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Automatic Commit Message Generation: A Critical
Review and Directions for Future Work

Yuxia Zhang , Zhiqing Qiu , Klaas-Jan Stol , Wenhui Zhu , Jiaxin Zhu ,
Yingchen Tian , and Hui Liu

Abstract—Commit messages are critical for code comprehen-
sion and software maintenance. Writing a high-quality message
requires skill and effort. To support developers and reduce their
effort on this task, several approaches have been proposed to
automatically generate commit messages. Despite the promis-
ing performance reported, we have identified three significant
and prevalent threats in these automated approaches: 1) the
datasets used to train and evaluate these approaches contain
a considerable amount of ‘noise’; 2) current approaches only
consider commits of a limited diff size; and 3) current approaches
can only generate the subject of a commit message, not the
message body. The first limitation may let the models ‘learn’
inappropriate messages in the training stage, and also lead
to inflated performance results in their evaluation. The other
two threats can considerably weaken the practical usability of
these approaches. Further, with the rapid emergence of large
language models (LLMs) that show superior performance in
many software engineering tasks, it is worth asking: can LLMs
address the challenge of long diffs and whole message generation?
This article first reports the results of an empirical study to
assess the impact of these three threats on the performance of the
state-of-the-art auto generators of commit messages. We collected
commit data of the Top 1,000 most-starred Java projects in
GitHub and systematically removed noisy commits with bot-
submitted and meaningless messages. We then compared the
performance of four approaches representative of the state-
of-the-art before and after the removal of noisy messages, or
with different lengths of commit diffs. We also conducted a
qualitative survey with developers to investigate their perspectives
on simply generating message subjects. Finally, we evaluate the
performance of two representative LLMs, namely UniXcoder
and ChatGPT, in generating more practical commit messages.
The results demonstrate that generating commit messages is of
great practical value, considerable work is needed to mature the
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current state-of-the-art, and LLMs can be an avenue worth trying
to address the current limitations. Our analyses provide insights
for future work to achieve better performance in practice.

Index Terms—Commit-based software development, open col-
laboration, commit message generation, benchmark.

I. INTRODUCTION

VERSION control systems, such as Git, are widely used to
track changes in software repositories. Developers com-

monly write a message for every set of changes they make when
collaborating via version control systems. The combination of
a code change and its corresponding text is called a commit.
The change itself is called a diff, which records which lines
of content (code, documentation, etc.) were added or removed
[1]. The descriptive text is known as a commit message; a
good commit message describes what was changed, and why
the change was made [2]. Commit messages play an impor-
tant role in understanding and communicating code changes
and software maintenance. Thus, writing high-quality commit
messages is important for any type of software project, whether
it be commercial or open-source.

Unfortunately, commit messages are frequently empty or of
low quality, so their potential value is lost [2]. A recent study
showed that 44% of commit messages lack essential informa-
tion when compared with the recognized expectation of commit
messages [2]. Another study of 23,000 projects showed that
about 14% of commit messages were empty [3]. These results
are problematic, because commit messages play an important
role in communicating to others what changes were made, and
why. Without making this information explicit in the form of a
commit message, this information remains tacit, and thus may
disappear when contributors leave a team or community [4].

To support developers and reduce the effort involved in writ-
ing commit messages, multiple approaches have been proposed
that can generate commit messages automatically [1], [5], [6],
[7], [8], [9], [10]. These approaches can be organized into four
categories based on the way they work: rule-based, retrieval-
based, learning-based, and hybrid approaches [10]. Rule-based
approaches are proposed to generate messages by summarizing
code changes such as method additions based on specific pre-
defined rules or templates [5], [6], [7]. However, rule-based
approaches are considered outdated because their generated
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messages tend to be very long and cannot generate the ratio-
nale for a code change [1]. Retrieval-based approaches lever-
age information retrieval techniques to select existing commit
messages from similar code changes [1], [11]. More recently,
several studies have applied neural machine translation algo-
rithms to translate diffs into commit messages [10]. Hybrid
approaches [12] generate commit messages by combining both
information retrieval techniques with neural machine transla-
tion algorithms [9], [13].

Except for the now considered outdated rule-based ap-
proaches, more recent approaches have achieved promising
results. However, we have identified three common threats in
these automated approaches to generating commit messages.
The impact of these three threats on the performance and prac-
tical utility of these state-of-the-art commit message generation
approaches has remained unstudied as of yet.

First, these approaches are trained and evaluated using
datasets that contain ‘noisy’ data, including commits made
by bots or messages that contain limited information [2],
[14]. For example, consider the message “Update depen-
dency com.puppycrawl.tools: checkstyle to v10.2” generated
by renovate-bot; messages such as these follow simple
patterns and do not convey much information. Using such low-
quality messages to train and evaluate generators may let the
models ‘learn’ inappropriate messages and also lead to inflated
performance evaluation results. Thus, the first research question
we address in this article is:

RQ1. To what extent do noisy messages affect the performance
of existing automated approaches for commit message
generation?

Second, due to the constraints of translation models,
learning-based approaches can only deal with diffs with a length
of no more than 100 tokens (200 for AST-based approaches
[10], [15]). Retrieval-based approaches also have these con-
straints as they reuse the same dataset used for learning-based
approaches [8]. However, there are no empirical studies that
present the size distribution of commit messages, which means
that cut-offs of 100 or 200 tokens are arbitrary, nor are there
any studies that investigate the impact of such arbitrary cut-offs.
Measuring the impact of this constraint on the performance of
current approaches is important given that many code changes
in production settings are considerably larger than 100 tokens.
Thus, the second question we address in this article is:

RQ2. Given that a commit’s diff is usually longer than 100
or 200 tokens, is the performance of existing approaches
as promising when considering commits that capture longer
code changes?

Third, both retrieval- and generation-based methods can only
generate the first sentence of a commit message; in most cases,
this is the ‘subject’ of a commit message. However, a commit
message also has a ‘body’ (see Fig. 1), in which developers
can provide further details about the context, background, or
reasons for making changes [16]. Compared to a message’s
subject, the body is usually considerably longer and contains
more information. Whether simply generating commit message

Fig. 1. Example commit message from the Okhttp project (https://github.
com/square/okhttp/).

subjects can satisfy developers’ practical needs remains an open
question. To that end, we ask the following research question:

RQ3. Do developers think generating commit message subjects
is useful?

The first three questions consider the current state-of-the-art
approaches dedicated to commit message generation. At the
time of writing, large language models (LLMs) have gained
rapidly increasing popularity within the software engineering
field, which demonstrates promising results for a wide variety
of tasks [17]. It is therefore very timely to also consider the
use of LLMs in the task of automatically generating commit
messages. Thus, the fourth research question we address in
this article is:

RQ4. How do LLMs perform in more real-world commit mes-
sage generation?

To answer these four questions, we conducted a multi-
method study. We first selected three approaches for our
evaluation, one from each of the three categories mentioned
earlier: retrieval-based, combining both retrieval and learning
(also noted as ‘hybrid’), and learning-based approaches.1 Be-
sides, pre-trained models [e.g., [18], [19]], which are designed
for encoding diff, are also evaluated in generating commit
messages, and achieved notable performance. Therefore, we
also considered one state-of-the-art pre-trained model for our
evaluation. Prior evaluations of the four selected approaches
have used a dataset that was limited (i.e., commits with diff
length of no more than 100 or 200 tokens); further, this dataset
was created in 2017, over six years before the current study.
For those reasons, we created a new dataset containing the
commits of the top 1,000 most-starred Java repositories on
GitHub. We then compared the performance of the four selected
approaches before and after the removal of the commits submit-
ted by bots, or that have uninformative messages. We find that
the performance of the learning-based approach remains stable,
while the performance of the other three approaches degrades
considerably. Moreover, the performance of all four approaches
degrades in our human evaluation. After an investigation of the
distribution of diffs in the new dataset, we find that only 5%
of the commits contain changes with no more than 100 tokens,
and the median number of tokens in the new dataset is 632,
considerably more than the limit of 100 that has been used in
previous evaluations. When we replace the constraint of a diff
length of 100 with larger sizes, the performance of the four

1We did not consider rule-based approaches because none of the state-of-
the-art approaches rely on this approach.

https://github.com/square/okhttp/
https://github.com/square/okhttp/


818 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

selected approaches degrades significantly. We also surveyed
developers to capture their perspectives on generating message
subjects only. Most developers indicated that writing a message
subject is difficult, and can be time-consuming because they
need to summarize the change-related information into a short
but meaningful sentence. Overall, the feedback from develop-
ers highlights the usefulness of generating commit messages
automatically. In the last, we investigated the performance of
large modes on commit message generation with long commit
diffs. We chose UniXcoder and ChatGPT as representatives of
LLMs and evaluated their performance in generating messages
for diffs with larger lengths. The results revealed that although
LLMs can be input larger diffs, their performance needs con-
siderable improvement.

This study conducts a comprehensive reassessment of the
state-of-the-art retrieval-, learning-, hybrid-, pre-trained-, and
LLM-based commit message generation, resulting in several
practical and theoretical contributions to the literature. In sum,
this article:

• Identifies and demonstrates the degree of performance
degradation of state-of-the-art automated approaches
when removing noisy data, and highlights the necessity
of doing complementary data cleaning.

• Identifies and demonstrates the limited effectiveness of
state-of-the-art commit message generating approaches to
a larger and more realistic scenario.

• Demonstrates the practical value of generating commit
message subjects from developers’ perspectives.

• Demonstrates that commit messages generated by two
popular LLMs (ChatGPT 3.5 and UniXcoder) are not
satisfactory.

• Provides a new dataset for commit message generation,
which can assist researchers in obtaining more reliable
results in future evaluations.

Together, these results suggest a number of avenues for future
research on automatically generating commit messages.

In the remainder of this article, we review related work in
Sec. II, outline our multi-method research approach in Sec. III,
and present the results of our study in Sec. IV. We discuss the
implications for research and practice and the limitations of our
study in Sec. V. We conclude in Sec. VI.

II. RELATED WORK

We review approaches of automated commit message gen-
eration, followed by a discussion of commit message quality.
We then consider bots that generate messages, the quality of the
datasets that have been used to evaluate prior approaches, and
also discuss the emergence of LLMs in software engineering.

A. Automated Commit Message Generation

Prior work on commit message generation can be categorized
into rule-based or template-based, information retrieval-based,
learning-based techniques, and hybrid methods [12]. Table I
presents an overview.

A straightforward way to generate commit messages auto-
matically is using predefined rules or templates [5], [6], [7],
[20]. For example, DeltaDoc is based on symbolic execution

to describe what a code change does [5]. Two approaches,
ChangeScribe [6], [20] and AutoSumCC [7] summarize code
changes, such as method additions, based on pre-defined rules
or templates. However, as briefly mentioned, these rule-based
approaches are only effective in generating text about what was
changed and are not well able to provide the reasons behind
code changes [1], [9], which is important information in a
commit message [2].

A second category of approaches leverages information re-
trieval techniques to suggest commit messages from similar
code changes [1], [21]. For example, the NNGen approach [1]
leverages the Nearest Neighbor algorithm to generate commit
messages from diffs. For a given new diff, NNGen first selects
the most similar diff from the training data by calculating the
cosine similarity and the BLEU score (see Sec. III-C), then
outputs the message from the selected diff as the generated
one. Different from NNGen which treats each code change as
a bag of words, LogGen (a retrieval-based approach [21]) uses
code change vectors generated by CC2Vec as a novel form of
diff. It is easy to imagine the challenges of these retrieval-based
approaches when no similar diffs can be found in the corpus.

A third category of approaches uses learning-based tech-
niques. These approaches present commit message generation
as a translation problem and use neural machine translation
models to translate code differences into commit messages [8],
[9], [10], [13], [15], [22], [23], [24], [25]. The most recently
proposed approach within this category is FIRA [10]. Instead
of directly feeding old-version and new-version code into trans-
lation models, FIRA represents code changes not as an abstract
syntax tree, but as more fine-grained graphs by considering
edit operations and sub-tokens in code changes. FIRA currently
outperforms other techniques and could be considered the state-
of-the-art of automatic commit message generation.

Two studies have combined information retrieval and neu-
ral machine translation techniques to generate commit mes-
sages [9], [13]. For example, CoRec [9] utilizes an information
retrieval technique to address the word frequency issue, i.e.,
learning-based methods tend to generate high-frequency words
but ignore low-frequency ones. As reported, CoRec achieves
better performance than retrieval-based approaches [9]. There
are also some pre-trained models designed for encoding diff,
such as [18], [26], which are usually evaluated in the task of
commit message generation.

Recently, Tao et al. [12] conducted an empirical study of the
latest models of commit message generation. Different from
our study, they primarily focused on how current approaches
perform when evaluating them with alternative metrics, mul-
tiple programming languages, and dataset-splitting strategies.
They found that these aspects have a considerable impact on the
evaluation performance of existing models. Dong et al. explored
the generated commit messages by learning-based approaches
through the lens of patterns (i.e., frequent sequences) [27]. They
found that the majority of generated messages belong to simple
patterns [27]. Different from our study, Dong et al. focused on
the output of these learning-based approaches, while this study
explores the rationale of how we should design models to tackle
the real problem of automatically generating commit messages.
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TABLE I
OVERVIEW OF APPROACHES FOR AUTOMATED COMMIT MESSAGE GENERATION

Category Approach Year Evaluation Diff Filtering Criteria1 Message Filtering Rules1

Rule-based
approaches

DeltaDoc [5] 2010 Human NA NA

ChangeScribe [20] 2014 Human NA NA

AutoSumCC [7] 2016 Human NA NA

Retrieval-
based
approaches

NNGen [1] 2018
BLEU
Human

◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
• submitted by bot liferaycontinuous-integration
• update changelog/gitignore/readme [md/file]
• prepare version [version number]
• bump version [version number]
• modify dockerfile/makefile
• update submodule

LogGen [21] 2020 BLEU
◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
◦ submitted by bot liferaycontinuous-integration
◦ update changelog/gitignore/readme [md/file]
◦ prepare version [version number]
◦ bump version [version number]
◦ modify dockerfile/makefile
◦ update submodule

Learning-
based
approaches

CmtGen [8] 2017
BLEU
Human

• diff length > 100 tokens
• merge and rollback commits
• larger than 1MB

• message length > 30 tokens
• message of non-Verb-Direct Object pattern

NMT [22] 2017 BLEU ◦ diff length > 100 tokens • message length > 20 tokens

ContextNMT [23] 2018
BLEU
METEOR
Human

◦ diff length > 100 tokens
◦ message length > 20 tokens
• certain repetitive patterns, such as

the phrase merge pull request

CODISUM [15] 2019
BLEU
METEOR

• diff length > 200 tokens
• diff files contain no .java files
• duplicated diffs

◦ message length > 20 tokens
• contain less than three words

PtrGNCMsg [24] 2019
BLEU
ROUGE

◦ diff length > 100 tokens
◦ merge and rollback commits

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern

CoreGen [25] 2021
BLEU
ROUGE
METEOR

◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
◦ submitted by bot liferaycontinuous-integration
◦ update changelog/gitignore/readme [md/file]
◦ prepare version [version number]
◦ bump version [version number]
◦ modify dockerfile/makefile
◦ update submodule

FIRA [10] 2022

BLEU2

ROUGE
METEOR
Human

◦ diff files contain no .java files
◦ duplicated diffs
◦ diff length > 200 tokens

◦ message length > 20 tokens
◦ contain less than three words

Hybrid
approaches

ATOM [13] 2020

BLEU
ROUGE
METEOR
Human

◦ diff files contain no .java files
◦ merge or rollback commits
• project initialization commits
• fundamental updating

◦ message length > 20 tokens
• empty or contain non-ASCII messages

CoRec [9] 2021

BLEU
ROUGE
METEOR
Human

◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
• keywords: changelog, gitignore, readme,

release, version
• ignore update [*]
• modify dockerfile/makefile
• update submodule(s)

1 For each study cited in column 2, the table indicates whether that study proposed and applied new or additional data filtering conditions, marked as • in
columns 5 (filtering criteria) and 6 (filtering rules); if a study applied previous filtering conditions, these are itemized with ◦ .

2 FIRA was evaluated using a variant of BLEU, called B-Norm BLEU.
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Fig. 2. Example of a commit message submitted by a bot.

B. Quality of Commit Messages

A well-crafted commit message is of great importance for
understanding and communicating code changes [2]. Prior work
suggests that the quality of commit messages needs improve-
ments in most open source projects [2], [3], [28]. For example,
Dyer et al. observed that approximately 14% of commit mes-
sages in over 23,000 open source projects were empty, and 66%
of messages contained only a few words. On the basis of 11 syn-
tactical measures, Chahal and Saini [28] constructed a model
that can judge the quality of commit messages. In a recent
study, Tian et al. [2] investigated the distribution, taxonomy,
and classification of high-quality commit messages in five open
source projects. They found that 44% of commit messages need
further improvement. They also developed a taxonomy that
describes how developers express ‘why’ and ‘what’ informa-
tion. Of particular relevance to the current study, Tian et al. [2]
identified five types of trivial messages, i.e., single-word mes-
sages, submit-centered messages, scope-centered messages, re-
dundant messages, and irrelevant messages. They also proposed
several classification models that can be used to identify commit
messages with high (or low) quality. Based on Tian et al. [2],
Li and Ahmed [29] designed a more advanced classification
model, which particularly considers the contents of the links
attached in commit messages. They also conducted an empir-
ical study of the classified commits and found that the overall
quality of the commit messages decreases over time, while
developers believe they are writing better commit messages.

C. Bot-Generated Messages

A bot refers to a software agent that integrates its work
with human tasks [30], [31], to support developers and increase
their productivity by assisting in repetitive tasks [32]. Bots
are now widely applied to support a wide variety of tasks
in software engineering, including refactoring [33], [34], is-
sue and pull request (PR) management [35], [36], automated
generation of answer summaries [37]. For example, Depend-
abot2 can automatically generate commits that fix security
issues in a project’s dependencies. It can also automatically
generate messages to describe the changes. Fig. 2 shows com-
mit #3ac5b0e3 in the okhttp project4, which is gener-
ated by renovate-bot. This message tells that it bumps

2https://docs.github.com/en/codesecurity/dependabot
3https://github.com/square/okhttp/commit/3ac5b0ed7627f23695cb12f18260

165c46a33c5d
4https://github.com/square/okhttp

com.puppycrawl.tools:checkstyle to version 10.2. Commit mes-
sages generated by bots always have the same pattern which can
be configured by rules.5 There are two reasons why using such
bot-generated commit messages in the evaluation of automatic
commit message generators is of little use. First, these messages
are already automatically produced by bots. Second, this type
of message is simple and template- or pattern-driven, based on
predefined ‘structures’, which can be easily learned by these
automatic approaches and generated perfectly. Including these
could lead to an overestimated performance of these approaches
of commit message generation in practical scenarios, for exam-
ple when generating messages for human-made (as opposed to
bot-generated) code changes.

D. Quality of Datasets

Learning-based models require datasets of sufficient qual-
ity. In recent years, researchers have raised concerns about
the reliability of datasets that have been used to construct
models for diverse software engineering tasks. For example,
Kim et al. [38] measured the noise-resistant ability of two
commonly used defect prediction algorithms and found that
the prediction performance significantly decreased when the
dataset contained 20% to 35% noise. Zhu et al. [39] applied
noise handling techniques to enhance the accuracy of logging
suggestions. Their results showed that removing noise data can
effectively enhance a model’s ability to learn common logging
knowledge. For another example, Wu et al. [40] examined the
impact of mislabeled instances on security bug report (SBR)
prediction, and found that the performance of three baseline
approaches consistently achieved better performance on clean
datasets when compared to uncleaned (noisy) datasets.

In the context of commit message generation, researchers [1],
[9] have repeatedly pointed out the presence of questionable
data in the widely-used dataset collected by Jiang and McMillan
[41], which we refer to as the J-M dataset (see Sec. III-B). Al-
though Liu et al. found that around 16% of the commit messages
in the J-M dataset are already generated by bots, or describe
repetitive trivial changes [1], which we consider ‘noisy data’
too, they did not remove such commits systematically: they
only found one bot account (i.e., liferay-continuous-
integration) and five trivial message patterns (see Table I).
Wang et al. [9] extended these patterns to filter out noisy com-
mits but did not identify any more bot accounts. In this article,
we report on a more thorough data cleaning procedure (see
Sections III-B3 and III-B4).

E. Large Language Models

Large language models (LLMs) have garnered significant
attention and adoption in both academic and industrial domains
[42], including Software Engineering (SE) [17], [43], [44],
due to their exceptional performance across a wide range of
applications. For example, UniXcoder [45] has been used in the
code summarization task, which is highly relevant to commit
message generation. Additionally, ChatGPT’s ability to answer

5https://docs.renovatebot.com/configuration-options

https://docs.github.com/en/codesecurity/dependabot
https://github.com/square/okhttp/commit/3ac5b0ed7627f23695cb12f18260165c46a33c5d
https://github.com/square/okhttp/commit/3ac5b0ed7627f23695cb12f18260165c46a33c5d
https://github.com/square/okhttp
https://docs.renovatebot.com/configuration-options
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Fig. 3. Overview of our approach.

questions in a conversational manner [46] allows it to generate
commit messages by answering a diff-related prompt. To the
best of our knowledge, the use of LLMs for commit message
generation has not received much attention, and yet this appears
a promising avenue. Thus, in this article, we also consider two
popular LLMs.

III. STUDY DESIGN

To address the four research questions we pose in this article
(see Sec. I), we conducted a mixed-methods study using both
quantitative and qualitative data. We selected four represen-
tative approaches for automatic commit message generation.
Further, we collected and preprocessed commit data from the
Top 1,000 most-starred Java repositories on GitHub, creating a
new benchmark. We then evaluated the four approaches on the
new benchmark, and evaluated their performance. Qualitatively,
we surveyed developers to gain practical insights into commit
message generation. Finally, we evaluated the performance of
two LLMs to automatically generate commit messages. Fig. 3
presents an overview of our approach.

A. Evaluated Approaches

1) Approaches of Commit Message Generation: We evalu-
ated four prominent approaches for automatic commit message
generation. As pointed out earlier, rule-based approaches suffer
from generalization issues because the generated output tends
to be very long and cannot generate a rationale for code changes
[9], [10], which is why did not include a rule-based approach
in this study. The other three categories of approaches have be-
come the primary approaches for generating commit messages.
For this study, we selected one approach that achieves the best
performance from each of these three categories. The goal of
this study is not to evaluate all these approaches, but rather
to demonstrate the key shortcomings in the way they have
been evaluated previously. The selected approaches are repre-
sentative of the current state-of-the-art in automated commit
message generation.

We selected NNGen as a representative of retrieval-based
approaches,6 FIRA [10] as a representative of learning-based
approaches, and CoRec [9] as a representative of hybrid ap-
proaches with consideration of their performance and difficulty
of reproduction. We briefly describe these.

NNGen [1] relies on the Nearest Neighbor algorithm to
select a message from the training dataset. It first represents
the diffs of all the commits as vectors by leveraging the “bags
of words” representation that is widely used in information
retrieval [47]. NNGen calculates the cosine similarity for a
given diff and each diff in the training dataset and selects the
top k training diffs with the highest similarity scores. After that,
NNGen computes the BLEU-4 score based on the input diff and
the selected diffs, and outputs the message of the selected diff
with the highest BLEU-4 score.

FIRA [10] first represents code changes via an abstract
syntax tree (AST) based fine-grained graph, which allows the
consideration of code edit operations in diff and code tokens at
sub-tokens and integral granularities. Then, FIRA implements
a graph-based encoder and a transformer-based decoder to gen-
erate commit messages.

CoRec [9] combines the advantages of both information
retrieval and neural machine translation by building a context-
aware encoder-decoder model and a sophisticated vocabulary.
For a certain diff, CoRec first retrieves the most similar diff from
the training set, and then uses the retrieved diff to enhance the
performance of the final generated vocabulary.

In addition to the three selected approaches that are specifi-
cally designed for automatically generating commit messages,
we also considered one pre-trained diff encoding model, i.e.,
CCRep [18], which can be used to generate commit messages
and achieved the best performance when compared with other
pre-trained models [18]. CCRep [18] first splits a given code
change into the before-change code and the after-change code,
leverages the pre-trained CodeBERT [48] to obtain the code

6Although LogGen [21] reported slightly better performance than NNGen,
Tao et al. [12] identified major implementation flaws, which is why we did
not select LogGen.
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embeddings, and uses a query back mechanism to extract and
encode the changed code fragments and make them explicitly
interact with the whole code change.

2) Large Language Models: Numerous LLMs have been
released in recent years with great promise for a wide variety
of software engineering tasks [17], [43], [44]. For this study, we
selected two: UniXcoder [45], which is specific to code-related
tasks, and ChatGPT [46], a well-known general-purpose LLM.

UniXcoder [45] is designed to handle code-related tasks.
It is based on the capability to simultaneously pre-train both
the encoder and decoder, enabling it to benefit from pre-training
data for code-related understanding and generation tasks. UniX-
coder utilizes a multi-layer transformer and incorporates multi-
modal contents such as code, code comments, and abstract
syntax tree (AST) to enhance code representation. The max-
imum input length for UniXcoder is 1,024 tokens.

ChatGPT [46] is a general-purpose LLM from OpenAI.
It has a large number of network parameters and has shown
excellent performance in many tasks [49], [50]. In this study
we selected ChatGPT 3.5, since it is free to use and offers an
open API interface. The maximum input size of ChatGPT based
on gpt-3.5-turbo-1106 is 16,385 tokens. Our objective is
to establish a reasonable baseline for the potential performance
of LLMs in commit message generation. We defer experiments
with the more sophisticated GPT-4 model to future research.

B. Data Collection and Preprocessing

The following describes the datasets and their corresponding
cleaning steps.

1) The Jiang-McMillan (J-M) Dataset: Most approaches
for automatically generating commit messages are based on
a widely used dataset collected and processed by Jiang and
McMillan in 2017 [41]. This dataset extracts the first sen-
tence from the original commit messages contained in the Top
1,000 Java projects (as measured by ‘stars’) hosted on GitHub,
excluding rollback/merge commits, commits with empty or
non-English messages, duplicated code changes, and diff files
that are larger than 1MB or containing non-ASCII codes.
The dataset only retains the Verb-Direct Object (V-DO) mes-
sages, e.g., “update a method,” because Jiang and McMil-
lan argued such messages have better quality. The filtered
dataset contains 509k diff files and corresponding commit
messages. We label this dataset the “J-M” (for Jiang and
McMillan) dataset.

Before using the J-M dataset to automatically generate com-
mit messages, the three evaluated approaches also each have
their own data preprocessing steps because of noisy data or
specific requirements of the respective approaches. Table I
shows the filtering rules for each approach, where these filtering
conditions proposed by each approach are itemized using a
black circle (•), and inherited preprocessing rules followed by
previous studies are itemized using an open circle (◦). CoRec
has been evaluated on the same dataset processed by Liu et al.
[1] and used by NNGen [9]. After cleaning, approximately 26k
remaining commits were used to train and test NNGen and
CoRec [1], [9], and 90k commits were used to evaluate FIRA

[10]. Restricting messages or diffs can greatly reduce the size
of the dataset, i.e., from 509k to 26k or 90k respectively. Fur-
ther, bot-generated and uninformative commits also represent a
negligible proportion.

2) Data Collection: While the J-M dataset and its various
derivations have been widely used to automatically generate
commit messages [1], [9], these datasets still contain noisy
messages. Since the J-M dataset along with its filtered ver-
sion only retains the anonymized message and diff of each
commit and lacks key information such as the commit ID
that is required for further processing, we decided to create a
new dataset.

We re-collected commits from the Top 1,000 Java projects
(as measured by Stars) hosted on GitHub, not counting projects
that were not software projects, such as Java interviews or
training documents; such projects were ignored. We initially
obtained 2.5 million commits from the collected Java projects.
We followed Jiang and McMillan [41] to filter the dataset (see
Sec. III-B1 for details). Our final dataset contained 889,329
commits, which we refer to as the “New J-M Dataset.”

Liu et al. observed that approximately 16% of commit mes-
sages in the J-M dataset are noisy, as they were automat-
ically generated or described repetitive, trivial changes [1].
However, as briefly mentioned they did not conduct a thor-
ough data cleaning: they only found one bot account (i.e.,
liferay-continuous-integration) and five ‘trivial
message’ patterns; this is shown in Table I. With the increasing
popularity of bots and the potential existence of other trivial
messages, we conducted a thorough cleaning of noisy mes-
sages in our dataset. Sec. III-B3 and Sec. III-B4 describe these
steps in detail.

3) Removing Commits Submitted by Bots: To remove com-
mits submitted by bots, we must establish a list of bot accounts
that is as complete as possible. To this end, we conducted a
systematic literature review (SLR) to identify bot accounts.
We followed widely-used guidelines for conducting SLRs [51]
to identify and filter related papers in four steps:

1) Define the search scope. We selected three digital li-
braries, ACM Digital Library, IEEE Xplore Digital Li-
brary, and Springer Link, which are commonly included
in SLRs in software engineering.

2) Define the search rules. Based on the goal of our SLR,
namely, to identify bot accounts, the search keywords
are variants of ‘bot,’ such as “non-human.” We also
considered the plural form of each search keyword. To
ensure the identified bots were related to software de-
velopment, we also identified keywords capturing the
context in which the bot accounts were applied. Table II
lists the keywords in the search target and context cat-
egories. When forming the search queries, we selected
one keyword from each category and joined them using
the ‘AND’ operator. After applying these search queries
in the digital libraries listed above, we initially obtained
213 publications.

3) Manual Selection. We manually read the title, abstract,
and keywords of each of the 213 papers, and selected the
papers that sought to identify bot accounts and identified
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TABLE II
SYSTEMATIC REVIEW SEARCH KEYWORDS

Category Keywords1

Target “bot*”, “automated commit*”, “non-human account*”, “bot
commit*”, “bot identification”, “devbot*”

Context “commit*”, “software development*”, “collaborative soft-
ware development”, “open source”, “OSS”, “FOSS”,
“FLOSS”

1‘*’ means plural forms are included.

TABLE III
COMMIT DISTRIBUTION OF THE TOP 5 BOTS

Bot Commit Count

dependabot-preview[bot] 3,585
dependabot[bot] 2,847
Renovate Bot 409
nextcloud-android-bot 242
Gary Bot 212

bot lists for further analysis. After this step, we identified
21 papers.

4) Forward and backward snowballing. Using forward
snowballing, we inspected the publications that cited the
selected studies and found two additional papers. Using
backward snowballing, we inspected the references of the
selected studies and identified three additional studies.
After this step, we identified a total of 26 studies.

5) Bot account listing. We reviewed the 26 relevant studies,
mainly focusing on collecting bot accounts identified in
these studies and their associated datasets that list bot ac-
counts. After removing duplicated accounts, we obtained
a staggering number of 5,229 bot accounts that were
identified or built by previous studies. The full papers and
bot accounts are listed in our appendix [52].

After obtaining the list of 5,229 distinct bot accounts, we
removed all commits submitted by these accounts by com-
paring the author name of a commit to all bots in the list.
We found that in the “New J-M Dataset” dataset, we identi-
fied 374 bot accounts that collectively made 21,656 commits
(2.4%). Table III lists the commit distribution of the top five
bots ranked by their submitted commits. We excluded these
bot-generated commits from “New J-M Dataset” dataset, and
labeled this cleaned dataset without bot messages the “No-bots
dataset,” which contains 867,673 commits.

4) Removing Commits With Non-Informative Messages:
Except for the five trivial commit message patterns identified
by Liu et al. [1], the dataset may still contain other types of non-
informative messages. For example, some commit messages
contain only a single token which cannot express accurate in-
formation, such as “Readme.” A good commit message should
explain what changes were made, and why [2], [53], [54].
In this article, we follow Tian et al. [2] and deem messages that
neither explain what was changed, nor why those changes were

made, as uninformative messages or trivial messages, which
can reduce data quality for generating commit messages and
should be removed. There are two advanced commit classifiers
[2], [29]. Although the classifier proposed by Li and Ahmed
[29] has a higher F1 score than Tian et al.’s [2], their method
requires manually examining the content of the links contained
in commit messages, which would not be feasible to apply in
our large-scale dataset. Thus, we used Tian et al.’s Bi-LSTM-
based classifier which can identify well-written messages with
a precision of ca. 81% [2]. By leveraging the classifier in the
No-bots dataset, we identified 39,144 (4.5%) trivial messages.
We labeled this dataset, which excludes trivial messages, the
“New Benchmark,” which contains 828,539 commits. We con-
ducted validation of whether the performance of the classi-
fier can still hold in our dataset. Specifically, we randomly
selected a dataset of size 384 (with an error margin of 5%
and a confidence level of 95%) from the “No-bots dataset”
constructed in Sec. III-B3. Two authors manually classified the
messages as informative or non-informative (with a 0.66 kappa
coefficient). Conflict annotations were solved by face-to-face
meetings. When compared with the results classified by Tian
et al.’s approach, we found 351 commits (91.4%) have the same
labels, which indicates that the performance of Tian et al.’s
classifier is kind of stable in our dataset.

C. Evaluation Metrics

To compare the performance of the four selected approaches
on the dataset with different configurations, we adopted the
widely-used metrics BLEU, ROUGE-L, and METEOR [12],
[55]. We describe the three metrics’ rationale and computation
details next.

1) BLEU (Bilingual Evaluation Understudy) calculates the
modified n-gram (for BLEU-4, n= 1, 2, 3, 4) precision
of a generated message to the reference message, then
measures the average modified n-gram precision with a
penalty for overly short sentences [56]. The BLEU value
ranges from 0 to 1. A value of 1 indicates the generated
message is identical to the reference one. BLEU can be
calculated by the following formula:

BLEU= BP · exp
(

N∑
n=1

wn log pn

)
(1)

where wn is the weight of n-gram with a value of 1/N .
Normally, N = 4. pn is n-gram precision, which can be
obtained as follows:

pn =
cn
ln

(2)

where cn represents the count of correctly predicted
n-grams between the generated message to the reference
message, and ln represents the total number of n-grams in
the generated message. BP is the brevity penalty factor:

BP =

{
1, if lengen > lenref
e1−lenref/lengen, if lengen ≤ lenref

(3)

where lengen is the length of the generated message and
lenref is the length of the reference message.
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2) ROUGE-L measures the F-score of precision and recall
on the basis of the longest common subsequence (LCS)
between a generated message and a reference message
[57]. Its value is calculated as follows:

Flcs =

(
1 + β2

)
RlcsPlcs

Rlcs + β2Plcs
(4)

where Flcs is the ROUGE-L score of the generated mes-
sage and the reference one. LCS(ref, gen) is the longest
common subsequence (LCS) between the two sentences,
and β is a hyperparameter commonly assigned a rela-
tively large value. LCS considers sentence-level struc-
ture similarity and automatically identifies the longest
co-occurring in-sequence n-grams. Plcs and Rlcs repre-
sent the precision and recall, respectively, of LCS be-
tween a generated message and a reference message;
these are calculated as follows:

Plcs =
LCS(ref, gen)

lengen
(5)

Rlcs =
LCS(ref, gen)

lenref
(6)

3) METEOR is based on a generalized concept of
1-gram matching between machine-produced and
human-produced reference messages [58], 1-gram can
be matched based on their surface forms, stemmed
forms, and meanings. METEOR computes a score
for this matching using a combination of 1-gram
precision, 1-gram recall, and a measure of fragmentation
that considers the order of the matched words in
the generated messages in relation to the reference.
METEOR is calculated as:

METEOR= Fmean(1 − Penalty) (7)

where Fmean is computed with 1-gram precision (P) and
1-gram recall (R), and Penalty represents the penalty
factor applied to fragmentary matches:

Fmean =
10PR

R + 9P
(8)

Penalty = 0.5 ∗
(

#chunks

#unigrams−matched

)3

(9)

where #chunks is the number of matched chunk and
#unigrams−matched is the number of matched uni-
gram (1-gram).

Originally, NNGen was only evaluated with BLEU to eval-
uate its performance (see Table I), while CoRec, FIRA, and
CCRep were all evaluated using all three metrics listed above.
To keep the comparison as comprehensive as possible, we
applied all three metrics to evaluate the performance of the
four selected approaches. Further, different from NNGen and
CoRec, the evaluation of FIRA was done using a variant of
BLEU, i.e., B-Norm BLEU [10], which is insensitive to the
character case. To retain consistency with [10], we also used
B-Norm BLEU to evaluate the performance of FIRA. CCRep is
evaluated by both the two types of BLEU scores in [18]. In this
study, we chose B-Norm BLEU to evaluate CCRep.

D. Developer Survey

Developers are recommended to summarize the changes they
made in a short sentence (the subject), and add a more extensive
description (the body) to provide additional details explaining
what was changed, and why [2]. While not every commit re-
quires both a subject and a body, current learning-based or
retrieving-based approaches are only aimed at generating the
subject. To investigate the perceived importance and effec-
tiveness of this, we conducted a qualitative survey to solicit
opinions from experienced software developers. We selected
the Top 10 most active developers (ranked by the number of
commits they contributed) from the Top 200 Java projects.
We identified 1,782 survey candidates from the 200 projects
(157 developers participated in more than one project, resulting
in 218 duplicated accounts), and invited them to fill out a short
questionnaire (see appendix [52]).

The questionnaire started with a background question re-
garding the respondent’s tenure as a contributor to open source
projects, to ensure that respondents have a meaningful expe-
rience in collaborative software development, and thus could
better appreciate the importance of commit messages. We then
asked respondents to select the most difficult aspect and the
most time-consuming aspect separately when writing commit
messages with the following options: (1) writing the message
subject; (2) writing the message body; or (3) other. We also
invited respondents to explain their choices. We further asked
respondents what they usually write on the message subject.
Finally, we asked for respondents’ opinions on the effectiveness
of automatically generating message subjects, and solicited any
further advice on commit message generation.

Thirty-five emails could not be delivered. We received 72
responses, resulting in a response rate of approximately 4.1%
( 72

1,782−35 ). This response rate is comparable to other research
surveys in software engineering [cf. [59], [60], [61]]. We used
open coding [62] to analyze the responses to these three
open questions, assigning codes to specific phrases of interest.
We then sorted the codes, and merged them where appropri-
ate. During the sorting process, we grouped related codes into
categories. All codes and categories were reviewed, discussed,
and validated by two authors of this article. During this process,
we resolved any disagreements by elaborating our rationale for
specific codes.

IV. RESULTS

We now present the results of the four research questions
outlined in Sec. I. We first demonstrate the impact on the per-
formance of the four selected approaches when noisy commit
messages are excluded from datasets (RQ1, Sec. IV-A). We then
demonstrate the impact of changing the size of the maximum
commit’s diff (the number of changes to contents) on the four
approaches in Sec. IV-B (RQ2). Sec. IV-C presents developers’
perspectives on the effectiveness of generating message sub-
jects (RQ3). Finally, Sec. IV-D presents the performance of
UniXcoder and ChatGPT on commit message generation in a
more real-world scenario (RQ4).
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TABLE IV
STATISTICS OF RQ1’S BENCHMARK DATASETS

Training Validation Testing

Before After Before After Before After

NNGen 41.5k 30.3k 2.3k 1.7k 2.3k 1.7k
CoRec 41.5k 30.3k 2.3k 1.7k 2.3k 1.7k
FIRA 41.2k 39.0k 5.2k 4.9k 5.2k 4.9k
CCRep 41.5k 30.3k 2.3k 1.7k 2.3k 1.7k

A. The Impact of Noise on Performance of Commit Message
Generation Approaches

1) Procedure and Metric Evaluation: To investigate the
impact of noisy commit messages (those submitted by bots and
uninformative messages) we evaluated the performance of four
representative approaches of the state-of-the-art (i.e., NNGen
[1], CoRec [9], FIRA [10], and CCRep [18]), before and after
removing these noisy messages. Each of these approaches may
have different data requirements (see Table I). For example,
NNGen requires that messages should have no more than 30
tokens. We applied the filtering rules of NNGen [1] and FIRA
[10] on “New J-M Dataset” and “New Benchmark” to pre-
pare the datasets. Following the original evaluation design of
CoRec [9] and CCRep [18], we evaluate the two approaches
on the datasets prepared for NNGen. Table IV shows the size
of the processed datasets, where the training set, testing set,
and validation set are divided following the settings of the four
approaches. We then re-trained and tested the four approaches
based on their replication packages. We calculated the BLEU,
ROUGE-L, and METEOR metrics to evaluate the impact of
removing noisy commit messages on their performance.

Table V shows the results of the four approaches running
on the corresponding datasets before and after removing noisy
commits, and column “Delta” presents the performance change
after removing noisy commits in terms of the three metrics.
The performance of NNGen, CoRec, and CCRep is consider-
ably worse after removing the bot-submitted and uninformative
messages from the evaluation results of all three metrics. For
example, the BLEU score of NNGen on ‘New Benchmark’
is 46% (36% for CoRec and 25% for CCRep) lower than its
performance on ‘New J-M Dataset.’ Such a high degree of
degradation suggests that the high performance of the three
approaches can be ascribed, at least in part, to the presence
of noisy commits in the original J-M dataset. In contrast, the
performance of FIRA remains largely the same in terms of the
three metrics, and is slightly, though not statistically, higher.
This indicates that removing noisy data has only a limited im-
pact on the performance of FIRA, which is learning- and AST-
based techniques, and mainly focuses on generating messages
for code changes, e.g., changes happening in ‘.java’ files. This
sort of message can rarely be generated by bot accounts and
usually has informative text because of the greater complexity
of code changes when compared with updating documentation
or configuration files. Specifically, we only found 2,841 (5.5%)
noisy messages in the commits happening in Java files (i.e., a

TABLE V
PERFORMANCE OF THE FOUR APPROACHES BEFORE AND AFTER

REMOVING NOISY COMMITS

Metrics Before1 After2 Delta %

NNGen [1]
BLEU 39.43 21.41 –18.02 –45.7%
ROUGE-L 47.25 36.01 –11.24 –23.8%
METEOR 26.19 18.25 –7.94 –30.3%

CoRec [9]
BLEU 47.89 30.77 –17.12 –35.7%
ROUGE-L 51.03 39.04 –11.99 –23.5%
METEOR 29.60 20.85 –8.75 –29.6%

FIRA [10]
BLEU 15.43 15.75 0.32 2.1%
ROUGE-L 19.90 20.11 0.21 1.1%
METEOR 14.01 14.04 0.03 0.2%

CCRep [63]
BLEU 49.25 36.98 –11.84 –24.9%
ROUGE-L 54.05 42.90 –11.15 –20.6%
METEOR 30.72 22.10 –8.62 –28.1%

1 Using the dataset ‘New J-M dataset’
2 Using the dataset ‘New Benchmark’

TABLE VI
STATISTICAL DIFFERENCE OF THE FOUR APPROACHES’

RESULTS BEFORE AND AFTER REMOVING

NOISY COMMITS

Metric NNGen CoRec FIRA CCRep

BLUE 0.12* 0.15* n/a1 0.16*
ROUGE-L 0.17* 0.17* n/a1 0.16*
METEOR 0.16* 0.16* n/a1 0.16*

* p-value < 0.001.
1 Results for FIRA were not statistically significant.

‘.java’ extension), which is considerably smaller than the per-
centage (27.3%) of noisy messages filtered out in the datasets
for NNGen, CoRec, and CCRep.

To assess whether the observed performance change of the
four approaches is statistically significant, we conducted a
Mann–Whitney U test [64] on the value distribution of the
three metrics of each evaluated approach before and after re-
moving noisy commits, respectively. If a statistically significant
difference (p <.05) was found, we also calculated the effect
size, which provides a measure of how large the difference is
[65].7 Table VI presents the results; for NNGen, CoRec, and
CCRep, we observe that the differences between before and
after removing noisy commits are statistically significant for all
three metrics, though with small to medium effect sizes. This
indicates that the performance of NNGen, CoRec, and CCRep
decreases significantly when filtering out the commits with bot-
submitted and uninformative messages. For FIRA, we found no
statistical differences (and thus no effect size), meaning that the
performance of FIRA is stable and not affected by the presence
of noisy commit messages.

7Effect size ≥ 0.1, effect size ≥ 0.3, and effect size ≥ 0.5 represent small,
medium, and large differences, respectively [65].
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TABLE VII
SCORING CRITERIA

Score Definition

0 Entirely irrelevant, and no tokens are shared.
1 Unrelated, but there is some token overlap.
2 Somewhat related, but the generated message includes redundant

or missing information.
3 Similar, with mostly identical tokens, but variations in detail

lead to inconsistent semantics.
4 Semantic consistency.

2) Human Evaluation: Evaluating Practical Impact: The
three metrics (BLEU, ROUGE-L, and METEOR) afford a
quantitative assessment of performance changes based on a
numeric analysis of the overlap of tokens. However, such evalu-
ations are rigid and lack subtlety. Generated messages may have
only little overlap with ground truth messages, and yet convey a
very similar meaning. Thus, we also conducted a qualitative as-
sessment to complement the quantitative assessment to develop
a more intuitive impression of the performance change.

We sampled 60 commits at random from the test sets of
the four approaches, before and after removing bot-submitted
and uninformative messages (8× 60= 480 commits in total).8

Each sampled commit has a generated message and a ground
truth message. Two authors independently followed a scoring
scheme based on previous studies [1], [9], [10] to manually
score the generated message. The two raters did not know
which of the approaches generated the messages, and whether
these were based on datasets before or after removal of noisy
messages, to reduce any potential threat to validity involved
in the manual labeling process. Table VII shows the scoring
rules with five levels, ranging from 0 to 4; a higher score means
better similarity between the generated commit message and the
ground truth. We calculated the kappa coefficient (κ) between
the two authors, which was 0.71 indicating a substantial level of
consistency [66]. When the two raters differed in their scores,
these differences were resolved through discussion leading to
a consensus on the final scores. The difference in scoring was
mostly only 1, meaning that the two raters varied in their judg-
ment only by a small degree. During the discussion, we adjusted
the scores of approximately 22.3% (#107) of the messages.

We followed prior work [10] in defining the scores 0 and
1 as low-quality, 2 as medium-quality, and 3 and 4 as high-
quality. Table VIII presents the results of this human evalua-
tion. The portion of messages with low scores (0-1, indicating
irrelevance or no relation) increased for NNGen, CoRec, FIRA,
and CCRep, with 25, 16.7, 15, and 6.67 percentage points, after
removing noisy messages respectively. However, the portions of
generated messages with high scores (3-4, indicating messages
are deemed similar or semantically consistent) decreased for
NNGen, CoRec, and CCRep after removing bot-submitted and
uninformative messages; the drop was considerable at 16.7, 25,
and 16.7 percentage points, respectively. For FIRA, there was

8The reason for sampling 60 commits in each case is to ensure the overall
sample size (480) is feasible for manual analysis.

TABLE VIII
RESULTS OF THE QUALITATIVE EVALUATION

Approach Score1 New J-M
Dataset

New
Benchmark Delta2

NNGen [1]

Low Score 36.67% 61.67% 25.00
Medium Score 15.00% 6.67% –8.33

High Score 48.33% 31.67% –16.66
Average Score 1.97 1.33 –0.64

CoRec [9]

Low Score 38.33% 55.00% 16.67
Medium Score 8.33% 16.67% 8.34

High Score 53.33% 28.33% –25.00
Average Score 2.17 1.48 –0.69

FIRA [10]

Low Score 58.33% 73.33% 15.00
Medium Score 31.67% 15.00% –16.67

High Score 10.00% 11.67% 1.67
Average Score 1.23 1.00 –0.23

CCRep [18]

Low Score 35.00% 41.67 % 6.67
Medium Score 8.33% 6.67% –1.66

High Score 45.00% 28.33% –16.67
Average Score 1.94 1.6 –0.34

1 Low scores 0-1, Medium score: 2, High scores: 3-4
2 The delta numbers are percentage points

a small but insignificant increase. We explored the reasons for
these drops in performance and found that most well-generated
messages (i.e. with high scores, 3-4) in the New J-M dataset
have simple patterns, such as “update <file_name>,” “bump
<version_number>,” and “added <version_number>,” which
are either generated by bots, or uninformative and are removed
in our New Benchmark. We also observe that the average scores
of all four evaluated approaches are close to 1: the generated
messages are “unrelated, but there is some token overlap”
(Table VII), after removing these noisy messages.

Both the quantitative and qualitative evaluation results sug-
gest that including noisy data has a serious impact on the current
approaches’ performance. Considerable work is needed to filter
noisy data well and automatically generate high-quality commit
messages that are of practical value.

Summary for RQ1: After removing bot-generated and un-
informative commit messages from the training and testing
datasets, the performance of NNGen, CoRec, and CCRep
greatly declines in comparison to the original evaluations, in
terms of BLEU, ROUGE-L, and METEOR metrics, while
the performance of FIRA remains stable. The qualitative
evaluation suggests that the performance of all four ap-
proaches declines after removing bot-generated and uninfor-
mative commit messages.

B. The Impact of Small Commit Size on Performance of
Commit Message Generation Approaches

Most automated approaches for generating commit messages
are based on datasets that only include commits with a diff
length of no more than 100 tokens [8], [9], because neural ma-
chine translation techniques usually empirically set the lengths
of source and target sequences between 50 and 100 [8], [67].
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Fig. 4. Distribution of token numbers contained in diffs.

Fig. 5. A real-world example commit with a diff length of 100 tokens [68].

A few learning-based approaches (e.g., FIRA [10]), which can
only handle code changes, set the diff length to no more than
200 tokens to learn more information through the AST of a diff.
Although retrieval-based approaches (e.g., NNGen) have no
length constraints from the implementation perspective, these
approaches are only evaluated on datasets containing commits
with diffs of no more than 100 tokens.

However, when we consider the distribution of the commit
diff length, this 100-token limitation raises a critical concern.
Fig. 4 presents the diff length distribution of “New Benchmark,”
which contains 828k commits after filtering out bot-submitted
commit messages and uninformative messages. The results
show that only 5% of diffs have less than 100 tokens, 22% of
diffs have less than 200 tokens, and 39% of diffs have more
than 1,000 tokens. Fig. 5 presents a commit with a diff length of
100 tokens; it is intuitively clear that many commits are, in fact,
much larger than 100 tokens. In particular, the number of tokens
in our dataset ranges from 12 to 4,000, with a median length
of 632 tokens, considerably larger than the 100-token limit
applied in the evaluation of almost all automatic approaches
(or 200 tokens). Thus, it is clear that these approaches are not
thoroughly evaluated, casting serious doubt on the practical
relevance of these approaches. To move the field forward, we
must conduct more rigorous evaluations to establish the limits
of the state-of-the-art.

To investigate the performance of the state-of-the-art tech-
niques in a more realistic scenario, we changed the diff length
constraints to 632 tokens (the median length) and evaluated

the four representative approaches using the same three metrics
as before (BLEU, ROUGE-L, and METEOR). We applied the
filtering rules of the four approaches listed but replaced the
diff length constraints with 632 tokens on the dataset ‘New
Benchmark’.9 From the filtered dataset, we further randomly
selected 1,000 commits according to the following range of
diff lengths as testing datasets: (0, 100], (100, 200], (200, 300],
(300, 400], (400, 500], (500, 632]. For FIRA, the length range
of the testing dataset starts with (0, 200]. Since CCRep is
based on CodeBERT [48], which has a maximum input size
of 512 tokens, our experimental constraint for CCRep is set to
a maximum length of 512.

We evaluated the generation performance of the four ap-
proaches in two scenarios. First, we reused the four models
trained on ‘New Benchmark’ in RQ1, i.e., diff lengths of train-
ing commits are limited to (0, 100] (and max. 200 for FIRA),
and then tested their performance with all testing datasets.
This first scenario affords an evaluation of the performance
of the current models, which are trained on commits with re-
stricted code changes (up to 100 tokens for NNGen, CoRec,
and CCRep; up to 200 for FIRA), when generating messages
for commits that capture larger diffs. When the performance is
not as good as the four approaches’ reported results (i.e., the
‘After’ column in Table V), one of the most obvious reasons
is that these models did not learn the characteristics of larger
commits. Therefore, we designed a second scenario to allevi-
ate this concern: we trained the models with an unsegmented
dataset, i.e., a training set of diff length between (0, 632] (up to
512 for CCRep),10 and similarly tested their performance with
all testing datasets.

Fig. 6 shows the performance of the four evaluated ap-
proaches when tested on commits with different diff lengths.
The x-axis represents the diff lengths of commits in the testing
sets. The blue lines represent the performance of the approaches
as trained on datasets with the original diff length requirements
((0, 100] for NNGen, CoRec, and CCRep, and (0, 200] for
FIRA), whereas the orange lines represent the performance of
the approaches when trained on a dataset that has a maximum
of 632 tokens (512 for CCRep).

The performance of the four approaches degrades consid-
erably when the diff length of the test dataset increases, re-
gardless of whether they are trained with commits whose diffs
are in their required length range or between (0, 632]. When
the diff length of test data continues to grow, the performance
of the four evaluated approaches remains stable. The extent
of degradation of NNGen, CoRec, and CCRep is greater than
FIRA. The performance of NNGen, CoRec, and CCRep dra-
matically degrades when the diff length of the test dataset
increases from (0, 100] to (100, 200]. For example, consider the
BLEU metric: the performance of NNGen, CoRec, and CCRep
decreases by 88.7%, 94.3%, and 63.3% respectively in the first
evaluation scenario, and decreases by 28.2%, 65.8%, and 32.0%
respectively in the second scenario. When testing commits

9The reason for not directly deleting the diff restriction is to reduce the
time needed to conduct the evaluation, which can be very time-consuming.

10Note: there is no overlap between the training data and these testing
datasets.
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Fig. 6. Performance of the four approaches at different lengths of diff. Blue
lines indicate that the diff length of the training sets is between 0 and 100.
Orange lines indicate the diff length is no more than 632 (512 for CCRep) in
the training sets.

with diff lengths belonging to [200, 300) on FIRA in the two
training scenarios, the performance degradation is 12.8% and
16.1%, considerably smaller than the performance degradation
of the rest three approaches. The relatively small degradation

of FIRA’s performance may be because FIRA filtered out all
non-code changes and its AST-based encoding learned some
knowledge between messages and the corresponding code diffs.
At the same time, complete code changes may also increase the
difficulty of generating messages, because FIRA has achieved
the relatively worst performance when compared with the other
three approaches. When comparing the four approaches’ per-
formance in the two training scenarios, we can see that training
on commits with larger diffs can slightly improve their perfor-
mance, but the testing results with larger diffs are significantly
decreased. This indicates that generating messages for larger
code diffs remains a challenge.

We conducted a Mann–Whitney U test [64] to examine
whether the four models’performance falls between the original
testing set and other testing sets with larger diffs (see the on-
line appendix for complete results). All p-values are below .05
with a small or medium effect size, indicating the performance
degradation shown in Fig. 6 is statistically significant.

Summary for RQ2: The state-of-the-art approaches for
automated commit message generation have limited their
datasets to commits whose diffs have no more than 100 or
200 tokens. However, only 5% of commits have a diff length
of no more than 100 tokens, with an average of 632 tokens in
our cleaned dataset, which was created using a similar pro-
cedure as the original J-M dataset. The performance of four
state-of-the-art approaches, i.e., NNGen, CoRec, FIRA, and
CCRep on commits with larger diffs degrades significantly,
regardless of whether they were trained with a diff length
of up to 100 tokens (200 for FIRA) or up to 632 (512 for
CCRep) tokens. When compared with NNGen, CoRec, and
CCRep, diff sizes have a smaller impact on the performance
of FIRA.

C. Is Commit Message Generation Helpful?

Current approaches are designed to only generate the subject
of a message, which usually has no more than 30 tokens (see
Table I). A commit message’s body may contain more informa-
tion for developers to understand code changes [2]. Research
Question 3 focuses on the perceived value of the automated
generation of commit messages by developers. Clearly, these
approaches are targeted at developers; if they do not perceive
these approaches to have any value, then as a field, we should
reconsider whether further research into these approaches
is valuable.

We conducted a survey among developers and received 72
responses; 81.9% of the respondents had participated in OSS
projects for more than three years. The two most junior re-
spondents in our survey had contributed to open source for
more than three months. We present what developers perceive
to be (1) the hardest work and (2) the most time-consuming part
when writing commit messages, and why they think so. We also
present feedback on future commit message generation.

1) What Makes Writing Commit Messages Hard?: We
asked developers what aspect of writing commit messages they
perceived to be the most challenging. For this question, we
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offered three options: the subject of a commit message, the
body of a commit message, or an ‘other’ option, which invited
respondents to provide further details. The results show that
69.4% (#50) of respondents indicate that writing the subject of
a commit message is the hardest work, 19.4% (#14) of devel-
opers think writing the message body is the hardest work, and
two respondents hold the view that both are difficult. Among
the seven ‘Other’ responses, developers mentioned “keeping
commit messages consistent across time” (#2), “figuring out
what to write” (#1), “Writing meaningful content that will be
helpful to future developers.”(#1) and “keeping things con-
cise/compact” (#1). Besides, two respondents indicated writing
commit messages is not difficult.

Since the message body is usually longer than the subject, it is
perhaps surprising that most respondents indicated that writing
the subject is more challenging; understanding why this is so
is worthwhile exploring further. After analysis of respondents’
reasons for their choice, we identified two reasons that alone
or together make writing the subject of a commit message
difficult. First, it is difficult to create a good description within a
limited space (mentioned by 42 developers). For example, one
respondent indicated that: “Providing a concise and informa-
tive subject in less than the recommended 50 characters is
challenging.” Another respondent commented that “It’s a little
hard to summarize what I have done in this commit.” Three re-
spondents identified a second reason why writing the subject of
a commit message is hard, namely, community norms: despite
the size constraints and informative requirements, developers
also need to tailor their subjects to a conventional commit
standard which makes it more difficult. For instance, one re-
spondent highlighted the importance of community norms and
expectations regarding commit messages: “One major issue
with open source projects is the difficulty in unifying and
standardizing commit messages.”

2) What Makes Writing Commit Messages Time-
Consuming?: Since hard things are not always time-
consuming, we also ask developers another question: What
is the most time-consuming part when writing commit
messages? Of the respondents, 37.5% (#27) found that writing
the message subject costs the most time, while 51.4% (#37)
of respondents found the body is the most time-consuming
part of commit messages. Besides, three respondents claimed
that both the subject and body are time-consuming. Among
the five developers who chose the ‘Other’ option, two issues
were mentioned: first, the complexity of a change to code,
and second, the ability to explain things within the scope of a
message to a reviewer, as one respondent explained: “How to
make the reviewer better understand the meaning of this PR
and make it easier to be accepted.”

After analyzing the reasons behind their choices, we found
most respondents, who indicated writing message subjects is
the most time-consuming, gave the same reasons as to why
they consider subjects the hardest part: difficult to create a good
description within a limited space (#9) and community norms
(#1). For example, one developer indicated that:

“To make the subject short, I often go through many
versions until I find a subject that fits.”

Fig. 7. Developers’ view towards the effectiveness of generating commit
message.

These results can be easily inferred, i.e., hard things usually
need more time. Respondents also provided extra reasons for
this choice: two held the view that “most commits don’t need
a body, so subjects take more time in total”; two respon-
dents deem improving the readability of message subjects time-
consuming. As for those who consider writing the message
body to be more time-consuming, the most commonly men-
tioned reason is that the body of a message is longer than
the subject and more details are needed. For example, one
respondent said that:

“It typically requires a detailed explanation of what
changes were made and why. This can involve sum-
marizing the context of the changes, the rationale
behind them, and any potential impact they may
have.”

Four respondents also indicated that making the message
body easy to understand is time-consuming. One interesting
finding is that the majority of developers perceive writing mes-
sage subjects as the hardest while writing message bodies is
the most time-consuming. It means that researchers should
consider generating the body of commit messages for the sake
of improving efficiency.

3) Suggestions for Generating Commit Messages: Cur-
rent learning-based, retrieval-based, hybrid, and even diff pre-
trained approaches can only generate one sentence of less than
30 (or 20) tokens (see Table I) as the commit message for
a given diff, which are usually the commit message subjects.
A complete commit message is expected to contain two parts:
1) explain why made this change, and 2) describe what was
changed [2]. To better understand why some developers find
writing message subjects hard and time-consuming, we asked
developers what they usually write in the subjects. Approxi-
mately 80.6% (#58) of respondents indicated that they usually
describe what was changed in the subject of a commit message.
One acclaimed strength of non-rule-based approaches is that
they can provide the reasons behind code changes [1], [9]. How-
ever, fewer than 20% of developers explain why they made their
change in subjects, and thus evaluating existing retrieval- and
learning-based approaches on message subjects cannot demon-
strate their ability to generate code change reasons.

Next, we asked developers to score the effectiveness of auto-
matically generating message subjects on reducing their burden
during development. We defined a 5-point scale, ranging from
0 (useless) to 4 (very effective); the mid-point (2) indicates
‘neutral.’ As shown in Fig. 7, most developers (n= 27+ 8,
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48.6%) are thinking highly of automatically generating message
subjects. Fourteen respondents held a neutral attitude toward
this task. This indicates that there is considerable interest in
this topic from practitioners, and thus further work in this area
will be very welcome. However, twenty-three developers did
not perceive automatic subject generation as helpful. Combined
with their answers for the hardest and most time-consuming
parts of writing commit messages, one reason might be the fact
that current approaches do not generate a message body that
in their views seems to be in more urgent need of automated
support. This means future approaches will require further so-
phistication before they may be seen as helpful, which may
include the ability to generate longer or even complete commit
messages to fulfill practical requirements.

Finally, we asked respondents to provide further advice
on commit message generation. Their suggestions can be
categorized as follows: 1) Follow common commits message
guidelines for writing generated messages11 (#10); 2) Take
characteristics of different projects into consideration when
generating messages, because message style and background
knowledge can vary among projects (#4); 3) Integrate message
generation approaches with existing development tools (#2); 4)
Link relevant bug tickets / pull requests that provide extensive
information that is useful to generation (#2); and 5) Focus on
the body of commit messages (#1).

Summary for RQ3: Developers indicate that writing the
subject of a commit message is hard, and approximately 37%
of developers also find writing subjects time-consuming.
Nearly half of the respondents hold a positive attitude to-
wards automatically generating message subjects, indicating
that generating commit messages (even just the first sentence
of a message) is of great practical value, but needs to con-
sider generating more complete messages.

D. Performance of LLMs in Generating Realistic Commit
Messages

We now address RQ4, which seeks to explore the per-
formance of LLMs in generating realistic commit messages.
We explore the performance of two representative LLMs,
UniXcoder [45] and ChatGPT [46].

In this study, we employed the pre-trained UniXcoder-base
model and further fine-tuned it for the task of commit message
generation. Specifically, we reused the code, hyperparameters,
and dataset partitioning strategy of the UniXcoder-base model
for the task of code summarization in Java, and replaced the
“code + summary” dataset with the paired data “diff + mes-
sage”, which are selected from the “New Benchmark” meeting
the requirement of diff lengths not exceeding 896.12

For ChatGPT, we randomly selected 1,000 data samples
from the “New Benchmark” for experimentation. Following the

11For example, https://cbea.ms/git-commit/#seven-rules and https://www.
conventionalcommits.org/en/v1.0.0/

12The 1,024 window size of UniXcoder is the sum length of source (i.e.,
896) and target (i.e., 128). It means the maximum length of diff UniXcoder
can handle is 896.

TABLE IX
PERFORMANCE OF LLMS: UNIXCODER AND CHATGPT

UniXcoder [45] ChatGPT [46]
(Diff Lengths < 896) (Diff Lengths < 4,000)*

BLUE 24.24 10.38
ROUGE-L 33.03 13.74
METEOR 14.32 9.19

* This is the maximum diff length in our dataset.

instructions of White et al. [69], we designed the following
prompt: “This is the list of diff(s) for a commit, please generate
the corresponding commit message, and please note providing
the commit message directly without additional statements:
<diff code>”.13 We evaluated the generated messages against
the ground truth using the three metrics introduced in Sec. III-C.

Table IX presents the performance of the two LLMs in
terms of BLEU, ROUGE-L, and METEOR. The performance
of UniXcoder on commits with a diff length of no more than 896
tokens is comparable with NNGen and FIRA but less promising
than CoRec and CCRep on small diffs, i.e., a diff length of no
more than 100 tokens for NNGen, CoRec, and CCRep, and
no more than 200 tokens for FIRA, as shown in the fourth
column in Table V. For example, CCRep achieves a BLEU
score of 37.43 for diffs with lengths in the range of 0-100
tokens, while the BLEU score of UniXcoder is 24.24 with a
diff length constraint of 896 tokens. In a more realistic, we
did not manually control the diff lengths of the commits when
testing ChatGPT, and the evaluation results shown in Table IX
are not ideal. A BLEU score of 10.38 usually indicates the
generated messages are of low quality [10]. Moreover, as shown
in Sec. IV-A2, human evaluation seems to have more restric-
tive standards than quantitative assessment. For example, the
average score of the best-performing approach (i.e., CCRep) for
RQ1 is 1.6, meaning the generated messages have some token
overlap or are somewhat related. Given that the quantitative
evaluation scores of UniXcoder and ChatGPT are lower than
those for CCRep, we can conclude there is much room for
improvement when generating messages for real-world diffs.

We also explored whether LLMs can generate full commit
messages by comparing the length distribution of the ground
truth commit messages and the generated ones; the distributions
are shown in Fig. 8. The results indicate that commit messages
generated by UniXcoder are generally shorter than ground
truth messages, implying their inability to generate realistic
messages. As for the messages generated by ChatGPT, these
tend to be longer than the original (ground truth) ones. After
a manual inspection, we found it predominantly focused on
describing what was changed in the commits in detail, lacking
an explanation of why those changes were made.

13We specify “without additional statements” to prevent the generation of
unrelated content, which would significantly decrease its evaluation score.

https://cbea.ms/git-commit/#seven-rules
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
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Fig. 8. Length distribution of ground truth and two LLMs’ generated commit
messages, excluding outliers for simplicity.

Summary for RQ4: Although LLMs can take larger
diffs as input, their performance of generating messages
leaves much to be improved. UniXcoder tends to generate
short messages, while ChatGPT can generate more detailed
messages, which are very different from those written by
developers.

V. DISCUSSION

We summarize the key findings of this study and suggestions
for future work in Table X. Automated generation of commit
messages is a topic of substantial interest among researchers
and also has practical relevance to software developers given
that these approaches have considerable potential in reducing
developers’ workload. Several approaches to achieve this have
been proposed, which can be organized into four categories
(see Table I). In this article, we have critically reviewed the
performance of four approaches that are representative of the
current state-of-the-art. The results demonstrate that the per-
formance as reported in prior work is based on datasets that
contain noisy data, and are limited in that they contain only
commits with a diff length of up to 100 (or 200) tokens. In this
article, we demonstrate that this has led to an overestimation
of their performance. Our study shows that when more realistic
datasets are used (commits with diffs larger than 100 or 200 to-
kens), without noisy data, the performance of these approaches
degrades significantly. Based on these findings, we argue that
the state-of-the-art approaches are not yet ready for adoption
in the industry.

Several researchers in data-driven software engineering have
pointed out that the appropriate use of data is critical [70], [71],
[72]. For this line of work to be relevant and rigorous, future
work must address these limitations. In this section, we discuss
several implications for future work, after which we discuss the
limitations of this study.

A. Implications

1) Removing Irrelevant Commits: Current commit message
generation approaches are trained and tested with datasets that
contain bot-generated and low-quality messages. Their perfor-
mance decreased after removing these noisy data. We suggest
future work to conduct thorough data cleaning before evalu-
ating their models. For bot-generated messages, we realized
the limitation that the bot list we collected can easily become
outdated. However, several studies are dedicated to automat-
ically identifying bot accounts in OSS repositories, [cf. [14],
[73], [74]]. Future studies can select these bot detectors to clean
their dataset before training and testing their commit message
generation models. For low-quality messages, although there
are automatic classifiers [2], [29] that can be leveraged, their ac-
curacy is around 85% and may be specific to their own manually
labeled datasets. Future studies should manually label a small
set of data and evaluate the usability of the two classifiers first.
Improving the performance of classifying high-quality commit
messages is also an avenue for future research.

2) More Realistic Dataset: The sizes of commits vary
widely; some commits change only a single character, whereas
others capture very extensive changes including adding (or
deleting) files. As mentioned, current datasets used are limited
in the commits they contain, filtering out commits with a diff
size of more than 100 or 200 tokens. After generating a new
dataset according to the same procedures as those used for a
frequently used dataset (see Sec. III-B1), we found that ap-
proximately 95% of commits are larger than 100 tokens, with a
median of 632 tokens. In other words, it is very common in prac-
tice that commits include larger diffs, but current approaches
are not trained or evaluated on these. For example, commit
#ccae978 [75] in the repository spring-data-examples in-
cludes 426 changed files, with 427 additions and 427 deletions.
It is necessary to consider the practicality of generating commit
messages. When testing the four state-of-the-art approaches
with larger commits, their performance significantly decreases.
This indicates that further work is needed to also be able to
handle commits with bigger diffs.

Since the four evaluated approaches in RQ2 can achieve a
relatively promising performance on small diffs, one suggestion
is to shorten the length of long diffs on the basis of token
importance. The importance of tokens can be measured through
Shannon entropy [76], which indicates the richness and impor-
tance of the semantics provided by the token. Then, the top 100
tokens can be selected to build and run the models of message
generation. We also see great potential in the use of LLMs such
as GPT [77], PaLM [78], and LLaMA [79] to build message
generation models, due to their ability to take very long input
strings. This may be one avenue to address the current limitation
of diff lengths. However, the performance of two LLMs we
evaluated to address RQ4 (Unixcoder and ChatGPT) is not as
promising as expected: they either generate short messages or
long-winded change descriptions, failing to convey the rationale
for code changes. Further work still is needed to improve LLMs’
performance in this task.

3) Generating Subjects of Commit Messages: Although a
commit message’s body is often much longer than the subject,
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TABLE X
SUMMARY OF FINDINGS AND IMPLICATIONS

Research Question Summary of Findings Implications

RQ1. To what extent do
noisy messages affect the
performance of existing
automated approaches
for commit message
generation?

The performance of NNGen, CoRec and CCRep
drops significantly both in the 3 key metrics and
human evaluation when ‘noisy’ messages are re-
moved from the datasets. The performance of FIRA
remains stable when evaluated by the metrics but
also declined in the human evaluation.

The performance of state-of-the-art approaches as reported in current
literature is over-estimated; the observed performance degradation
suggests that these approaches are not ready for use in production
settings. Future work should rely on more realistic datasets to evaluate
approaches. Considerable opportunities to investigate how current
approaches can be tailored and customized to understand how they
can be improved for use in practice.

RQ2. Given that a com-
mit’s diff is usually longer
than 100 or 200 to-
kens, is the performance
of existing approaches as
promising when consider-
ing commits that capture
longer code changes?

Prior approaches have been tested with datasets with
commits of up to 100 or 200 tokens. However,
following the same procedures used for the widely-
used J-M dataset, we found that only 5% of commits
have a length of no more than 100 tokens, and the
median diff length is 632 tokens. After testing three
representative approaches on commits with larger
diffs, the performance of these degrades significantly.

Existing commit message generation models do not appear ready to
meet the needs of realistic development scenarios where commits
are frequently over 100 or 200 tokens. Future work should consider
more varied datasets containing commits of a more wide-ranging size
consideration. Given their ability to handle large amounts of text,
large language models and key feature extraction of diffs are worth
investigating (see also RQ4).

RQ3. Do developers think
generating commit mes-
sage subjects is useful?

Writing the subject of a commit message is seen as
the hardest part to write, and in some cases, it may
also be the most time-consuming. 52% of developers
are positive towards automatically generating mes-
sage subjects.

Generating commit messages (even just the first sentence of a mes-
sage) is of great practical value but has a long way to go to meet
practical needs. Future work can be on improving the performance of
generating subjects for commits. Meanwhile, automatically generating
full commit messages is of practical importance and a fruitful avenue
to investigate.

RQ4. What is the perfor-
mance of LLMs in gen-
erating realistic commit
messages?

Although LLMs can take larger diffs as input, there is
a significant gap when leveraging LLMs to generate
messages for real-world code changes.

LLMs cannot be directly used to address the long diff and full
messages challenges faced by the state-of-the-art approaches dedicated
to generating commit messages. Further work is needed to investigate
how to improve the performance of LLMs for this task.

most developers (69.4%) in our survey indicated that writing the
subject is more difficult. This demonstrates the practical value
of having an automated approach that can generate an appropri-
ate subject for a given code change. However, in this study, we
found that current approaches are not capable of fulfilling this
task, because their performance decreases significantly when
noisy data and larger, more realistic commits are excluded from
datasets to train these approaches.

As pointed out repeatedly by both industry developers (see
Sect. IV-C3) and existing research [2], [27], commit mes-
sages may follow some patterns, which are related to project
context, programming languages, maintenance activities, etc.
Besides, the issue reports and pull requests of the correspond-
ing code changes contain effective information for generating
commit messages. Instead of simply taking the commit mes-
sages and diffs as input, we suggest taking project-specific
characteristics, commit types, and other sources of information
into consideration.

4) Non-Code Commits: In practice, many commits include
non-code diffs, e.g., diffs of text files, configuration files, and
data files. Some commit message generation studies excluded
such commits [10], [15]. These commits might be more com-
plex than simple code changes, involving natural language and
implicit context. When handling such diffs containing natural
language, the problem can be viewed as finding synonyms and
generating summaries. A neural machine translation technique
may also work with some adaptations. To capture an implicit
context, we think that there are many implicit conventions
of commit messages that could be collected. For example, if
one commit change removed a series of outdated configuration

properties, then its message can be: “This commit removes the
following outdated properties: <list of removed items>.” Rule-
based methods are good at extracting such patterns and filling in
key information by scanning commit diffs [7]. To summarize,
we suggest a mixed-methods approach to handle different kinds
of commits and different parts of diffs.

B. Threats to Validity

We can identify some threats to the validity of this study.
One potential threat relates to the identification of bot-

generated messages. To identify the messages generated by
bots, we first established an extensive list of known bots through
a detailed systematic literature review (see Sec. III-B3). Once
we identified a list of bots, we could filter out all commits made
by those bots. However, it is possible that we missed some
bot-generated messages, and thus that our ‘New Benchmark’
dataset also contains some bot-generated messages. This, how-
ever, does not affect the validity of our conclusions, because the
goal of the creation of a new benchmark dataset is to demon-
strate a critical shortcoming in the evaluations of the state-of-
the-art approaches to generate messages. If some bot-generated
messages are left in our new dataset, then that would mean that
the shortcoming is even more serious than what we observed.
The goal of the study is not to establish exactly the extent of
the degradation in performance, but only to establish that there
is such a significant drop in performance. A more thorough
data cleaning will be needed if future studies reuse our New
Benchmark dataset because the use of commit bots is increasing
[14]. We also reused a quality-aware classifier to identify trivial
messages without describing the reasons for changes and what
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was changed. The reported accuracy of the classifier we reused
is 85% [2], and thus false positives may be possible. Given
the complexity of defining and identifying trivial messages, we
believe such results are sufficient for our analysis, which was
to empirically reveal the impact of uninformative messages on
the performance of the state-of-the-art in commit message gen-
eration. While not ideal, the incorrect removal of informative
messages (i.e., false positives) would not be overly problematic
given that our dataset is large and the removed non-informative
messages only account for 4.5%.

Another internal threat in our study is the replication of the
four evaluated approaches, i.e., NNGen, CoRec, FIRA, and
CCRep. We carefully read the original papers [1], [9], [10], [63],
focusing on how the original datasets were prepared, and we
reused the implementations of the four evaluated approaches
from their available replication packages. Notwithstanding, it
is not impossible that mistakes were made.

A threat to external validity is that our conclusions are based
on the evaluations of four approaches, but may not hold for
other approaches; as reported, we identified 14 approaches (see
Table I). We selected these four approaches because they rep-
resent the three primary categories of techniques, i.e., retrieval-
based, learning-based, and hybrid models. Previous evaluations
[1], [10] suggest that they represent the state-of-the-art. The se-
lection of UniXcoder and ChatGPT also faces the same issue.

Finally, the findings are based on a dataset that we prepared,
which only includes Java projects hosted on GitHub. This may
influence the generalizability of our findings, because commit
messages are the result of developers’ behavior, and the popula-
tion of developers active on GitHub is not necessarily represen-
tative of all developers worldwide. Further, while Java is one of
the most popular programming languages, and the evaluation of
current approaches to commit message generation is based on
the commit data from Java projects, how they perform in other
programming languages is one potential strand for future work.

VI. CONCLUSION

Commit messages carry important information that is helpful
for developers to understand and improve a code base in soft-
ware development. Several automated generation approaches of
commit messages have been proposed. However, we revealed
three significant shortcomings in the area of commit message
generation: their datasets contain noisy data (commits submit-
ted by bots or with non-informative messages), the datasets are
limited to ‘small’ diffs, i.e. a maximum of 100 (or 200) tokens;
current approaches only generate the message subject, not the
message body. In this study, we first conduct an empirical inves-
tigation on the impacts of these three threats on the state-of-the-
art approaches’ performance using three widely-used metrics:
BLEU, ROUGE-L, and METEOR, and developer survey. In the
last, we explored whether LLMs can address the shortcomings.
The study findings emphasize the necessity of data cleaning
before generating commit messages, convey the extent the state
of the art of generating messages can achieve in a more realistic
scenario, can assist researchers in realizing the needs and expec-
tations of developers towards commit message generation, and

demonstrate considerable work of leveraging LLMs to address
these shortcomings. To facilitate future investigation towards
commit messages, we open the datasets, scripts, survey, and
results in the online appendix [52].

ACKNOWLEDGMENT

The authors thank the open source developers who partici-
pated in our survey.

REFERENCES

[1] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: How far are
we?” in Proc. 33rd ACM/IEEE Int. Conf. Automated Softw. Eng. (ASE),
Montpellier, France. New York, NY, USA: ACM, 2018, pp. 373–384.

[2] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What makes a
good commit message?” in Proc. 44th IEEE/ACM Int. Conf. Softw. Eng.,
Pittsburgh, PA, USA: ACM, 2022.

[3] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “BOA: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proc. Int. Conf. Softw. Eng., Los Alamitos, CA, USA: IEEE Comput.
Soc. Press, 2013, pp. 422–431.

[4] M. Nassif and M. P. Robillard, “Revisiting turnover-induced knowledge
loss in software projects,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evolution, Piscataway, NJ, USA: IEEE Press, 2017, pp. 261–272.

[5] R. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proc. 25th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), New York, NY, USA: ACM, 2010, pp. 33–42.

[6] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“ChangeScribe: A tool for automatically generating commit messages,”
in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol. 2, Piscataway,
NJ, USA: IEEE Press, 2015, pp. 709–712.

[7] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic summarization
of what and why information in source code changes,” in Proc. IEEE
40th Annu. Comput. Softw. Appl. Conf., vol. 1, Piscataway, NJ, USA:
IEEE Press, 2016, pp. 103–112.

[8] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Proc.
32nd IEEE/ACM Int. Conf. Automated Softw. Eng., Piscataway, NJ,
USA: IEEE Press, 2017, pp. 135–146.

[9] H. Wang, X. Xia, D. Lo, Q. He, X. Wang, and J. Grundy, “Context-
aware retrieval-based deep commit message generation,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 4, pp. 1–30, 2021.

[10] J. Dong et al., “FIRA: Fine-grained graph-based code change represen-
tation for automated commit message generation,” in Proc. 44th Int.
Conf. Softw. Eng., 2022, pp. 970–981.

[11] Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo, “Mining
version control system for automatically generating commit comment,”
in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., Piscataway,
NJ, USA: IEEE Press, 2017, pp. 414–423.

[12] W. Tao et al., “A large-scale empirical study of commit message
generation: Models, datasets and evaluation,” Empirical Softw. Eng.,
vol. 27, no. 7, 2022, Art. no. 198.

[13] S. Liu, C. Gao, S. Chen, L. Y. Nie, and Y. Liu, “ATOM: Commit
message generation based on abstract syntax tree and hybrid ranking,”
2019, arXiv:1912.02972.

[14] T. Dey et al., “Detecting and characterizing bots that commit code,” in
Proc. 17th Int. Conf. Mining Softw. Repositories, New York, NY, USA:
ACM, 2020, pp. 209–219.

[15] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in Proc. 28th Int. Joint Conf. Artif.
Intell., 2019, pp. 3975–3981.

[16] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: The Apache server,” in Proc. 22nd Int.
Conf. Softw. Eng., 2000, pp. 263–272.

[17] A. Fan et al., “Large language models for software engineering: Survey
and open problems,” 2023, arXiv:2310.03533.

[18] Z. Liu, Z. Tang, X. Xia, and X. Yang, “CCRep: Learning code change
representations via pre-trained code model and query back,” in Proc.
45th Int. Conf. Softw. Eng., Piscataway, NJ, USA: IEEE Press, 2023,
pp. 17–29.



834 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

[19] B. Lin, S. Wang, Z. Liu, Y. Liu, X. Xia, and X. Mao, “CCT5: A code-
change-oriented pre-trained model,” 2023, arXiv:2305.10785.

[20] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in Proc. IEEE 14th Int. Work. Conf. Source Code
Anal. Manipulation, 2014, pp. 275–284.

[21] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “CC2Vec: Distributed
representations of code changes,” in Proc. ACM/IEEE 42nd Int. Conf.
Softw. Eng., 2020, pp. 518–529.

[22] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,” in
Proc. 55th Annu. Meeting Assoc. Comput. Linguistics (Short Papers),
vol. 2, Vancouver, BC, Canada: Association for Computational Linguis-
tics, 2017, pp. 287–292.

[23] P. Loyola, E. Marrese-Taylor, J. Balazs, Y. Matsuo, and F. Satoh,
“Content aware source code change description generation,” in Proc.
11th Int. Conf. Natural Lang. Gener., 2018, pp. 119–128.

[24] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du, and Y. Qian, “Generating
commit messages from diffs using pointer-generator network,” in Proc.
IEEE/ACM 16th Int. Conf. Mining Softw. Repositories, Piscataway, NJ,
USA: IEEE Press, 2019, pp. 299–309.

[25] L. Y. Nie, C. Gao, Z. Zhong, W. Lam, Y. Liu, and Z. Xu, “CoreGen:
Contextualized code representation learning for commit message gener-
ation,” Neurocomputing, vol. 459, Oct. 2021, pp. 97–107.

[26] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” 2021, arXiv:2109.00859.

[27] J. Dong, Y. Lou, D. Hao, and L. Tan, “Revisiting learning-based commit
message generation,” in Proc. IEEE/ACM 45th Int. Conf. Softw. Eng.,
Piscataway, NJ, USA: IEEE Press, 2023, pp. 794–805.

[28] K. K. Chahal and M. Saini, “Developer dynamics and syntactic quality
of commit messages in OSS projects,” in Proc. IFIP Int. Conf. Open
Source Syst., vol. 525, New York, NY, USA: Springer-Verlag, 2018,
pp. 61–76.

[29] J. Li and I. Ahmed, “Commit message matters: Investigating impact
and evolution of commit message quality,” in Proc. IEEE/ACM 45th
Int. Conf. Softw. Eng., 2023, pp. 806–817.

[30] U. Farooq and J. Grudin, “Human-computer integration,” Interactions,
vol. 23, no. 6, pp. 26–32, 2016.

[31] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2016, pp. 928–931.

[32] L. Erlenhov, F. G. D. O. Neto, and P. Leitner, “An empirical study
of bots in software development: Characteristics and challenges from a
practitioner’s perspective,” in Proc. 28th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 445–455.

[33] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, “RefBot:
Intelligent software refactoring bot,” in Proc. IEEE/ACM Int. Conf.
Automated Softw. Eng., 2019, pp. 823–834.

[34] M. Wyrich and J. Bogner, “Towards an autonomous bot for automatic
source code refactoring,” in Proc. IEEE/ACM 1st Int. Workshop Bots
Softw. Eng., 2019, pp. 24–28.

[35] M. Wessel, I. Steinmacher, I. Wiese, and M. A. Gerosa, “Should I stale
or should I close? An analysis of a bot that closes abandoned issues and
pull requests,” in Proc. IEEE/ACM 1st Int. Workshop Bots Softw. Eng.,
2019, pp. 38–42.

[36] M. Wyrich, R. Ghit, T. Haller, and C. Müller, “Bots don’t mind waiting,
do they? Comparing the interaction with automatically and manually
created pull requests,” in Proc. IEEE/ACM 3rd Int. Workshop Bots Softw.
Eng., 2021, pp. 6–10.

[37] B. Xu, Z. Xing, X. Xia, and D. Lo, “AnswerBot: Automated generation
of answer summary to developers’ technical questions,” in Proc. 32nd
IEEE/ACM Int. Conf. Automated Softw. Eng., 2017, pp. 706–716.

[38] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 481–490.

[39] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in Proc.
IEEE/ACM 37th Int. Conf. Softw. Eng., 2015, pp. 415–425.

[40] X. Wu, W. Zheng, X. Xia, and D. Lo, “Data quality matters: A case
study on data label correctness for security bug report prediction,” IEEE
Trans. Softw. Eng., vol. 48, no. 7, pp. 2541–2556, Jul. 2022.

[41] S. Jiang and C. McMillan, “Towards automatic generation of short
summaries of commits,” in Proc. IEEE/ACM 25th Int. Conf. Program
Comprehension, Piscataway, NJ, USA: IEEE Press, 2017, pp. 320–323.

[42] Y. Chang et al., “A survey on evaluation of large language models,”
2023, arXiv:2307.03109.

[43] X. Hou et al., “Large language models for software engineering:
A systematic literature review,” 2023, arXiv:2308.10620.

[44] I. Ozkaya, “Application of large language models to software engineer-
ing tasks: Opportunities, risks, and implications,” IEEE Softw., vol. 40,
no. 3, pp. 4–8, May/Jun. 2023.

[45] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “UniX-
coder: Unified cross-modal pre-training for code representation,” 2022,
arXiv:2203.03850.

[46] OpenAI, “ChatGPT,” OpenAI, 2022. Accessed: May 20, 2023. [Online].
Available: https://openai.com/blog/chatgpt/

[47] C. D. Manning, Introduction to Information Retrieval. Cambridge, U.K.:
Cambridge Univ. Press & Assessment, 2008.

[48] Z. Feng et al., “CodeBERT: A pre-trained model for programming
and natural languages,” in Proc. Findings Assoc. Comput. Linguistics
(EMNLP). Vancouver, BC, Canada: Association for Computational
Linguistics, 2020, pp. 1536–1547.

[49] W. Jiao, W. Wang, J.-t. Huang, X. Wang, and Z. Tu, “Is ChatGPT a
good translator? A preliminary study,” 2023, arXiv:2301.08745.

[50] N. M. S. Surameery and M. Y. Shakor, “Use Chat GPT to solve
programming bugs,” Int. J. Inf. Technol. Comput. Eng., vol. 3, no. 1,
pp. 17–22, 2023.

[51] B. A. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Tech. Rep.,
version 2.3, 2007. [Online]. Available: https://www.researchgate.net/
profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_
performing_Systematic_Literature_Reviews_in_Software_Engineering/
links/61712932766c4a211c03a6f7/Guidelines-for-performing-
Systematic-Literature-Reviews-in-Software-Engineering.pdf

[52] Y. Zhang et al., “Appendix to ‘automatic commit message gener-
ation: A critical review and directions for future work’,” GitHub,
2023. Accessed: Dec. 25, 2023. [Online]. Available: https://github.com/
qiuzhiqing999/TSE

[53] H. Nikoo, “Writing meaningful commit messages,” DEV Community,
2021. Accessed: Apr. 10, 2023. [Online]. Available: https://dev.to/
yvonnickfrin/a-guide-on-commit-messages-d8n

[54] W. Tao et al., “On the evaluation of commit message generation models:
An experimental study,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evolution, 2021, pp. 126–136.

[55] D. Roy, S. Fakhoury, and V. Arnaoudova, “Reassessing automatic
evaluation metrics for code summarization tasks,” in Proc. 29th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2021,
pp. 1105–1116.

[56] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method
for automatic evaluation of machine translation,” in Proc. 40th Annu.
Meeting Assoc. Comput. Linguistics, 2002, pp. 311–318.

[57] C.-Y. Lin and F. J. Och, “Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics,”
in Proc.42nd Annu. Meeting Assoc. Comput. Linguistics (ACL), 2004,
pp. 605–612.

[58] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments,” in Proc.
ACL Workshop Intrinsic Extrinsic Eval. Measures Mach. Transl. Sum-
marization, 2005, pp. 65–72.

[59] J. T. Liang, T. Zimmermann, and D. Ford, “Understanding skills for
OSS communities on GitHub,” in Proc. 30th ACM Joint Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., New York, NY, USA: ACM, 2022,
pp. 170–182.

[60] Y. Zhang, M. Zhou, K.-J. Stol, J. Wu, and Z. Jin, “How do companies
collaborate in open source ecosystems? An empirical study of open-
stack,” in Proc. Int. Conf. Softw. Eng., New York, NY, USA: ACM,
2020, pp. 1196–1208.

[61] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in Proc. 6th Int.
Workshop Cooperative Human Aspects Softw. Eng., 2013, pp. 89–92.

[62] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557–572,
Jul./Aug. 1999.

[63] Z. Liu, Z. Tang, X. Xia, and X. Yang, “CCRep: Learning code change
representations via pre-trained code model and query back,” 2023,
arXiv:2302.03924.

[64] N. Nachar et al., “The Mann-Whitney U: A test for assessing whether
two independent samples come from the same distribution,” Tut. Quan-
titative Methods Psychol., vol. 4, no. 1, pp. 13–20, 2008.

[65] C. O. Fritz, P. E. Morris, and J. J. Richler, “Effect size estimates: Current
use, calculations, and interpretation,” J. Exp. Psychol. General, vol. 141,
no. 1, pp. 2–18, 2012.

https://openai.com/blog/chatgpt/
https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf
https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf
https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf
https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf
https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf
https://github.com/qiuzhiqing999/TSE
https://github.com/qiuzhiqing999/TSE
https://dev.to/yvonnickfrin/a-guide-on-commit-messages-d8n
https://dev.to/yvonnickfrin/a-guide-on-commit-messages-d8n


ZHANG et al.: AUTOMATIC COMMIT MESSAGE GENERATION 835

[66] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, Mar. 1977.

[67] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

[68] “Commit example,” GitHub. Accessed: Mar. 1, 2023. [Online].
Available: https://github.com/oracle/graal/commit/0258b6f84245fc0f
ca4a952a3003b6dfa56756b3

[69] J. White et al., “A prompt pattern catalog to enhance prompt engineering
with ChatGPT,” 2023, arXiv:2302.11382.

[70] A. Mockus, “Engineering big data solutions,” in Proc. Future Softw.
Eng. (FOSE), Hyderabad, India, J. D. Herbsleb and M. B. Dwyer, Eds.,
New York, NY, USA: ACM, 2014, pp. 85–99.

[71] F. Tu, J. Zhu, Q. Zheng, and M. Zhou, “Be careful of when: An
empirical study on time-related misuse of issue tracking data,” in Proc.
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.
(ESEC/SIGSOFT FSE), Lake Buena Vista, FL, USA. New York, NY,
USA: ACM, 2018, pp. 307–318.

[72] J. Zhu and J. Wei, “An empirical study of multiple names and email
addresses in OSS version control repositories,” in Proc. IEEE/ACM16th
Int. Conf. Mining Softw. Repositories (MSR), Montreal, Canada, M. D.
Storey, B. Adams, and S. Haiduc, Eds., Piscataway, NJ, USA: IEEE
Press, 2019, pp. 409–420.

[73] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth dataset
and classification model for detecting bots in GitHub issue and PR
comments,” J. Syst. Softw., vol. 175, 2021, Art. no. 110911.

[74] M. Golzadeh, D. Legay, A. Decan, and T. Mens, “Bot or not? Detecting
bots in GitHub pull request activity based on comment similarity,”
in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng. Workshops, 2020,
pp. 31–35.

[75] S. Operator, “#491 - url cleanup.” 2019. Available: https://
github.com/spring-projects/spring-data-examples/commit/
ccae97890f85a3eaf8f4e05a1a07696e2b1e78a4

[76] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, pp. 145–151, Jan. 1991.

[77] T. Brown, et al., “Language models are few-shot learners,” in Proc. Adv.
neural Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.

[78] A. Chowdhery et al., “PaLM: Scaling language modeling with path-
ways,” 2022, arXiv:2204.02311.

[79] H. Touvron et al., “LLaM: Open and efficient foundation language
models,” 2023, arXiv:2302.13971.

Yuxia Zhang is currently an Assistant Professor
with the School of Computer Science and Tech-
nology, Beijing Institute of Technology (BIT). Her
research interests include mining software reposito-
ries and open source software ecosystems, mainly
focusing on commercial participation in open-
source.

Zhiqing Qiu received the B.S. degree from the
University of Electronic Science and Technology
of China, in 2022. He is currently working toward
the master’s degree with the School of Computer
Science and Technology, Beijing Institute of Tech-
nology, under the supervision of Dr. Yuxia Zhang.
His research interests include automatic commit
message generation and AI.

Klaas-Jan Stol is a Senior Lecturer with the School
of Computer Science and Information Technology,
and a Funded Investigator with Lero, the SFI
Research Centre for Software, and a Scientific
Advisor with SINTEF. His research interests include
software engineering processes, in particular open
source and inner source, and social processes in
software engineering.

Wenhui Zhu is currently working toward the
bachelor’s degree with the School of Com-
puter Science and Technology, Beijing Institute of
Technology (BIT). Her research interests include
mining software repositories and AI-based software
engineering.

Jiaxin Zhu is an Associate Research Professor
with the Institute of Software, Chinese Academy
of Sciences, and University of Chinese Academy
of Sciences. His research interests include software
artifact management and software measurement,
and a particular research interest include software
porting.

Yingchen Tian received the M.S. degree from
the School of Computer Science and Technology,
Beijing Institute of Technology (BIT), in 2022. He
is with Tmall Technology Co., Zhejiang, China. His
research interests include data mining and analysis.

Hui Liu is a Professor with the School of Com-
puter Science and Technology, Beijing Institute of
Technology, China. He was a Visiting Research
Fellow with CREST, University College London.
His research interests include particularly in soft-
ware refactoring, AI-based software engineering,
and software quality, and also in developing practi-
cal tools to assist software engineers.

https://github.com/oracle/graal/commit/0258b6f84245fc0fca4a952a3003b6dfa56756b3
https://github.com/oracle/graal/commit/0258b6f84245fc0fca4a952a3003b6dfa56756b3
https://github.com/spring-projects/spring-data-examples/commit/ccae97890f85a3eaf8f4e05a1a07696e2b1e78a4
https://github.com/spring-projects/spring-data-examples/commit/ccae97890f85a3eaf8f4e05a1a07696e2b1e78a4
https://github.com/spring-projects/spring-data-examples/commit/ccae97890f85a3eaf8f4e05a1a07696e2b1e78a4


<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <>
		/NOR <>
		/DEU <>
		/CZE <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <>
		/JPN <>
		
		/SUO <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		
		
		/HRV <>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <>
		/POL <>
		
		/SVE <>
		
		/ESP <>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


