
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024 695

Automated Smell Detection and Recommendation
in Natural Language Requirements

Alvaro Veizaga , Seung Yeob Shin , Member, IEEE, and Lionel C. Briand , Fellow, IEEE

Abstract—Requirement specifications are typically written in
natural language (NL) due to its usability across multiple domains
and understandability by all stakeholders. However, unstructured
NL is prone to quality problems (e.g., ambiguity) when writing
requirements, which can result in project failures. To address
this issue, we present a tool, named Paska, that takes as input
any NL requirements, automatically detects quality problems
as smells in the requirements, and offers recommendations to
improve their quality. Our approach relies on natural language
processing (NLP) techniques and a state-of-the-art controlled nat-
ural language (CNL) for requirements (Rimay), to detect smells
and suggest recommendations using patterns defined in Rimay
to improve requirement quality. We evaluated Paska through an
industrial case study in the financial domain involving 13 systems
and 2725 annotated requirements. The results show that our tool
is accurate in detecting smells (89% precision and recall) and
suggesting appropriate Rimay pattern recommendations (96%
precision and 94% recall).

Index Terms—Requirement smells, requirement quality, smell
detection and recommendation, natural language processing, and
controlled natural language.

I. INTRODUCTION

REQUIREMENTS typically drive software development
and are generally expressed using natural language (NL),

which is widely used in many industrial contexts. The cen-
tral role of NL in software requirement specifications (SRSs)
stems from its usability in all application domains and its ease
of understanding by all stakeholders in software development
projects [1]. A study [2] reports that 61% of users prefer to
express requirements using NL. However, despite its popularity,
NL is highly prone to quality problems, such as vagueness,
ambiguity, complexity, and incompleteness [3], [4].

Manuscript received 11 May 2023; revised 24 November 2023; accepted
23 January 2024. Date of publication 1 February 2024; date of current
version 19 April 2024. This work was supported in part by the FNR
of Luxembourg under the BRIDGES Program under Grant BRIDGES18/
IS/13234469/IMoReF, in part by the Science Foundation Ireland under Grant
13/RC/2094-2, and in part by the NSERC of Canada under the Discovery and
CRC Programs. Recommended for acceptance by S. Uchitel. (Corresponding
author: Seung Yeob Shin.)

Alvaro Veizaga and Seung Yeob Shin are with the Interdisciplinary Centre
for Security, Reliability, and Trust (SnT), University of Luxembourg, L-1855
Luxembourg, Luxembourg (e-mail: alvaro.veizaga@uni.lu; seungyeob.shin@
uni.lu).

Lionel C. Briand is with the Lero SFI Centre for Software Research,
University of Limerick, V94 NYD3 Limerick, Ireland and also with the
School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, ON K1N 6N5, Canada (e-mail: lionel.briand@lero.ie).

Digital Object Identifier 10.1109/TSE.2024.3361033

One important cause of project failures in industry is qual-
ity problems in NL requirements [5], [6]. When such prob-
lems are not fixed early during development, they carry over
to subsequent development phases, and fixing them becomes
a costly and time-consuming process. Improving the quality
of NL requirements by identifying quality problems at early
development stages is therefore a pivotal need for successful
software development.

In collaboration with an industrial partner, which provides
post-trade services for various types of financial securities and
develops information systems to support these services, we
noticed elevated costs associated with in-house processes to im-
prove the quality of NL requirements, which typically involve
several manual inspections and are thus prone to errors. A tool
that automatically detects quality problems in NL requirements
and guides analysts to improve the quality of NL requirements
is thus highly desirable.

Various approaches have been proposed to improve the qual-
ity of NL requirements by detecting semantic and syntactic
problems, that are often referred as “smells” [7], [8], [9], [10],
[11]. For example, Femmer et al. [9] introduced Smella, an
automated tool for detecting requirement smells such as am-
biguous adverbs and vague pronouns. Smella relies on part-of-
speech (POS) tagging, dictionaries, and lemmatization. How-
ever, these approaches do not provide recommendations to an-
alysts on how to rewrite requirements in a disciplined man-
ner to improve their quality. Furthermore, existing work [9],
[10], which detects a set of quality problems in a require-
ment, still requires further research to account for many of the
recurrent problems faced by analysts. For example, analysts
sometimes describe multiple functions in a single requirement
(i.e., non-atomic requirement), miss essential words (e.g., ac-
tors and verbs) or even phrases (e.g., system responses), or
write a requirement following an ambiguous structure (e.g.,
a system response between conditions). We note that some
of these quality problems have been studied individually in
many prior works, such as checking the completeness [12],
[13], [14], [15], [16] or ambiguity [11], [17], [18], [19], [20]
of requirements. However, compared to these research strands,
there has been relatively less focus on developing an automated
solution that can both detect and resolve multiple quality prob-
lems in a requirement. Such a solution is needed to provide
a complete picture of the overall requirement quality and thus
enable the proposal of a solution that properly fixes all relevant
problems together.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4538-1471
https://orcid.org/0000-0001-9025-7173
https://orcid.org/0000-0002-1393-1010
mailto:alvaro.veizaga@uni.lu
mailto:seungyeob.shin@uni.lu
mailto:seungyeob.shin@uni.lu
mailto:lionel.briand@lero.ie
https://creativecommons.org/licenses/by/4.0/

696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

To address the challenges stated above, we developed an ap-
proach and tool that addresses common quality problems in NL
requirements. In particular, our work aims at assisting analysts
with automatically detecting quality problems and suggesting
recommendations to fix them in functional requirements. Given
our focus on information systems, a functional requirement
specifies what system response an actor is expected to receive
when providing certain inputs, if certain conditions are met
[21]. We have named our tool Paska, which means “solution” in
Quechua. In this article, the term “smells” refers to these quality
problems in functional requirements that can lead to defects at
different levels of severity. For example, while the use of passive
voice alone in an NL requirement is not necessarily a direct
cause of defects, it can contribute to communication issues
and misunderstandings, which can in turn increase the risk of
defects. To illustrate this point, we present a real-world example
of an NL requirement provided by our industrial partner in the
financial domain, anonymized for confidentiality: “When an
order cancellation message is received then the System_A
GUI must display the field Reason_of_Cancellation”. The
condition of this NL requirement “When an order cancellation
message is received” is in passive voice. In this requirement,
it is difficult for stakeholders to identify the actor receiving the
“order cancellation message”, which can result in defects in
the final product. In a functional requirement, a smell indicates
a problem located in a specific word or segment (i.e., set of
words) that quality analysts should inspect [9]. Paska detects
nine smells that are commonly present in functional require-
ments we analyzed in the financial domain, though they are not
in any way specific to this domain. Most importantly, Paska
also provides suggestions for fixing smells and thus improving
requirement quality.

Contributions. To automatically detect quality problems in
functional requirements and provide concrete improvement rec-
ommendations, our work relies on a state-of-the-art controlled
natural language (CNL) called Rimay [21], which is used to
specify functional requirements for information systems. Ri-
may requires analysts to write requirements in a disciplined
manner using controlled grammar and vocabulary, ensuring
they follow best practices for writing requirements. This re-
sults in writing precise, unambiguous, complete, and atomic
requirements, which in turn enables automated analysis such
as traceability analysis [22] and acceptance criteria generation
[22]. However, defining a language like Rimay is a different
problem than applying it to detect quality problems in non-
compliant requirements and propose recommendations for their
rectification. We first define requirement smells corresponding
to violations of quality attributes, such as completeness, clar-
ity, atomicity, and correctness, which Rimay enforces when
writing requirements. Based on the Rimay grammar, we define
a set of Rimay patterns that capture recommended structures
for expressing requirements. In order to help analysts address
smells in a requirement, Paska then provides Rimay patterns
as suggestions. Analysts can then rewrite these requirements
based on the recommended patterns. Indeed, such patterns in-
dicate what requirement segments are missing, warrant change,

or must be re-ordered. To automate the detection of require-
ment smells and the recommendation of Rimay patterns, Paska
combines natural language processing (NLP) techniques, in-
cluding tokenization, lemmatization, POS tagging, constituency
parsing, glossary search, and Tregex [23]. We note that this
article not only presents an automated method for identifying
a large spectrum of smells but, different from existing work,
also provides automated and accurate guidance on how to
address them.

Our empirical study is guided by the following research
questions (RQs):

RQ1) What are the NL requirement smells commonly
found in the financial domain? We answer RQ1 by identify-
ing nine smells after analyzing a set of 1404 actual requirements
in the financial domain. The smells indicate quality problems
in requirements regarding completeness, clarity, atomicity, and
correctness. Paska is able to detect quality problems in both
individual segments of the requirement (segment level) and in
the requirement as a whole (requirement level).
RQ2) How can smells be detected? We answer RQ2 by
proposing an automated approach that relies on NLP methods
to detect the smells in NL requirements. It combines Tregex
[23] patterns, structural patterns, rules, and glossary search.
RQ3) How can we suggest recommendations to improve
requirement quality? We answer RQ3 by proposing an au-
tomated approach that suggests a suitable Rimay pattern as a
recommendation for an NL requirement with smells. Paska first
analyzes the overall syntax of an NL requirement. According
to this syntax, Paska matches and suggests a suitable Rimay
pattern. Following our suggested patterns increases the chance
of fixing smells.
RQ4) Can Paska accurately indicate the occurrence of
smells? To answer RQ4, we evaluate Paska by measuring the
accuracy of identifying smells. To accomplish this, we con-
ducted a case study using 13 SRSs from financial applications.
We compared our results against a ground truth established
manually by four annotators. Our evaluation results suggest that
Paska accurately detects smells with a precision and a recall
of 89%.
RQ5) How accurate is Paska in recommending require-
ment patterns to fix smells? RQ5 assesses how well Paska
suggests appropriate Rimay patterns to fix smells in NL require-
ments. We compared the performance of Paska against a ground
truth matching requirements with smells and Rimay patterns,
which were manually annotated by four annotators. The results
show that Paska accurately suggests appropriate Rimay patterns
with a precision of 96% and a recall of 94%.

To summarize, the main contributions of this work are (1)
an automated approach that detects smells in SRSs and sug-
gests Rimay patterns to fix these smells and (2) an extensive
industrial case study on smell detection, involving a large set
of 2725 information system requirements from 13 projects in
the financial domain, to assess the accuracy of Paska when
detecting smells and suggesting patterns to fix them. Our in-
dustrial case study is the largest to date regarding requirements
quality assurance.

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 697

Organization. The article is structured as follows: Section II
provides an overview of Rimay. Section IV describes how we
derive smells and Rimay patterns. In Section V, we describe
Paska in detail. Section VI evaluates Paska through an industrial
case study. Section VII examines some issues that impact the
performance of Paska. Sections VIII and IX discuss threats to
the validity of our results and related work. Finally, Section X
concludes this article.

II. CONTROLLED NATURAL LANGUAGE: RIMAY

In this section, we introduce Rimay as our work relies
on it to define smells and patterns (Section IV), as well as
to identify smells and recommend patterns (Section V). Ri-
may is a controlled natural language (CNL) for writing func-
tional requirements in the domain of information systems
[21]. Rimay applies restrictions on vocabulary, grammar, and
semantics of NL to allow analysts to write complete, unambigu-
ous, and precise requirements. Rimay’s main grammar rules
are inspired by the Easy Approach to Requirements Syntax
(EARS) templates [24]. Many practitioners consider EARS as a
good trade-off between flexibility and precision, due to EARS’s
relatively low training overhead and the quality and readability
of the resultant requirements [25]. However, EARS templates,
which consist of predefined sentence structures with general,
coarse-grained concepts and constructs, are not amenable to the
type of analyses enabling task automation because they allow
the introduction of unstructured and ambiguous text. In contrast
to EARS, Rimay provides sentence structures with more spe-
cialized, precise, fine-grained concepts and constructs, enabling
automated analysis such as reconciliation support between
requirement text and models [22] and automated acceptance
criteria generation [22].

Listing 1 shows the rule REQUIREMENT specifying the over-
all syntax of a requirement in Rimay. The rule indicates that
the presence of SCOPE and CONDITION_STRUCTURES is
optional, whereas the presence of ACTOR, MODAL_VERB and
SYSTEM_RESPONSE is mandatory in all requirements. In a
functional requirement, an actor is expected to achieve a system
response under certain conditions. An actor is a role played by
an entity that interacts with the system by exchanging signals,
data, or information [26]. Furthermore, requirements written in
Rimay may have a scope to delimit the effects of the system
response. For simplicity, in this study, we use “system response”
to refer to a phrase consisting of an actor, a modal verb, and a
system response.

The Rimay grammar enables analysts to write a wide vari-
ety of functional requirements while ensuring that they follow
recommended syntactic structures [21]. For example, Listing 2
depicts the grammar rules for scope and condition structures. As
shown in the listing, Rimay’s grammar has some common con-
structs such as MODIFIER (line 1). The construct MODIFIER
includes articles (e.g., “a”, “an”, and “the”) and quantifiers (e.g.,
“each”, “all”, “none”, “only one”, and “any”). The rule SCOPE
(line 1) uses the keyword For, along with the rules MODIFIER
and TEXT.

Listing 1. Overall syntax of a requirement in Rimay.

REQUIREMENT: SCOPE? CONDITION_STRUCTURES? ARTICLE? ACTOR ←↩
MODAL_VERB not? SYSTEM_RESPONSE.

Listing 2. Syntax of scope and condition structures in Rimay.

1 SCOPE: For MODIFIER? TEXT (and MODIFIER? TEXT)?,
2 CONDITION_STRUCTURE: WHILE_STRUCTURE|WHEN_STRUCTURE|←↩

WHERE_STRUCTURE|IF_STRUCTURE|TEMPORAL_STRUCTURE
3 WHILE_STRUCTURE: While PRECONDITION_STRUCTURE
4 WHEN_STRUCTURE: When TRIGGER
5 WHERE_STRUCTURE: Where TEXT
6 IF_STRUCTURE: If PRECONDITION_STRUCTURE|TRIGGER
7 TEMPORAL_STRUCTURE: (Before|After|Every) TEXT
8 CONDITION_STRUCTURES: CONDITION_STRUCTURE ((,|and|or←↩

|,or|,and) CONDITION_STRUCTURE)*, then?

The rule CONDITION_STRUCTURE (line 2 of Listing 2)
defines different ways to use system states, trigger events, and
features to express conditions. In a functional requirement,
such conditions must hold for the system response to be trig-
gered. Furthermore, listing 2 (lines 3-7) shows the rules for
the following condition structures: WHILE, WHEN, WHERE, IF,
and TEMPORAL structures. The WHILE_STRUCTURE is used
for system responses that are triggered while the system is in
one or more specific states. The WHEN_STRUCTURE is used
when a specific triggering event is detected in the system. The
WHERE_STRUCTURE is used for system responses that are
triggered only when the system includes particular features.
These features are described in free form using the rule TEXT.
While Rimay provides fine-grained constructs, it still includes
the rule TEXT to handle situations where the use of free text
is necessary or desirable. The IF_STRUCTURE is used when
a specific triggering event happens, or when the system is in
a particular state before triggering any system responses. The
TEMPORAL_STRUCTURE is used when the system responses
are triggered before or after an event. Line 8 of Listing 2 shows
the rule CONDITION_STRUCTURES that enables the creation
of a condition composed of two or more of the conditions
mentioned above (lines 3-7).

Table I lists Rimay examples of requirement conditions,
i.e., WHEN_STRUCTURE, TEMPORAL_STRUCTURE, and
IF_STRUCTURE, as well as SYSTEM_RESPONSE. Note
that these examples are independent from one another. The
WHEN_STRUCTURE and TEMPORAL_STRUCTURE examples
capture the events that trigger system responses, whereas the
IF_STRUCTURE example specifies a precondition required
for system responses. The SYSTEM_RESPONSE example
specifies the action a user must take.

Thanks to its restrictions on vocabulary, grammar, and
semantics of NL, Rimay allows analysts to write functional
requirements that satisfy the following quality attributes: com-
pleteness, clarity, atomicity, and correctness. Completeness
refers to the inclusion of all the information required for the
requirement to be complete. Rimay achieves completeness by
having mandatory constructs that ensure the presence of certain
contents. Note that any omission of these constructs will result

698 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE I
EXAMPLES OF WHEN, TEMPORAL, AND IF CONDITIONS, AS WELL AS A SYSTEM RESPONSE WRITTEN IN RIMAY

Rimay syntax Rimay example

WHEN_STRUCTURE When System-B receives an "email alert" from System-A
TEMPORAL_STRUCTURE Before System-A sends an "Instruction" to System-B
IF_STRUCTURE If an "Instruction" contains a "Keyword"
SYSTEM_RESPONSE The User must upload the "excel file" to System-A

in syntax errors in a Rimay requirement, making it syntactically
incomplete. For example, Rimay does not allow analysts to
write a requirement without a system response. Such a re-
quirement is thus syntactically incomplete in Rimay. Clarity
refers to the usage of structures, phrases, and words that are
free of ambiguity. Rimay achieves clarity by providing a set of
predefined structures and restricted vocabulary. Atomicity refers
to ensuring that an NL requirement describes a single system
function. Rimay enforces that a requirement does not have more
than one system response. Correctness refers to the proper use
of Rimay’s syntax, i.e., the correct arrangements of words and
phrases. For example, Rimay does not allow the use of modal
verbs in conditions.

We note that these quality attributes, particularly complete-
ness and clarity, align with those prominently studied in the lit-
erature [27], indicating they correspond to commonly observed
quality issues in requirements engineering. Specifically, the
completeness of a functional requirement in Rimay (thereafter
a Rimay requirement) is based on prior studies [9], [10] on
the internal completeness [28] of a requirement, which con-
cerns the self-containment of a requirement. The clarity of a
Rimay requirement is related to research strands [19], [20] on
analyzing requirement ambiguities. We further discuss these
research contributions in Section IX. Regarding the atomicity
of a Rimay requirement, it contributes to improving the other
quality attributes, such as clarity and verifiability. For example,
a Rimay requirement, precisely describing a single system func-
tion, allows for the automatic generation of acceptance criteria
for the system function [21], [22]. This, in turn, enhances the
traceability between a functional requirement in Rimay and its
associated acceptance criteria. However, the correctness of a
Rimay requirement, in this article, is different from the notion
of correctness in existing works [29], which concerns whether a
requirement accurately captures users’ needs. In our context, as
described earlier, the correctness of a Rimay requirement per-
tains to the correct arrangements of words and phrases defined
in the Rimay rules. Such correct arrangements of words and
phrases enable analysts to write requirements in a consistent
and unambiguous manner.

Rimay is implemented as an add-on editor for Sparx En-
terprise Architect [30] with the following features: (a) syntax
highlighting to color requirements and format them with differ-
ent visual styles according to the elements of Rimay, (b) error
marking to automatically highlight the parts of the requirements
indicating errors, and (c) content assisting to automatically, or
on request, provide suggestions to analysts on how to complete
the statement based on the grammar rules.

III. INDUSTRIAL PARTNER AND DATA COLLECTION

We conducted this study in collaboration with an industrial
partner, who provided the actual requirements for this study and
gave feedback while developing Paska. Below, we provide more
details about the context of our study and the dataset obtained
from our industrial partner.

A. Industrial Partner

Our industrial partner is a leading financial company that
provides post-trade services for various types of financial se-
curities and develops information systems to support these ser-
vices, serving 2500 customers in 110 countries. Specifically,
our collaboration was with their specialized financial services
division. This division is responsible for several tasks, including
the development of new financial applications, the maintenance
of existing ones, and the enhancement of applications using
advanced technologies. Their goal is to provide clients with
cutting-edge solutions while ensuring compliance with current
regulations. The teams within the division cover project man-
agement, service operations, development, testing, and require-
ments analysis.

The company employs a methodology rooted in best prac-
tices and years of experience for the tasks mentioned above.
For example, financial analysts use natural language (NL) com-
bined with Unified Modeling Language (UML) models to spec-
ify requirements. Their textual NL requirements, written in
English, aim to adhere to the Rupp template [31]. The com-
pany follows a carefully planned software development process
grounded in the V-Model [32], tailored for stringently regulated
industries such as finance.

We note that the first author was already familiar with the
development process, including requirements engineering, of
the company, before starting this work, through participating
in training sessions and attending numerous meetings. In addi-
tion, all the authors of this article interacted with the industrial
partner during the project period through regular bi-weekly
meetings and additional meetings as needed to obtain feedback
on our progress in defining the problem and developing Paska.
For the meetings, the number of industry participants varied
between one and five, depending on their availability and in-
terests. They collectively have over 50 years of industry expe-
rience with significant expertise in business analysis, functional
design, project management, and requirements engineering.

The research team of this article collaborated with the com-
pany for approximately 1.5 years. Our collaboration covered
defining the problem this work addresses, identifying smells
in requirements, defining Rimay patterns, and developing an

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 699

TABLE II
DISTRIBUTION OF ACTUAL REQUIREMENTS RECEIVED FROM OUR

INDUSTRIAL PARTNER

Subset SRS ID # Requirements # Words

SD

SRS1 192 6363
SRS2 188 7462
SRS3 118 5699
SRS4 161 7925
SRS5 451 22057
SRS6 294 14573

SE

SRS7 367 9512
SRS8 90 3573
SRS9 167 6211

SRS10 192 8892
SRS11 19 331
SRS12 340 15448
SRS13 146 7539

Total 2725 115585

automated approach for smell detection and pattern recommen-
dation. Hence, our work was motivated by practitioners’ needs
and was validated in a practical context. However, given its
scale, the evaluation of the Paska prototype was completed
after the project ended, including data annotation, implemen-
tation, and evaluation. Since Paska is an automated analysis
tool, which does not require human intervention, we were able
to successfully evaluate Paska without significant involvement
from our industrial partner.

B. Data Collection

To conduct this study, we first collected actual NL require-
ments from our industrial partner. Financial analysts provided
us with a set of 13 representative SRSs, written by different an-
alysts and containing various numbers of requirements. These
SRSs describe various types of projects, including functional
updates to existing applications, making existing applications
compliant with new regulations, creating new applications from
scratch, and the migration of existing applications to new plat-
forms. We refer to these SRSs as SRS1-SRS13, belonging to set
S. They contain 2725 requirements in total, which makes this
industrial case study the largest to date regarding requirements
quality assurance.

Table II shows the distribution of requirements, along with
the total word count, across SRSs. We randomly split the set
S of 2725 requirements into two subsets SD and SE , contain-
ing 1404 and 1321 requirements, respectively. The subset SD

contains SRSs SRS1-SRS6 and was used for developing Paska
(see Sections IV and V). The subset SE contains SRSs SRS7-
SRS13 and was used for evaluating Paska (see Section VI).

IV. REQUIREMENTS SMELLS AND RIMAY PATTERNS

This section describes the process we conducted to derive
requirements smells and patterns from NL requirements and the
Rimay language. We define a catalog of smells that identify the
syntactic and semantic errors commonly found in NL require-
ments. In addition, we introduce Rimay patterns that describe
predefined structures for high-quality requirements expressed in

Rimay. These patterns will be used as suggestions for analysts
to rewrite requirements containing smells, thereby improving
the quality of the requirements.

A. Requirements Smells

This section aims to answer RQ1: What are the NL re-
quirement smells commonly found in the financial domain?
For RQ1, we inspected a set SD of 1404 NL requirements,
which were written by different analysts across six financial
systems, as described in Section III-B. In order to review the
requirements in a consistent manner, we used the quality at-
tributes enforced by Rimay as our review criteria. These criteria
enabled us to identify requirements that have quality problems
with respect to completeness, clarity, atomicity, and correctness.
In this article, the term “requirement smell” refers to these
quality problems in functional requirements that may lead to
misunderstandings, which can, in turn, increase the risk of
defects in the product. We note that there are existing collections
of requirement smells reported in prior work [9], [10], which are
further discussed in Section IX. Drawing upon these works, we
cross-referenced our findings with these existing smell collec-
tion. In our context, for the reasons mentioned above, we apply
Rimay to support a practical solution to detect a large variety of
common smells and rectify them. Hence, we chose to inspect
the 1404 NL requirements using the quality attributes enforced
by Rimay.

In our inspection process, the first author of this article
manually reviewed the requirements to uncover a list of those
that violate the quality attributes and to define a catalog of
smells. We note that this author has extensive expertise and
practical experience in Rimay from defining the language to
(re)writing requirements in it, as presented in the author’s pre-
vious work [21]. Given this background, the author was ideally
suited to review the requirements and pinpoint violations of the
quality attributes that Rimay enforces. We randomly divided
the set SD of 1404 requirements into six distinct subsets for
incremental inspection. Specifically, SD

1 contains 35% of SD,
and each SD

i contains 13% of SD, where i ∈ {2, . . . , 6}. We
then sequentially inspected each subset of requirements in the
order SD

1 , SD
2 , . . ., SD

6 . During each inspection, we identified
requirements that violate the quality attributes and characterized
these violations as requirement smells. For example, if an in-
spected requirement had multiple actions in its system response,
we identified it as violating atomicity and characterized the
violation as the non-atomic requirement smell. After inspect-
ing each subset of requirements, we obtained feedback from
our industrial partner to validate that the catalog of smells we
defined aligns with common errors frequently made by analysts
when writing NL requirements. In addition to such feedback,
the other authors closely monitored progress through regular
meetings. The catalog of smells was thus continuously refined
and expanded throughout the inspection process.

We applied the notion of saturation [33] to determine when
to stop the inspection process. Saturation occurs when no new
information can be gained from the data being analyzed. We
continued the inspection process as long as we detected any

700 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE III
CATALOG OF NINE SMELLS. THE EXAMPLES IN THIS TABLE ARE DERIVED FROM THE ACTUAL REQUIREMENTS USED IN OUR CASE STUDY BUT ARE

ANONYMIZED FOR CONFIDENTIALITY

Smell Name (D) Description and (E) Example Quality Attribute

Non-atomic require-
ment

(D) Non-atomic requirement refers to a requirement that has more than one action in the system
response. (E) “System-A must add System-B to their downstream systems and allow System-C to
subscribe to the Reporting flow.”

Atomicity

Incomplete
requirement

(D) Incomplete requirement refers to a requirement that does not have a system response but has other
optional segments, i.e., condition and scope. (E) “When System-A receives a message from Security
Manager and if the message is part of the B-file, according to the mapping rules.”

Completeness

Incorrect order re-
quirement

(D) Incorrect order requirement refers to a requirement that its condition segment is located after its
system response. This arrangement of requirement segments may lead to a vague interpretation of the
condition. (E) “When the user is on the Utilities page and the user clicks on the button “Display on
main page”, System-A must open the Alert section when the user launches System-A.”

Correctness

Coordination ambi-
guity

(D) Coordination ambiguity refers to a requirement that has two or more conditions and these
conditions are connected by a coordinated conjunction “or”. (E) “When System-A performs eligibility
check for a participant or if the holding type is complex or if the holding type is simple and the
F-value is Prime, then System-B must...”

Clarity

Not requirement (D) Not requirement refers to a statement that does not contain any requirement segment, i.e., scope,
condition, and system response. (E) “The R6 instruction defines the original instruction.”

Correctness

Incomplete
condition

(D) Incomplete condition indicates a condition that lacks either actor or verb. (E) “Upon receipt of a
message in the message Queue, System-A must set the state to unprocessed.”

Completeness

Incomplete system
response

(D) Incomplete system response refers to a system response that lacks either an actor, a modal verb,
or a verb. (E) “When the user clicks on the Filter button, System-A opens the Filter screen.”

Completeness

Passive voice (D) Passive voice indicates that the condition or system response in a requirement is described in the
passive voice. Such requirements likely miss actors. (E) “When a rejection order is received for a
cancellation request, System-A must raise a web alert.”

Completeness

Not precise verb (D) Not precise verb refers to a verb used in the condition or system response in a requirement
that is not precise enough. Such a verb does not define a precise action. The list of our not precise
verbs includes: “accomplish”, “account”, “come”, “consider”, “default”, “define”, “do”, “get”, “make”,
“perform”, “process”, “propose”, “raise”, “read”, “support”, and “want”. This list is curated by the
analysts at our industrial partner. (E) “System-A must be able to process System-B’s instructions with
input media INPUT.”

Clarity

instances of new smells that were not already listed in our smell
catalog. From this process, we defined a catalog of nine smells:
non-atomic requirement, incomplete requirement, incorrect or-
der requirement, coordination ambiguity, not requirement, in-
complete condition, incomplete system response, passive voice,
and not precise verb. Table III lists the nine smells. The first
column shows the smell names, and the second column provides
the smell descriptions and examples. We note that the examples
listed in this table are derived from the actual requirements
used in our case study. However, they are sanitized for confi-
dentiality. The third column indicates the quality attribute that
each smell violates. What is noteworthy from the nine smells
we identified is that they seem rather generic and probably
applicable to information systems in other domains.

The answer to RQ1 is that, based on our inspection,
the following NL requirement smells are commonly found
in the financial domain: non-atomic requirement, incom-
plete requirement, incorrect order requirement, coordination
ambiguity, not requirement, incomplete condition, incom-
plete system response, passive voice, and not precise verb.
These smells violate atomicity, completeness, correctness,
and clarity of NL requirements. None of these smells appears
to be specific to the financial domain.

B. Rimay Patterns

This section describes the process conducted to derive re-
quirements patterns from the Rimay language. These patterns

describe predefined structures of Rimay concepts. As we de-
scribe in Section II, Rimay provides specialized concepts and
constructs to specify functional requirements. However, Rimay
does not provide patterns that guide analysts on how to rewrite
a requirement with smells.

To derive the Rimay patterns, we first created a conceptual
model for capturing the concepts and their relations underlying
the Rimay language. Fig. 1 shows the conceptual model of
Rimay. The model captures five concepts to define “Require-
ment” as follows: “Scope”, “Condition_Structure”, “Actor”,
“Modal_Verb”, and “Action_Phrase”. “Condition_Structure”
is further specialized into five concepts: “While_Structure”,
“If_Structure”, “When_Structure”, “Where_Structure”, and
“Temporal_Structure”. Rimay restricts the ways in which these
conditions can be expressed. For example, “While_Structure”
can be used for system responses that are triggered while
the system is in a particular state (see the relation between
“While_Structure” and “Precondition” in Fig. 1). The con-
cept “Action_Phrase” is specialized into 58 concepts (e.g.,
“ADMIT_65” and “BEG_58_2”) that correspond to the gram-
mar rule names defined in Rimay [21]. Note that the grammar
rules of the “Action_Phrase” concept describe the syntactic
structure and vocabulary allowed. Fig. 1 shows only a few
concepts for “Action_Phrase”.

Table IV presents examples of Rimay action phrases corre-
sponding to the concepts that specialize the “Action_Phrase”
concept in Fig. 1. For example, “BEG_58_2” restricts the
usage of the word “request” in expressing an action phrase.

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 701

Fig. 1. Rimay conceptual model.

TABLE IV
CONCEPTS OF ACTION PHRASES (SHOWN IN FIGURE 1) AND THEIR RIMAY EXAMPLES (EXCERPTED FROM THE PREVIOUS WORK ON RIMAY [21])

Concept Example: Rimay Action Phrase

ADMIT_65 exclude the "Gregorian dates that are not business days" in the System based on "the ←↩
relevant calendar"

BEG_58_2 request the System to "cancel the settlement" by using the "Order Reference"
BEGIN_55_1 start the "calculation of the next NAV date on daily basis"
OBTAIN_13_5_2 receive a DA_file from CFCL_IT
REMOVE_10_1 delete the "DECU field" from the "Settlement Parties block"

Specifically, the Rimay syntax of “BEG_58_2” restricts that
“request” can be followed by an optional modifier, a mandatory
actor, an optional “for” or “to” phrase, and an optional “by us-
ing” phrase, in this specific order. The example request the
System to "cancel the settlement" by using
the "Order Reference" follows the Rimay syntax. We
note that the exact Rimay syntax for action phrases, along with
examples of Rimay action phrases, is provided in the previous
work on Rimay [21].

To identify Rimay patterns, we utilized both the Rimay con-
ceptual model (Fig. 1) and grammar. We traversed the syntax
tree of the grammar to derive possible combinations of Rimay
concepts. In Rimay, a functional requirement is composed of
scope, condition, and system response segments. These seg-
ments correspond to the “Scope”, “Condition_Structure”, and
“Action_Phrase” concepts, respectively, as shown in Fig. 1. Ac-
cording to the Rimay grammar (see Listing 1), the scope, condi-
tion, and system response segments of a functional requirement

must appear in that specific order. In addition, Rimay specifies
that the scope and condition segments are optional in a Rimay
requirement, while the system response segment is manda-
tory. Regarding the condition segment in a Rimay requirement,
analysts can express the following three condition concepts:
“Precondition”, “Trigger”, and “Temporal_Structure”. These
concepts respectively correspond to a condition in which the
requirement can be invoked (“Precondition”), an event that
initiates the requirement (“Trigger”), and a temporal event
that occurs either before or after the requirement’s invoca-
tion (“Time_Adverb”). Furthermore, Rimay allows a condi-
tion segment to specify multiple conditions. Hence, in Ri-
may, analysts have the flexibility to specify a condition seg-
ment as either a precondition, a trigger condition, a time
condition, or a combination of these, referred to as multi-
ple conditions. Since Rimay provides analysts with 2 options
for scope (i.e., inclusion and exclusion), 5 options for con-
dition (i.e., inclusion — precondition, trigger condition, time

702 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE V
RIMAY PATTERNS

Pattern Name Rimay Pattern Mapping to Conceptual Model

1. Scope and system response For each|all|... "Text" ,|then the? Actor must ←↩
<Action> (every "Text")?.

Scope, Actor, Modal_Verb,
and Action_Phrase

2. Scope, condition (precondition),
and system response

For each|all|... "Text", if <Property> is equal ←↩
to | is less or equal to |... "Value" ,|then ←↩
the? Actor must <Action> (every "Text")?.

Scope, Precondition, Actor,
Modal_Verb, and Action_Phrase

3. Scope, condition (trigger), and
system response

For each|all|... "Text", when the? Actor ←↩
<Action> (every "Frequency")?,|then the? Actor ←↩
must <Action> (every "Text")?.

Scope, Trigger, Actor,
Modal_Verb, and Action_Phrase

4. Scope, condition (time), and
system response

For each|all|... "Text", after|before "Text" ←↩
,|then the? Actor must <Action> (every "Text")?.

Scope, Time_Adverb, Actor,
Modal_Verb, and Action_Phrase

5. System response The? Actor must <Action> (every "Text")?. Actor, Modal_Verb,
and Action_Phrase

6. Condition (precondition) and sys-
tem response

If <Property> is equal to | is less or equal ←↩
to |... "Value" ,|then the? Actor must <Action> ←↩
(every "Text")?.

Precondition, Actor, Modal_Verb,
and Action_Phrase

7. Condition (trigger) and
system response

When the? Actor <Action> (every "Frequency")? ←↩
,|then the? Actor must <Action> (every "Text")?.

Trigger, Actor, Modal_Verb,
and Action_Phrase

8. Condition (time) and
system response

After|Before "Text" ,|then the? Actor must ←↩
<Action> (every "Text")?.

Time_Adverb, Actor,
Modal_Verb, and Action_Phrase

9. Scope, multiple conditions, and
system response

For each|all|... "Text", if <Property> is equal ←↩
to | is less or equal to |... "Value" ,|and ←↩
when the? Actor <Action> (every "Frequency")? ←↩
,|then the? Actor must <Action> (every "Text")?.

Scope, Condition Structure (two or
more), Actor, Modal_Verb,
and Action_Phrase

10. Multiple conditions and
system response

If <Property> is equal to | is less or
equal to |... "Value" ,|and when the? Actor ←↩
<Action> (every "Frequency"),|then the? Actor ←↩
must <Action> (every "Text")?.

Condition Structure (two or more),
Actor, Modal_Verb,
and Action_Phrase

Fig. 2. Approach overview.

condition, and multiple conditions — and exclusion), and 1
option for system response (i.e., inclusion), a Rimay require-
ment can be classified into 10 distinct patterns, as shown
in Table V.

Table V outlines the 10 Rimay patterns derived by combining
the concepts captured in the conceptual model of Rimay. The
first column shows the pattern names. The second column spec-
ifies the pattern in the Rimay syntax. Finally, the third column
indicates the combination of the Rimay concepts used to derive
the pattern. Table V does not include all the keywords defined in
Rimay and does not include the templates for Action_Phrases.
We refer interested readers to our previous work on Rimay [21]
for a complete reference to the concepts and constructs of the
Rimay language.

The derived patterns will be used by Paska to provide sugges-
tions to analysts when Paska detects any smells (see Table III)
in NL requirements. The patterns, as guidance, are intended to
help analysts rewrite the NL requirements in Rimay to improve
their quality. Indeed, such patterns indicate what requirement
segments are missing, warrant change, or must be re-ordered.

Recall that Rimay allows analysts to write requirements that
satisfy the following quality attributes: completeness, clarity,
correctness, and atomicity. Since Paska detects requirement
smells that violate these quality attributes, proposing appro-
priate Rimay patterns will assist analysts in addressing the
identified smells in NL requirements. We note, however, that
Paska is not designed to automatically rewrite NL requirements
in Rimay to rectify any smells. Such automatic translation is
probably not possible in general as it would require automated
additions of missing segments or changes, which we leave out
of the scope of this study.

V. APPROACH

Fig. 2 provides an overview of the four steps of Paska. The
inputs are (1) software requirements specifications (SRSs) that
contain a set of functional requirements, (2) Rimay patterns
(Section IV-B), and (3) the catalog of nine smells commonly
found in NL requirements (Section IV-A).

As shown in Fig. 2, in Step 1, Paska applies preprocessing
steps to the NL requirements extracted from the SRSs. In Step

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 703

Fig. 3. Examples illustrating smell detection and Rimay pattern suggestions.

2, requirements are separated into segments (e.g., scope, con-
dition, and system response), relying on patterns and a seg-
ment splitter. The patterns are written using Tregex, which is

a language for defining patterns in text syntax trees. In Step 3,
Paska detects smells in NL requirements by applying several
techniques, such as Tregex patterns, structural patterns, rules,

704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

and glossary search. In our context, a structural pattern refers
to a pattern that checks the sequence of words in a requirement.
Finally, in Step 4, Paska suggests a pattern for analysts to fix
the NL requirements with smells and convert them into Rimay.
Rimay helps reduce the risk of having quality problems in
requirements since it has precise syntax and semantics. In this
section, we describe in detail all the steps of Paska using the
running example shown in Fig. 3.

A. Step 1: Preprocess Requirements

We apply a set of preprocessing steps to the NL requirements
extracted from SRSs, including tokenization (dividing the text
of the requirement into tokens, such as punctuation marks and
words), post-tagging (assigning part of speech tags to tokens,
such as pronouns, verbs, and adjectives), and constituency pars-
ing (a process that identifies the structural units of sentences,
e.g., clause, noun phrase, verb phrase). We also remove sin-
gle and double quotes but keep the metadata in requirements
(i.e., the MS Word metadata in our case study). Such metadata
includes line breaks and bullet points and are, in our context,
useful for detecting multiple conditions and system responses.
Fig. 3 (Step 1) shows an example of a preprocessed require-
ment. Paska removes the double quotes since we observe that
single and double quotation marks prevent us from correctly
identifying the structural units of the sentences when using a
constituency parsing algorithm (e.g., AllenNLP [34]).

B. Step 2: Separate Requirement Into Segments

This step automatically separates an NL requirement into
segments (e.g., scope, condition, and system response) to (1)
analyze each segment of the requirement independently with
the purpose of finding smells (Step 3 of Fig. 2) and (2) deter-
mine the overall syntax of the requirements with the purpose
of suggesting a precise Rimay pattern (Step 4 of Fig. 2). We
create an automated procedure to separate a requirement into
segments using the following methods: (1) Tregex patterns and
(2) segment splitters.

Tregex patterns. The Tregex query language allows users
to define regular expression-like patterns in tree structures [23].
Tregex is designed to define patterns that involve the tree nodes
and the hierarchical relations among the tree nodes in the syntax
tree of a requirement. To separate a requirement into segments,
we created a set of patterns using Tregex. In our context, a
Tregex pattern matches a specific structure of the constituency
structure of a requirement. The constituency structures of the
requirements are obtained in Step 1 (Section V-A).

To create Tregex patterns, we analyzed the syntax of 1404 re-
quirements that are identical to the requirements used in Section
IV-A. The process to derive the patterns is as follows: (1) We
group the requirements that have the same segments. A segment
could be a scope, condition, and system response. (2) We ana-
lyze the constituency structures of the segments of each group.
(3) We derive Tregex patterns that match the constituency struc-
ture of the segments of each group. (4) We analyze all patterns
matching the same segment across all groups, attempting to

refine and merge them, if possible. If not, a segment may have
more than one pattern.

Table VI presents the 11 Tregex patterns that we derived after
following the process described above. In total, we derived two
patterns that detect scope (see SC1 and SC2 in Table VI), eight
patterns that detect conditions (C1–C8), and one pattern that
detects system response (SR1). In the table, for each Tregex
pattern, there is an example requirement containing the segment
matched by the pattern. The segment is emphasized in italic.

Fig. 4 shows an example of the usage of the pattern C3 (see
Table VI) to extract the condition of requirement R from the
corresponding constituency parsing tree. The requirement has
a scope (“For all depositories”), a condition (“when System-
A receives an email alert from System-B”), and a system
response (“System-A must create an MT530_ transaction”).
We note that some concepts of requirement R are anonymized
to comply with the confidentiality agreement with our industrial
partner. The condition is composed of a subordinate conjunction
(WHADVP: “when”), a noun phrase (NP: “System-A”), and a
verb phrase (VP: “receives an email alert from System-B”). As
shown in Fig. 4 (highlighted in the colored boxes), the pattern
C3 identifies a subordinate clause (SBAR) that is the parent
(<) of a Wh-adverb phrase (WHADVP), which is the immediate
left sister ($+) of a clause (S). Clause (S) is the parent (<) of
a noun phrase (NP), which is the left sister ($++) of a verb
phrase (VP).

Segment splitter. We propose a segment splitter that at-
tempts to separate requirements into segments (e.g., scope,
condition, and system response). The segment splitter is only
used when all the Tregex patterns fail to identify segments in
a requirement. We note that such failures can be caused by
a malformed constituency parsing tree that incorrectly iden-
tifies the structural units of a requirement or a requirement
structure that was not observed during the creation of the
Tregex patterns.

To create our segment splitter, we first collect the keywords
that characterize the beginning of each segment in a require-
ment. These keywords include (1) for the condition: “when”,
“if”, “where”, “while”, and “until”, (2) for the scope: “for”, and
(3) for the system response: “then”, (line break), “;”, “else”, and
“otherwise”. We identified these keywords based on both the
Rimay grammar and the requirements inspected when deriv-
ing our catalog of requirements smells (see Section IV-A). In
general, such an analysis method that relies on keywords has
limitations in terms of exhaustiveness. When needed, however,
extending our set of keywords is very straightforward.

Our segment splitter splits the requirement into segments
by detecting the above keywords in the requirements and then
validates each segment. A segment is considered valid if it has
the mandatory information content (e.g., actor, modal verb, and
verb in a system response). Table VII shows the mandatory
information content that each segment should have to be con-
sidered valid.

Finally, when segments do not comply with their mandatory
information contents, Paska labels them as “Not Matched”.
These segments will be further analyzed to detect smells in
Step 3 (Section V-C).

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 705

TABLE VI
TREGEX PATTERNS TO IDENTIFY SEGMENTS IN REQUIREMENTS. THE EXAMPLES IN THIS TABLE ARE DERIVED FROM THE ACTUAL REQUIREMENTS USED IN

OUR CASE STUDY BUT ARE ANONYMIZED FOR CONFIDENTIALITY

ID Segment Tregex Pattern Example

SC1 Scope (PP < ((IN < For) $+ NP)) > (S < (/(RB | , | ADVP)/ $+
(NP $+ VP)))

For all the depositories, System-A must create a T30 transac-
tion processing command.

SC2 Scope ((PP < ((IN < For) $+ NP)) [>- ((VP < MD) $- NP)] &!>>
PP)

System-A must create an instruction with the the remote code
value “B” for each settlement request.

C1 Condition WHADVP $+ (S <, (S < (NP $+ VP)))) > SBAR &!» VP When System-A creates one of the following reports: list, list
with Beta, System-A must populate the field “A” in the report.

C2 Condition ((IN < once) $+ (S < (NP $+ VP))) [> SBAR | > S] & >
!VP

Once System-A has successfully validated a settlement request,
System-A must send an acknowledge message to System-B.

C3 Condition SBAR < (WHADVP $+ S < (NP $++ VP)) System-A must send a settlement request to System-B when
the contract note has been received from System-C.

C4 Condition (WHADVP $+ (S < (NP $+ VP)) !» /(VP | SBAR)/) When the fund frequency in reference data has an empty value,
then System-A must set the fund frequency to “daily”.

C5 Condition (WHADVP !< /(of | to)/) $+ (NP $+ VP) !» /(VP | SBAR)/ When the user clicks on the left side menu, portfolio section,
System-A must display the portfolios.

C6 Condition (SBAR < ((WHADVP !« that) $+ (S « (SBAR «, /(That |
that)/) & «, (NP $++ VP | $++ VB)))) !» VP

When a user confirms that he wants to cancel the creation
of an account record, the System-A must delete the related
parameters recorded in account with status “draft”.

C7 Condition (SBAR < ((WHADVP !« that) $+ (S !« SBAR &«, (NP $++
VP | $++ VB)))) !» VP

If the settlement date is present in the instruction sent to
System-A then System-A must store in data storage unit.

C8 Condition
Time

(PP < (IN < (/(̂after | before)$/) $+ (NP !< VB < NN)
)) > S

Before the System-A cutover, System-A must update the entity-
A data model.

SR1 System
Response

NP $+ (VP < (MD ?$+ ADVP $++ (VP «, (/VB.?/ $+ (S < (NP
$++ VP)))))) > S

System-A must send the fund details report to local team daily.

S: Clause, SBAR: Subordinate clause, WHADVP: Wh-adverb phrase, VP: Verb phrase, VBG: Verb gerund, NP: Noun phrase, PP: Prepositional phrase,
IN: Preposition, NN: Noun, RB: Adverb, ADVP:Adverb phrase, MD: Modal, and VB: Verb.

Fig. 4. An example Tregex pattern that matches a constituency parsing tree of a condition.

In the example shown in Fig. 3 (Step 2), we first apply all the
Tregex patterns (Table VI) to the requirement. The pattern SR1
is matched, and segments 002 and 003 are identified as system
responses. Paska then applies the segment splitter. However,
the segment splitter fails to identify segment 001, since the
word “Upon” is not present in our keyword list. Since this word
describes a preposition, it can be anywhere in a requirement and
not only at the beginning of a segment.

C. Step 3: Identify Smells

This section answers RQ2: How can smells be detected?
Algorithm 1 presents our automated procedure for detecting any
of the smells introduced in Section IV-A. As shown in line 1 of
the algorithm, we analyze the requirement segments obtained
from Step 2 in Fig. 2. To detect smells in each segment, the
procedure employs the following techniques: Tregex patterns,

706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE VII
INFORMATION CONTENTS CHARACTERIZING THE REQUIREMENT SEGMENTS

Segment Information Content

Scope For [each | all | none] noun
Condition [When | if | where | while | until] noun verb
System response [then | <line break> | ; | else | otherwise] noun modal-verb verb

TABLE VIII
TREGEX PATTERN TO DETECT INCOMPLETE CONDITIONS

ID Tregex Pattern

IC1 ((SBAR < (WHADVP $+ (S < ((VP < (VBG $+ NP | $+ PP)) !$++ NP !$– NP)))) !>> VP)
IC2 ((PP < ((IN < Upon) $+ (NP < ((NP << NN) $++ PP)))) !>> /(VP | SBAR)/)

S: Clause, SBAR: Subordinate clause, WHADVP: Wh-adverb phrase, VP: Verb phrase, VBG: Verb gerund, NP: Noun phrase, PP: Prepositional phrase, IN:
Preposition, and NN: Noun

Algorithm 1 Detect Smells in NL Requirement.
Input:

r: NL requirement
Output:

D: detected requirement smells

1: SEG ← SEPARATESEGMENTS(r) // Step 2
2: D ←{}
3: for each seg ∈ SEG do
4: Dt ← APPLYTREGEXPATTERN(seg)
5: Ds ← APPLYSTRUCTURALPATTERN(seg)
6: Dr ← APPLYRULES(seg)
7: Dg ← SEARCHGLOSSARY(seg)
8: D ←D ∪Dt ∪Ds ∪Dr ∪Dg

9: end for
10: return D

structural patterns, rules, and glossary search (see lines 3-9).
Below, we describe in detail these techniques and the smells
that each of them detects.

Tregex patterns. Recall from Section V-B that the Tregex
patterns match the specific structures of the constituency pars-
ing tree resulting from an NL requirement. While analyzing the
set of requirements in Section V-B, we observed two groups of
requirements that contain incomplete conditions.

The following are two examples of these requirements: EIC1
and EIC2. “EIC1: Upon reception from System-A the status
Pending of an Instruction, then...”. The condition of EIC1
misses the actor and the verb. Instead of a verb, the condition
contains the noun “reception”, making it unclear who or what
is doing the receiving. “EIC2: When creating a new partici-
pant, System-A must...”. The condition of EIC2 lacks the actor,
and the verb is described using a gerund. Missing an actor or
a verb in a condition statement can result in ambiguity and
incompleteness issues in a functional requirement. To detect
such conditions, we derived two Tregex patterns. To do so, we
found a set of 55 requirements from the 1404 requirements (i.e.,

SD in Section IV-A) that are similar to EIC1 and EIC2. Next,
we grouped the requirements into two sets. Each set shares
the same information content. Then, for each set, we derived
a Tregex pattern. Table VIII shows the two derived patterns,
i.e., IC1 and IC2, to detect incomplete conditions.

In the example shown in Fig. 3 (Step 3a), Paska matches
the pattern IC2 with segment 001 “Upon reception of a set-
tlement instruction from System-A”. The condition lacks the
actor and the verb; therefore, the smell “Incomplete condition”
is detected.

Structural patterns. This method analyzes the segments of
a requirement using structural patterns to detect the following
smells: “Incomplete condition”, “Incomplete system response
(SR)”, and “Passive voice”. Regarding the smell “Incomplete
condition”, recall that our Tregex patterns aim at detecting it.
However, due to various reasons, in practice, the constituency
parsing tree of a requirement may be malformed. In such cases,
our structural patterns are applied to detect the smell. A struc-
tural pattern checks the presence of certain words describing
the concepts (see Fig. 1) of segments in a specific sequence.

As shown in Table IX, we define 14 structural patterns to
detect the above smells. We analyzed the 1404 requirements
by categorizing them into different smell groups. For each
group, we inspected the requirements at the segment level (e.g.,
condition and system response) based on Rimay’s concepts and
constructs and identified specific structural patterns to detect the
smells. There are eight patterns that check for the smell “Passive
voice” in the following tenses: present simple, present perfect,
past simple, and past perfect. In addition, we define three pat-
terns that check for the smell “Incomplete condition”, and three
patterns to detect the smell “Incomplete system response”.

We analyze the segments obtained from Step 2 of Fig. 2
using the structural patterns. For example, the structural pattern
“Passive voice #7” matches the condition of the following re-
quirement “When/WRB an/DT Order/NNS has/VBZ been/VBN
assigned/VBN via/IN propagation/NNP..”. The condition con-
tains verb “has”(v1) in the present tense, followed by verb
“been”(v3) in the past participle, and followed by verb
“assigned”(v4) in the past participle.

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 707

TABLE IX
STRUCTURAL PATTERNS FOR SMELL DETECTION

Smell # Structural Pattern Example

Passive voice

1 v1 v4 “...is taken...”
2 v1 adv v4 “...has not taken...”
3 v2 v4 “...was taken...”
4 v2 adv v4 “...was not taken...”
5 v2 v3 v4 “...had been taken...”
6 v2 adv v3 v4 “...had not been taken...”
7 v1 v3 v4 “...has been taken...”
8 v1 adv v3 v4 “...has not been taken...”

Incomplete condition 9 sc o1 “When for each subscriptions...”
10 sc v1 “When receives the subscription order ...”
11 sc n1 o1 “When the System-A seennd the subscription order ...”

Incomplete 12 md v1 “then must send the settlement request...”
system response 13 n1 v1 “System-A closes the Filter screen...”

14 n1 md o2 “System-B must sed the settlement request...”

v1: Verb base form (be | have), v2: Verb past (be | have), v3: Verb past participle (be), v4: Verb past participle, adv: Adverb (not), sc: Subordinated
conjunction, n1: Noun, md: Modal verb, o1: Other word than noun and verb, o2: Other word than verb, p: Preposition (for), q: Quantifier, o3: Other word
than noun

In the example shown in Fig. 3 (Step 3b), Paska applies our
structural patterns to the segments of the requirement. Specifi-
cally, the structural pattern “Passive Voice 1” matches segment
003. This segment has the verb “be”(v1) in its base form and
the verb “set”(v4) in its past participle form.

Rules. We propose a set of rules to analyze the segments
of a requirement identified by Step 2 of Fig. 2, aiming at
detecting the following smells: “Non-atomic”, “Incomplete re-
quirement”, “Incorrect order requirement”, “Coordination am-
biguity”, and “Not a requirement”. Our rules analyze how the
segments are connected to each other and determine the se-
quence of the segments of the requirement. In the following,
we describe these rules:

1) Non-atomic: The requirement has more than one seg-
ment for system response.

2) Incomplete requirement: The requirement misses the
system response segment, but it has other segments, such
as scope and condition.

3) Incorrect order requirement: The requirement has one
or more condition segments after its system response.

4) Coordination ambiguity: When the requirement has
two or more subsequent conditions, Paska extracts the
word(s) or character(s) that separate the conditions. If the
separator(s) is the conjunction “or”, then Paska triggers
the smell “Coordination ambiguity”.

5) Not a requirement: All segments of the requirement are
neither scope, condition, nor system response.

In the example depicted in Fig. 3 (Step 3c), Paska applies
our rules to the requirement. The rule “Non-atomic” identifies
two system responses in the requirement that triggers the smell
“Non-atomic”.

Glossary search. This method aims to identify the smell:
“Not a precise verb”. For this purpose, we create a glossary
of verbs that do not describe precise actions, are difficult to
test, and carry several meanings. Note that these criteria are
used to define vague words in the literature [35]. For example,
according to the English dictionary, the verb “process” means
“operate on (data) by means of a program”. This verb does not

provide a precise action, which makes it difficult for an analyst
to test the requirements that contain such a verb. To create our
glossary of verbs, we gather all the verbs of the requirements
used in Section IV-A. We search for verbs that do not have
precise actions and are difficult to test. Our glossary includes
the following verbs: accomplish, account, base, come, consider,
default, define, do, get, make, perform, process, propose, make,
raise, read, support, and want. Our glossary also includes verbs
that have several meanings but only one etymology (polysemy).
These verbs in our glossary are: come and get.

We have elaborated our glossary in collaboration with two
experts working for our industrial partner. The experts agreed
that they prefer to avoid using these verbs when specifying
requirements as they are not precise enough and are indeed
difficult to test.

To detect these verbs in the requirements, Paska automati-
cally extracts verbs from the requirement segments condition
and system response. Next, Paska obtains the lemmas of these
verbs. Finally, Paska searches for the lemma in our glossary. If
there is a match, Paska triggers the smell “Not a precise verb”.

In the example shown in Fig. 3 (Step 3d), Paska analyzes
the segments 002 and 003 because they are system responses;
then, Paska extracts the verb “process” because it belongs to
our glossary. Hence, the smell “Not a precise verb” is detected.

The answer to RQ2 is that Paska detects smells in NL re-
quirements using several complementary techniques: Tregex
patterns, structural patterns, rules, and glossary search.
Paska combines these techniques to ensure that various re-
quirement smells are accurately identified since no single
technique is comprehensive enough to detect all of them.

D. Step 4. Suggesting Rimay Patterns

This section answers RQ3: How can we suggest recom-
mendations to improve requirement quality? To suggest
Rimay patterns as recommendations, Paska analyzes the seg-
ments of a requirement identified by Step 2 to match one of

708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Algorithm 2 Suggest Rimay Pattern.
Input:

r: NL requirement
Output:

p: suggested Rimay pattern

1: SEG ← SEPARATESEGMENTS(r) // Step 2
2: // Count segment frequencies
3: cnts ← COUNTSCOPES(SEG)
4: cntc ← COUNTCONDITIONS(SEG)
5: cntr ← COUNTSYSTEMRESPONSES(SEG)
6: // Identify condition type
7: ctype ← IDENTIFYCONDITIONTYPE(SEG)
8: // Match Rimay pattern
9: p← MATCHRIMAYPATTERN(cnts, cntc, cntr, ctype)

10: return p

the 10 Rimay patterns (Section IV-B). The matched pattern will
guide analysts when fixing any smell detected in a requirement
and converting it into a Rimay requirement.

Algorithm 2 shows Paska’s automated procedure for suggest-
ing a Rimay pattern for a given NL requirement. To identify
a suitable Rimay pattern, Paska first counts the frequencies of
the segments in a requirement, since the Rimay patterns are
defined in terms of segments (see lines 1-5). More concretely,
Paska counts the number of segments—scopes, conditions, and
system responses—that appear in a requirement. For the condi-
tion segments, Paska further classifies them into trigger, time,
and precondition (Section II) (see lines 6-7). To identify “time
condition”, Paska checks if a segment is matched by the pattern
“C8” (Table VI) in Step 2. To identify “precondition condition”,
Paska extracts the verb phrase (VP) from a condition segment.
If the VP contains one of the operators [21], i.e., “is equal to”,
“less or equal to”, “contain”, and “have”, then the condition
segment is identified as “precondition condition”. Moreover, to
identify “trigger condition”, we extract the VP from a condition
segment. If the VP contains verbs other than the ones used
by the “precondition condition”, then the segment is classified
as “trigger condition”. Paska also counts the frequencies of
incomplete segments with the following smells: “incomplete
condition” and “incomplete system response”. Once the fre-
quencies are calculated, Paska maps the frequencies to any of
the 10 Rimay patterns (see lines 8-9). Table X presents the
frequency of segments for each of the 10 Rimay patterns. The
first column shows the name of the pattern. From the second
to the sixth column, we show the frequency of each segment
contained in each of the 10 Rimay patterns.

In the example shown in Fig. 3 (Step 4), Paska analyzes the
three segments 001, 002, and 003 in the requirement. Segment
001 is an incomplete condition as Paska does not detect any
verb in the segment. However, the Tregex pattern (i.e., IC2 in
Table VIII) identifies the smell “Incomplete condition”, indi-
cating that the condition uses the noun “reception” instead of
a verb. This analysis result suggests that the verb is an action

verb, indicating that it is a condition trigger. To summarize,
the requirement in Fig. 3 (Step 4) has a condition trigger and
two system responses. Since Rimay discourages analysts from
writing non-atomic requirements, Paska suggests Rimay pattern
“7. Condition(Trigger) and system response” to help analysts
rewrite the requirement.

Fig. 5 illustrates how an analyst applies the suggested
Rimay pattern to address smells in an NL requirement. Given
the suggested Rimay pattern “7. Condition(Trigger) and
system response” (see Table V), the analyst rewrites the NL
requirement in Rimay to address the following smells:
“incomplete condition”, “non-atomic requirement”, “not
precise verb”, and “passive voice”. The Rimay requirement
includes the trigger condition: When System-B
receives a "settlement instruction" from
System-A, addressing the “incomplete condition” smell,
and the system response: System-B must set the
"input media field" to "SINF", addressing the
“non-atomic requirement” and “passive voice” smells. In this
example, we note that the analyst identified segment 002 in the
NL requirement as unnecessary and consequently removed it.

The answer to RQ3 is that Paska suggests recommendations
in the form of Rimay patterns by analyzing segments (i.e.,
scope, condition, and system response) in an NL require-
ment. The recommended Rimay patterns are meant to guide
analysts when fixing identified smells in an NL requirement
and converting it into a Rimay requirement. In summary,
Paska indicates segments in the requirements that may be
missing, are incorrectly ordered, or that require change.

VI. EVALUATION

In this section, we describe the case study conducted to
address RQ4 and RQ5. We follow best practices for reporting
case study research in software engineering [36].

A. Case Study Design

Our evaluation aims to answer the following RQs:
RQ4. Can Paska accurately indicate the occurrence of smells?
RQ5. How accurate is Paska in recommending requirement
patterns to fix smells?

To answer RQ4 and RQ5, we measured the accuracy of Paska
in detecting smells and suggesting Rimay patterns, using an
annotated dataset as a ground truth for comparison. To construct
our ground truth GT , we annotated the 13 SRSs (described in
Section III-B) provided by our industrial partner. To annotate
the SRSs, we had four annotators who manually analyzed the
syntax and semantics of each requirement to detect smells and
suggest a Rimay pattern. Sections VI-B and VI-C provide fur-
ther details about our annotation process and results.

Once the ground truth was completed, we developed Paska
using the development set SD of requirements (i.e., SRS1-
SRS6), as described in Section VI-E. We then evaluated the
accuracy of Paska in detecting smells and suggesting Rimay

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 709

TABLE X
SEGMENT FREQUENCIES IN RIMAY PATTERNS

Pattern Scope Condition System Response
Pre-condition Trigger Time

1. Scope and system response 1 0 0 0 1
2. Scope, condition (precondition), and system response 1 1 0 0 1
3. Scope, condition (trigger), and system response 1 0 1 0 1
4. Scope, condition (time) and system response 1 0 0 1 1
5. System response 0 0 0 0 1
6. Condition(precondition) and system response 0 1 0 0 1
7. Condition (trigger) and system response 0 0 1 0 1
8. Condition (time) and system response 0 0 0 1 1
9. Scope, multiple conditions, and system response 1 2 or more 1
10. Multiple conditions and system response 0 2 or more 1

Fig. 5. Application of a Rimay pattern.

patterns. To this end, we compared the results obtained by Paska
using the evaluation set SE (i.e., SRS7-SRS13) against the
ground truth GT . We thus calculated the accuracy of smell
detection and pattern recommendation using SE , which we
report in Section VI-F.

B. Data Annotation

To annotate the 13 SRSs described in Section III-B, we hired
and trained three external annotators to identify smells in SRSs

and recommend Rimay patterns to fix such smells. Two out of
the three external annotators have more than two years of ex-
perience in requirements engineering. The other external anno-
tator has knowledge about the domain of our industrial partner
and also has more than two years of experience in requirements
engineering. To train the annotators, we randomly selected and
used 70 requirements from SD. During the training, we applied
Cohen’s kappa [37] to measure inter-annotator agreement and
obtained a score of 0.89, indicating strong agreement.

After the training, the three external annotators and the first
author of this article conducted a collective 312-hour annota-
tion process. We note that the annotations made by the first
author of this article are included in the subset SD and hence
were used only to develop Paska. We assigned the SRSs to
the annotators accounting for their individual situations and
contracts, which resulted in different numbers of SRSs being
assigned to each annotators. The annotators manually analyzed
the syntax and semantics of each requirement in the SRSs of
SD and SE to detect smells and assign a Rimay pattern. After
the annotators completed annotating each SRS, we analyzed the
annotation results by having an in-person monitoring session
(30-60 minutes). In each session, the annotators pointed out the
requirements that were difficult to annotate. We then discussed
them to reach an agreement on the correct annotations. Once the
annotation process concluded, we randomly selected 10% of the
requirements annotated in S for inspection. From the analysis
results, we found that most of the annotations (more than 80%)
were satisfactory, indicating agreement among the annotators.
For the unsatisfactory annotations (less than 20%), we then
identified their causes and asked the annotators to correct them
throughout all SRSs in S. We finally accepted the annotations.

C. Annotated Requirements

Table XI shows the annotation results of the smells detected
in S. The first column indicates the smell name. The second
through seventh columns present the number of requirements
containing the smell listed in each row for each batch in S.
The last column displays the total number of occurrences of
each of the nine smells in S. Table XI confirms that the SRSs
used in our study are highly diverse in terms of smells since
there is significant variation across batches in terms of the
distribution of smells. Further, smells occur according to very

710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE XI
SMELLS - ANNOTATION RESULTS FOR SET S

Smell Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Total

1. Non-atomic 14 79 107 6 23 78 310
2. Incomplete requirement 2 8 1 1 1 2 15
3. Incorrect order requirement 21 40 34 9 7 14 125
4. Coordination ambiguity 0 4 0 1 5 4 14
5. Not a requirement 2 0 0 1 1 1 5
6. Incomplete condition 18 72 70 9 49 104 322
7. Incomplete system response 4 9 0 2 1 3 19
8. Passive voice 174 219 59 33 95 141 721
9. Not precise verb 2 111 27 26 33 32 231

TABLE XII
RIMAY PATTERNS - ANNOTATION RESULTS FOR SET S

Rimay Pattern Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Total

1. Scope and system response 6 16 7 3 1 7 40
2. Scope, condition (precondition), and system re-
sponse

9 3 0 0 0 0 12

3. Scope, condition (trigger), and system response 13 28 113 0 0 83 237
4. Scope, condition (time), and system response 0 0 0 0 0 0 0
5. System response 91 45 40 203 111 37 527
6. Condition (precondition) and system response 75 13 5 21 35 7 156
7. Condition (trigger) and system response 116 158 73 202 105 104 758
8. Condition (time) and system response 0 2 4 0 0 0 6
9. Scope, multiple conditions, and system response 5 29 86 0 4 39 163
10. Multiple conditions and system response 63 310 79 25 120 206 803

different frequencies. We found that “8. Passive Voice” is the
smell with the highest frequency in S (accounting for 40.9%
of the requirements) while, in contrast, we have smells such as
“5. Not a requirement”, with very low frequencies (0.28% of
the requirements).

Table XII shows the frequencies of Rimay patterns assigned
by the annotators to requirements in S. The first column shows
the Rimay pattern. The second through seventh columns present
the number of requirements assigned to each Rimay pattern for
each batch in S. The last column displays the total number of
occurrences of each of the 10 Rimay patterns in S. Table XII
suggests that, similar to smells, the SRSs used in our case study
have significant diversity in their structural composition and
patterns occur according to widely different frequencies. For
example, “10. Multiple conditions and system response” is the
most frequently assigned Rimay pattern with 803 occurrences
in set S. The least frequently assigned Rimay patterns (less than
20 times) are “2. Scope, condition (precondition), and system
response” and “8. Condition (Time) and system response”. In
Table XII, we found that the pattern “4. Scope, condition (Time)
and system response” is not observed in S. Recall from Section
IV-B that Rimay patterns represent valid sequences of Rimay
concepts used to write requirements in Rimay. Even though
the SRSs do not have requirements that can be rewritten by
applying this pattern, we opted to keep the pattern in Paska to
provide the complete list of Rimay patterns.

D. Metrics

Our analysis of the accuracy of Paska, when detecting smells
and suggesting Rimay patterns, is based on the precision and

recall metrics. We applied Paska to the subsets of requirements
SD and SE to detect smells and suggest Rimay patterns. We
compared these results against the ground truth GT (Section
VI-A) using precision and recall. For each smell s and Rimay
pattern p, we first classified Paska’s predictions for a require-
ment r into the following categories:

True positives (TP) are the correct predictions. In smell
detection, a TP occurs when Paska detects the same smell s as
the ground truth GT for requirement r. In pattern suggestion,
a TP occurs when Paska assigns the same Rimay pattern p as
GT to requirement r.

False negatives (FN) are missed annotations. In smell detec-
tion, a missed annotation occurs when Paska fails to detect the
smell s that is annotated for requirement r in the ground truth
GT . In pattern suggestion, a missed annotation occurs when
Paska fails to suggest the pattern p that is annotated for r in GT .

False positives (FP) are misclassified annotations. In smell
detection, an FP occurs when Paska incorrectly indicates the
presence of the smell s that is not annotated for requirement
r in the ground truth GT . In pattern suggestion, an FP occurs
when Paska incorrectly suggests the Rimay pattern p that is not
annotated for r in GT .

Next, for each detected smell (or assigned Rimay
pattern), denoted by i, we calculated the precision
(Pi) as Pi = TPi/(TPi+FPi) and the recall (Ri) as
Ri = TPi/(TPi+FNi), where TPi, FPi, and FNi denote,
respectively, the number of true positives, false positives, and
false negatives in predicting i.

Furthermore, we calculated the overall precision
as Overall-P =

∑l
i=1 TPi /

∑l
i=1(TPi + FPi),

where i, . . . , l denote either the nine smells for smell

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 711

Fig. 6. Paska development overview.

TABLE XIII
BATCH DISTRIBUTION OF THE SRSS IN S

Subset Batch # SRS ID # Requirements

SD

1
SRS1 192
SRS2 188

2
SRS3 118
SRS4 161

3
SRS5 451
SRS6 294

SE

4
SRS7 367
SRS8 90

5
SRS9 167
SRS10 192
SRS11 19

6
SRS12 340
SRS13 146

detection or the 10 Rimay patterns for pattern suggestion.
The overall recall was calculated as Overall-R
=
∑l

i=1 TPi /
∑l

i=1(TPi + FNi).

E. Paska Development

We employed an iterative process to develop Paska, as de-
picted in Fig. 6. For this iterative development, we divided sub-
set SD into three batches as detailed in Table XIII. Further, we
also divided SE into three batches to prepare for the possibility
that Paska would not become stable after using SD, something
difficult to predict at the development stage. However, it turned
out that Paska was stable after using SD and therefore no
batches from SE were needed to reach a stable version of Paska.

As shown in Fig. 6, to build a stable version of Paska, we
followed four steps: (Step 1) We applied Paska to a first batch
of requirements listed in Table XIII to detect smells and suggest
Rimay patterns. (Step 2) We compared our results against the
ground truth by computing precision and recall. (Step 3) We
evaluated Paska’s stability by applying the concept of satura-
tion, which determines the point in the iterative development
process of Paska where we have analyzed a sufficient number
of SRSs to confidently identify smells and recommend Rimay
patterns. In general, saturation refers to the point in a qualitative
study when no new information emerges from the data being
analyzed, i.e., when no new properties, dimensions, conditions,
actions/interactions, or consequences are found in the data [33].
In our context, during the development of Paska, we determined
that the saturation point was reached when we observed stability
from one batch of SRSs to the next in terms of overall precision
and recall when identifying smells and recommended patterns.
When such precision and recall were significantly worse than in

the previous batch, we analyzed cases showing disagreements
between Paska and the ground truth in order to account for new
situations. (Step 4) We then improved Paska by correcting any
disagreements with the ground truth. We repeated Steps 1 to 4
using each time a new batch as listed in Table XIII until Paska
became stable. For example, the results for batch 2 were initially
much worse for smell detection than those of batch 1, whereas
the results for batch 3 were right away comparable to those of
batch 2 after improvement, thus suggesting no new situations
needed to be investigated and accounted for. Below, we describe
in detail how we improved Paska.

Table XIV shows precision (P) and recall (R) values ob-
tained by Paska, after the iterative improvement mentioned
above, for detecting smells in SD. These results were calculated
based on the ground truth GT . The first column of Table XIV
lists the smell names. The P and R values for each of the nine
smells found in the first batch are shown in the second and third
columns, while the fourth and fifth columns show P and R
values for the smells found in the second batch. The sixth and
seventh columns provide the P and R values for each of the
smells found in the third batch of SD. The overall P and R
values for all three batches of SD are reported in the last two
rows of Table XIV.

Following the iterative development process depicted earlier,
we first developed Paska using the first batch of SD and com-
pared our results with GT . In the first iteration, we obtained a
precision (P) of 99% and a recall (R) of 99%. We then applied
Paska to the second batch and obtained low P and R values
(i.e., a P of 69% and an R of 58%), which were considered
unsatisfactory. To address this, we analyzed the false positives
(FP) and false negatives (FN) (described in Section VI-D). Most
of the FPs and FNs cases resulted from new scenarios that
were not considered during the analysis of Batch 1. These new
scenarios refer to requirements that require further investigation
to improve Paska. We improved Paska to support these new
scenarios and detect smells in the second batch, resulting in
significant improvements with a precision of 92% and a re-
call of 94%. Further, we applied Paska to the third batch and
obtained P of 90% and an R of 88%, which were deemed
acceptable. These high precision and recall scores indicate that
Paska detects most relevant smells in requirements with low
probabilities of false positives and false negatives. At that point,
we then stopped analyzing more SRSs and improving Paska as
we reached saturation in terms of accuracy.

The precision (P) and recall (R) scores obtained by the stable
version of Paska on SD when suggesting appropriate Rimay
patterns to analysts, are presented in Table XV. P and R values

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE XIV
SMELL DETECTION RESULTS FOR SET SD (DEVELOPMENT) - PRECISION AND RECALL. THE SET SD CONTAINS BATCHES 1, 2, AND 3 LISTED IN TABLE XIII

Smell Batch 1 Batch 2 Batch 3 All (SD)

P R P R P R P R

1. Non-atomic 1.00 1.00 0.92 0.92 0.94 0.94 0.94 0.94
2. Incomplete requirement 1.00 1.00 0.89 1.00 1.00 1.00 0.92 1.00
3. Incorrect order requirement 0.95 0.95 0.85 0.82 0.72 0.76 0.82 0.83
4. Coordination ambiguity N/A N/A 1.00 1.00 N/A N/A 1.00 1.00
5. Not a requirement 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
6. Incomplete condition 1.00 0.94 0.75 0.93 0.90 0.77 0.83 0.86
7. Incomplete system response 1.00 1.00 1.00 0.89 N/A N/A 1.00 0.91
8. Passive voice 1.00 0.99 0.98 0.95 0.93 0.90 0.98 0.96
9. Not a precise verb 1.00 1.00 0.96 0.97 0.87 0.96 0.94 0.97

Overall 0.99 0.99 0.92 0.94 0.90 0.88 0.93 0.93

TABLE XV
RIMAY PATTERN SUGGESTION RESULTS FOR SET SD (DEVELOPMENT) - PRECISION AND RECALL. THE SET SD CONTAINS BATCHES 1, 2, AND 3 LISTED

IN TABLE XIII

Rimay Pattern Batch 1 Batch 2 Batch 3 All (SD)

P R P R P R P R

1. Scope and system response 1.00 1.00 1.00 0.88 1.00 1.00 1.00 0.93
2. Scope, condition (precondition), and system response 0.80 0.89 1.00 1.00 N/A N/A 0.79 0.92
3. Scope, condition (trigger), and system response 1.00 0.85 0.90 1.00 0.99 0.97 0.97 0.97
4. Scope, condition (time) and system response N/A N/A N/A N/A N/A N/A N/A N/A
5. System response 1.00 0.97 0.95 0.93 0.98 1.00 0.98 0.97
6. Condition (precondition) and system response 0.95 0.92 0.80 0.92 1.00 1.00 0.92 0.92
7. Condition (trigger) and system response 0.92 0.90 0.81 0.89 0.86 0.96 0.85 0.91
8. Condition (time) and system response N/A N/A 1.00 1.00 1.00 0.75 1.00 0.83
9. Scope, multiple conditions, and system response 0.83 1.00 1.00 0.93 0.89 0.84 0.91 0.87
10. Multiple conditions and system response 0.95 0.89 0.96 0.87 0.83 0.78 0.94 0.86

Overall 0.95 0.92 0.91 0.89 0.91 0.91 0.92 0.90

are reported for each Rimay pattern (column 1) suggested in the
first, second, and third batches (columns 2-7), as well as the
overall P and R scores for Batches 1, 2, and 3 in SD shown in
the last row of the table.

Similarly to what we did for smell detection, we first de-
veloped Paska using the first batch of SD to recommend
suitable Rimay patterns and compared our results with GT .
The results were satisfactory. We obtained a precision (P) of
95% and a recall (R) of 92% in the first batch. Next, we
applied Paska to the second and third batches, and the P and
R values were around 90%. We therefore reached saturation
after the first batch, and no further enhancement to Paska
was necessary. In terms of the overall accuracy, the sugges-
tions for Rimay patterns yield an overall P of 92% and an R
of 90% (Table XV).

We note that Tables XIV and XV show that in a few cases
there is no data to evaluate certain smells (such as “5. Not a
requirement” from Table XIV) and to suggest certain Rimay
patterns (such as “4. Scope, condition (time), and system re-
sponse” from Table XV). This is indicated as N/A in the tables
when the denominators of the precision and recall metrics are
zero. We further discuss this issue in Section VII.

Paska implementation and availability. We implemented
Paska using Python and Java. Specifically, we utilized spaCy

[38], Stanford CoreNLP [39], and AllenNLP [34] to implement
the preprocessing steps (Section V-A), including tokenization,
post-tagging, and constituency parsing, respectively. Further,
we employed the Stanford Tregex API for Java [23] to im-
plement the Tregex patterns (Section V-B). Paska is available
online [40].

F. Analysis and Results

This section assesses the accuracy of Paska in detect-
ing smells in NL requirements (RQ4) and suggesting Rimay
patterns to analysts (RQ5). We applied Paska to the evaluation
set SE of requirements to detect smells and suggest Rimay
patterns. Recall that SE was not used when developing Paska.
We compared these results against the ground truthGT (Section
VI-A) using the precision and recall metrics (Section VI-D).

RQ4 results. Table XVI shows precision (P) and recall
(R) values when detecting smells (RQ4). The first column of
Table XVI shows the smell name. The second and third columns
show the P and R values for each of the nine smells found in
the fourth batch. The fourth and fifth columns show the P and
R values for each of the nine smells found in the fifth batch.
The sixth and seventh columns show the P and R values for
each of the nine smells found in the sixth batch of SE . The last

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 713

TABLE XVI
SMELL DETECTION RESULTS FOR SET SE (EVALUATION) - PRECISION AND RECALL. THE EVALUATION SET SE CONTAINS BATCHES 4, 5, AND 6 LISTED

IN TABLE XIII

Smell Batch 4 Batch 5 Batch 6 All (SE)

P R P R P R P R

1. Non-atomic 0.71 0.83 1.00 0.83 0.88 0.92 0.89 0.90
2. Incomplete requirement 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3. Incorrect order requirement 0.90 1.00 0.88 1.00 0.74 1.00 0.81 1.00
4. Coordination ambiguity 1.00 1.00 0.80 0.80 0.80 1.00 0.82 0.90
5. Not a requirement 1.00 1.00 0.50 1.00 1.00 1.00 0.75 1.00
6. Incomplete condition 0.90 1.00 0.75 0.67 0.85 0.87 0.82 0.81
7. Incomplete system response 1.00 1.00 0.33 1.00 0.67 1.00 0.62 1.00
8. Passive voice 0.80 0.85 0.91 0.91 0.99 0.91 0.94 0.90
9. Not a precise verb 0.96 0.88 0.97 0.85 1.00 1.00 0.98 0.91

Overall 0.87 0.90 0.88 0.84 0.91 0.91 0.89 0.89

TABLE XVII
RIMAY PATTERN SUGGESTION RESULTS FOR SET SE (EVALUATION) - PRECISION AND RECALL. THE EVALUATION SET SE CONTAINS BATCHES 4, 5, AND

6 LISTED IN TABLE XIII

Rimay Pattern Batch 4 Batch 5 Batch 6 All (SE)

P R P R P R P R

1. Scope and system response 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Scope, condition (precondition), and system response N/A N/A N/A N/A N/A N/A N/A N/A
3. Scope, condition (trigger), and system response N/A N/A N/A N/A 0.98 1.00 0.98 1.00
4. Scope, condition (time) and system response N/A N/A N/A N/A N/A N/A N/A N/A
5. System response 1.00 0.99 0.98 1.00 0.97 1.00 0.99 0.99
6. Condition (precondition) and system response 1.00 0.95 0.89 0.94 0.75 0.86 0.91 0.94
7. Condition (trigger) and system response 0.98 0.93 0.86 0.83 0.99 0.87 0.95 0.89
8. Condition (time) and system response N/A N/A N/A N/A N/A N/A N/A N/A
9. Scope, multiple conditions, and system response N/A N/A 0.80 1.00 0.94 0.79 0.92 0.81
10. Multiple conditions and system response 0.76 1.00 0.96 0.85 0.94 0.99 0.93 0.94

Overall 0.97 0.96 0.93 0.90 0.96 0.95 0.96 0.94

row of Table XVI shows the overall P and R values for batches
4, 5, and 6 of SE .

As shown in Table XVI, we achieved a precision (P) of 87%
and a recall (R) of 90% for the fourth batch, a P of 88% and
an R of 84% for the fifth batch, and a P of 91% and an R of
91% for the sixth batch. Overall, the detection of smells yields
P = R = 89%.

The answer to RQ4 is that, on a large number of real
requirements from the financial domain, Paska shows a high
degree of accuracy in detecting smells in NL requirements,
with an overall precision and recall of 89%. Therefore, Paska
detects most smells in NL requirements with a small number
of false positives and false negatives.

From the data in Table XVI, we observe that there are low
precision (P) scores in the Batch 5 (i.e., “5. Not a requirement”
with P = 50% and “7. Incomplete system response” with P
= 33%) and Batch 6 (i.e., “7. Incomplete system response”
with P = 67%). Furthermore, we observe a low recall (R)
value in Batch 5 (i.e., “6. Incomplete condition” with an R of
67%). These are mainly caused by new scenarios that were not
observed in the SRSs (SD) used when developing Paska and
limitations of the NLP tools employed by Paska. We further

discuss the reasons for such low precision and recall cases in
Section VII.

RQ5 results. Table XVII shows the precision (P) and re-
call (R) scores obtained by Paska when suggesting suitable
Rimay patterns to analysts (RQ5). Once again, the results were
calculated by applying Paska to the evaluation set SE and
comparing the results to the ground truth GT by using the
precision and recall metrics (Section VI-D). Table XVII shows,
for all Rimay patterns (column 1), the P and R values for the
patterns suggested in Batch 4 (columns 2-3), Batch 5 (columns
4-5), Batch 6 (columns 6-7), and all batches (columns 8-9). The
last row of Table XVII shows the overall scores of P and R for
batches 4, 5, and 6 in SE . We obtained P = 97% and R =
96% in Batch 4, P = 93% and R = 90% in Batch 5, and P
= 96% and R = 95% in Batch 6. In terms of overall accuracy,
the suggestions for Rimay patterns yield an overall P = 96%
and R = 94% (Table XVII).

We note that Table XVII shows the results obtained by ap-
plying Paska to all 1321 requirements in SE , including require-
ments with and without smells. Paska is indeed applicable for
consistently rewriting requirements in Rimay, with or without
smells. If we consider only the requirements with smells in
SE , we have a subset of 1165 such requirements for which we
obtained P = 90% and R = 87%.

714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE XVIII
EXAMPLES OF (ANONYMIZED) REQUIREMENTS THAT LEAD TO PASKA FAILING TO ACCURATELY DETECT SMELLS AND SUGGEST RIMAY PATTERNS

ID Requirement Description

R1 The System-A must route the outbound messages to System-B instead of System-C.
R2 Upon receipt of a valid C01 cancellation from System-A Participant, then the ←↩

System-B must route the cancellation to the same destination.
R3 if the System-A Order Issuer Ordering data = Value-A
R4 When the user clicks on the Edit icon of Screen-1, System-A must set in updatable ←↩

mode the following fields: • Include portfolio in the S-Order, • Alert to operations ←↩
(e.g., when Order is rejected), ...

R5 If the Participant Status = Delete, then System-A must populate the field Status ←↩
with the value inactive.

The answer to RQ5 is that Paska is accurate in suggesting
Rimay patterns, achieving an overall precision of 96% and
recall of 94%. Hence, most of the time, Paska provides
analysts with appropriate Rimay patterns to fix smells in NL
requirements, with relatively few false positives and false
negatives.

As shown in Table XVII, there are low precision (P) values
in Batch 4 (i.e., “10. Multiple conditions and system response”
with a P of 76%) and the Batch 6 (i.e., “6. Condition (precondi-
tion) and system response” with a P of 75%). These low values
are mainly caused by new scenarios that were not observed
in the SRSs SD used when developing Paska. In Section VII,
we further examine the factors that lead to low P values. In
addition, we found that some Rimay patterns are not applicable
to any of the requirements in the SRSs SE , as indicated in
Table XVII by N/A, e.g., “2. Scope, condition (precondi-
tion) and system response”. Section VII further discusses
such situations.

Remark: In our evaluation results, we observed that Paska
obtained high overall precision and recall scores: respectively,
89% and 89% for smell detection, and 96% and 94% for pat-
tern suggestion. Even though we would ideally like to achieve
100% accuracy, our results are promising and demonstrate the
potential of Paska to support requirements quality assurance.

VII. DISCUSSION

A. Approach Performance

The results of RQ4 presented in Section VI show that Paska
is accurate in terms of detecting smells in NL requirements
(P = 89% and R = 89%). However, we also observed that it
achieved low precision scores for the detection of particular
smells, “5. Not a requirement” (50% in Batch 5), “7. Incomplete
system response” (33% in the Batch 5 and 67% in the Batch 6),
and a low recall score for detecting the smell “6. Incomplete
condition” (67% in the Batch 5). To determine the root causes
of such low precision and recall values, we analyzed the false
positives and false negatives for each of the smells mentioned
above. Note that, for the smell “5. Not a requirement” in Batch
5, our results show 1 true positive, 1242 true negatives, 1 false
positive, and no false negatives. For the smell “7. Incomplete
system response” in Batch 5, we have 1 true positive, 1241 true
negatives, 2 false positives, and no false negatives. Regarding

the smell “7. Incomplete system response” in Batch 6, the re-
sults have 2 true positives, 2222 true negatives, 1 false positive,
and no false negatives. For the smell “6. Incomplete condition”
in Batch 5, we obtained 33 true positives, 1184 true negatives,
11 false positives, and 16 false negatives.

5. Not a requirement. Recall from Section IV-A that this
smell occurs when there is a statement that does not contain
any requirement segment, i.e., scope, condition, and system re-
sponse. We observed that Batch 5 has few requirements related
to the smell “5. Not a requirement”. For the smell, Batch 5
has 1 true positive, 1242 true negatives, 1 false positive, and
no false negatives, thus giving a low precision of 50%. The
false positive (i.e., incorrectly detected smells) was related to
inaccurate POS tags assigned to the verb of the system response.
Table XVIII shows requirement R1. This requirement has only
a system response. The verb of the system response of R1 (i.e.,
route) was incorrectly identified as a noun. Since no verb was
found in the system response of the requirement, Paska detected
the smell “5. Not a requirement”.

6. Incomplete Condition. Recall from Section IV-A that this
smell occurs when the condition of the requirement misses the
verb or the actor. We observed that the cause of false negatives
(i.e., Paska failed to detect smells) was related to scenarios not
observed during the development of Paska. For the smell “6.
Incomplete condition”, Batch 5 has 33 true positives, 1184 true
negatives, 11 false positives, and 16 false negatives, resulting
in a low recall of 67%. All false negatives were related to new
scenarios that were not observed during the development of
Paska. Table XVIII shows an example (R3) of a false negative.
The condition R3 misses a verb and instead has the symbol
“=”, which denotes “equals to”. Furthermore, R3 is made up
of a compound noun, “System-A Order Issuer Ordering data”.
According to the POS Tagger, the word “Ordering” of the
compound noun is recognized as a verb, indicating that the
condition is complete. Therefore, Paska did not trigger any
smells. However, R3 actually misses a verb.

7. Incomplete system response. Recall from Section IV-A
that this smell occurs when the system response misses the
actor, the modal verb or the verb. We noted that the cause of
false positives (i.e., Paska incorrectly detected smells) was the
assignment of incorrect POS tags to the verbs in the system
response. Such absence of verb in the system response trig-
gers the smell “7. Incomplete system response”. Regarding the
smell, Batch 5 has 1 true positive, 1241 true negatives, 2 false

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 715

positives, and no false negatives, resulting in a low precision
of 33%. Furthermore, for the same smell, Batch 6 has 2 true
positives, 2222 true negatives, 1 false positive, and no false
negatives, resulting in a low precision of 67%. We found that
all false positives were related to incorrect POS tags assigned to
the verb in the system response. Table XVIII shows requirement
R2. The verb of the system response of R2 (i.e., route) was
incorrectly identified as a noun. Since no verb was found in the
system response of the requirement, Paska incorrectly triggered
the smell “7. Incomplete system response”.

Similarly, the results of RQ5 show that Paska accurately
suggests requirement patterns in most cases (P = 96% and
R = 94%). However, we noted that low precision scores were
obtained by Paska when suggesting requirement patterns “10.
Multiple conditions and system response” (76% in the Batch 4)
and “6. Condition (precondition) and system response” (75% in
the Batch 6). To determine the root causes of such low precision,
we analyzed cases in which Paska yielded false positives (i.e.,
incorrectly suggested patterns). Note that, for the pattern “10.
Multiple conditions and system response”, Batch 4 has 25 true
positives, 421 true negatives, 8 false positives, and no false
negatives. Regarding the pattern “6. Condition (precondition)
and system response”, Batch 6 has 6 true positives, 474 true
negatives, 2 false positives, and 1 false negative.

Pattern: 10. Multiple conditions and system response.
This pattern is suggested when a requirement has the following
segments: two or more conditions and a system response. For
the pattern “10. Multiple conditions and system response”,
Batch 4 has 25 true positives, 421 true negatives, 8 false posi-
tives, and no false negatives, thus obtaining a low precision of
76%. The majority of false positives (i.e., six out of eight) were
due to new scenarios that were not observed during the develop-
ment of Paska. The remaining two false positives were related to
human errors in the annotation. Requirement R4 in Table XVIII
shows an example that causes Paska to incorrectly suggest a Ri-
may pattern. R4 has a condition with a system response contain-
ing bullet points. The second bullet point contains the condition
“when Order is rejected”, which only applies to the information
in the bullet point. However, Paska incorrectly identified it as
a condition that applies to the entire requirement; therefore,
Paska suggested the Rimay pattern “10. Multiple conditions
and system response.” Nevertheless, in reality, R4 has only
one condition.

Pattern: 6. Condition (precondition) and system response.
This pattern is suggested when a requirement has the following
segments: a condition of type precondition and a system re-
sponse. For the pattern “6. Condition (precondition) and system
response”, Batch 6 has 6 true positives, 474 true negatives, 2
false positives, and 1 false negative, resulting in a low precision
of 75%. False positives were related to new scenarios that were
not observed during the development of Paska. Requirement
R5, in Table XVIII, is an example of a false positive (R5).
The condition of R5 lacks a verb; instead, R5 has the operator
“=” which denotes “equals to”. Furthermore, R5 is made up of
a compound noun, “Participant Status”. The word “Status” of
the compound noun is identified as a verb by the POS Tagger
which suggests that the condition is a condition of type trigger

(Section V-D). Therefore, Paska suggested the Rimay pattern
“7. Condition (trigger) and system response”. However, the
condition of R5 is a condition of type precondition because of
the symbol “=” which denotes “equals to”.

In summary, we identified two main reasons for low pre-
cision and recall in the cases mentioned above. The first is
POS Tagger limitations: POS Tagger incorrectly assigns POS
tags to words, which causes Paska to incorrectly identify the
smells and syntax of the requirement. Paska does not have
control over the accuracy of the POS Tagger, since it is a third-
party component. Second, we found several new scenarios that
were not previously observed. These scenarios include differ-
ent structures of the requirement segments and the presence
of additional information in requirements. We could enhance
Paska to support such new scenarios. However, some of them
are examples of bad practices in specifying requirements. For
example, in requirement R4 of Table XVIII, the analyst has
inserted a condition as an additional information in the system
response. In requirement R5, the symbol “=” is used. How-
ever, in general, using such symbols may result in ambiguous
interpretations among stakeholders. Hence, it is recommended
to avoid using such symbols when writing requirements to
prevent confusion.

B. Lack of Testing Data

We observed during the development of Paska (Table XIV)
the lack of testing data to evaluate some smells for certain
batches (i.e., “4. Coordination ambiguity” in batches 1 and 3,
“5. Not a requirement” in batches 2 and 3, and “7. Incomplete
system response” in Batch 3). We were unable to test Paska
in the above cases because SD lacks requirements that contain
these smells. However, the aforementioned cases did not occur
in all batches of SD. The smells detected by Paska were all
tested in at least one batch during the development of Paska. We
also noted that test data were missing to evaluate the sugges-
tion of some Rimay patterns (Table XV): “2. Scope, condition
(precondition), and system response” in Batch 3, “4. Scope,
condition (time) and system response” in batches 1 to 3, and “8.
Condition (time) and system response” in Batch 1. However, the
Rimay patterns “2. Scope, condition (precondition), and system
response” and “8. Condition (time) and system response” were
tested in other batches in SD during the development of Paska.
Regarding the pattern “4. Scope, condition (time) and system
response”, although the SRSs do not have requirements that
can be rewritten by applying the pattern, we opted to keep the
pattern in Paska to support the complete list of Rimay pat-
terns. Recall from Section IV-B that Rimay patterns represent
valid sequences of Rimay concepts used to write requirements
in Rimay.

Similarly, the results of RQ5 (Table XVII) show that Paska
was not tested when suggesting the Rimay patterns “2. Scope,
condition (precondition), and system response” in batches 4
to 6, “3. Scope, condition (trigger), and system response” in
batches 4 and 5, “4. Scope, condition (Time), and system re-
sponse” in batches 4 to 6, “8. Condition (time) and system
response” in batches 4 to 6, and “9. Scope, multiple conditions,

716 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

and system response” in Batch 4. Paska could not be tested
in the above cases because SE did not include requirements
with the syntax necessary to suggest the corresponding Rimay
patterns. As described in Section VI-B, the 13 SRSs used to
evaluate Paska were collected from our industrial partner, who
deemed them representative of recent SRSs and over which we
had no control.

VIII. THREATS TO VALIDITY

Internal validity is of concern when examining causal rela-
tions [41]. Our results depend heavily on the quality of annota-
tions, which are susceptible to annotation biases. To minimize
any potential biases, we hired three external annotators who did
not have access to Paska in our experiments. To ensure the high
quality of their annotations, we provided training sessions and
monitored the annotation agreement between annotators using
Cohen’s Kappa metric. To minimize any biases introduced by
our monitoring activities, we limited our inspection of their
annotations to the requirements for which the annotators indi-
cated having difficulty with. In addition, at the final stage of the
annotation process, we randomly selected 10% of the annotated
requirements for inspection.

In our experiments, two external annotators were employed
to annotate Rimay patterns. For smells, however, another exter-
nal annotator and the first author of this article were responsible
for annotating the SRSs. To mitigate any experimenter bias
introduced by the first author, we included the author’s anno-
tations only in the development set (i.e., SD described in Sec-
tion VI-B) that was used to develop Paska. Hence, our results
obtained from the evaluation set (i.e., SE described in Section
VI-B) were not impacted by the first author’s annotations.

Another threat to internal validity concerns potential biases
introduced by specific researchers. Recall from Section IV-A
that the first author of this article defined a catalog of nine smells
that Paska detects. To mitigate this threat, we validated the nine
smells with our industrial partner to ensure their relevance to the
errors commonly observed in NL requirements writing. Further,
the other authors of this article closely monitored the smell
identification process.

Recall from Section VI-E that we applied the concept of
saturation to develop a stable version of Paska. To make this
process rigorous and objective, we measured precision and re-
call after each batch, using a separate test dataset. The saturation
point was considered to be reached when we started to observe
consistent overall precision and recall from one batch of SRSs
to the next.

Paska employs NLP techniques such as tokenization, POS
tagging, and constituency parsing, over which it does not
have direct control regarding their accuracy. Recognizing the
importance of such accuracy and accounting for the latest
advances of these techniques, we implemented Paska using
well-maintained, state-of-the-art NLP libraries: spaCy [38],
Stanford CoreNLP [39], and AllenNLP [34]. Further, these
libraries have also been widely applied in various domains [9],
[19], [20]. In the end, our choice of techniques and libraries
led to an implementation showcasing high precision and recall,

indicating that Paska is a promising solution. Nevertheless, we
note that supplemental preprocessing of NL requirements (e.g.,
grammar corrections), which can be executed independently of
Paska, has the potential to enhance the accuracy of these NLP
techniques. Such enhancements could thus further optimize the
performance of Paska.

External validity concerns the degree to which our results
can be generalized to other contexts [41]. In our experiments,
we evaluated Paska using industrial SRSs that contain NL re-
quirements from 13 systems (SRSs) in the financial domain.
Specifically, out of the 13 SRSs, six (SD) were used for de-
veloping Paska, and the remaining seven (SE) were used in
our evaluation to answer RQ4 and RQ5. These requirements
are however representative of a broader class of information
systems, such as those used by our industrial partner for data
management, security compliance, and communication. Fur-
thermore, the requirements were written by different analysts
with different backgrounds, which increases the diversity of
the SRSs. We note that, of the 13 SRSs, six were previously
used to develop the Rimay language [21]. From these six SRSs,
two were allocated to the development set SD and four to
the evaluation set SE . For this study, we obtained seven new
SRSs from our industrial partner. The overlap in SRSs used
to define Rimay and to develop and assess Paska is not a
threat to validity since, in this work, we assume Rimay is
already valid and complete, as previously studied, and here
we only assess our ability to detect smells and recommend
patterns, clearly dividing SRSs into development and test sets.
Though our results should be generalizable to information sys-
tems in other domains, future investigations are nevertheless
necessary to determine how Paska fares outside finance. In
the future, despite the large number of requirements we used
in our study, when working on other SRSs, we might un-
cover patterns we have not identified yet. This would require
that we augment or modify the smells related to our catalog
of patterns.

Recall from Section V that, to identify the beginning of
each segment and imprecise verbs in a requirement, Paska uses
keyword-based analysis techniques. These techniques rely on
glossaries that are created based on the keywords defined in
Rimay and our inspection of the representative SRSs used in
our study. Furthermore, our industrial partner validated the glos-
saries. However, further research is needed in order for Paska to
rely on more complete glossaries. Due to the simplicity of the
techniques, one can easily expand our glossaries by leveraging
those defined in existing work (e.g., Smella [9] for detecting
requirements smells).

Regarding the use of Tregex, which defines regular
expression-like patterns on the syntax tree of a requirement,
incorrectly defined patterns may miss the syntax sub-trees
they aim to identify. In Paska, these inaccuracies can result
in false positives and false negatives when detecting smells
and suggesting recommendations. To ensure that we correctly
defined the Tregex patterns, we used the development set SD,
which contains diverse requirements written by various analysts
for six different systems, as a basis for defining and verifying
the patterns. In addition, we inspected the false positives and

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 717

false negatives from our experiment results on SE , which
show that Paska detected smells with a precision of 89% and
a recall of 89%, while suggesting recommendations with a
precision of 96% and a recall of 94%. This careful inspection
indicates that these false positives and false negatives come
from incorrect POS tags, the inclusion of symbols (e.g., “=”)
in a requirement, and annotation errors, rather than from any
potential mistakes we might have introduced in the Tregex
patterns. Nevertheless, further studies that analyze actual
requirements from different domains are needed to assess the
completeness of the Tregex patterns.

IX. RELATED WORK

In this section, we compare our work with existing studies
related to improving the quality of NL requirements. In partic-
ular, we will discuss research strands in the areas of assisting
analysts in (1) writing requirements based on templates, (2) as-
suring the quality of requirements by analyzing incompleteness
and ambiguity in requirements, and (3) identifying smells in
requirements.

Requirements templates. Requirements templates (e.g.,
EARS [24] and Rupp [31]) have been widely used in many
studies and in practice [3], [21], [25], [42], [43]. These tem-
plates provide a structured approach to writing requirements,
which can help reduce ambiguity, increase clarity, and ensure
consistency across requirements. However, since requirements
templates only provide coarse-grained concepts and constructs
(e.g., the EARS condition template WHEN <event> does
not specifically specify the content of the event that initiates
the requirement, allowing analysts to introduce free text), only
a limited number of automated analysis techniques that rely
on such templates have been introduced [42]. Arora et al. [42]
presented an automated approach for checking conformance to
requirements templates (e.g., EARS and Rupp). The approach
relies on an NLP technique, known as text chunking. In con-
trast, we rely on Rimay, a state-of-the-art CNL for specifying
requirements. Rimay provides structures with fine-grained con-
cepts and constructs that enabled us to develop an automated
tool (Paska) for effectively detecting requirements smells and
providing Rimay patterns as recommendations for removing
smells in requirements.

Quality assurance. Among the many strands of quality
assurance research [29] in requirements engineering, the most
pertinent ones introduce automated methods for detecting qual-
ity problems in requirements. In particular, we discuss prior
work that aims at detecting problems of incompleteness and
ambiguity in requirements.

Incompleteness analysis. Completeness of requirements is
often viewed from two perspectives: external and internal [28].
External completeness ensures that all necessary functionalities
of a system are specified in the requirements. Many of the
existing studies on the completeness of requirements belong to
this research strand [12], [13], [15], [16], [44]. For example,
Dalpiaz et al. [15] combined NLP and information visualization
techniques to identify missing requirements. Their approach
relies on the notion of stakeholders’ viewpoints, which helps

analysts identify cases in which one viewpoint mention con-
cepts that are not present in other viewpoints. Arora et al.
[16] empirically evaluated the usefulness of domain models
in detecting incompleteness of requirements. They conducted
experiments by seeding some omissions to the requirements
and checked whether the domain model can be used to detect
the omissions. In contrast to these prior studies, our work is
related to the research strand on internal completeness of a
requirement, which is concerned with ensuring that the re-
quirement is self-contained. This means that the requirement
contains all the information contents required to express its
function completely. Recent smell detection work [9], [10] in-
clude techniques to detect missing contents in a requirement,
such as measurement units and references. In contrast, Paska is
able to identify different information contents that are missed in
a requirement: i.e., (1) missing actors or verbs in conditions, (2)
missing actors, modal verbs, or verbs in system requirements,
and (3) missing system responses in requirements, as it relies on
Rimay’s concepts and constructs. We further discuss these smell
detection approaches below in the smell detection paragraphs.

Ambiguity analysis. Ambiguity is a persistent issue in NL
requirements. Hence, such ambiguity has been extensively stud-
ied in the literature [11], [17], [18], [19], [20]. For example,
recently, Ezzini et al. [20] proposed six alternative solutions
for automating the handling of anaphoric ambiguity in require-
ments. These solutions incorporate both traditional and state-
of-the-art NLP and ML techniques, such as SpanBERT [45].
Osama et al. [19] introduced a technique for detecting syntatic
ambiguity in a requirement using scored interpretations of the
requirement, which provide users with most likely interpreta-
tions. More precisely, the technique relies on an NLP algorithm
that generates parsing trees with confidence scores to provide
scored interpretations of a requirement. However, the research
strands in this area differ from our work, which focuses on
identifying and addressing requirements smells.

While incompleteness and ambiguity are types of require-
ments smells, our study aims at detecting a broader range of
smells that indicate quality problems in requirements and pro-
viding recommendations to solve them. When a requirement
has multiple smells, analysts need to account for them together
to obtain a complete picture of the overall quality of the re-
quirement, a necessary condition to fix it properly. Paska helps
analysts in this process by automatically detecting smells and
suggesting patterns to fix them.

Smell detection. The research strands most related to our
work are those that aim at detecting smells in NL text, such
as requirements, feature requests, and use-case descriptions.
Below, we discuss recent studies in this research area: two
studies on NL requirements [9], [10], and two others on feature
requests [46] and use-case descriptions [47]. All these studies
shared the objectives of defining catalogs of smells in NL de-
scriptions and presenting automated smell detection techniques.

Femmer et al. [9] introduced a tool, named Smella, that
detects nine smells in NL requirements: subjective language,
ambiguous adverbs and adjectives, loopholes, non-verifiable
terms, superlatives, comparatives, negative words, vague
pronouns, and incomplete references. Smella relies on POS

718 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

tagging, dictionaries, and lemmatization. Femmer et al. [9]
evaluated Smella on 336 requirements, 53 use cases, and
1082 user stories collected from three companies and several
university students. Their evaluation results showed that Smella
achieved, on average, a precision of 59% and a recall of 82%.

Ferrari et al. [10] presented an approach that detects the fol-
lowing requirement smells: anaphoric ambiguity, coordination
ambiguity, vague terms, modal adverbs, passive voice, exces-
sive length, missing condition, missing unit of measurement,
missing reference, and undefined term. To detect these smells,
they defined a set of smell-detection patterns, i.e., sequences
of tokens to be matched within a requirement, relying on NLP
techniques such as tokenization, POS tagging, and shallow pars-
ing. They applied the patterns to 1866 requirements obtained
from a railway company and obtained a precision of 83% and
a recall of 85%.

Mu et al. [46] introduced a tool, named NERO, that annotates
contents and detects smells in NL feature requests. For content
annotation, NERO uses a rule matcher developed in their pre-
vious work [48] to classify a sentence into six categories (e.g.,
intent and explanation). Using NLP techniques, such as POS
tagging, regular expression, and lemmatization, NERO detects
10 smells: vagueness, weakness, generality, coordination am-
biguity, referential ambiguity, passive voice, missing condition,
missing description, unreadability, and partial content. To eval-
uate NERO, they applied it to 10 feature requests collected from
an issue tracking system.

Seki et al. [47] developed a technique for detecting smells
in use case descriptions. They defined a catalog of smells
based on seven smell characteristics and five smell scopes.
The seven smell characteristics are ambiguity, incorrectness,
granularity, redundancy, lack, misplacement, and inconsistency.
The five smell scopes are use case, section, flow, sentence, and
word. Seki et al. [47] analyzed 30 use case descriptions written
in Japanese to define the smell catalog. They applied Goal-
Question-Metric (GQM) paradigm [49] to automatically detect
a subset of their smell catalog and evaluated their prototype tool
using eight use case descriptions written in Japanese.

In contrast to these smell detection techniques, Paska sug-
gests appropriate requirements patterns (based on Rimay) to
fix any detected smells in an NL requirement and thus improve
the quality of the requirement. In addition, our work relies on
a large set of 2725 information system requirements obtained
from a financial company. Our experiment results show that
Paska is accurate in detecting smells with a precision and recall
of 89%. It is worth noting that existing techniques [9], [10]
for detecting requirements smells achieved significantly less
accurate experimental results. Because of their different focus,
Mu et al. [46] and Seki et al. [47] evaluated their techniques
on ten feature requests and eight use case descriptions, respec-
tively. We defined our smell catalog based on an analysis of
Rimay and 1404 requirements, and then evaluated Paska on
the remaining 1321 requirements. We also note that 6 out of
9 smells detected by Paska are not addressed by any of the ex-
isting works. These smells are “Incomplete System Response”,
“Incomplete Condition”, “Not Requirement”, “Incorrect Order
Requirement”, “Incomplete Requirement”, and “Non-atomic”.

These smells violate quality attributes — completeness, clarity,
atomicity, and correctness — that Rimay enforces in writing
requirements (see Section IV).

Since we defined our smell catalog by analyzing Rimay’s
concepts and constructs, Paska can only detect smells that vi-
olate recommendations and best practices guided by Rimay,
a language that was defined by qualitatively analyzing infor-
mation system requirements’ needs and practices. Though this
approach enables us to provide recommendation as Rimay pat-
terns, we acknowledge that other smells (e.g., non-verifiable
terms supported by Smella [9]) or other types of ambiguities
(e.g., attachment and analytic ambiguities [19]) are not sup-
ported. However, one can easily combine these approaches with
Paska and get the combined benefits of all these approaches.

X. CONCLUSION

The goal of our work is to better support business analysts
in the specification of natural language (NL) requirements by
detecting smells in them and by guiding the fixing of such
smells. To achieve these objectives, we propose a set of nine
smells that represent the most common syntactic and semantic
errors found in NL requirements from financial applications.
Furthermore, we derived 10 patterns aiming at fixing the smells
present in NL requirements and converting NL requirements
into requirements expressed in Rimay, a controlled natural lan-
guage (CNL) that was recently proposed to help define un-
ambiguous and complete requirements. We then devised an
automated approach to detect our proposed smells and suggest
Rimay patterns to improve the quality of requirements.

We evaluated Paska in a large industrial case study involving
13 system requirements specifications (SRSs) from informa-
tion systems in the financial domain, containing 2725 human-
annotated NL requirements. This evaluation measured the
performance of Paska in detecting smells and suggesting ac-
curate Rimay patterns. Our experiment results show that Paska
detected smells with a precision and a recall of 89%. Further-
more, Paska suggested Rimay patterns with a precision of 96%
and a recall of 94%. Such patterns help the analyst identify what
requirement segments are missing, warrant change, or must
be re-ordered.

In future work, we intend to expand our list of smells to
provide broader coverage of smell detection. Our proposed
smells, associated with the quality attributes enforced by Rimay,
identify common problems found in the NL requirements of
financial applications, which in all likelihood are not specific
to that domain. However, they may not represent all syntactic
and semantic errors present across all NL requirements. We
plan to account for other quality attributes (e.g., comprehen-
sibility and feasibility) [27], [29] to identify and rectify rele-
vant requirement smells. Furthermore, it would be important
to conduct a user study to assess the economic benefits that
organizations and analysts might reap from integrating Paska
into their requirements engineering process. This would provide
a more holistic view of Paska’s utility and potential return on
investment for its users in the development of their IT sys-
tems. Lastly, interesting research directions include the use of

VEIZAGA et al.: AUTOMATED SMELL DETECTION AND RECOMMENDATION IN NL REQUIREMENTS 719

chatbot interfaces and large language models (LLMs) in Paska.
A chatbot interface would allow analysts to query and receive
explanations for detected smells in real-time, thereby facilitat-
ing the rectification of identified issues through conversational
guidance. Furthermore, the use of LLMs could improve Paska’s
comprehension of NL requirements, enabling the detection of
additional quality issues and the suggestion of corresponding
recommendations to address them.

REFERENCES

[1] K. Pohl, Requirements Engineering: Fundamentals, Principles, and
Techniques. New York, NY, USA: Springer-Verlag, 2010.

[2] M. Kassab, C. J. Neill, and P. A. Laplante, “State of practice in
requirements engineering: Contemporary data,” Innov. Syst. Softw. Eng.,
vol. 10, no. 4, pp. 235–241, 2014.

[3] A. Mavin and P. Wilkinson, “Big ears (the return of ‘easy approach to
requirements engineering’),” in Proc. 18th IEEE Int. Requirements Eng.
Conf., 2010, pp. 277–282.

[4] D. M. Fernández et al., “Naming the pain in requirements engineering:
Contemporary problems, causes, and effects in practice,” Empirical
Softw. Eng., vol. 22, no. 5, pp. 2298–2338, 2017.

[5] J. J. Ahonen and P. Savolainen, “Software engineering projects may fail
before they are started: Post-mortem analysis of five cancelled projects,”
J. Syst. Softw., vol. 83, no. 11, pp. 2175–2187, 2010.

[6] E. C. Hull, K. Jackson, and J. Dick, Requirements Engineering, 3rd ed.
New York, NY, USA: Springer-Verlag, 2011.

[7] G. Génova, J. M. Fuentes, J. L. Morillo, O. Hurtado, and V. Moreno, “A
framework to measure and improve the quality of textual requirements,”
Requirements Eng., vol. 18, no. 1, pp. 25–41, 2013.

[8] H. Femmer, D. M. Fernández, E. Jürgens, M. Klose, I. Zimmer, and
J. Zimmer, “Rapid requirements checks with requirements smells: Two
case studies,” in Proc. 1st Int. Workshop Rapid Continuous Softw. Eng.,
2014, pp. 10–19.

[9] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality
assurance with requirements smells,” J. Syst. Softw., vol. 123, pp. 190–
213, 2017.

[10] A. Ferrari et al., “Detecting requirements defects with NLP patterns:
An industrial experience in the railway domain,” Empirical Softw. Eng.,
vol. 23, no. 6, pp. 3684–3733, 2018.

[11] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh, and L. C. Briand,
“Using domain-specific corpora for improved handling of ambiguity in
requirements,” in Proc. 43rd IEEE/ACM Int. Conf. Softw. Eng., 2021,
pp. 1485–1497.

[12] H. Kaiya and M. Saeki, “Ontology based requirements analysis:
Lightweight semantic processing approach,” in Proc. 5th Int. Conf. Qual.
Softw., 2005, pp. 223–230.

[13] A. Ferrari, F. Dell’Orletta, G. O. Spagnolo, and S. Gnesi, “Measuring
and improving the completeness of natural language requirements,” in
Proc. 20th Int. Work. Conf. Requirements Eng. Found. Softw. Qual.,
vol. 8396, 2014, pp. 23–38.

[14] J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager, “Challenging
incompleteness of performance requirements by sentence patterns,” in
Proc. 24th IEEE Int. Requirements Eng. Conf., 2016, pp. 46–55.

[15] F. Dalpiaz, I. V. D. Schalk, and G. Lucassen, “Pinpointing ambiguity
and incompleteness in requirements engineering via information visu-
alization and NLP,” in Proc. 24th Int. Work. Conf. Requirements Eng.
Found. Softw. Qual., 2018, pp. 119–135.

[16] C. Arora, M. Sabetzadeh, and L. C. Briand, “An empirical study on
the potential usefulness of domain models for completeness checking
of requirements,” Empirical Softw. Eng., vol. 24, no. 4, pp. 2509–
2539, 2019.

[17] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for
tools for ambiguity identification and measurement in natural language
requirements specifications,” Requirements Eng., vol. 13, no. 3, pp. 207–
239, 2008.

[18] H. Yang, A. N. D. Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
“Analysing anaphoric ambiguity in natural language requirements,”
Requirements Eng., vol. 16, no. 3, pp. 163–189, 2011.

[19] M. Osama, A. Zaki-Ismail, M. A. Abdelrazek, J. C. Grundy, and A. S.
Ibrahim, “Score-based automatic detection and resolution of syntactic
ambiguity in natural language requirements,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evolution, 2020, pp. 651–661.

[20] S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh, “Automated
handling of anaphoric ambiguity in requirements: A multi-solution
study,” in Proc. 44th IEEE/ACM 44th Int. Conf. Softw. Eng., 2022,
pp. 187–199.

[21] A. Veizaga, M. Alférez, D. Torre, M. Sabetzadeh, and L. C. Briand,
“On systematically building a controlled natural language for functional
requirements,” Empirical Softw. Eng., vol. 26, no. 4, 2021, Art. no. 79.

[22] A. Veizaga, M. Alférez, D. Torre, M. Sabetzadeh, L. C. Briand, and
E. Pitskhelauri, “Leveraging natural-language requirements for deriving
better acceptance criteria from models,” in Proc. ACM/IEEE 23rd Int.
Conf. Model Driven Eng. Lang. Syst., 2020, pp. 218–228.

[23] R. Levy and G. Andrew, “Tregex and tsurgeon: tools for querying and
manipulating tree data structures,” in Proc. 5th Int. Conf. Lang. Resour.
Eval., 2006, pp. 2231–2234.

[24] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (EARS),” in Proc. 17th IEEE Int. Requirements
Eng. Conf., 2009, pp. 317–322.

[25] A. Mavin, P. Wilkinson, S. Gregory, and E. Uusitalo, “Listens learned (8
lessons learned applying EARS),” in Proc. 24th IEEE Int. Requirements
Eng. Conf., 2016, pp. 276–282.

[26] OMG, “Unified modeling language. version 2.5.1,” OMG, 2017. Ac-
cessed Feb. 13, 2023. [Online]. Available: https://www.omg.org/spec/
UML/

[27] L. Montgomery, D. Fucci, A. Bouraffa, L. Scholz, and W. Maalej,
“Empirical research on requirements quality: A systematic mapping
study,” Requirements Eng., vol. 27, no. 2, pp. 183–209, 2022.

[28] D. Zowghi and V. Gervasi, “On the interplay between consistency,
completeness, and correctness in requirements evolution,” Inf. Softw.
Technol., vol. 45, pp. 993–1009, 2003.

[29] C. Denger and T. Olsson, Quality Assurance in Requirements Engineer-
ing. Berlin, Germany: Springer-Verlag, 2005, pp. 163–185.

[30] “Enterprise architect,” sparxsystems.eu. Accessed: Mar. 22, 2023. [On-
line]. Available: https://www.sparxsystems.eu/

[31] K. Pohl and C. Rupp, Requirements Engineering Fundamentals: A
Study Guide for the Certified Professional for Requirements Engineering
Exam: Foundation Level-IREB Compliant. San Rafael, California, USA:
Rocky Nook, 2011.

[32] I. Sommerville, Software Engineering, 9th ed. London, U.K.: Dorling
Kindersley, 2011.

[33] B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strate-
gies for Qualitative Research, 1st ed. New Jersey, NJ, USA: Aldine
Transaction, 2017.

[34] M. Gardner et al., “AllenNLP: A deep semantic natural language
processing platform,” in Proc. Workshop NLP Open Source Softw., 2018,
pp. 1–6.

[35] D. M. Berry, E. Kamsties, and M. M. Krieger, From Contract Drafting
to Software Specification: Linguistic Sources of Ambiguity. Handbook,
2003, pp. 1–80.

[36] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples. Hoboken, NJ, USA:
Wiley, 2012.

[37] J. Cohen, “A coefficient of agreement for nominal scales,” Educ.
Psychol. Meas., vol. 20, no. 1, pp. 37–46, 1960.

[38] Explosion, “spaCy: Industrial-strength natural language processing in
Python,” 2021. Accessed: 3 Apr., 2023. [Online]: Available: https://
spacy.io/

[39] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” in Proc.
Human Lang. Technol. Conf. North Amer. Chapter Assoc. Comput.
Linguistics, M. A. Hearst and M. Ostendorf, Eds., 2003, pp. 252–259.

[40] A. Veizaga, S. Y. Shin, and L. C. Briand, “Automated smell detection
and recommendation in natural language requirements,” IEEE Trans.
Softw. Eng., Feb. 1, 2024.

[41] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples, 1st ed. Hoboken,
NJ, USA: Wiley, 2012.

[42] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Automated
checking of conformance to requirements templates using natural lan-
guage processing,” IEEE Trans. Softw. Eng., vol. 41, no. 10, pp. 944–
968, 2015.

[43] A. Sleimi, M. Ceci, M. Sabetzadeh, L. C. Briand, and J. Dann,
“Automated recommendation of templates for legal requirements,” in
Proc. 28th IEEE Int. Requirements Eng. Conf., 2020, pp. 158–168.

[44] R. J. Costello and D. Liu, “Metrics for requirements engineering,” J.
Syst. Softw., vol. 29, no. 1, pp. 39–63, 1995.

https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/
https://www.sparxsystems.eu/
https://spacy.io/
https://spacy.io/

720 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

[45] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy,
“SpanBERT: Improving pre-training by representing and predicting
spans,” Trans. Assoc. Comput. Linguistics, vol. 8, pp. 64–77, 2020.

[46] F. Mu, L. Shi, W. Zhou, Y. Zhang, and H. Zhao, “NERO: A text-based
tool for content annotation and detection of smells in feature requests,”
in Proc. 28th IEEE Int. Requirements Eng. Conf., 2020, pp. 400–403.

[47] Y. Seki, S. Hayashi, and M. Saeki, “Detecting bad smells in use case
descriptions,” in Proc. 27th IEEE Int. Requirements Eng. Conf., D. E.
Damian, A. Perini, and S. Lee, Eds., 2019, pp. 98–108.

[48] L. Shi, C. Chen, Q. Wang, S. Li, and B. W. Boehm, “Understanding
feature requests by leveraging fuzzy method and linguistic analysis,”
in Proc. 32nd IEEE/ACM Int. Conf. Automated Softw. Eng., 2017,
pp. 440–450.

[49] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal, question, metric
paradigm,” in Encyclopedia of Software Engineering, vol. 2, 1994,
pp. 528–532.

Alvaro Veizaga received the M.Sc. degree from
Leibniz University Hannover, Germany and the
Ph.D. degree in computer science from the Uni-
versity of Luxembourg, in 2018 and 2022, respec-
tively. He has been a Research Associate with
the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), University of Luxembourg. His
research interests include requirements engineering,
software testing, machine learning, and natural lan-
guage processing.

Seung Yeob Shin (Member, IEEE) received the
Ph.D. degree from the Laboratory for Advanced
Software Engineering Research (LASER) in the
College of Information and Computer Sciences,
University of Massachusetts Amherst, in 2016. He
is a Research Scientist with the Interdisciplinary
Centre for Security, Reliability and Trust (SnT),
University of Luxembourg. His research interests
include software engineering, focusing on model-
driven software development, search-based soft-
ware engineering, empirical software engineering,

requirements engineering, and analysis of complex systems.

Lionel C. Briand (Fellow, IEEE) is a Professor
of software engineering with the School of Electri-
cal Engineering and Computer Science, University
of Ottawa, Canada and the Lero SFI Centre for
Software Research, University of Limerick, Ireland.
He is a Canada Research Chair in Intelligent Soft-
ware Dependability and Compliance (Tier 1) and
the Director of Lero. He has conducted applied
research in collaboration with industry for more
than 25 years, including projects in the automotive,
aerospace, manufacturing, financial, and energy do-

mains. He is a fellow of the ACM and Royal Society of Canada. He was
also granted the IEEE Computer Society Harlan Mills Award (2012), the
IEEE Reliability Society Engineer-of-the-Year Award (2013), and the ACM
SIGSOFT Outstanding Research Award (2022) for his work on software
testing and verification. His research interests include software testing and
verification (including security aspects), trustworthy AI, applications of AI
in software engineering, model-driven software development, requirements
engineering, and empirical software engineering. For more information, see
www.lbriand.info.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

