysis by using Student’s t-test [31] in our study.

D. Configurations

Training configuration. Considering the hyperparameters
used for model training, we follow the previous work [22] and
use the same batch size and learning rate for each model. All
the detailed settings can be found on our project site. For model
fine-tuning, we set the training epoch as 10 which is enough to
ensure the convergence of models.

Active learning configuration. We initialize the models
(which is a common setting of active learning that we start from
a model with a little knowledge of the datasets) by training them
on randomly selected 500 samples. We set the labeling budget
as 1% of the entire training set and do 10 times iterations of
active learning.

Acquisition function configuration. For all clustering-
based methods, we follow the previous work [9] and set the
number of centers as the labeling budget. For BALD, we set
the times of dropout prediction as 20. For all clustering-based
methods, to get more precise code information, we obtain the
embedding features from the fine-tuned encoders.

E. Implementation and Environment

The project is based on Python-3.6 and PyTorch-1.10.2
framework. The key implementation of code models is mod-
ified from the open source project [27]. We adopt acquisition
functions implemented by [9], [10] that are used for image data
and text data to code data. All the source code can be found on
our project site. We conduct all the experiments on a 2.6 GHz
Intel Xeon Gold 6132 CPU with an NVIDIA Tesla V100 16G
SXM2 GPU. We repeat all the experiments five times to reduce
the influence of randomness and report the average results in the
following sections.

F. RQ1: Feature Selection

First, we explore the features of clustering-based acquisition
functions. Fig. 2 and Fig. 3 depict the performance of models
trained by different labeling budgets. Here, we only list the
results of CodeBERT models and the whole results can be found
on our project site.

1086 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Fig. 3. Results of different feature-based active code learning on non-classification tasks. JS is short for JavaScript.

From the results, we can see that the same acquisition
function could train models with significantly different perfor-
mances depending on the features used. In particular, for the
K-Means, K-Center, and Coreset functions, the performance
difference is substantial and should not be overlooked. In con-
trast, the BADGE function is relatively stable compared to
the others. Then, we analyze the most suitable features that
should be used for each function for solving each code task.
Table III displays the percentage of each function that pro-
duces models with the best performance across all labeling
budgets. Surprisingly, overall, the results demonstrate that the
output vectors extracted from the models are superior features
compared to code tokens and code embeddings. This suggests
that active code learning should focus on output vectors rather
than input vectors when conducting data selection, unlike active
learning for image and text data. We also use t-test metric to
test the signification of the comparison. Table IV summarizes
the results. This result also indicates that the output feature
is the best one among our considered features. For example,
for clone detection tasks, the output feature beats token and
embedding features in KM, BADGE, and Coreset three acquisi-
tion functions.

Besides, we observe that the feature selection of some acqui-
sition functions also depends on the types of downstream tasks.
In both classification tasks, output vectors and code embeddings
are the best choices for K-Means and K-center, respectively.

TABLE III
RATIO OF TRAINED MODELS ACHIEVING BEST RESULTS

USING DIFFERENT FEATURES

KM KC BADGE Coreset Average
Problem Classification

Token 0% 0% 0% 0% 0%
Embedding 10% 100% 40% 40% 47.5%
Ouput 90% 0% 60% 60% 52.5%

Clone Detection
Token 0% 40% 0% 0% 10%
Embedding 10% 60% 0% 40% 27.5%
Output 90% 0% 100% 60% 62.5%

Vulnerability Detection
Token 0% 0% 10% 0% 2.5%
Embedding 0% 70% 0% 70% 35%
Output 100% 30% 90% 30% 62.5%

Code Summarization
Token 50% 0% 20% 0% 17.5%
Embedding 45% 0% 15% 0% 15%
Output 5% 100% 65% 100% 67.5%

Code Translation
Token 100% 60% 0% 10% 42.5%
Embedding 0% 0% 0% 40% 10%
Output 0% 40% 100% 50% 47.5%

However, In the non-classification code summarization task, the
choices become code tokens and output vectors. On the other
hand, output vectors are the most useful features for BADGE
and Coreset regardless of the type of tasks.

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1087

TABLE IV
COMPARISON BETWEEN DIFFERENT FEATURES (t-TEST)

KM KC Badge Coreset
Problem Classification

Token vs. Embedding -0.9431 -1.7146 -0.6646 -1.7504
Token vs. Output -1.6223 -1.6208 -0.6277 -1.6824
Embedding vs. Output -0.6610 5.2458 -0.2266 0.3993

Clone Detection
Token vs. Embedding -1.9726 -0.5992 -1.1039 -2.7805
Token vs. Output -2.1633 1.8298 -2.3139 -3.1667
Embedding vs. Output -1.6111 3.7102 -2.6944 -3.0582

Vulnerability Detection
Token vs. Embedding -3.0216 -10.8523 -0.0595 -11.7910
Token vs. Output -5.4160 -9.6567 -3.3622 -11.9319
Embedding vs. Output -2.1204 0.1349 -2.7474 -0.6913

Code Summarization
Token vs. Embedding -0.2400 2.0836 2.4792 2.8578
Token vs. Output -7.3257 6.2842 0.5840 6.5609
Embedding vs. Output -7.0504 4.6275 -1.9706 4.0003

Code Translation
Token vs. Embedding -1.3914 -2.0507 1.2889 1.0177
Token vs. Output -0.7749 0.1396 2.1774 1.1127
Embedding vs. Output 0.6059 1.9714 0.9068 0.0563

Based on the experimental results, we provide recommen-
dations for the feature selection in clustering-based acquisition
functions for active code learning.

• K-Means-C (KM-C): use model output vectors (code
tokens) for classification (non-classification) tasks.

• K-Center-C (kC-C): use code embeddings (model output
vectors) for classification (non-classification) tasks.

• BADGE-C: use model output vectors for all code tasks.
• Coreset-C: use model output vectors for all code tasks.

Answer to RQ1: Feature selection highly influences the
effectiveness of clustering-based acquisition functions to per-
form active learning. Surprisingly, in most (60%) cases,
leveraging output vectors extracted from models in active
learning outperforms using code tokens and code embed-
dings, resulting in improved performance of code models.

G. RQ2: Acquisition Function Comparison

After studying the feature selection, we compare all acquisi-
tion functions on different code tasks. Here, we use our recom-
mended features to build the clustering-based function. Table V
presents the results of classification tasks.

Acquisition function comparison in classification tasks.
For the multi-class classification task (problem classification),
we can see that output-uncertainty-based methods often achieve
better results than the clustering-based methods. In which, Mar-
gin which only uses the top-1 and top-2 probabilities of the
outputs performs the best in 5 out of 6 cases. This phenomenon
draws a similar conclusion to the previous work [10], that
simple methods perform well on active learning. However,
regarding the binary classification task (clone detection and
vulnerability detection), interestingly, the results show that the
previous conclusion cannot stand. For the clone detection task,
in all cases, clustering-based methods outperform simple meth-
ods (output-uncertainty-based methods). Table VI shows the

results of the comparison between BADGE-C (the best
clustering-based method) and all output-uncertainty-based
methods on the code clone detection task. The results also
demonstrate that except for labeling budget 10%, BADGE-C
outperforms simple methods in this task. For the vulnerability
task, clustering-based methods also perform the best in 6 out of
9 cases. In summary, the first conclusion we can draw is – no
acquisition functions consistently perform better than others,
and findings [10] from previous works can not be directly
applied to active code learning.

Acquisition function comparison in non-classification
tasks. Then, move to the non-classification task (two code sum-
marization tasks and the code translation task), Table VII, Table
VIII, and Table IX show the results. The first finding reveals
disparate conclusions drawn from the utilization of different
evaluation metrics. For instance, the PPL scores demonstrate
that KC-C is the best acquisition function for code summariza-
tion tasks while the BLEU scores suggest Coreset-C. However,
regardless of the evaluation metrics we used, the gap between
the performance of active learning-trained models and the per-
formance of models trained by using the entire data is big.
For example, for JavaScript-CodeBERT, under 10% labeling
budget, the best PPL score and BLEU score we get are 5.1313
and 10.09, which are 33.28% and 29.64% lower than the 3.85
and 14.34 computed from the model trained by entire training
data. These results are totally different from the ones drawn by
the classification tasks that using 10% data can train a model
with similar and even better performance, e.g., for the clone
detection task, models trained with 10% (97.79%) data have
better performance than the models trained by entire training
data (97.15%). Therefore, we can say that active code learning
in non-classification code tasks is still in a very early stage,
the conclusions from classification tasks can not be migrated
to non-classification tasks.

Labeling budgets study. To study how many labeling bud-
gets we need for active code learning to train a good model (with
similar performance to the model trained by using the whole
training data), we further conduct studies by increasing the la-
beling budgets for vulnerability detection and non-classification
tasks that 10% labeling budgets are not enough. The results can
be found in the Appendix (available online).

Comparison between acquisition functions to random
selection. Additionally, to investigate the importance of using
suitable acquisition functions in active code learning, we com-
pare the best acquisition functions in each task to the random
selection function. Specifically, we compare Margin, Badge,
KM, and Coreset to Random for problem classification, clone
detection, vulnerability detection, and three non-classification
tasks, respectively using T-test. Table X presents the coefficient
and P-value for this comparison. From the results, we can see
that, in 16 out of 18 cases, the statistical results demonstrate
that the selected acquisition functions achieve better results than
the random selection. Besides, in half of these 16 cases, the
models trained by the selected acquisition functions have signif-
icantly (with a P-value less than 0.03) better performance than
models trained using random selection. We can conclude that,
when using active code learning to prepare the code models,

1088 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

TABLE V
MODEL PERFORMANCE OF ACTIVE LEARNING TRAINED MODELS FOR TWO CLASSIFICATION TASKS.

VALUES HIGHLIGHTED IN RED AND BLUE INDICATE THE BEST AND SECOND BEST. OUTPUT:
OUTPUT-UNCERTAINTY-BASED METHODS. CLUSTERING: CLUSTERING-BASED METHODS.

UPPER: UPPER BOUND ACHIEVED BY ALL ACQUISITION FUNCTIONS

CodeBERT GraphCodeBERT CodeT5
1% 5% 10% 1% 5% 10% 1% 5% 10%

Problem Classification
Output LC 29.61 52.90 59.14 33.99 56.93 61.06 35.84 47.52 50.64
Output Gini 43.96 90.95 97.75 44.31 93.02 98.04 52.61 94.24 98.18
- Random 48.01 92.67 95.09 55.05 93.75 95.76 58.08 93.96 95.82
Output BALD 40.63 94.51 97.86 50.83 94.32 98.02 55.29 95.62 98.12
Output Entropy 42.67 90.05 97.67 44.50 92.21 97.99 52.31 93.75 98.15
Output Margin 51.22 95.41 97.91 57.76 96.33 98.16 59.62 96.99 98.22
- CAL 29.99 54.51 64.99 34.04 57.68 65.33 34.78 56.58 67.76
Clustering KM 51.69 94.42 97.65 57.38 95.41 97.99 48.36 87.32 95.01
Clustering KC 47.84 94.01 97.73 56.18 95.57 97.33 44.44 87.46 93.93
Clustering Badge 46.41 94.33 97.39 53.48 95.31 97.91 52.04 95.57 97.91
Clustering Coreset 47.96 94.23 97.66 56.35 95.48 97.24 47.10 96.52 98.21

Upper 51.69 95.41 97.91 57.76 96.33 98.16 59.62 96.99 98.22
Clone Detection

Output LC 80.08 83.51 90.85 79.90 81.73 90.12 93.48 94.75 95.66
Output Gini 85.45 96.58 96.74 84.45 96.41 97.18 95.30 97.02 96.50
- Random 84.22 95.98 96.86 84.83 95.52 96.81 94.18 97.12 96.99
Output BALD 87.61 96.81 97.16 88.73 96.47 97.12 94.11 94.97 96.75
Output Entropy 86.16 96.32 96.89 85.28 96.89 97.17 95.40 97.01 96.72
Output Margin 86.38 96.82 96.92 84.92 97.02 97.17 95.46 96.98 96.67
- CAL 79.57 91.10 95.14 77.60 88.45 92.06 92.64 92.87 96.55
Clustering KM 87.88 97.01 97.10 87.80 96.92 97.23 95.58 97.30 96.78
Clustering KC 87.48 95.07 97.79 85.77 96.85 97.62 96.25 96.90 97.50
Clustering Badge 88.17 97.10 97.27 90.60 97.25 97.09 96.70 97.70 97.14
Clustering Coreset 86.45 96.95 96.96 92.10 97.19 97.06 96.52 97.22 97.10

Upper 88.17 97.10 97.79 92.10 97.25 97.62 96.70 97.70 97.50
Vulnerability Detection

LC 56.34 56.73 58.09 56.27 57.12 57.84 55.99 55.12 56.46
Output Gini 57.12 58.73 59.47 57.01 59.64 60.28 55.81 57.23 57.59
- Random 56.51 57.74 59.00 57.14 58.53 59.29 55.71 56.19 57.02
Output BALD 57.50 58.41 59.63 57.17 59.35 59.69 56.48 56.94 58.60
Output Entropy 57.00 58.48 59.25 57.19 59.31 59.79 56.30 56.79 57.91
Output Margin 56.85 58.42 59.44 57.27 59.15 59.77 56.13 56.49 57.93
- CAL 56.35 57.45 58.13 57.07 58.67 59.19 56.47 57.20 58.00
Clustering KM 57.30 59.15 59.90 57.63 59.49 60.52 56.59 57.27 58.57
Clustering KC 56.62 58.54 59.98 57.06 57.66 59.10 56.38 56.48 57.88
Clustering Badge 56.90 58.51 59.27 57.06 58.83 59.33 56.13 56.32 57.32
Clustering Coreset 56.56 57.69 59.01 56.99 58.37 59.75 56.27 56.93 57.48

Upper 57.50 59.15 59.98 57.63 59.64 60.52 56.59 57.27 58.60

TABLE VI
COMPARISON BETWEEN BADGE AND OUTPUT-UNCERTAINTY-BASED

METHODS (t-TEST). TASK: CLONE DETECTION

1% 5% 10%
CodeBERT

BADGE-C vs. LC 8.4889 5.9074 6.2645
BADGE-C vs. Gini 2.5009 4.0470 3.1028
BADGE-C vs. Blad 0.4731 1.7192 0.5137
BADGE-C vs. Entropy 2.1334 2.2341 1.7796
BADGE-C vs. Margin 1.9832 1.6134 2.1428

GraphCodeBERT
BADGE-C vs. LC 23.2590 10.0688 12.3815
BADGE-C vs. Gini 11.4256 3.4707 -0.5947
BADGE-C vs. Blad 1.8989 2.8951 -0.2334
BADGE-C vs. Entropy 10.2222 1.5331 -0.7654
BADGE-C vs. Margin 12.1774 1.9214 -0.4843

CodeT5
BADGE-C vs. LC 18.7178 6.5411 3.8040
BADGE-C vs. Gini 2.3301 1.2324 0.2511
BADGE-C vs. Blad 7.4407 1.1518 0.1810
BADGE-C vs. Entropy 3.5711 1.4365 2.0307
BADGE-C vs. Margin 12.3686 1.6058 3.4134

the acquisition function is important and needs to be carefully
considered.

Answer to RQ2: In contrast to previous work on classifi-
cation tasks [10], our findings reveal that simple methods
are ineffective for the binary code classification task – clone
detection and vulnerability detection. Clustering-based
acquisition functions consistently outperform output-
uncertainty-based functions in this task. In addition, active
learning is ineffective for non-classification tasks such as
code summarization, as the performance of models trained
via active learning lags behind those trained using the entire
dataset by at least 29.64%.

H. Case Study

To check how each acquisition function works, we follow the
work [32] to study the characteristics of its selected code data.

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1089

TABLE VII
PPL OF ACTIVE LEARNING TRAINED CODE SUMMARIZATION MODELS

WITH DIFFERENT TRAINING BUDGETS. VALUES HIGHLIGHTED

IN RED INDICATE THE BEST. UPPER: UPPER BOUND ACHIEVED

BY ALL ACQUISITION FUNCTIONS

JavaScript Ruby
1% 5% 10% 1% 5% 10%

Roborta
Random 5.9526 5.7142 5.6593 5.8720 5.6888 5.6546
KM-C 5.9747 5.6990 5.6503 5.8696 5.7227 5.6443
KC-C 5.7308 5.5647 5.6282 5.6726 5.5735 5.5833
Badge-C 5.8927 5.6350 5.5887 5.8509 5.7256 5.6471
Coreset-C 5.7286 5.5235 5.5146 5.6729 5.5642 5.5909
Upper 5.7286 5.5235 5.5146 5.6726 5.5642 5.5833

CodeBERT
Random 5.6771 5.3407 5.2038 5.6671 5.4198 5.3662
KM-C 5.6840 5.3586 5.2219 5.6819 5.4662 5.4050
KC-C 5.5978 5.2082 5.1313 5.5565 5.2313 5.1992
Badge-C 5.6654 5.3214 5.2079 5.6623 5.4067 5.3487
Coreset-C 5.6013 5.2222 5.1334 5.5536 5.2158 5.1796
Upper 5.5978 5.2082 5.1313 5.5536 5.2158 5.1796

GraphCodeBERT
Random 5.3806 5.1560 5.0938 5.3806 5.1560 5.0938
KM-C 5.3852 5.1589 5.0821 5.4038 5.1843 5.1100
KC-C 5.2883 5.0748 5.0178 5.4366 5.2179 5.1881
Badge-C 5.3630 5.1379 5.0639 5.5942 5.3490 5.3015
Coreset-C 5.2912 5.0987 5.0346 5.4368 5.2120 5.1412
Upper 5.2883 5.0748 5.0178 5.3806 5.1560 5.0938

TABLE VIII
PPL OF ACTIVE LEARNING TRAINED CODE TRANSLATION MODELS

WITH DIFFERENT TRAINING BUDGETS. VALUES HIGHLIGHTED IN

RED INDICATE THE BEST. UPPER: UPPER BOUND ACHIEVED

BY ALL ACQUISITION FUNCTIONS

1% 5% 10%
RoBERTa

Random 3.5825 3.2714 2.8544
KM-C 3.5628 3.3849 2.9817
KC-C 3.1155 2.8576 2.7099
Badge-C 3.3967 2.9880 2.6429
Coreset-C 3.0766 2.8869 2.7516
Upper 3.0766 2.8576 2.6429

CodeBERT
Random 2.9491 2.4044 1.9459
KM-C 2.9369 2.4787 1.9409
KC-C 3.0087 2.5677 1.6580
Badge-C 2.7917 2.2928 1.8422
Coreset-C 3.0072 2.3149 1.6485
Upper 2.7917 2.2928 1.6485

GraphCodeBERT
Random 2.6850 2.1740 1.7254
KM-C 2.8086 2.3040 1.6766
KC-C 2.8934 2.3440 1.6113
Badge-C 2.7820 2.2095 1.6900
Coreset-C 2.7724 2.2982 1.5398
Upper 2.6850 2.1740 1.5398

In addition to the 1) label diversity considered by [32], we add
two code distribution features in our study, 2) token difference
between the selected data and the whole training data, and
3) the token diversity of selected data. Tokens are the direct
input of code models and represent fundamental units of the
structural and semantic aspects of code data for code models.
Their analysis provides further insights into code distribution
and diversity beyond the label diversity alone. By incorporating
token-related characteristics such as token difference and token

TABLE IX
BLEU SCORE OF ACTIVE LEARNING TRAINED CODE SUMMARIZATION

MODELS WITH LABELING BUDGET 10%. VALUES HIGHLIGHTED

IN RED INDICATE THE BEST

CS-Ruby CS-JS CT
RB CB GCB RB CB GCB RB CB GCB

Random 7.60 9.62 10.10 8.24 10.36 11.60 20.93 37.93 39.58
KM 7.45 9.94 10.37 8.22 10.15 11.44 20.18 33.46 36.97
KC 7.65 9.96 10.32 7.80 10.46 11.55 18.46 39.13 41.71
Badge 7.47 9.41 9.84 8.01 10.71 11.70 19.81 37.55 40.20
Coreset 7.72 10.09 10.42 7.78 10.45 11.71 19.34 39.71 42.21

TABLE X
COMPARISON BETWEEN THE BEST ACQUISITION FUNCTION AND

RANDOM SELECTION. COMPARISON METHOD: T-TEST

CB GCB T5
Problem Classification

Margin vs. Random
Coefficient 23.8281 24.1301 19.8977
P-value 0.0003 0.0007 0.0007

Clone Detection

Badge vs. Random
Coefficient 4.5579 5.7687 1.8635
P-value 0.0531 0.0284 0.3912

Vulnerability Detection

KM vs. Random
Coefficient 1.6347 3.0595 2.3576
P-value 0.2658 0.0914 0.1126

RB CB GCB
Code Summarization-JavaScript

Coreset vs. Random
Coefficient -3.5122 -1.7361 -1.6903
P-value 0.0025 0.0996 0.1082

Code Summarization-Ruby

Coreset vs. Random
Coefficient -5.0270 -4.1700 1.0314
P-value 0.0001 0.0006 0.3160

Code Translation

Coreset vs. Random
Coefficient -3.7578 -0.8499 0.1577
P-value 0.0014 0.4065 0.8765

diversity, we aim to explore the impact of these inherent aspects
on the model performance, thereby enhancing the depth of
our analysis.

Label diversity measures the label balance of selected data
which is quantified using the entropy score of label histograms.

Token difference measures the token difference between the
selected code and the whole training code. Specifically, we build
the histograms of tokens in the selected code data and the whole
training code data. Then, we normalize the values of histograms
to 0 to 1. Finally, we calculate the absolute difference between
the two histograms as the difference value.

Token diversity is similar to the label diversity. We use the
entropy score of the token histograms to quantify the diversity
of selected tokens.

We adopt a balanced approach by selecting one classifica-
tion task and one non-classification task for this case study.
Regarding classification, problem classification is chosen for
its consistent performance superiority among available tasks,
supported by three distinct models. Meanwhile, regarding non-
classification, we focus on code summarization (JavaScript),
leveraging its larger dataset size for robust statistical analysis.
To facilitate fair comparisons, we employ the same model ar-
chitecture for both tasks. CodeBERT is selected over Graph-
BERT due to its lower model complexity and wider community
adoption. Table XI presents the characteristic results of the
selected data by different acquisition functions and Table XII

1090 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

TABLE XI
CHARACTERISTIC OF SELECTED DATA

Problem Classification
Token

Difference
Token

Diversity
Label

Diversity
LC 881.18 7.78 6.14
Gini 849.95 7.80 7.58
Random 856.22 7.77 7.77
BALD 846.83 7.80 7.62
Entropy 857.24 7.80 7.57
Margin 859.58 7.80 7.74
CAL 994.89 7.64 5.74
KM 839.22 7.76 7.07
KC 783.44 7.94 7.72
Badge 847.61 7.83 7.76
Coreset 854.69 7.81 7.57

Code Summarization
Random 1495.39 8.55 -
KM 1569.46 8.51 -
KC 807.31 8.79 -
Badge 857.30 8.68 -
Coreset 807.31 8.79 -

TABLE XII
CORRELATION BETWEEN DATA FEATURES AND THE

PERFORMANCE OF TRAINED MODELS

Coefficient P-Value
Problem Classification

Token difference -0.6951 0.0176
Token diversity 0.5003 0.1171
Label diversity 0.8252 0.0018

Code Summarization
Token difference 0.8572 0.0634
Token diversity -0.9662 0.0074

summarizes the correlation between the characteristic and the
performance of trained models. From the results, we can see
that, there is a clear correlation (with an absolute coefficient
value from 0.50 to 0.97) between the characteristics of selected
data and the performance of the trained models using these
selected data. Concretely, 1) when the selected code data have
a smaller code token distribution difference to the token dis-
tribution of the whole training data, the trained code models
have better performance, and 2) when the selected code data
have higher token/label diversity, the trained code models have
better performance.

Finding: Acquisition functions that select data with smaller
token distribution differences to the whole training data and
higher code token (label) diversity can produce code models
with better performance.

IV. EXPLORATORY STUDY

As discussed in Section III, active code learning for non-
classification code summarization tasks is still in an early stage.
In this section, we tend to explore the potential directions to
propose new effective acquisition functions and mainly focus on
non-classification code tasks as existing acquisition functions
are effective enough to produce good code models for classi-
fication tasks. Since clustering-based acquisition functions are

the main techniques used for non-classification tasks, the main
goal of our exploratory study is to explore ways to improve this
type of acquisition function.

The key idea of clustering-based acquisition functions is to
select a diverse set of data, each data sample in this set has
big distances from the others. As a result, the calculation of
the distance between each data is important in clustering-based
functions. Thus, the straightforward way to improve the existing
acquisition functions is to provide a precise way to measure the
distance between code pairs (or their features). Generally, in
the existing acquisition functions, the distance is computed by
the Euclidean distance between two vectors that represent two
programs. The main concern of this distance calculation is that
vectors, e.g., code tokens, code embeddings, and output vectors,
highly rely on code representation techniques or code models.
It is difficult to say such computed distance can represent the
real distance between two programs.

Fortunately, recent research has proposed some evaluation
metrics [33], [34] for code generation. Roughly speaking, dif-
ferent from the existing distance methods, these metrics are
specifically designed for code to measure the similarity between
the machine-generated code snippets and the reference. The
studies conducted by the original works show that there is a
strong connection between the evaluation metrics and human
preference. Inspired by these works, we propose to use the
evaluation metrics as the distance methods for the clustering-
based acquisition functions. Ideally, this new distance should
be more precise and the active code learning should be
more effective.

A. Study Design

To validate our conjectures, we empirically explore the fol-
lowing two problems:

• Is there a connection between the distance of selected
data to each other and the performance of trained models
based on these data? Through this study, we explore
the probability of improving active code learning from
the perspective of providing new distance methods for
clustering-based acquisition functions.

• Is there a connection between the existing distance meth-
ods and the code evaluation metrics? Through this study,
we explore whether our proposed distance methods are
different from the old ones or not. The positive answer
demonstrates that evaluation-metric-based methods cannot
be replaced by the existing distance methods.

Addressing the first problem follows the following steps:
Step 1 We prepare two groups of models, the first group con-

tains the initialized models (the same as the initialized models
used in Section III – models trained using 500 initial training
data) that represent models in the early stage of active learning,
and the second group includes models that have already been
trained using 5% of training data that represent models at a late
stage of active learning. In this way, we can see if the correlation
we want to study holds in models with different performances.
Note that we have prior knowledge of the data used to train
the models.

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1091

Step 2 We conduct active code learning by using Random
acquisition function for each group of models 100 times and
record the 100 groups of selected data as well as the trained
models for further analysis.

Step 3 We measure the accuracy of the 100 trained models
on the test data and calculate the average distance between the
selected data samples in each group. Finally, we can get 100
accuracy values and corresponding 100 distance values. Here,
the distance can be calculated by different methods.

Step 4 We use Spearman’s rank correlation coefficient to
compute the correlation between the accuracy and the distance
provided by step 3.

For the second problem, we use different distance calculation
methods in Step 3 to obtain the distance scores and then use
Spearman’s rank correlation coefficient to compute the corre-
lation between these distance methods.

B. Setup

We select one classification task (problem Classification) and
one non-classification task (Code summarization for JavaScript
programs) to conduct this exploratory study. For both tasks, we
choose CodeBERT as our base model. For the distance calcu-
lation methods, we consider four in this study, cosine similarity
as distance, Euclidean distance, BLEU score as distance, and
CodeBERTScore [34] as distance. Here, CodeBERTScore is a
state-of-the-art evaluation metric for code generation. It uses
pre-trained contextual embeddings to vectorize each token in
the reference program and the generated program first. Then,
it computes the pairwise cosine similarity between every em-
bedded token in the reference and every encoded token in the
generated code. Finally, the maximum similarity score in each
row of the pairwise matrix is used to compute the final simi-
larity of these two programs. We compute the cosine distance
and Euclidean distance based on both input embedding (code
embedding) and output vectors. For BLEU-based distance, we
compute it using both the sequence of input and output tokens.
Since CodeBERTScore can be only computed on the code data,
we only use the input data to calculate this distance.

C. Results Analysis

Table XIII presents the results of the correlation between
data distance and model accuracy. Surprisingly, the results in-
dicate that regardless of the code tasks, when the model has
a poor performance, i.e., at the early stage of active code
learning, the trained model performance is not related to the
diversity (the distance of data to each other) of used train-
ing data. However, for a model that was already trained on a
few data and with a good performance, i.e., at the late stage
of active code learning, the conclusion changed. Considering
the classification task, there is a weak correlation between the
cosine and Euclidean distance with the accuracy of the mod-
els. That means clustering-based acquisition functions that use
these two distance calculation methods are promising to train
a model with high accuracy. As already shown in Table V, all
these acquisition functions based on Euclidean distance achieve

TABLE XIII
CORRELATION BETWEEN THE SELECTED DATA DISTANCE TO EACH OTHER

AND THE PERFORMANCE OF TRAINED MODELS BASED ON THESE DATA.
EACH VALUE REPRESENTS THE CORRELATION COEFFICIENT. Modele:

MODEL AT THE EARLY STAGE OF ACTIVE LEARNING. Modell: AT THE

LATE STAGE OF ACTIVE LEARNING. i(o): INPUT(OUTPUT)-BASED

FEATURE. VALUE WITH * INDICATES THE P-VALUE

IS LESS THAN 0.05

Classification
(Accuracy)

Non-Classification
(PPL)

Modele Modell Modele Modell
Cosinei 0.0589 -0.2555* 0.0705 0.1328
Euclideani -0.0773 -0.2262* 0.0868 0.0947
BLEUi 0.0309 -0.0589 0.0504 -0.1699
Cosineo 0.1018 -0.3118* 0.1108 0.2241*
Euclideano 0.1134 -0.2764* 0.1364 0.2108*
BLEUo 0.0506 0.0309 0.053 -0.079
CodeScore 0.0463 -0.0203 0.0128 -0.1965*

good performance in classification tasks. Considering the non-
classification task, the results show this correlation based on the
input embeddings becomes weaker, e.g., for cosine similarity,
the correlation results of Coreseti change from -0.2555 to
0.1328 inModell. This is also the reason that the existing acqui-
sition functions do not work well on code summarization tasks
based on the token embeddings and have no advantage over
random selection as shown in Table VII and Table IX. However,
there is a clear correlation between the Euclidean (Euclideano)
and Cosine (Cosineo) distance computed based on the output
vectors of selected data and the performance of trained models,
which is constant with the conclusion drawn in RQ1. On the
other hand, we can see there is a weak correlation between the
evaluation scores-based distance and the accuracy of models
which does not happen in our considered two classification
tasks. The correlation result of CodeBERTScore on Modell is
significant (with a p-value less than 0.05). These results lead to
a promising direction of proposing new acquisition functions
that use evaluation metrics as the distance calculation method
for the code summarization task.

Takeaway: In non-classification code summarization tasks,
our analysis shows that in the selected dataset, greater
distances between data samples as calculated by evaluation-
metrics-based distance methods lead to better model
performance.

Table XIV presents the results of the correlation between
different distance calculation methods. For models with low
performance (Modele), there is always a correlation between
cosine similarity or Euclidean distance with CodeBERTScore,
which means CodeBERTScore is able to produce similar dis-
tance ranking of data to the existing distance methods in these
models. Combining the conclusion from the last study, we
can see that for Modele, all methods have a similar dis-
tance ranking of data, but this ranking is not connected to
the performance of models. However, for Modell, we can see
there is no correlation between cosine and Euclidean to the
BLEU and CodeBERTScore. That is the reason why cosine and

1092 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

TABLE XIV
CORRELATION BETWEEN DIFFERENT DISTANCE CALCULATION METHODS.

EACH VALUE REPRESENTS THE CORRELATION COEFFICIENT. Modele:
MODEL AT THE EARLY STAGE OF ACTIVE LEARNING. Modell: MODEL

AT THE LATE STAGE OF ACTIVE LEARNING. i(o): INPUT(OUTPUT)-BASED

FEATURE. VALUE WITH * INDICATES THE P-VALUE

IS LESS THAN 0.05

Classification Non-Classification
Modele Modell Modele Modell

Cosinei-Euclideani 0.9438* 0.9155* 0.9717* 0.9769*
Cosinei-BLEUi -0.0943 -0.0356 -0.1012 -0.0111
Cosinei-CodeBERTScore -0.2522 -0.0838 -0.4600* -0.0030
Euclideani-BLEUi -0.0963 -0.0230 -0.0856 -0.0856
Euclideani-CodeBERTScore -0.2457 -0.0615 -0.4176* -0.0038
BLEUi-CodeBERTScore 0.6464* 0.6464* 0.2422 0.2422
Cosineo-Euclideano 0.9531* 0.9244* 0.9769* 0.9802*
Cosineo-BLEUo 0.0513 -0.0378 -0.0745 0.0621
Euclideano-BLEUo -0.0374 -0.0558 -0.0671 -0.0216

euclidean (BLEU and CodeBERTScore) correlate with the
model performance while BLEU and CodeBERTScore (cosine
and euclidean) do not have this correlation in our considered
classification (non-classification) tasks.

Takeaway: Distance methods that are correlated with model
performance produce significantly different rankings of data
compared to methods that do not exhibit such a correlation.

D. Case Study

According to our exploratory study, we know that eval-
uation metrics are promising to be used as distance meth-
ods in clustering-based acquisition functions. In this part, we
conduct a case study to show if it can really help improve
such acquisition functions. Specifically, we modify the distance
calculation method in the Coreset function from Euclidean
distance to BLEU and run experiments on code summariza-
tion tasks on Ruby. The reason we choose Ruby is that run-
ning evaluation metrics (especially CodeBERTScore) is time-
consuming, e.g., it takes more than one month to run an ac-
tive learning experiment once on code summarization tasks of
JavaScript since it contains 2 times more training data than
Ruby. The reason for choosing Coreset is that it performs the
best in code summarization of Ruby as shown in Table VII and
Table IX. However, since CodeBERTScore does not support
Ruby language now, we can only replace the original distance
method in Coreset with the BLEU metric. Note that we still use
the Euclidean distance between code embeddings to compute
Pairwise Distances which is the initial step of Coreset. It is
almost impossible to use the BLEU score here (the time cost is
monthly). The algorithm of our modified Coreset is shown as
Algorithm 1.

Fig. 4 depicts the results. We can see that Coreset with a
BLEU score at the input level performs significantly better
than Coreset with Euclidean distance calculated from code
tokens and code embeddings. These results demonstrate the
potential of using evaluation metrics as distance methods in
active learning. However, using output vectors as clustering
features which is also proposed by us is still the best choice
which achieves the best results among all the cases. There is
a big room to be improved in terms of the performance of

Algorithm 1: Coreset with BLEU
Input : X_l: labeled data

X_u: unlabeled data
M : model under training
budget: labeling budget

Output : X_seleted: selected data
1 X_seleted= []
2 Dis= Pairwise_Distances(X_u, X_l)
3 init_data=X_u(Min(Dis))
4 X_seleted.append(init_data)
5 X_u=X_u \ init_data
6 count_num= 1
7 while count_num< budget do
8 BLEU_list=BLEU(init_data,X_u)
9 init_data=X_u(Min(BLEU_list))

10 X_seleted.append(init_data)
11 X_u=X_u \ init_data
12 count_num+= 1
13 end
14 return X_seleted;

Fig. 4. Active learning with coreset acquisition functions. Code task: code
summarization for ruby. BLEU: replacing original Euclidean distance in
coreset to BLEU metric at the input level. Output BLEU: replacing original
Euclidean distance in coreset to BLEU metric at the output level.

trained models and how to propose a new acquisition function
based on the evaluation metrics is still an open problem and our
future research.

V. DISCUSSION

A. The Importance of Active Code Learning

Recently, large deep-learning models, especially founda-
tion models like GPT-4 [35] have gained huge attention and
achieved many state-of-the-art results in various application
domains. This hot trend almost changes the research focus of
ML4Code from designing new code model architectures or
code representation techniques to how to reuse these foundation
models for our specific code tasks. Generally, model reuse
involves a fine-tuning step that further optimizes the model
parameters and improves performance. As a result, active code
learning becomes more and more important since it allows us to
fine-tune the pre-trained models with a controllable human ef-
fort, i.e., budgets allocated for labeling the datasets used in fine-
tuning. This technique provides opportunities for researchers
and developers with limited resources to leverage and improve
existing big models.

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1093

B. Threat to Validity

The external threat lies in our considered acquisition func-
tions used for active learning, code tasks and datasets, and code
models. For the acquisition functions, we collect 10 functions
that are specifically proposed for active learning and already
studied the most in recent works [9], [10]. Other functions such
as neural coverage methods are not considered since they are
proposed for a different purpose. For code tasks and datasets, we
consider both classification tasks that study important problems,
problem classification, clone detection, and code summariza-
tion. For code models, we prepare two well-known code pre-
trained models. Based on our open-source projects, other tasks,
and models can be easily added to our benchmark. The internal
threat can be the implementation of acquisition functions and
code models. All implementations of acquisition functions are
based on the existing active learning works [9], [36], [37] and
after carefully checking. The implementation of code models
is also modified from the famous open source project [27]. The
construct threat can be the configuration of active learning.
Since this is the first work that studies active code learning, we
follow our best practice to initialize the code models and set
the labeling budgets. Besides, since we compare code models
under the same labeling budgets, the comparison results are not
affected by the configuration of active learning.

VI. RELATED WORK

We review related works in two aspects: empirical study on
active learning and empirical study on code learning.

A. Empirical Study on Active Learning

Since active learning plays an important role in efficient
model training, multiple works [8], [38], [39], [40] conducted
empirical studies on this topic. Ramirez-Loaiza et al. [41]
compared different active learning methods using different
measurements and concluded that improvements obtained by
active learning for one performance measure often came at the
expense of another measure. Heilbron et al. [42] studied active
learning for a specific task, action localization. They found that
using acquisition functions the select previously labeled data
and combine them with the newly selected data is a more useful
strategy of active learning for action localization. More recently,
Hu et al. [9] explored the limitations of active learning. They
studied adversarial robustness and the ability to handle model
compression of models trained by using active learning. The
results showed that models trained with active learning can
achieve competitive test accuracy but suffer from robustness
and compression ability loss. Michael et al. [10] conducted a
replicability study and showed that the simple active learning
methods, e.g., DeepGini, perform better in active learning than
neuron coverage-based methods. The most recent work is [36]
which did a very large empirical study of 19 active learning
methods including both fully-supervised active learning meth-
ods and semi-supervised active learning methods. They con-
cluded that semi-supervised learning benefits active learning
and should be considered in proposing new methods.

Different from the existing works which mainly study image
data or conventional text data, our work is the first one to focus
on program data which is the key type of data in the software
engineering field.

B. Empirical Study on ML4Code

ML4Code gained huge attention recently, researchers also
conducted multiple empirical studies to explore the problems in
the ML4Code field. In the very early work [43], Chirkova et al.
empirically study the backbone model architecture of the later
code models–Transformer on different code tasks, code com-
pletion, function naming, and bug fixing. They found that Trans-
formers can utilize syntactic information in source code to solve
code tasks. Niu et al. [44] conducted a large-scale empirical
study to compare pre-trained models of source code. In total, we
studied 19 pre-trained models and 13 software tasks and gave
fine-grained suggestions for using and evaluating these models.
Steenhoek et al. [45] studied the deep learning models for a
specific code task, vulnerability detection. Their experimental
results showed that models trained by specific types of vulnera-
bility perform better than models trained by all vulnerabilities.
Increasing the size of the training dataset has limited benefits to
the performance of trained models. Jiang et al. [46] conducted
the first study of pre-trained model reuse. Concretely, they
interviewed practitioners from Hugging Face and identified the
challenges of pre-trained model reuse, e.g., missing attributes,
discrepancies, and model risks. Besides considering only the
clean performance of models of code, Mastropaolo et al. [47]
studied the robustness of GitHub Copilot which is a famous
code generation model. They generated semantically equivalent
natural language descriptions based on the seed description
and checked if Copilot can generate the same code functions
as the ones generated by the seed description. They found
that almost half of the semantically equivalent but different
method descriptions result in different code recommendations
which means the code generation models are not robust. Hu
et al. [48] provided shifted datasets and studied the general-
ization ability of code models under data distribution shift.
They found that code models are not robust and can not handle
distribution shifts properly. Finally, Nie et al. [49] studied the
influence of used evaluation methods on code summarization
and found that different evaluation methods lead to conflicting
results which should gain attention for users during testing the
code models.

More recently, researchers employed large language mod-
els (LLM) to solve code-related tasks and reported impressive
results [50], [51], [52]. Xia et al. [53] used LLM to solve
automated program repair problems and achieved SOTA results
with acceptable budgets. Deng et al. [54] utilized LLMs to
synthesize unusual programs to test deep learning libraries and
found 49 unknown bugs in famous deep learning frameworks.
Ma et al. [55] empirically studied the ability of ChatGPT (the
most famous LLM) on program syntax, static, and dynamic
understanding. The results demonstrate that ChatGPT is good at
analyzing syntax and static information of programs, but tends
to generate non-existent semantic information.

1094 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

The above works focused on the clean performance, robust-
ness, challenges of reuse, and evaluation methods of code mod-
els. However, none of them studied the important problem of
how to reduce the labeling effort of training data and efficiently
train the code models, which is our main purpose.

C. Active Learning for Code

Active learning has been applied to solve software tasks due
to its cost-saving ability. Moskovitch et al. [56] proposed a
very early framework to use active learning methods to detect
malicious code. In the work, the Margin selection strategy
has been considered to select new code from the code pool.
Inspired by this work, other works also tried to employ ac-
tive learning in other software domains, e.g., Nir et al. used
active learning to identify new unknown malware in Android
systems [57] and Windows OS [58]. Recently, Berezov et al.
[59] combined active learning and code generation techniques
to help build code benchmarks. In their work, the Greedy Sam-
pling [60] acquisition function was used to select the most
valuable code for the active learning component. The latest
work [61] employed active learning to predict software per-
formance (execution time). Four acquisition functions such as
Random Sampling and Coreset Sampling have been studied
in this work.

Compared to the previous works, each of which only consid-
ers a single type of code task (e.g., malware detection), limited
acquisition functions (no more than four), and simple models
(e.g., Graph2Vec), our work provides the first benchmark that
covers various types of code tasks, over 10 types of acquisition
functions, and advanced pre-trained code models.

VII. CONCLUSION

This paper introduced the first benchmark and an empiri-
cal study for the important yet unexplored problem – active
code learning. Our experimental results demonstrated that ac-
tive code learning is effective in training code models with
expected high performance for classification tasks such as prob-
lem classification and clone detection. However, it is still in the
early stage for non-classification tasks like code summarization.
Besides, we conducted an exploratory study to show using
evaluation metrics as distance calculation methods is a promis-
ing way to propose new clustering-based acquisition methods.
We believe that our benchmark as well as empirical studies
will provide developers and researchers insights into efficiently
reusing (i.e., with little human effort) existing large pre-trained
models for their specific code tasks.

In the future, we plan to
• extend our benchmark to support semi-supervised learning

and combine it with active learning to future improve the
effectiveness of active code learning.

• explore clustering ensemble methods to combine the clus-
tering results produced by different features (e.g., output
vectors and evaluation-based metrics) to enhance active
code learning.

ACKNOWLEDGMENT

The content of this article does not reflect the official opinion
of the European Union. Responsibility for the information and
views expressed therein lies entirely with the authors.

REFERENCES

[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Comput. Surv.,
vol. 51, no. 4, pp. 1–37, 2018.

[2] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred API knowledge,” in Proc. 27th Int. Joint Conf.
Artif. Intell. (IJCAI), 2018, pp. 2269–2275, doi:10.24963/ijcai.2018/314.

[3] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “CCLearner: A
deep learning-based clone detection approach,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), 2017, pp. 249–260.

[4] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019.

[5] T. Wolf et al., “Transformers: State-of-the-art natural language pro-
cessing,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
Syst. Demonstrations, Association for Computational Linguistics, Oct.
2020, pp. 38–45. Accessed: Oct. 2020. [Online]. Available: https://
aclanthology.org/2020.emnlp-demos.6

[6] B. Settles, “Active learning literature survey,” Univ. Wisconsin-Madison,
Madison, WI, USA, CS Tech. Rep. TR1648, 2009.

[7] O. Sener and S. Savarese, “Active learning for convolutional neural net-
works: A core-set approach,” in Proc. Int. Conf. Learn. Representations,
2018. [Online]. Available: https://openreview.net/forum?id=H1aIuk-RW

[8] B. Settles and M. Craven, “An analysis of active learning strategies
for sequence labeling tasks,” in Proc. Conf. Empirical Methods Natural
Lang. Process., 2008, pp. 1070–1079.

[9] Q. Hu et al., “Towards exploring the limitations of active learning: An
empirical study,” in Proc. 36th IEEE/ACM Int. Conf. Automated Softw.
Eng., 2021, pp. 917–929.

[10] M. Weiss and P. Tonella, “Simple techniques work surprisingly well
for neural network test prioritization and active learning (replicability
study),” in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Testing Anal.
(ISSTA), 2022, pp. 139–150.

[11] H. Liu and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 4, pp. 491–502, Apr. 2005.

[12] “Active code learning.” Google Sites. Accessed: 2023. [Online]. Avail-
able: https://sites.google.com/view/activecodelearning

[13] D. Wang and Y. Shang, “A new active labeling method for deep
learning,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Piscataway,
NJ, USA: IEEE Press, 2014, pp. 112–119.

[14] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “DeepGini:
Prioritizing massive tests to enhance the robustness of deep neural
networks,” in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Testing Anal.,
2020, pp. 177–188.

[15] Y. Gal, R. Islam, and Z. Ghahramani, “Deep Bayesian active learning
with image data,” in Proc. Int. Conf. Mach. Learn., PMLR, 2017,
pp. 1183–1192.

[16] K. Margatina, G. Vernikos, L. Barrault, and N. Aletras, “Active learning
by acquiring contrastive examples,” in Proc. Conf. Empirical Methods
Natural Lang. Process., Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 650–663. Accessed: Nov.
2021. [Online]. Available: https://aclanthology.org/2021.emnlp-main.51

[17] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agar-
wal, “Deep batch active learning by diverse, uncertain gradient lower
bounds,” in Proc. Int. Conf. Learn. Representations, 2020. [Online].
Available: https://openreview.net/forum?id=ryghZJBKPS

[18] Z. Feng et al., “CodeBERT: A pre-trained model for programming
and natural languages,” in Proc. Findings Assoc. Comput. Linguistics
(EMNLP), Association for Computational Linguistics, Nov. 2020,
pp. 1536–1547. Accessed: 2020. [Online]. Available: https://
aclanthology.org/2020.findings-emnlp.139

[19] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Human Lang.

doi: 10.24963/ijcai.2018/314
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=H1aIuk-RW
https://sites.google.com/view/activecodelearning
https://aclanthology.org/2021.emnlp-main.51
https://openreview.net/forum?id=ryghZJBKPS
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139

HU et al.: ACTIVE CODE LEARNING: BENCHMARKING SAMPLE-EFFICIENT TRAINING OF CODE MODELS 1095

Technol., Association for Computational Linguistics, 2019, vol. 1 (Long
and Short Papers), pp. 4171–4186.

[20] D. Guo et al., “GraphCodeBERT: Pre-training code representations with
data flow,” 2020, arXiv:2009.08366.

[21] Z. Tian, J. Chen, and Z. Jin, “Code difference guided adversarial
example generation for deep code models,” in Proc. 38th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE), Los Alamitos, CA, USA: IEEE
Comput. Soc. Press, Sep. 2023, pp. 850–862, doi:10.1109/ASE56229.
2023.00149.

[22] Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-
trained models of code,” in Proc. 44th Int. Conf. Softw. Eng., 2022,
pp. 1482–1493.

[23] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, Eds., Punta
Cana, Dominican Republic: Association for Computational Linguistics,
Nov. 2021, pp. 8696–8708. Accessed: 2021. [Online]. Available: https://
aclanthology.org/2021.emnlp-main.685

[24] R. Puri et al, “CodeNet: A large-scale AI for code dataset for learning a
diversity of coding tasks,” in Proc. Neural Inf. Process. Syst. (NeurIPS)
Track Datasets Benchmarks, 2021. Accessed: 2021. [Online]. Available:
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html

[25] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., Piscataway, NJ, USA:
IEEE Press, 2014, pp. 476–480.

[26] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” in Proc. Adv. Neural Inf. Process. Syst., H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett, Eds., vol. 32. Vancouver, Canada: Curran Associates, Inc., 2019.
Accessed: Dec. 8, 2019. [Online]. Available: https://proceedings.neurips.
cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf

[27] S. Lu et al., “CodeXGLUE: A machine learning benchmark dataset for
code understanding and generation,” 2021, arXiv:2102.04664.

[28] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining
approach,” 2019, arXiv:1907.11692.

[29] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 1, pp. 5485–
5551, Jan. 2020.

[30] Y. Wan et al., “Improving automatic source code summarization via deep
reinforcement learning,” in Proc. 33rd ACM/IEEE Int. Conf. Automated
Softw. Eng., 2018, pp. 397–407.

[31] D. B. Owen, “The power of student’s t-test,” J. Amer. Statist. Assoc.,
vol. 60, no. 309, pp. 320–333, 1965.

[32] Q. Hu et al., “An empirical study on data distribution-aware test selection
for deep learning enhancement,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, no. 4, pp. 1–30, 2022.

[33] A. Eghbali and M. Pradel, “CrystalBLEU: Precisely and efficiently
measuring the similarity of code,” in Proc. 37th IEEE/ACM Int. Conf.
Automated Softw. Eng., 2022, pp. 1–12.

[34] S. Zhou, U. Alon, S. Agarwal, and G. Neubig, “CodeBERTScore:
Evaluating code generation with pretrained models of code,” 2023,
arXiv:2302.05527.

[35] OpenAI, “GPT-4 technical report,” 2023, arXiv:2303.08774.
[36] Y. Li, M. Chen, Y. Liu, D. He, and Q. Xu, “An empirical study on

the efficacy of deep active learning for image classification,” 2022,
arXiv:2212.03088.

[37] Y. Guo, Q. Hu, M. Cordy, M. Papadakis, and Y. Le Traon, “DRE:
Density-based data selection with entropy for adversarial-robust deep
learning models,” Neural Comput. Appl., vol. 45, pp. 4009–4026,
Feb. 2023.

[38] D. Pereira-Santos, R. B. C. Prudencio, and A. C. de Carvalho, “Empirical
investigation of active learning strategies,” Neurocomputing, vol. 326,
pp. 15–27, Jan. 2019.

[39] Z. Yu, N. A. Kraft, and T. Menzies, “Finding better active learners for
faster literature reviews,” Empirical Softw. Eng., vol. 23, pp. 3161–3186,
Dec. 2018.

[40] A. Siddhant and Z. C. Lipton, “Deep Bayesian active learning for natural
language processing: Results of a large-scale empirical study,” in Proc.

Conf. Empirical Methods Natural Lang. Process., Brussels, Belgium:
Association for Computational Linguistics, Oct./Nov. 2018, pp. 2904–
2909. Accessed: 2018. [Online]. Available: https://aclanthology.org/
D18-1318

[41] M. E. Ramirez-Loaiza, M. Sharma, G. Kumar, and M. Bilgic, “Active
learning: An empirical study of common baselines,” Data Mining Knowl.
Discovery, vol. 31, pp. 287–313, Mar. 2017.

[42] F. C. Heilbron, J.-Y. Lee, H. Jin, and B. Ghanem, “What do I annotate
next? An empirical study of active learning for action localization,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 199–216.

[43] N. Chirkova and S. Troshin, “Empirical study of transformers for source
code,” in Proc. 29th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2021, pp. 703–715.

[44] C. Niu, C. Li, V. Ng, D. Chen, J. Ge, and B. Luo, “An empirical
comparison of pre-trained models of source code,” in Proc. 45th Int.
Conf. Softw. Eng. (ICSE), May 2023, pp. 2136–2148.

[45] B. Steenhoek, M. M. Rahman, R. Jiles, and W. Le, “An empirical study
of deep learning models for vulnerability detection,” in Proc. IEEE/ACM
45th Int. Conf. Softw. Eng. (ICSE), 2023, pp. 2237–2248.

[46] W. Jiang et al., “An empirical study of pre-trained model reuse in the
hugging face deep learning model registry,” in Proc. 45th Int. Conf.
Softw. Eng. (ICSE), May 2023, pp. 2463–2475.

[47] A. Mastropaolo et al., “On the robustness of code generation techniques:
An empirical study on GitHub Copilot,” in Proc. IEEE/ACM 45th Int.
Conf. Softw. Eng. (ICSE), 2023, pp. 2149–2160.

[48] Q. Hu et al., “CodeS: Towards code model generalization under distri-
bution shift,” in Proc. Int. Conf. Softw. Eng. (ICSE), New Ideas Emerg.
Results (NIER), 2023, pp. 1–6.

[49] P. Nie, J. Zhang, J. J. Li, R. Mooney, and M. Gligoric, “Impact of evalu-
ation methodologies on code summarization,” in Proc. 60th Annu. Meet-
ing Assoc. Comput. Linguistics, vol. 1 (Long Papers). Dublin, Ireland:
Association for Computational Linguistics, May 2022, pp. 4936–4960.
Accessed: 2022. [Online]. Available: https://aclanthology.org/2022.acl-
long.339

[50] H. Tian et al., “Is ChatGPT the ultimate programming assistant—How
far is it?” 2023, arXiv:2304.11938.

[51] W. Sun et al., “Automatic code summarization via ChatGPT: How far
are we?” 2023, arXiv:2305.12865.

[52] Y. Charalambous, N. Tihanyi, R. Jain, Y. Sun, M. A. Ferrag, and L.
C. Cordeiro, “A new era in software security: Towards self-healing
software via large language models and formal verification,” 2023,
arXiv:2305.14752.

[53] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162
out of 337 bugs for $0.42 each using ChatGPT,” 2023, arXiv:2304.
00385.

[54] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large language models are edge-case fuzzers: Testing deep learning
libraries via FuzzGPT,” 2023, arXiv:2304.02014.

[55] W. Ma et al., “The scope of ChatGPT in software engineering: A
thorough investigation,” 2023, arXiv:2305.12138.

[56] R. Moskovitch, N. Nissim, and Y. Elovici, “Malicious code detection
using active learning,” in Proc. Int. Workshop Privacy, Secur., Trust
KDD, Berlin, Germany: Springer-Verlag, 2008, pp. 74–91.

[57] N. Nissim, R. Moskovitch, O. BarAd, L. Rokach, and Y. Elovici,
“ALDROID: Efficient update of android anti-virus software using desig-
nated active learning methods,” Knowl. Inf. Syst., vol. 49, pp. 795–833,
Dec. 2016.

[58] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, “Novel active
learning methods for enhanced PC malware detection in windows OS,”
Expert Syst. Appl., vol. 41, no. 13, pp. 5843–5857, 2014.

[59] P. Samoaa, L. Aronsson, A. Longa, P. Leitner, and M. H. Chehreghani,
“A unified active learning framework for annotating graph data with
application to software source code performance prediction,” 2023,
arXiv:2304.13032.

[60] D. Wu, C.-T. Lin, and J. Huang, “Active learning for regression using
greedy sampling,” Inf. Sci., vol. 474, pp. 90–105, Feb. 2019.

[61] M. Berezov, C. Ancourt, J. Zawalska, and M. Savchenko, “COLA-Gen:
Active learning techniques for automatic code generation of bench-
marks,” in Proc. 13th Workshop Parallel Program. Run-Time Manage.
Techn. Many-Core Archit./11th Workshop Des. Tools Archit. Multicore
Embedded Comput. Platforms (PARMA-DITAM), Wadern, Germany:
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022, pp. 3:1–3:14.

doi: 10.1109/ASE56229.2023.00149.
doi: 10.1109/ASE56229.2023.00149.
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://aclanthology.org/D18-1318
https://aclanthology.org/D18-1318
https://aclanthology.org/2022.acl-long.339
https://aclanthology.org/2022.acl-long.339

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

