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Abstract—Search-Based Software Engineering (SBSE) offers
solutions that efficiently explore large complex problem spaces.
To obtain more favorable solutions, human participation in the
search process is needed. However, humans cannot handle the
same number of solutions as an algorithm. We propose the first
hybrid fitness function that combines human effort with human
simulations. Human effort refers to human participation for
providing evaluations of candidate solutions during the search
process, whereas human simulations refer to recreations of a
scenario in a specific situation for automatically obtaining the
evaluation of candidate solutions. We also propose three variants
for the hybrid fitness function that vary in the distribution of
human effort in order to study whether the variants influence the
performance in terms of solution quality. Specifically, we leverage
our hybrid fitness function to locate bugs in software models for
the video games of game software engineering. Video games are
a fertile domain for these hybrid functions because simulated
players are naturally developed as part of the video games
(e.g., bots in First-Person Shooters). Our evaluation is at the
scale of industrial settings with a commercial video game (Play
Station 4 and Steam) and 29 professional video game developers.
Hybridizing the fitness function outperforms the results of the
best baseline by 33.46% in F-measure. A focus group confirms the
acceptance of the hybrid fitness function. Hybridizing the fitness
function significantly improves the bug localization process by
reducing the amount of tedious manual work and by minimizing
the number of bugs that go unnoticed. Furthermore, the variant
that obtains the best results is a counter-intuitive result that
was under the radar of the interactive SBSE community. These
results can help not only video game developers to locate bugs,
but they can also inspire SBSE researchers to bring hybrid fitness
functions to other software engineering tasks.
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I. INTRODUCTION

SEARCH-Based Software Engineering (SBSE) addresses
problems throughout the Software Engineering lifecycle

(from requirements to maintenance) using search-based algo-
rithms. Increasingly, the community has been paying more
attention to SBSE [1] since it offers automated or semi-
automated solutions that efficiently explore large complex prob-
lem spaces. For example, SBSE can be used to locate model
fragments from an input query in a family of software products
that has been developed and maintained by a company over
years [2]. Only three key ingredients are needed to apply SBSE:
1) a representation (encoding) of the problem (e.g., a bit string);
2) the definition of the set of operations (e.g., mutation); and
3) the definition of the fitness function (e.g., similarity to the
input query). Then, candidate solutions (which are encoded
following the representation chosen) are evolved (by applying
the operations) and are assessed (by the fitness function) in an
iterative process until a stop condition is met (e.g., a time slot).

Although SBSE reformulates software engineering problems
as search problems, some contexts require the human’s sub-
jective evaluation in the search process in order to obtain the
most favorable solutions that alleviate some limitations of SBSE
techniques (e.g., vocabulary mismatch and tacit knowledge).
This refers to interactive SBSE (iSBSE) [3]. For example, Wang
et al. [4] suggest that there are complex approaches that are
partially successful on multiple fault problems that need more
human intervention. Marculescu et al. [5] involve a human in
the fitness function when the optimization goal depends on ”hu-
man preference, intuition, emotion, and psychological aspects”.
Feldt [6] emphasizes the importance of collaboration between a
human and a system in identifying and comprehending a bug’s
root cause. Most previous iSBSE works [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]
interleave the human’s subjective evaluation with the evaluation
that is performed by the algorithm until the stop condition is
met. Although other works use the human’s subjective eval-
uation differently (before [23], [24], [25], [26] or after [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39]
the algorithm), none of these iSBSE works compare whether
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a different distribution of the human evaluations improves the
quality of the solutions.

For the first time, our previous work [17] completely replaced
the fitness function with a human for Search-Based Model-
Driven Engineering (SBMDE), specifically, for locating fea-
tures in software models. Software models are a more favorable
context for humans than code because of their higher abstrac-
tion. Although involving a human as fitness function (HaFF)
improves the results, human participation must be limited in
order to prevent fatigue [40]. All in all, humans are not immune
to fatigue, so logically they cannot handle and process the same
number of evaluation requests as an algorithm. According to
Takagi’s [40] recommendations for avoiding human fatigue,
both the size of the population to be evaluated and the number
of iterations should be 10 or 20.

For more demanding problems (e.g., large-scale software
systems) where human fatigue may appear due to the high
number of human evaluations that are needed to locate a so-
lution, it is necessary to combine the effort of an algorithm
that automatically obtains the best solution possible with the
human. Hybridizing the fitness function by exploiting both the
algorithm and the human as fitness function in SBMDE can
enrich the solution quality. Hence, in this work, we propose
a hybrid fitness function that is the first to combine human
effort with human simulations. On the one hand, human effort
refers to human participation for providing manual evaluations
of candidate solutions during the search process. On the other
hand, human simulations refer to recreations of a scenario in
a specific situation for automatically obtaining the evaluation
of candidate solutions. Building a simulated human may be a
bigger challenge than the task at hand. However, in the domain
of video games that Game Software Engineering (GSE) tackles
[41], there are human simulations that have been built as part of
the development of the video game. Some examples of human
simulations in video games are: the rival drivers in a racing
game, the bots in a First-Person Shooter (FPS), or the generals
of the enemy troops in a Real-Time Strategy (RTS).

In this work, we study the influence of hybridizing the fitness
function in terms of solution quality in the context of Bug
Localization (BL) in software models for GSE. Moreover, we
propose three variants of the hybrid fitness function in order to
study the influence in the quality of the solution of different
ways of distributing the human effort during BL: Variant 1 in-
terleaves the assessment between the human and the algorithm;
Variant 2 relies on the human assessment first, and then the
assessment of the algorithm; and Variant 3 relies on the assess-
ment the algorithm first, and then the human assessment.

In the evaluation, 29 professional video game developers
were involved, acting as the human component of the fitness
function with the objective of locating 29 bugs in Kromaia,
which is a commercial video game about flying and shoot-
ing with a spaceship in a three-dimensional space1. Kromaia
was released on PC, PlayStation and translated to eight diff-
erent languages.

To assess the performance of our hybrid fitness function in
terms of solution quality, we apply metrics (recall, precision,

1See the official Playstation trailer to learn more about Kromaia: https://
youtu.be/EhsejJBp8Go

and F-measure) that have been widely accepted by the software
engineering community in the domain of evolutionary algo-
rithms [42]. In order to put the performance of the variants into
perspective, we set two baselines that include: only using the
human as fitness function as proposed in [17], and only using
an algorithmic fitness function as proposed in [43]. In order to
compare the results of the variants with the baselines, we per-
form a statistical analysis (following the guidelines by Arcuri
and Briand [44]) in order to provide quantitative evidence of the
impact of the results and to show that this impact is significant.

The results show that all of the variants of our hybrid fitness
function significantly outperformed the baselines in F-measure.
Specifically, Variant 3 (the algorithm assessments first and the
human afterwards) was the one that yielded the best results,
improving the results of the best baseline (only using the human
as fitness function) by 40.3% in recall, 26.46% in precision, and
33.46% in F-measure. All of the comparisons show significant
differences except when the recall of Variant 1 (interleaving
the assessment between the human and the algorithm) and
Variant 2 (the human assessment first and the algorithm after-
wards) is compared to the baseline that only uses the algorithm
as fitness function. The significant improvement in precision
and F-measure in all of the comparisons comes from the influ-
ence of the human on the unattended algorithm. According to
the magnitude scales of the Cliff Delta values [45], the mag-
nitude of improvement using Variant 3 instead of the baselines
can be considered large.

To the best of our knowledge, this is the first SBMDE work
that empowers humans with a hybrid fitness function that com-
bines human assessment with simulations during BL in GSE
and which obtains more favorable solutions than the baselines
at an industrial scale. Specifically, we claim that:

• Our hybrid fitness function significantly improves the re-
sults of BL compared to the baselines. Furthermore, we
created a focus group that confirms the acceptance of using
a hybrid function in the context of BL for GSE. Our results
can also motivate other researchers to use a hybrid fitness
function to benefit other software maintenance activities.

• The variant of the hybrid fitness function that obtains the
best results distributes all of the effort of the algorithm
at the beginning and the human afterwards (Variant 3).
This result is counter-intuitive from an initial survey that
we made. The group of video game developers responded
that Variant 1 would obtain the best results (interleaving
simulations automatically produced by the evolutionary
algorithm with human evaluations).

• Previous works that have involved the human in the fitness
function (e.g., the human refines the algorithm’s solution
[21]) interleave the human participation and the algorithm
execution. These works do not consider other approaches
to distribute human effort. Our work reveals that inter-
leaving is not the approach that achieves the best results.
We acknowledge that our results are obtained in a dif-
ferent context of simulation-human-based hybrid fitness
function, but our results might motivate other researchers
to reconsider the decision of using interleaving as the
default approach.

https://youtu.be/EhsejJBp8Go
https://youtu.be/EhsejJBp8Go
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• The current shortage of bug-localization approaches in
video games results in longer development times, delayed
deadlines, and postponed release dates. Hybridizing the
fitness function significantly improves the BL process by
reducing the amount of tedious manual work and minimiz-
ing the number of bugs that go unnoticed.

The remainder of this paper is organized as follows.
Section II introduces bug localization in the GSE domain.
Section III reviews the related work. Section IV describes the
variants that we propose for hybridizing and distributing human
effort as fitness function. Section V presents the evaluation. The
results are reported in Section VI and discussed in Section VII.
Section VIII describes the threats to validity. Finally,
Section IX concludes the paper.

II. BACKGROUND

This section introduces how SBMDE is used to locate bugs in
the software models of a commercial video game by leveraging
game simulations. In this context, we also motivate the need for
an approach that involves a human in the evaluation of candidate
solutions. This section also introduces iSBSE.

A. SBMDE for Locating Bugs in a Commercial Video Game

Our previous work [43] uses SBMDE to find the model
fragments that are the source of bugs in a commercial video
game (Kromaia). The content of Kromaia is specified using
the Shooter Definition Model Language (SDML), which is a
Domain Specific Language (DSL) model for the video game
domain [46]. This DSL adheres to the fundamental principles
of MDE using models for Software Engineering. The models
are built with SDML and interpreted at runtime.

SDML defines aspects that are included in video game en-
tities such as bosses, which must be defeated in order to com-
plete a level. The definition of a boss includes: the anatomical
structure (including which parts are used in it, their physical
characteristics, and how they are connected to one another);
the quantity and distribution of vulnerable parts, weapons, and
defenses in the structure/body of the character; and the move-
ment behaviors associated to the whole body or its parts. This
modeling language includes concepts such as hulls, links, weak
points, weapons, and AI components.

Fig. 1 shows a simplified example of the graphical represen-
tation of a boss and a player. For further information, the fol-
lowing URL contains examples of the models, the metamodel,
and an online visualizer that displays the models as they would
appear in the Kromaia video game: https://svit.usj.es/tse23/bl-
in-mgse.

To locate the bugs in Kromaia, our previous work [43] uses
game simulations. The simulations mimic a duel between a
boss and an algorithm that can behave like a human player
(i.e., the simulated player). During a simulation, the boss acts
in accordance with the anatomy, behavior, and attack/defense
balance that are included in its model, trying to defeat the
simulated player, whereas the simulated player confronts the
boss in order to destroy the available weak points. Both the boss

Fig. 1. Examples of simulations between a player and boss.

and the simulated player try to win the fight, avoid draw/tie
games, and make sure there is a winner in the simulation.

Fig. 1 shows two examples of simulations. Each simulation
emulates the behavior of a player when the battle with the boss
occurs. The algorithm can fight a boss by applying different
strategies. The fighting strategy can therefore be defined by
parametrizing the algorithm. Thus, different player profiles can
be formed. For example, the parameters can define how many
steps the simulated player takes in each hull of the boss, the
order in which the hulls are visited following different patterns
(one by one, visit one skip one, visit one skip three...), if the
player requires all of the remaining steps in the hull when he/she
is attacked by it, or the direction used to visit the hulls of the
boss (forward or backward).

Each example in Fig. 1 corresponds to different fighting
strategies applied to a simulation. In both cases, the triangle
corresponds to the simulated player, the set of connected circles
and lines correspond to the boss, the dashed and dotted lines
correspond to the path that follows the simulated player in
his/her strategy to defeat the boss, and the crosses correspond to
the attacks that the simulated player performs to the hulls. The
upper example of Fig. 1 shows the simulation of a conservative

https://svit.usj.es/tse23/bl-in-mgse
https://svit.usj.es/tse23/bl-in-mgse
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player in which the player attacks each hull one at a time. The
lower example of the figure shows the simulation of an explorer
player in which the player attacks the last hull of the boss, skips
two hulls, and then attacks the following hulls up to the head
of the boss.

Fig. 1 shows a set of parameters applied to a simulation
for each example. Each set of parameters defines a candidate
solution (individual). Each individual is encoded as a vector
representation whose size corresponds to the number of pa-
rameters (dimensions) in the vector. The simulation parameters
were provided by the developers based on the analysis of battles
between real players and bosses. Furthermore, a scenario is
defined as the union between the simulation parameters (i.e.,
duel settings), the agent parameters (i.e., the parameters that
define the behavior of a player in the simulation), and the
software model (e.g., the model of the boss) to be analyzed for
potential bug localization. The fitness function of our previous
SBMDE work [43] rewards simulations that are the farthest
from what is expected (i.e., the further from what is expected,
the more relevant when it comes to locating a bug).

To obtain more favorable solutions, the human should be
involved in the search process as previous works have detected
[4], [5], [6], [17]. However, human participation must be limited
to prevent fatigue from demanding problems where the humans
cannot handle the same number of candidate solutions as an
algorithm [17], [40]. For these demanding problems, we pro-
pose to study the influence and distribution of human effort in
a hybrid fitness function during the location of model fragments
that are sources of bugs.

B. Interactive SBSE

Interactive SBSE (iSBSE) has been formalized as an emer-
gent subarea within SBSE that promotes active human effort
by providing intermediate results for inspection by the humans.
Human feedback is later integrated into either the problem
formulation or the search process so that the algorithm progres-
sively adapts the search to the human’s preferences [18], [40].
A recent survey on iSBSE [3] acknowledges that any attempt to
involve the human in the search process with the aim of adapting
the results to the human’s preferences can be viewed as iSBSE.

The use of interactivity during the search process has shown
more favorable solutions than fully automated solutions since
some limitations of SBSE techniques (e.g., vocabulary mis-
match and tacit knowledge) are alleviated [3], [4], [5], [6], [17].

Nevertheless, iSBSE also poses new challenges like dealing
with the inherent human fatigue. Table I shows the strategies
for addressing human fatigue of the 33 iSBSE works, which are
also compared in the next section (related work). Most of the
iSBSE works (81.82%) do not report strategies for addressing
human fatigue. Specifically, 57.58% of the iSBSE works do
not explicitly mention fatigue (“-” in Column 2 of the table),
whereas 24.24% of the works explicitly mention that they do
not limit the time or iterations for human evaluations (“No
limit” in Column 2 of the table). The rest of the iSBSE works
(18.18%) limit the human participation with a set of interaction-
related parameters to adapt the human participation to their
needs (“Parameter Limit: parameter” in Column 2 of the table).

TABLE I
STRATEGIES FOR ADDRESSING HUMAN FATIGUE IN ISBSE RELATED WORK

Strategy for Addressing Fatigue
Ghannem et al. [7] –
Amal et al. [8] –
Lin et al. [27] –
Yue et al. [23] –
Van Rooijen and Hamann [28] –
Lu et al. [24] –
Debreceni et al. [29] –
Batot and Sahraoui [30] No limit
Fleck et al. [31] –
Martínez et al. [9] Parameter Limit: interactions
Gómez-Abajo et al. [32] –
Calinescu et al. [33] –
Araujo et al. [10] No limit
Kessentini et al. [11] No limit
Martínez et al. [12] –
Marculescu et al. [13] –
Kolchin [34] –
Filho et al. [25] Parameter Limit: evaluations
Bindewald et al. [14] Parameter Limit: interactions
Procter et al. [35] –
Le Calvar et al. [36] –
Zubcoff et al. [37] –
Alkhazi et al. [38] –
Alkhazi et al. [39] No limit
Silva et al. [26] –
Alizadeh et al. [15] No limit
Kessentini et al. [16] No limit
Pérez et al. [17] Parameter Limit: interactions

and evaluations
Ramírez et al. [18] Parameter Limit: time
Kuviatkovski et al. [19] No limit
Delgado-Pérez et al. [20] Parameter Limit: interactions
Kessentini et al. [21] No limit
Freire et al. [22] –

These parameters limit the number of interactions, evaluations,
or the time that the human can spend evaluating. The previous
parameters limit the human participation to avoid fatigue.

As in the previous works, we also limit the number of
human evaluations and iterations in this work to address human
fatigue since humans cannot evaluate the same solutions as an
algorithm. To set this limit, we follow Takagi’s [40] recom-
mendations, which are that both the size of the population to
be evaluated and the number of iterations should be 10 or 20.
Therefore, we address fatigue as in previous works (limiting the
human participation), but, in this work, we focus on studying
the influence of different ways of distributing the human effort
during BL on the quality of the solution.

III. RELATED WORK

Table II shows the related work, which is organized in two
main parts in order to take into account the topics that are
covered in the paper (BL and human effort in a hybrid fitness
function). Also, the lower part of the table includes a row to
compare the related work with our work. The columns of the
table show: the related work (Column 1); if the work includes
human interaction before, during, or after of the search process
(Column 2); if the human participation is done during the search
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TABLE II
RELATED WORK IN BUG LOCALIZATION AND ISBSE

In the fitness function

Human
interaction

Human
assessment

Hybrid: simulation
and human

Studies human
effort distribution

Industrial
scale

Burgueño et al. [47] ✗ ✗ ✗ ✗ ✗
Iftikhar et al. [48] ✗ ✗ ✗ ✗ ✓
Sánchez-Cuadrado et al. [49] ✗ ✗ ✗ ✗ ✗
Sánchez-Cuadrado et al. [50] ✗ ✗ ✗ ✗ ✗
Troya et al. [51] ✓ ✗ ✗ ✗ ✗
Ariyurek et al. [52] ✗ ✗ ✗ ✗ ✗
Zheng et al. [53] ✗ ✗ ✗ ✗ ✓
Ariyurek et al. [54] ✗ ✗ ✗ ✗ ✗
Cheng et al. [55] ✗ ✗ ✗ ✗ ✗
Zhang et al. [56] ✗ ✗ ✗ ✗ ✗
Arcega et al. [57] ✓ ✗ ✗ ✗ ✓
Ferdous et al. [58] ✗ ✗ ✗ ✗ ✗
Quach et al. [59] ✗ ✗ ✗ ✗ ✗
Casamayor et al. [43] ✗ ✗ ✗ ✗ ✓
Ciborowska et al. [60] ✗ ✗ ✗ ✗ ✓
Khanfir [61] ✗ ✗ ✗ ✗ ✓
Liang et al. [62] ✗ ✗ ✗ ✗ ✓
Tufano et al. [63] ✗ ✗ ✗ ✗ ✓

Ghannem et al. [7] ✓ ✓ ✗ ✗ ✗
Amal et al. [8] ✓ ✗ ✗ ✗ ✗
Lin et al. [27] ✓ ✗ ✗ ✗ ✗
Yue et al. [23] ✓ ✗ ✗ ✗ ✗
Van Rooijen and Hamann [28] ✓ ✗ ✗ ✗ ✗
Lu et al. [24] ✓ ✗ ✗ ✗ ✗
Debreceni et al. [29] ✓ ✗ ✗ ✗ ✓
Batot and Sahraoui [30] ✓ ✗ ✗ ✗ ✗
Fleck et al. [31] ✓ ✗ ✗ ✗ ✗
Martínez et al. [9] ✓ ✓ ✗ ✗ ✗
Gómez-Abajo et al. [32] ✓ ✗ ✗ ✗ ✗
Calinescu et al. [33] ✓ ✗ ✗ ✗ ✗
Araujo et al. [10] ✓ ✓ ✗ ✗ ✓
Kessentini et al. [11] ✓ ✓ ✗ ✗ ✗
Martínez et al. [12] ✓ ✓ ✗ ✗ ✗
Marculescu et al. [13] ✓ ✓ ✗ ✗ ✓
Kolchin [34] ✓ ✗ ✗ ✗ ✗
Filho et al. [25] ✓ ✗ ✗ ✗ ✗
Bindewald et al. [14] ✓ ✓ ✗ ✗ ✗
Procter et al. [35] ✓ ✗ ✗ ✗ ✗
Le Calvar et al. [36] ✓ ✗ ✗ ✗ ✗
Zubcoff et al. [37] ✓ ✗ ✗ ✗ ✗
Alkhazi et al. [38] ✓ ✗ ✗ ✗ ✗
Alkhazi et al. [39] ✓ ✗ ✗ ✗ ✗
Silva et al. [26] ✓ ✗ ✗ ✗ ✗
Alizadeh et al. [15] ✓ ✓ ✗ ✗ ✓
Kessentini et al. [16] ✓ ✓ ✗ ✗ ✗
Pérez et al. [17] ✓ ✓ ✗ ✗ ✓
Ramírez et al. [18] ✓ ✗ ✗ ✗ ✗
Kuviatkovski et al. [19] ✓ ✗ ✗ ✗ ✗
Delgado-Pérez et al. [20] ✓ ✗ ✗ ✗ ✓
Kessentini et al. [21] ✓ ✓ ✗ ✗ ✗
Freire et al. [22] ✓ ✓ ✗ ✗ ✗

Our work ✓ ✓ ✓ ✓ ✓

process in the fitness function by assessing candidate solutions
(Column 3); if the fitness function is a hybrid combining a
simulation and the effort of a human (Column 4); whether or
not the distribution of the human effort in the fitness function is
studied (Column 5); and if the evaluation performed explicitly
mentions that industry is involved (Column 6). In each cell of
the table, we use either a check mark (to indicate that the work
explicitly addresses what is mentioned in the column) or a cross
mark otherwise.

The upper part of Table II includes 18 BL works which
mainly cover: BL in games, BL in models, and BL in games
that use models. Using the query presented in [43], we collected
new papers up to January 2023 and identified those already
covered to maintain consistency. For instance, Troya et al.
[51] locate faulty rules in model transformations by applying
Spectrum-Based Fault Localization (SBFL), where the human
picks one assertion from the ranking to locate and fix the faulty
rule that made the assertion fail. Arcega et al. [57] evaluate
different model-based BL approaches in order to mitigate the
effect of starting the localization in the wrong place. Software
engineers are enabled to modify the solution obtained (e.g.,
by adding or removing model elements to a model fragment
that the BL approach has obtained). Our previous work in BL
in software models of video games, Casamayor et al. [43],
uses an evolutionary algorithm where the candidate solutions

are automatically assessed by a fitness function that collects
information about the simulations. Only two BL works [51],
[57] include human interaction, but neither of them consider the
human in the assessment of candidate solutions in the fitness
function, as Column 3 of Table II shows. Therefore, none of
these BL works have a hybrid fitness function that combines
a simulation and the effort of a human or the study of how
human effort should be distributed to obtain the best quality
solution possible.

The middle part of Table II shows the works of two recent
surveys that include SBMDE works from 1998 to 2016 [64],
and iSBSE works from 1999 to 2017 [3]. Using the queries
presented in the surveys [3], [64], we updated both surveys
from 2016 and 2017 until January 2023, respectively, and we
identified the common works (see the 33 works in the middle
part of the table). All of the works include human interaction,
but only 36.36% of the works involve human assessment in the
fitness function to evaluate candidate solutions. Of the works
that include human assessment in the fitness function, only four
of them involve industry in the evaluation. For example, Ghan-
nem et al. [7] involve human assessment in the fitness func-
tion by combining structural similarity and designers’ ratings
to evaluate the model refactorings. Araujo et al. [10] present
an architecture that combines interactive optimization and ma-
chine learning to address the next release problem in software
engineering, incorporating human expertise and preferences for
efficient requirement selection. Marculescu et al. [13] suggest
optimizations for test cases using a dynamic fitness function
that changes the weights of the objective values according to the
assessment that is made by a human. The works by Kessentini
et al. [16], [21] involve the human in the fitness function by in-
teracting at the solution level by accepting/rejecting/modifying
specific edit operations, and then computing the weighted prob-
ability of edit operations and target model elements.

Martinez et al. [9] completely replace the fitness function
with a human, but they do not provide evidence supporting the
idea that the human is beneficial. Their work makes a compari-
son between the human (combined with crossover and mutation
operations) and Random Search. One of our previous works,
Pérez et al. [17], completely replaces the fitness function with a
human in a real-world industrial case study for Feature Location
in Models (FLiM). Although the results show that the human as
fitness function is beneficial, it is acknowledged that a hybrid
approach could be explored to avoid human fatigue for more
demanding problems. As Column 4 of Table II shows, none
of the works explore a hybrid fitness function that combines
simulations with humans, as this work does.

It is important to highlight that all of the works that combine
human assessment with an algorithm in the fitness function [7],
[10], [13], [14], [15], [16], [21], [22] do not address either BL
or GSE, and they interleave the human effort with the assess-
ment of the algorithm. For example, even though the works
by Kessentini et al. [16], [21] study if the number of human
interactions and time can be reduced by changing the algorithm,
neither of them (see Column 5 of Table II) study whether the
distribution of the human effort should be different in order
to improve the quality of the solution (e.g., doing all human
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assessment first and then the algorithm assessment instead of
interleaving the human-algorithm).

To address this lack, we propose three variants of the hybrid
fitness function in order to study the influence in the quality
of the solution of different ways of distributing the human
effort during BL. The variants: 1) interleave the assessment of
the candidate solutions between the human and the algorithm
(distribution in the hybrid fitness function that is used by most
of the related works); 2) rely on the assessment performed by
the human, and then the assessment of the algorithm; or 3) the
reverse (the assessment performed by the algorithm, and then
the assessment of the human). Specifically, we study whether
the selected variant influences the solution quality for SBMDE
in the context of BL in GSE.

IV. HYBRIDIZING THE FITNESS FUNCTION

Fig. 2 shows an overview of our approach, SimuHaFF (Sim-
ulation and Human as the Fitness Function), for BL in GSE.
Our approach consists of an evolutionary algorithm where the
fitness function is hybrid. It is comprised of the assessment of
candidate solutions by both the score automatically provided
by an algorithm using simulations and the score provided by
a human. The upper part of Fig. 2 depicts the set of software
models, which the algorithm takes as input to locate the bug.
Afterwards, the population of scenarios is initialized by a ran-
dom selection from the input models. The goal is to obtain
a ranked list of simulation traces that are ordered by their
relevance in locating the bug.

The hybrid fitness function assesses each of the scenarios.
The fitness provided by the algorithm runs the simulations as
described in Section II. In order to enable the human to assess
candidate solutions, the approach displays the model fragments
that are candidate solutions to be potential sources of bug. Then,
the human provides the fitness score to each candidate solution,
which is given on a scale of 1 to 7 with a maximum score of 7
(for the best candidates of having the bug) and a minimum of 1.
The human evaluation is performed using a seven-point scale
rather than a broad rating to reduce the fatigue of the developers,
as recommended in [40].

In order to study how the distribution of the human effort in a
hybrid fitness function influences the results, we propose three
variants that take into account Takagi’s [40] recommendations
for avoiding human fatigue. These recommendations are the
reduction of both the size of the population to be evaluated and
the number of iterations (to 10 or 20). The variants (V1-V3)
that we propose are:

Variant 1 interleaves simulations that are performed by the
algorithm with human evaluations. The simulations
are executed by pre-setting a time m (in seconds)
each time that the human provides an evaluation.
In total, the human performs n evaluations. Fig. 2-
V1 depicts how the simulations are interleaved with
human evaluations in this variant. The upper part
above the dotted line represents the human evalu-
ation, whereas the lower part shows the evaluation
that is automatically produced by the evolutionary
algorithm using simulations.

Fig. 2. Overview and variants for hybridizing the fitness function.

Variant 2 relies on n consecutive human evaluations and
then launching the simulations of the algorithm for
m seconds. Fig. 2-V2 depicts the distribution of the
human evaluations first and then the simulations of
the algorithm.

Variant 3 reverses V2 by launching the simulations of the
algorithm for m seconds and then the n consecutive
human evaluations. Fig. 2-V3 shows the distribution
of this variant.

Once the candidate solutions are assessed by both the al-
gorithm and the human, new scenarios are generated if the
stop condition of the algorithm is not met. To do this, existing
scenarios are selected using the wheel selection mechanism,
where the selection of a scenario is inversely proportional to
its relative fitness in the population. To modify the scenario, we
use the widespread single-point crossover and random mutation
(the most popular choice in SBMDE [65]).

Finally, when the stop condition of the algorithm is met, the
output is a ranking of simulation traces, which are ordered by
their relevance in locating the bug.

V. EVALUATION

This section presents the evaluation of our work: the re-
search questions that we aim to answer, the evaluation process
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Fig. 3. Overview of the evaluation process.

(including recall, precision, and F-measure to measure the qual-
ity of the solutions; baselines; and statistical analysis), and the
implementation details.

A. Research Questions

We aim to answer the following research questions:
RQ1: What is the performance in terms of solution quality

using the three variants for distributing the human effort in
the hybrid fitness function and the baselines in BL?

RQ2: Is the difference in the quality of the solution between
the variants and the baselines significant?

RQ3: How much is the quality of the solution influenced by
using each variant compared to each baseline?

B. Planning and Execution

Fig. 3 shows an overview of the evaluation process to answer
the research questions. The upper part of the figure shows
the software models with bugs selected from the bug catalog
provided by our industrial partner, which are the inputs for the
test cases.

In the figure, the output of the test cases are two baselines
and the three variants of our approach. The first baseline, HaFF,
has the fitness function completely replaced by a human, and it
outputs a sorted collection of model fragments that are consid-
ered to be the most relevant for the bug. The second baseline,

EMoSim, has the unattended algorithm producing simulation
traces as the fitness function, but it outputs a ranking of simu-
lation traces as described in Section II. The trace contains all
of the model elements that the interpreter has used at run-time
during the simulation. All of the model elements that appear
in the trace form the most relevant model fragment according
to the trace for the bug. The three variants of our SimuHaFF
approach work as described in Section IV to form the model
fragments that are considered to be the most relevant for
the bug.

Answering RQ1: After executing the two baselines and the
three variants of our approach, we take the first solution in the
ranking for each of the bugs as suggested in [66]. Afterwards,
we compare the solution against the oracle (i.e., the ground
truth) in order to get a confusion matrix. The confusion matrix
is a table that provides detailed information about the perfor-
mance of a classification algorithm. In our work, each candidate
solution is a model fragment that is composed of a subset of
model elements (where the bug is to be found). The presence
or absence of model elements is considered as a classification
since the granularity is at the model element level. Accordingly,
our confusion matrix distinguishes between two specific values:
TRUE (present) or FALSE (absent).

A confusion matrix groups the results of a comparison into
four separate categories: True positive (TP), when an element
that is present in the predicted model fragment is also present in
the model fragment from the oracle; True Negative (TN), when
an element that is not present in the predicted model fragment
is not present in the model fragment from the oracle; False
Positive (FP), when an element that is present in the predicted
model fragment is not present in the model fragment from the
oracle; and False Negative (FN), when an element that is not
present in the predicted model fragment is present in the model
fragment from the oracle.

Once the TP+TN+FP+FN are calculated, some measure-
ments are extracted from the confusion matrix in order to
assess the performance in terms of the solution quality of the
approach. For each baseline and variant of our approach, we
specifically generate a report with three performance metrics
(recall, precision, and F-measure) that are widely accepted
in the software engineering research community [67]: Recall(

TP
TP+FN

)
measures the number of elements of the model

fragment from the oracle that are correctly retrieved by the
proposed model fragment; Precision

(
TP

TP+FP

)
measures the

number of elements from the proposed model fragment that
are correct according to the ground truth (the oracle); and

F-measure
(
2 ∗ Precision∗Recall

Precision+Recall

)
corresponds to the harmonic

mean of precision and recall.
Recall and precision values can range between 0 and 1. A

recall value of 0 means that no single model element from the
model fragment from the oracle is present in any of the model
fragments of the predicted solution), whereas a value of 1 means
that all of the model elements from the oracle are present in the
predicted solution. A precision value of 0 means that no single
model element from the model fragment predicted is present in
the model fragment from the oracle, whereas a value of 1 means
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that all of the model elements from the predicted solution are
present in the model fragment from the oracle. A value of 1 in
precision and 1 in recall implies that both the predicted model
fragment and the model fragment from the oracle are the same.

Answering RQ2: To properly compare the approaches, all
of the data resulting from the empirical analysis was analyzed
using statistical methods following the guidelines in [44]. The
test that we must follow depends on the properties of the data.
Since our data does not follow a normal distribution in general,
our analysis requires the use of non-parametric techniques.
There are several tests for analyzing this kind of data; however,
the Quade test shows that it is more powerful than the others
when working with real data [68]. The Quade test compares
the results of multiple algorithms to determine whether there
are significant differences among them. In addition, according
to Conover [69], the Quade test has shown better results than the
others when the number of algorithms is low (no more than four
or five algorithms). However, with the Quade test, we cannot
know which of the algorithms gives the best performance. In
this case, the performance of each algorithm should be indi-
vidually compared against all of the other alternatives. In order
to do this, we perform an additional Holm’s post hoc analysis.
This kind of analysis performs a pair-wise comparison among
the results of each algorithm, determining whether statistically
significant differences exist among the results of a specific pair
of algorithms.

Answering RQ3: When comparing algorithms with a large
enough number of runs, statistically significant differences can
be obtained even if they are so small as to be of no practical
value [44]. Thus, it is important to assess if an algorithm is sta-
tistically better than another and to assess the magnitude of the
improvement. To assess how much the quality of the solution
is influenced by using SimuHaFF compared to the baselines,
the magnitude of the improvement should be assessed through
effect size measures. For a non-parametric effect size measure,
we used Cliff’s delta [70]. Cliff’s delta is an ordinal statistic
that describes the frequency with which an observation from
one group is higher than an observation from another group
compared to the reverse situation. It can be interpreted as the
degree to which two distributions overlap with values ranging
from -1 to 1. For example, when comparing Base2_EMoSim
and V3_SimuHaFF a value of 0 means there is no difference,
a value of −1 means that all samples in Base2_EMoSim are
lower than all samples in V3_SimuHaFF, and a value of 1
means the opposite (all samples in Base2_EMoSim are higher
than all samples in V3_SimuHaFF). Moreover, threshold val-
ues were defined in [45] for the interpretation of Cliff’s delta
effect size (|d|< 0.147→ ”negligible”; |d|< 0.33→ ”small”;
|d|< 0.474→ ”medium”, |d| ≥ 0.474→ ”large”). We record
a Cliff’s delta value for each pair-wise comparison in recall,
precision, and F-measure.

C. Implementation Details

In order to compare the baseline and variants of our approach
fairly, we chose the parameters shown in Table III to calibrate
the evolutionary algorithm and the fitness. As the table shows,
the number of iterations the human performs is 10 and the

TABLE III
PARAMETER SETTINGS

Parameter description Value
Fitness
HaFF and SimuHaFF Iterations 10

Individuals for subjective evaluation 10
EMoSim and SimuHaFF %playerWin: Percentage goal of player’s winnings 0.33

%playerWinLife: Percentage goal of life left when player wins 0.35
Stop: Time (in seconds) from convergence 10

Evolutionary algorithm
HaFF Size: Population size 10
EMoSim and SimuHaFF Size: Population size 100

phitByWeapon: Weapon hit probability 0.014
phitByPlayer : Player hit probability 0.25

Crossover and mutation μ: Number of parents 2
λ: Number of offspring from μ parents 2
pcrossover : Crossover probability 0.9
pmutation: Mutation probability 0.1

Fig. 4. Working experience of the participants.

number of candidate solutions (individuals) that the human
evaluates per iteration is also 10. To determine the stop condi-
tion, we ran some prior tests to determine the convergence time.
According to the tests, the time needed to converge was below
8 seconds for locating each bug. Therefore, we established
the stop condition at 10 seconds (adding a margin to ensure
convergence), ensuring that the approaches with the automatic
fitness run long enough to obtain the best solutions. In this way,
the number of possible simulations is defined by how many
scenarios can be simulated during that time. Even though the
population size is at most 100 scenarios, we only present to the
human the best 10 in all of the variants and in the baseline that
includes the human in the fitness function (HaFF) in order to
prevent human fatigue [17]. We assume that the best candidate
solutions are those with the lowest fitness value since they are
ordered by ascending fitness. For the rest of parameters in the
table, we used those settings that are commonly used in previous
works [17], [43].

In the evaluation, 29 professional video game developers
participated. The recruitment of developers was carried out by
our industrial partner, named Kraken Empire, who randomly
selected the developers to participate. Kraken Empire is an
independent game development studio, which is specialized in
interactive 3D graphics applications, physics based simulations
and real time systems. Fig. 4 shows the distribution of the
developers’ work experience. One out of every three has been
developing video games for 15+ years, and the other two of
them have developed video games for seven years or less. They
all participated in the development of Kromaia, either from its
inception (the most experienced developers) or creating new
content for the game (19 developers). They were professionals
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holding a degree in computing and related areas. All of them
were from Spain, except for one who was from Latin America.

With regard to the time that each developer spends on the
evaluation, we chose a slot of two hours since it is the median
duration of software engineering experiments [71]. Hence, each
developer participates in the localization of four randomly as-
signed [72] bugs in total (one bug per variant of the approach,
plus another one for pure baseline HaFF). Hence, 116 bugs
(4*29) were located in total. The assignment was transparent to
the developers, so they do not know whether they are locating
the bug using one variant of the approach or the baseline HaFF.
The decision to only select one bug to locate for each variant of
the approach plus baseline was based on the time needed to rate
an individual, which could last an average of 15 seconds. Thus,
the time that each developer spends on the evaluation of indi-
viduals to locate the four bugs is 100 minutes: 10 (individuals
for subjective evaluation) x 10 (iterations) = 100 (ratings/bug)
* 15 (seconds/rating) = 1500 (seconds/bug) * 4 (bugs) = 6000
seconds (100 minutes).

The remaining 20 minutes are to provide a brief tutorial
before the evaluation is started, to conduct a focus group when
they finish and, indeed, to add a margin that ensures the com-
pletion of the evaluation. The brief tutorial mainly consisted
of: 1) describing the objective of locating bugs in the context
of Kromaia; 2) showing the main interface aspects to evaluate
individuals; 3) providing a simple example (not using the bugs
that will be located during the evaluation).

The experiment was conducted as scheduled. The session
was held on December 14, 2022, at the San Jorge University
facilities. None of the subjects in this experiment exceeded the
established evaluation time limit. On average, the evaluation
lasted 87 minutes, and the minimum and maximum duration
were 63 and 100 minutes, respectively.

In order to collect the experimental data we spent about 1
hours and 17 minutes per participant on analyzing the results
obtained. We analyzed a total of 29 participants, putting in a to-
tal of approximately 37.5 hours. The data related to participant
characteristics (e.g., experience) were gathered automatically.
The experiment was carried out according to the planned sched-
ule. Therefore, there were no deviations during the execution of
the experiment.

The evaluation of SimuHaFF and the baselines was done
using identical gaming PCs with the same features. These were
three ASUS ROG Strix laptops, using an Intel Core i7-6700HQ
processor with 16 GiB of RAM, and running on a 64-bit Win-
dows 10 host operating system. There are two reasons why the
PCs were identical: (i) to avoid a potential bias when running
the simulations, as technical specifications can influence the
number of simulations run, and (ii) since the evaluation by pro-
fessional video game developers is extremely time-consuming
from a computer’s perspective [40]. With these specifications,
the automatic fitness part converges in 10 seconds and is capable
of running more than 470k simulations on average.

The implementation uses the Java(TM) SE Runtime Environ-
ment (build 17.0.5), together with Kotlin as the programming
language. For purposes of replicability, the implementation
source code and the data (software models and oracles) as well

TABLE IV
MEAN VALUES AND STANDARD DEVIATIONS FOR RECALL, PRECISION, AND

F-MEASURE FOR EACH VARIANT.

Recall Precision F-measure

V1_SimuHaFF 75.38 ± 3.98 65.64 ± 9.62 69.67 ± 5.17
V2_SimuHaFF 73.54 ± 4.58 75.86 ± 5.37 74.53 ± 3.66
V3_SimuHaFF 91.64 ± 4.29 84.84 ± 9.59 87.79 ± 5.74

Base1_HaFF 51.34 ± 7.38 58.38 ± 4.8 54.33 ± 5.03
Base2_EMoSim 67.33 ± 19.84 43.54 ± 19.66 49.86 ± 13.56

as a screenshot of the graphical interface used by humans to
evaluate the candidate solutions and the CSV files used as input
in the statistical analysis are publicly available at the follow-
ing URL: http://www.gamesoftwareengineering.com/tse23/bl-
in-mgse.

VI. RESULTS

In this section, we present the results obtained in the two
baselines (Base1_HaFF and Base2_EMoSim) and in the three
variants of our approach (V1-V3_SimuHaFF) in Kromaia.

A. Research Question 1

Table IV shows the mean values and standard deviations
for recall, precision, and F-measure for each baseline and
variant. All of the variants and the baseline that includes the
human in the fitness function (Base1_HaFF) obtained better
results than Base2_EMoSim. Specifically, V3_SimuHaFF
(simulations generated by the algorithm first and then the
human evaluations) yielded the best results, followed by
V2_SimuHaFF and then V1_SimuHaFF.

RQ1 answer. The results of all of the variants reveal that
hybridizing the fitness functions pays off in the context of BL
for GSE. The variants obtained an average value of 80.19 in
recall and 75.45 in precision, with V3_SimuHaFF being the
variant that obtained the best results (91.64% in recall and
84.84% in precision).

B. Research Question 2

The p− V alues obtained in the test are lower than
2.2x10−16 for recall, precision, and F-measure. Since the p−
V alues are smaller than 0.05, we can state that there are dif-
ferences among the algorithms for the performance indicators
of recall, precision, and F-measure.

Table V shows the p− V alues of the Holm’s post hoc
analysis for each pair-wise comparison and performance indica-
tor. All p− V alues obtained in precision and F-measure were
smaller than their corresponding significance threshold value
(0.05), indicating that the differences in performance between
the three variants and the baselines are significant, except in
recall when comparing V1_SimuHaFF vs. Base2_EMoSim,
V2_SimuHaFF vs. Base2_EMoSim and V1_SimuHaFF vs.
V2_SimuHaFF. Although these comparisons do not indicate
significant differences in recall (meaning that the number of ele-
ments of the retrieved model fragment is similar), it is important
to highlight that these comparisons indicate that there are signif-
icant differences in precision. This means that a higher number

http://www.gamesoftwareengineering.com/tse23/bl-in-mgse
http://www.gamesoftwareengineering.com/tse23/bl-in-mgse
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TABLE V
HOLM’S POST HOC P-VALUES FOR EACH PAIR-WISE COMPARISON

Recall Precision F-Measure

V1 vs Base1 3x10−10 0.00051 3x10−10

V1 vs Base2 0.063 1.1x10−6 2x10−8

V2 vs Base1 3x10−10 3x10−10 3x10−10

V2 vs Base2 0.24 4.8x10−8 8.1x10−9

V3 vs Base1 3x10−10 3x10−10 3x10−10

V3 vs Base2 8.1x10−9 1.5x10−9 3x10−10

V1 vs V2 0.21 2.4x10−6 2.2x10−5

V1 vs V3 3x10−10 3x10−9 3x10−10

V2 vs V3 3x10−10 5.4x10−5 3x10−10

TABLE VI
EFFECT SIZE MEASURES FOR COMPARING EACH PAIR OF ALGORITHMS

IN KROMAIA

Cliff’s Delta

Recall Precision F-Measure

V1 vs Base1 1 (large) 0.4482759 (medium) 0.9857313 (large)
V1 vs Base2 0.1557669 (small) 0.6575505 (large) 0.7526754 (large)
V2 vs Base1 1 (large) 1 (large) 1 (large)
V2 vs Base2 0.1034483 (negligible) 0.667063 (large) 0.8049941 (large)
V3 vs Base1 1 (large) 1 (large) 1 (large)
V3 vs Base2 0.7812128 (large) 0.8454221 (large) 0.9833532 (large)

V1 vs V2 0.2342449 (small) -0.6147444 (large) -0.529132 (large)
V1 vs V3 -1 (large) -0.8287753 (large) -0.9928656 (large)
V2 vs V3 -1 (large) -0.5386445 (large) -0.9548157 (large)

of model elements were correct according to the ground truth,
which is relevant for the solution quality of the model fragment
as shown in the corresponding F-measure value (which indi-
cates significant differences).

RQ2 answer. Since the Holm’s post hoc p− V alues for
F-measure that are shown in Table V are smaller than 0.05,
we can state that there are significant differences between the
variants and the baselines.

C. Research Question 3

Table VI shows the values of the effect size statistics of
the pair-wise comparisons. Specifically, the table shows Cliff’s
Delta [70] values for recall, precision, and F-measure. From
the results, we can determine how much the quality of the
solution is influenced by using the variants of our approach
compared to the baselines (HaFF and EMoSim) as well as the
influence among the variants. The magnitude of improvement
using any of the variants of our approach instead of the baselines
can be interpreted as being large according to the magnitude
scales [45] of the Cliff’s Delta values, except for recall when
comparing V1_SimuHaFF vs. Base2_EMoSim, V2_SimuHaFF
vs. Base2_EMoSim and V1_SimuHaFF vs. V2_SimuHaFF.

RQ3 answer. We can draw conclusions about how much
the quality of the solution is influenced each variant of the
hybrid fitness compared to each baseline from the results of
Table VI. The results reveal that the magnitude of improve-
ment in F-measure using any variant is large compared to the
baselines according to the magnitude scales [45] of the Cliff’s
Delta values.

VII. DISCUSSION

This section presents: 1) the analysis of the results to un-
derstand why the quality of the solutions is influenced by the
SimuHaFF variants; 2) the results of a focus group where we
acquired feedback from the participants to determine whether
the hybrid fitness function is accepted; and 3) the results of a
survey where we obtained the opinion of video game develop-
ers on which SimuHaFF variant would obtain the best results
(in terms of solution quality). Thus, we compare whether the
SimuHaFF variant selected by the developers coincides with the
SimuHaFF variant that obtains the best results.

We examined the results in order to understand why the hu-
man effort in the variants of SimuHaFF significantly influenced
the quality of the solutions, especially using V3 (simulations of
the algorithm first and then human evaluations). We detected
that V3 provided the best candidate solutions that the algorithm
locates as input to the human. Thus, the quality of the candidate
solutions were even better (in all of the performance indicators)
after the human evaluations than the solutions only produced by
the algorithm.

In contrast, V2 (which reverses the V3 variant) did not obtain
results as good as V3 because the human started the evalua-
tions with candidate solutions that were randomly generated
(in contrast to V3 where the human started with the best so-
lutions obtained by the algorithm). Even though the quality
of the initial candidate solutions improved after 10 iterations
of human evaluations, it was not enough to obtain the best
results due to the following: the genetic operations randomly
produce new candidate solutions, which due to the randomness
make solutions worse in some cases and the execution of the
algorithm after the human evaluations produces solutions that
are not the ones expected by the human (e.g., including incorrect
model elements).

With regard to the results of V1 (interleaving simulations
automatically produced by the algorithm with human evalua-
tions), a similar effect occurred as in V2. Even though the al-
gorithm provided the best solution possible and a single human
evaluation influenced the selection that the algorithm made to
produce new candidate solutions, the results that were displayed
to the human in the next evaluation were not related to the ones
that were previously scored with the highest fitness due to the
algorithm. This ended up misleading the human and affecting
their findings in every evaluation.

We ran a focus group to acquire feedback from the 29 pro-
fessional video game developers of the industrial partner who
participated as fitness function. The focus group was composed
of the following open questions: (i) What do you think of the
results of the approaches?; (ii) How do you feel about evaluating
candidate solutions from simulation traces to locate bugs in
video games?; (iii) How do you imagine the use of SimuHaFF in
video games of other genres and in more complex video games?

The developers thought that the quality of the solution was
better when they participated as fitness function than when they
did not. They mentioned that doing the evaluations was intuitive
and clear, and they enjoyed participating and using our approach
even if it was to detect something that they would not have
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noticed without the approach. This is especially true in cases
where the bugs comprise elements or properties of the models
that are highly implicit or at a deep semantic level, since they
are extremely complex to locate by a human alone.

The developers stated that the representation of the model
fragments on the graphical interface was adequate. The heat
map helped them to guide the bug localization. In addition,
a potential improvement would be if the model were directly
represented graphically in a model viewer that actually showed
how it would look in-game, with the added highlighting of the
parts that could be the source of a bug. Also, in their opinion,
it would be important to always maintain a correlation with the
textual model to be able to keep changes afterwards, or better
yet, to be interactive to correct the model at run-time.

The developers also mentioned that SimuHaFF could be used
for other video game genres and more complex problems if the
video game is large (in terms of active assets) and the unit tests
are complex or lack sufficient value or usefulness and therefore
are not sufficiently representative. This is especially true for
cases when a video game is an open game experience or the
possibility of combinations between actions and results that
the player performs are almost infinite. Some developers also
stressed that regardless of whether or not you have the capacity
(budget and effort required), it is better to have this type of
assistance to find bugs than not to have it at all. In their opinion,
even if the feedback from the approach is not entirely accurate,
it can alert a developer to whether something may trigger un-
expected behavior. The ideal for them and how they envision
our approach in a real working environment is in the form of an
integration with the model editor that simulates and tests models
as they are built in an assisted manner. They mentioned that
it would be worthwhile to have this approach even if the hit
rate was low (e.g., it found 3 out of 50 bugs that they would
not have to search for). This would be especially helpful for
small studios or indie developers who have practically no time
to test their games since they invest most of their resources in
generating new content. Therefore, it would save them time and
allow them to concentrate their efforts and focus on what is
really important: creating their game and bringing it to market
in a timely manner.

Furthermore, we emailed a survey to 20 video game devel-
opers to get their opinion on which SimuHaFF variant they
thought would achieve the best results (in terms of solution
quality). The survey included junior and senior video game
developers (4 and 3, respectively) as well as academic ex-
perts (13), who are video game developers and also teach
in the Design and development of video games degree pro-
gram of San Jorge University. The survey featured a single-
choice question, where the participants were asked to select
the most promising variant among the SimuHaFF options. The
question itself was accompanied by Fig. 2, which was sup-
plemented with a descriptive caption explaining the content of
the figure and each variant. Fourteen of the participants opted
for interleaving simulations that are automatically produced
by the evolutionary algorithm with human expert evaluations
(V1), while four others preferred launching simulations that
are generated by the algorithm first and then they themselves

evaluate the results (V3). Only two thought that the best option
for distributing human effort during bug localization would
be to rely on several consecutive evaluations of the human
expert before launching the simulations that are automatically
obtained by the algorithm (V2). However, the results show that
V3 performs best, followed by V2, V1, then B1_HaFF, and
finally B2_EMoSim. Hence, the results are counter-intuitive
for the video game developers who responded to the survey.
Apparently to them, it made more sense for V1 to outper-
form V3. This is possibly influenced by how they envision a
tool-assisted workflow.

VIII. THREATS TO VALIDITY

To acknowledge the threats to the validity of our work, we
use the classification suggested by De Oliveira et al. [73].

1) Conclusion Validity threats. We approached the ran-
dom variation threat by considering 30 independent runs only
in Baseline 2 (without human effort) for every single bug as
suggested in [44]. However, that number of runs could not be
contemplated given that the availability of humans is a lim-
ited resource, and the result of subsequent runs for the same
bug would be influenced by the learning effect. For the lack
of a good descriptive analysis threat, we applied the recall,
precision, and F-measure performance metrics to analyze the
confusion matrix obtained (although other metrics could be
applied). We also applied statistical significance (the Quade test
and Holm’s post-hoc analysis) and effect size measurements
(Cliff’s Delta) following accepted guidelines [42]. We tackled
the lack of meaningful comparison baseline issue by comparing
the results obtained from our approach with two baselines:
EMoSim and HaFF.

2) Internal Validity threats. To mitigate the threat of poor
parameter settings, we used values from the SBSE literature.
Default ones are adequate to measure performance of localiza-
tion techniques, as indicated by Arcuri and Fraser [42]. We also
used two main metrics (health and victory) to assess the fitness
of a simulation as done in [46]. We handled the lack of real
problem instances by selecting a commercial video game as the
case study for the evaluation. Likewise, the problem artifacts
were directly obtained from the video game developers and
the documentation itself. Then, we randomly selected 29 bugs
from the entire documentation. Afterwards, we also randomly
assigned four different bugs to each developer in the evaluation.
We did not participate in the selection of the developers to avoid
researcher bias [74]. In addition, both the order of the variants
of the approach and the baseline (which only uses the human
as fitness function) and the set of bugs to be localized were
randomly assigned to each engineer so that they would not know
whether they were using a variant or baseline to locate a certain
bug, hence mitigating the imbalanced group of subjects threat.
We conducted the evaluation following a crossover design: the
developers who participated in the oracle provided by the indus-
trial partner were not involved in the evaluation, thus addressing
the learning effect threat. We gave a briefing before starting
the evaluation so that possible understandability issues could be
minimized. The developers were not allowed to communicate
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with each other during the evaluation to avoid incurring in the
information exchange threat. The number of iterations and indi-
viduals of the algorithm per bug was set to 10 as recommended
in the literature [40] in order to reduce fatigue impact. Besides
that, we established a total duration of the evaluation of two
hours as a whole (including the briefing), in accordance with the
average duration of experiments in software engineering [71].

3) Construct Validity threats. To prevent the lack of
assessing the validity of cost measures threat, we made a
fair comparison between the variants of our approach and
the two baselines. Furthermore, we used three measurements
(recall, precision, and F-measure) for the evaluation, which
have been widely adopted by the software engineering research
community [67].

4) External Validity threats. We evaluated our approach
in a commercial video game, whose instances are collected
from real-world problems, to avoid the lack of a clear object
selection strategy threat. To mitigate the generalization threat,
we designed our approach to be generic and applicable not only
to our industrial case study but also for locating bugs in other
different video games. To apply our approach in other video
games, three main ingredients are required as in other SBSE
approaches: encoding, operations, and fitness function. The op-
erations are widespread crossover and mutation. The encoding
and the fitness function depend on the simulated player. We
can apply our approach to other video games where simulated
players are available. These simulated players can be found
in well-known gaming genres that include racing, first-person
shooter, and real-time strategy. For those cases where there is no
simulated player, the developers should ponder the tradeoff of
the cost of developing the simulated player and the benefits of
locating bugs using our approach. Nevertheless, our approach
should be replicated with other video games before assuring
its generalization.

IX. CONCLUSION

Recently, human participation in Search-Based Software En-
gineering (SBSE) has proven to be useful for obtaining more
favorable solutions. However, in order to efficiently explore
large complex problem spaces, humans cannot handle the same
number of solutions as an algorithm since humans are not
immune to fatigue.

In this work, we have proposed a hybrid fitness function
that is the first to combine human effort with human simu-
lations for more demanding problems in the context of BL
in software models for the video games of GSE. Moreover,
we have proposed three variants of the hybrid fitness function
that distribute the human effort in different ways in order to
study their influence on the quality of the solutions. The eval-
uation was performed on a commercial video game (Kromaia)
where 29 professional video game developers were involved,
acting as the human component of the fitness function. As
baselines, we replaced the hybrid fitness function with a fitness
function that only uses a human and a fitness function that is
automatically calculated.

Our proposed hybrid fitness function outperformed the re-
sults of the best baseline by 33.46% in F-measure. Furthermore,

a focus group confirmed the professional video game develop-
ers’ acceptance of the hybrid fitness function since it helped
them to reduce the amount of manual work and to minimize the
number of bugs that go unnoticed. The variant that obtained the
best results was not only counter-intuitive with an initial survey
that we did with video game developers, but it was also counter-
intuitive with previous works.

It is important to highlight that our work has implications
from both an academic perspective in software engineering
and from a practical standpoint for professional video game
developers. From the academic perspective in software engi-
neering, our work shows that the distribution of the human effort
(interleaving the algorithm with human evaluations), which is
both preferred by video game developers and selected by default
in most iSBSE works, does not obtain the best results. This
can inspire other academics to explore other distributions of
the human effort (such as the distributions of the human effort
that are studied in this work) to improve their results. From
the practical standpoint of professional video game developers,
there is a lack of technical solutions that locate bugs and real-
world experience. This is hard to obtain since the majority of
related works use academic data and other video game studios
do not share the details of their technical solutions to develop
and maintain their commercial products. Works like ours may
be the path to compensate for this lack, and may motivate other
video game developers to reduce the amount of tedious manual
work during the location of bugs.

Our results not only help video game developers to locate
bugs, but it can also inspire other SBSE researchers to bring
hybrid fitness functions to other software engineering tasks
instead of using a default approach for distributing the human
effort. In fact, part of our future work is to explore hybrid fitness
functions in other software engineering tasks and domains.
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