
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023 5139

PREVENT: An Unsupervised Approach to Predict
Software Failures in Production

Giovanni Denaro , Member, IEEE, Rahim Heydarov , Ali Mohebbi ,
and Mauro Pezzè , Senior Member, IEEE

Abstract—This paper presents PREVENT, a fully unsupervised
approach to predict and localize failures in distributed enterprise
applications. Software failures in production are unavoidable.
Predicting failures and locating failing components online are
the first steps to proactively manage faults in production. Many
techniques predict failures from anomalous combinations of
system metrics with supervised, weakly supervised, and semi-
supervised learning models. Supervised approaches require large
sets of labelled data not commonly available in large enterprise
applications, and address failure types that can be either captured
with predefined rules or observed while training supervised
models. PREVENT integrates the core ingredients of unsupervised
approaches into a novel fully unsupervised approach to predict
failures and localize failing resources. The results of experiment-
ing with PREVENT on a commercially-compliant distributed cloud
system indicate that PREVENT provides more stable, reliable and
timely predictions than supervised learning approaches, without
requiring the often impractical training with labeled data.

Index Terms—Failure prediction, distributed applications,
machine learning.

I. INTRODUCTION

GOOD design and quality assurance practice cannot pre-
vent software to fail in production [24]. The complexity

of distributed enterprise applications further increases the risks
of production failures.

Several approaches apply machine learning techniques to
prevent system failures, following many studies that exploit
artificial intelligence for software engineering problems [4],
[5], [7], [12], [17], [25], [33], [35], [36], [41], [51], [53], [61],
[65], [66], [67]. The two mainstream classes of approaches

Manuscript received 7 July 2023; accepted 14 October 2023. Date of
publication 2 November 2023; date of current version 12 December 2023.
This work was supported in part by the Swiss SNF project ASTERIx:
Automatic System TEsting of InteRactive software applications under Grant
SNF 200021_178742, in part by the Italian PRIN project SISMA under Grant
PRIN 201752ENYB, and in part by the Italian PRIN project BigSistah under
Grant PRIN 2022EYX28N. Recommended for acceptance by S. Chandra.
(Corresponding author: Giovanni Denaro.)

Giovanni Denaro is with the Department of Informatics, Systems and
Communication, University of Milano-Bicocca, 20126 Milano, Italy (e-mail:
giovanni.denaro@unimib.it).

Rahim Heydarov and Ali Mohebbi are with the Faculty of Informatics, USI
Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland (e-mail:
rahim.heydarov@usi.ch; ali.mohebbi@usi.ch).

Mauro Pezzè is with Faculty of Informatics, USI Università della Svizzera
Italiana, 6900 Lugano, Switzerland, and also with Constructor Institute, 8200
Schaffhausen, Switzerland, and also with Department of Informatics, Systems
and Communication, University of Milano-Bicocca, 20126 Milano, Italy
(e-mail: mauro.pezze@usi.ch).

Digital Object Identifier 10.1109/TSE.2023.3327583

either predict failure prone modules based on metrics that reflect
the complexity of the code or predict the occurrence of error
states at runtime based on metrics that reflect the execution of
software systems.

Approaches that predict failure prone modules feed predic-
tion models with metrics from the code, and allow for fine-
tuning testing activities for the modules that are more likely
to contain defects [25], [67]. A notable case of approaches that
predict failure prone modules is the Nam and Kim’s CLAMI
approach [48] that clusters software modules based on the sim-
ilarity of code complexity metrics.

Approaches that predict the occurrence of error states at
runtime feed prediction models with metrics monitored at
runtime, and allow to take countermeasures before the fail-
ures actually manifest. These approaches draw on the ob-
servation that many failures occur in production when the
execution of some faulty statements corrupts the execution
state, and eventually the error state propagates to a system
failure, that is, a deviation of the delivered service from the
required functionality.

Current approaches for predicting failures exploit rule-based,
signature-based, or semi-supervised strategies. Rule-based ap-
proaches rely on predicates that experts extract from data ob-
served during operations [13]. Signature-based approaches rely
on supervised learning models that leverage the information
from historical records of previously observed failures [6], [15],
[19], [23], [31], [40], [49], [50], [57], [62]. Signature-based
approaches require large amounts of labeled failure data for
training, which are rarely available and hard to collect. Semi-
supervised approaches exploit signature-based models on top
of synthetic data inferred with either semi-supervised, weakly
supervised or unsupervised learning, to balance accuracy and
required information [22], [27], [43], [63], [64]. Signature-
based approaches for distributed applications often aim also to
localize the components responsible for the failures [13], [28],
[39], [42], [43], [56], [63].

This paper investigates a purely unsupervised approach to
failure prediction. Whereas signature-based approaches identify
failures of pre-defined failure types that occur in the training
data, unsupervised approaches detect anomalies as deviations
from some model of the nominal system behavior suitably
inferred in absence of failures, and can thus reveal failures of
any types, including types that do not necessarily correspond
to training data. Previous work explored unsupervised anomaly
detection for intrusion attacks [8], anomalies of streaming

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7566-8051
https://orcid.org/0009-0002-7428-2429
https://orcid.org/0000-0002-4844-4351
https://orcid.org/0000-0001-5193-7379
mailto:giovanni.denaro@unimib.it
mailto:rahim.heydarov@usi.ch
mailto:ali.mohebbi@usi.ch
mailto:mauro.pezze@usi.ch
https://creativecommons.org/licenses/by/4.0/


5140 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023

data [2], issues in computer networks [20], log file analysis [18]
and detection of performance issues [29].

In this paper we propose PREVENT, an original application
of unsupervised approaches to predict and localize failures in
distributed enterprise applications. PREVENT is grounded on
the lessons learned from PREMISE, EMBED and LOUD, our
previous work on supervised and unsupervised approaches to
predict failures and localize faults.

PREMISE [43] combines anomaly detection technique and
Logistic Model Trees (LMT) to predict failures and localize
failing resources in supervised fashion. EMBED [46], [47] pro-
poses Restricted Boltzmann Machine (RBM) to predict fail-
ures in complex cloud systems. LOUD [42] combines Granger
causality analysis and page rank centrality measures to localize
failing components. While PREMISE offers a supervised end-to-
end solution to predict failures and localize faults, EMBED and
LOUD propose unsupervised approaches to predict failures and
locate faults, respectively. Predicting the occurrence of failures
at the system level without localizing the failing components in
distributed applications (as in EMBED) does not offer develop-
ers and maintainers enough information to activate prevention
mechanisms. Relying only on localization mechanisms (as in
LOUD) results in many false alarms.

PREVENT originally combines failure prediction and fail-
ure localization in a coordinated and fully unsupervised ap-
proach. It exploits a deep autoencoder model to predict failures,
and coordinates deep autoencoder, Granger causality and page
rank centrality to locate failing components. In a nutshell, The
deep autoencoder identifies anomalous states of the system,
and discriminates normal and anomalous metrics. The Granger
causality analysis combined with page rank centrality effec-
tively ranks the values that the deep autoencoder reveals as
anomalous, to spot the faulty components responsible for the
predicted failures.

We introduce a new large dataset that we obtained by run-
ning many experiments on REDIS, a commercially-compliant,
distributed cloud system. The experiments that we discuss in the
paper compare the stability, reliability and earliness of PREVENT

with PREMISE, EMBED AND LOUD, in the context of failures
that we seed in REDIS.

PREVENT recomputes the prediction at each time interval. We
measure the stability of a prediction as the true positive rate
after the first true prediction, that is, the continuity in correctly
reporting the failing component in the presence of error states.
Intuitively, predictions consecutively raised at all timestamps
over a time interval are clearer messages of failures than inter-
mittent predictions that appear and disappear in a time interval.
We measure the reliability of the prediction with reference to
the false positive rate, that is, the frequency of alarms that do
not correspond to real error states or wrongly track the failures
to non-failing components: The lower the false positive rate, the
higher the reliability of the prediction. Intuitively, predictions
are more effective when they occur only in error states than
when they occur both in error and correct states. We measure
the earliness of a prediction as the time interval between the first
correct prediction and the actual failure, that is, the time interval

Fig. 1. Overview of PREVENT.

for a proactive action on the failing component to prevent a
failure before its occurrence.

This paper contributes to the research in software engi-
neering by

• defining PREVENT, a new unsupervised approach that orig-
inally combines deep autoencoder, Granger causality and
page rank centrality to predict failures and locate the cor-
responding faulty components.

• presenting a large set of data collected from a
commercially-compliant, distributed cloud systems
to evaluate and compare different approaches, data that
we offer in a replication package,1

• comparing PREVENT with PREMISE, EMBED AND LOUD,
to indicate the advantages of a fully unsupervised approach
for both predicting failures and locating faulty components
with respect to supervised approaches.

This paper is organized as follows. Section II presents
PREVENT. Section III describes the experimental setting, and
discusses the results of the experiments that comparatively eval-
uate PREVENT with respect to PREMISE, EMBED and LOUD.
Section IV discusses the main state-of-the-art approaches for
predicting and diagnosing failures, and their relation with
PREVENT. Section V summarizes the contribution of the paper
and indicates novel research directions.

II. PREVENT

The core contribution of this paper is PREVENT, an un-
supervised approach that both predicts failures in distributed
enterprise applications and localizes the corresponding faulty
components. PREVENT originally combines a deep autoencoder,
Granger causality analysis and pagerank centrality analysis to
predict failures and localize faulty components without requir-
ing training with labeled data. With this original combination
of unsupervised techniques, PREVENT overcomes the main ob-
stacles of supervised approaches: the effort required to label
the data for training and the difficulty of predicting failures of
types that do not correspond to training data. The unsupervised
nature of PREVENT allows to both predict failures of any type
and locate the faulty components responsible for the failures.
Efficiently locating the faulty components in large distributed
enterprise applications provides enough information for state-
of-the-art self healing approaches [60] to automatically activate
healing actions before the occurrence of the failures.

1The replication package at https://star.inf.usi.ch/#/software-data/14

https://star.inf.usi.ch/#/software-data/14


DENARO et al.: PREVENT: AN UNSUPERVISED APPROACH TO PREDICT SOFTWARE FAILURES IN PRODUCTION 5141

Fig. 1 shows the main components of PREVENT, the State
classifier and the Anomaly ranker, that predict failures and
localize the faulty components, respectively. As shown in the
figure, the State classifier and the Anomaly ranker work on
time series of Key Performance Indicators, KPIs, that are sets of
metric values observed by monitoring the application at regular
time intervals (every minute in our experiments). A KPI is a pair
〈metric, node〉 of a metric value collected at either a virtual
or physical node of the monitored application. Our current
prototype of PREVENT collects KPI series with a monitoring
facility built on top of Elasticsearch [1].

PREVENT returns a list of anomalous nodes ranked by
anomaly relevance, list that the Anomaly ranker produces in the
presence of anomalous states inferred with the State classifier.

Both the State classifier and the Anomaly ranker include
a deep autoencoder that requires unsupervised training with
KPI data collected during normal (non-failing) executions of
the application, without requiring any labels at training time.
The deep autoencoder can be trained with a reasonably small
amount of data. In our experiments we train PREVENT with data
collected in two weeks of normal execution. Thus, PREVENT is
resilient to concept drifts that span over several weeks or more.
Such drifts can be overtaken with both frequent short retraining
sessions and continuous training in production, thanks to the
unsupervised nature of PREVENT.

The State classifier crosschecks the KPI values observed
in production against the normal-execution characteristics in-
ferred during training, and accepts normal states, when there
are no significant differences. It pinpoints anomalous states,
otherwise. The Anomaly ranker identifies anomalous KPIs,
that is, KPIs with values that significantly differ from values
observed during training in normal execution conditions, and
ranks anomalous nodes according to their relevance with re-
spect to the anomalous KPIs. PREVENT reports the anomalous
nodes only when the State classifier reveals anomalous states.
We discuss the inference models that instantiate the two com-
ponents later in this section.

We defined PREVENT by benefitting from the lessons learned
with PREMISE [43], EMBED [46], [47], and LOUD [42], three
representative techniques to predict and localize failures.

The supervised PREMISE approach that we developed as a
joint project with industrial partners, gives us important in-
sights about the strong limitations of supervised approaches
in many industrially-relevant domains. PREMISE combines an
unsupervised approach for detecting anomalous KPIs with a su-
pervised signature-based approach for predicting failures. The
signature-based approach requires long supervised training, and
achieves good precision only for failures of types considered
during supervised training. PREMISE indicates that supervised
approaches can indeed precisely and timely predict failures,
localize faults and identify the fault types. It also highlights
the strong limitations of training systems with seeded faults in
production, as supervised approaches require.

EMBED predicts failures by both computing the Gibbs free
energy associated with the KPIs that represent the system
state and monitoring anomalous energy fluctuations in produc-
tion. EMBED provides evidence about the correlation between

anomalous energy values of the RBM and KPI anomalies that
can lead to system failures. EMBED predicts failures of the
target application as a whole, without any information at the
level of the application nodes.

LOUD localizes faults with an unsupervised observational
strategy, by identifying the application nodes that are highly
relevant with respect to the causal dependencies between the ob-
served anomalies. It assumes the availability of precise anomaly
predictions at system-level to limit the otherwise large amount
of false alarms. LOUD shows how to combine Granger causality
analysis and page rank centrality to effectively locate faulty
components, in the presence of reliable failure predictions.

PREVENT introduces a deep autoencoder to improve the preci-
sion of detecting and classifying anomalous KPIs, and proposes
an original combination of the approaches as an efficient end-
to-end solution to predict failures and locate faulty components
with lightweight unsupervised training.

We implemented two State classifiers that we refer
to as PREVENTA (PreventAutoencoder) and PREVENTE

(PreventEnergy). PREVENTA implements PREVENT as
illustrated in Fig. 1. PREVENTE replaces the Deep Autoencoder
of the State classifier in Fig. 1 with a Restricted Boltzmann
Machine (RBM) that implements the free-energy-based
approach of EMBED. We use PREVENTE to compare PREVENT

with EMBED. Both PREVENTA and PREVENTE are integrated
with the Anomaly ranker that combines Granger-causality
with eigenvector-centrality (page rank centrality calculator) to
precisely localize failing nodes.

A. PREVENTA State Classifier

The PREVENTA State classifier uses a deep autoencoder to
predict failures without requiring training with seeded faults.
The deep autoencoder model identifies anomalous KPIs as KPIs
with values that are anomalous with respect to the observations
when training with normal executions.

A deep autoencoder (also simply referred to as autoencoder)
is a neural network architected with two contiguous sequences
of layers that mirror each other structure: A first sequence
of layers of decreasing size up to an intermediate layer of
minimal size, and a second sequence of layers of correspond-
ingly increasing size up to a layer with the same size of the
initial layer.

During training, the first half of the network learns how to
encode the input data in incrementally condensed form, up to
a minimal form in the intermediate layer. The second half of
the network learns how to regenerate the input based on the
information condensed in the intermediate layer. The difference
between the input and output values is the reconstruction error
of the autoencoder.

During training the neurons of the network learn functions
that minimize the average reconstruction error on the training
data. In production, the network returns small reconstruction
errors for data similar to the training data in both absolute values
and mutual correlations. It returns large reconstruction errors
for data that significantly differ from the observations in the
training phase.



5142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023

Fig. 2. Deep autoencoder as instantiated in PREVENTA.

Fig. 2 illustrates the architecture of the PREVENTA autoen-
coder that is composed of seven layers with sizes n, n/2, n/4,
n/8, n/4, n/2, and n, respectively, being n is the number of
monitored KPIs.

We trained the PREVENTA autoencoder with the KPIs ob-
served at regular time intervals on the distributed enterprise
application executed in normal conditions, that is, without fail-
ures. The trained autoencoder reveals the anomalous states
that emerge in production, as the states that correspond to
reconstruction errors that significantly differ from the mean
reconstruction error computed during training. In our current
prototype this threshold is set to the reconstruction errors that
differ from the mean reconstruction error for more than three
times the standard deviation observed on the training set.

B. PREVENTE State Classifier

The PREVENTE State classifier infers anomalous combi-
nations of KPI values from perturbations of the Gibbs free
energy computed on time series of KPI values monitored
from production.

The Gibbs free energy was originally introduced in statis-
tical physics to model macroscopic many-particle systems as
a statistical characterization of the properties of single parti-
cles that affect the global physical quantities such as energy
or temperature [10], and is applied in many domains, such
as the growth of the World Wide Web and the spread of
epidemics [16].

We rely on the intuition that complex distributed enterprise
software applications and physical systems share the depen-
dencies of properties of interest of the global state of the sys-
tem (energy and temperature in the case of physical systems,
failures in the case of software applications) on the collective
configuration of basic elements (particles in the case of physical
systems, KPI values in the case of software applications). Intu-
itively, the execution of some faulty code produces some error
states with anomalous KPI values that propagate through the
execution, thus leading to a progressive alignment of anomalous
KPI values. Following this intuition, we recast the problem of
predicting failures in complex distributed enterprise software

Fig. 3. RBM as instantiated in PREVENTE .

applications to the problem of revealing the collective alignment
of the KPIs of an application to correlated anomalous values.

PREVENTE supersedes the intractability of analytically rep-
resenting the physical dependencies that concretely govern the
correlations among KPIs [9] by approximating the computation
of the Gibbs energy with restricted Boltzmann machines, RBM
[21], and signals anomalous states when the energy exceeds
a threshold.

Fig. 3 show the two convolutional layers of the RBM as
instantiated in PREVENTE : A visible layer with as many neurons
as the number of KPIs monitored on the target application,
and a hidden layer with an equivalent number of neurons. The
visible layer takes in input the values of the KPIs monitored
at each timestamp, while the hidden layer encodes the joint
distributions of KPIs, based on the training-phase sampling
of the conditional probabilities of the hidden nodes given the
visible nodes.

PREVENTE trains the RBM with KPI values collected at
regular time intervals in production to set the reference energy
value. Our experiments indicate that a training with KPI values
collected over two weeks produces good results. PREVENTE

reports anomalies when the energy value observed at runtime
exceed the reference energy value by some thresholds. The
threshold values can be computed offline by training the RBM
with datasets from different applications. PREVENTE imple-
ments the RBM neural network in Matlab.

C. PREVENT Anomaly Ranker

The PREVENT Anomaly ranker:
(i) identifies sets of anomalous KPIs with a deep

autoencoder,
(ii) builds a graph that represents the causality dependen-

cies between the anomalous KPIs with Granger-causality
analysis [3], [26], [52],

(iii) exploits the causality graph to calculate the PageRank
centrality value of each anomalous KPI in the graph
[34], [44], [58],

(iv) returns the three nodes of the application with the highest
numbers of anomalous KPIs, selecting the top anomalous
KPIs of the centrality ranking, up considering at most
20% of the KPIs.

Deep Autoencoder: The deep autoencoder of PREVENT

Anomaly ranker is the same deep autoencoder of PREVENTA

state classifier. It identifies anomalous KPIs as KPIs with locally
high reconstruction errors that we implement as KPI reconstruc-
tion errors that differ from the corresponding mean observed
on the training set for more than three times the corresponding
standard deviation, in our prototype implementation.



DENARO et al.: PREVENT: AN UNSUPERVISED APPROACH TO PREDICT SOFTWARE FAILURES IN PRODUCTION 5143

Granger Causality Analysis: At each timestamp in produc-
tion, the Granger-causality analyzer builds a causality graph
that represents the causal dependencies among the KPIs with
anomalous values at the considered timestamp. During training,
PREVENT builds a baseline causality graph that represents the
causality relations between the KPIs, as captured under normal
execution conditions: For each pair of KPIs 〈ka, kb〉, there is an
edge from the corresponding node ka to node kb in the baseline
casualty graph, if the analysis of the time series of the two KPIs
reveals a causal dependency from the values of ka on the values
of kb, according to the Granger causality test [26]. The weight
of the edges indicates the strength of the causal dependencies.2

At each timestamp in production, PREVENT Anomaly ranker de-
rives the causality graph of the anomalous KPIs by pruning the
baseline causality graph, to exclude the KPIs that autoencoder
does not indicate as anomalous.

PageRank Centrality: At each timestamp in production,
the PREVENT Anomaly ranker exploits the causality graph of
the anomalous KPIs to weight the relative relevance of the
anomalous KPIs as the PageRank centrality index. PageRank
scores the graph nodes (KPIs) according to both the number of
incoming edges and the probability of anomalies to randomly
spread through the graph (teleportation) [34].

Top Anomalous Application Nodes: PREVENT Anomaly
ranker sorts the anomalous KPIs according to the decreasing
values of their centrality scores; It selects the top anomalous
KPIs of the ranking up to considering at most 20% of the
KPIs; It tracks these anomalous KPIs to the corresponding
nodes of the application, and returns the three application nodes
with highest number of top-anomalous KPIs that correspond to
their location.

The PREVENT Anomaly ranker improves LOUD by (i) dis-
criminating the anomalous KPIs with a deep autoencoder
instead of time-series analysis, to improve the results, (ii) ex-
ploiting the top anomalous KPIs of the ranking up to 20% of
KPIs, rather than simply referring to the top 20 anomalous KPIs,
to scale to large systems with thousands KPIs and (iii) consid-
ering the KPIs that are anomalous at each specific timestamp,
rather than the KPIs that are detected as anomalous at least once
in the scope of a time window, to identify anomalous states and
anomalous nodes at each timestamp.

III. EXPERIMENTS

A. Research Questions

Our experiments address three research questions:

2The Granger causality test determines the existence of a causal dependency
between a pair of KPIs ka and kb as a statistical test of whether the time series
values of ka provide statistically significant information about the evolution of
the future values of kb [3], [26], [52]. Specifically, we test the null-hypothesis
that ka does not Granger-cause kb by (i) building an auto-regression model
for the time series values of kb, (ii) building another regression model that
considers the values of both ka and kb as predictors for the future values of
kb, (iii) testing if the latter model provides significantly better predictions
than the former one. If so, we reject the null-hypothesis in favor of the
alternative hypothesis that ka Granger-causes kb, and compute the strength of
the causality relation as the coefficient of determination R2. We implemented
the test with the Statsmodels Python library [45], [59].

RQ1: Can PREVENT predict failures in distributed enterprise
applications?

RQ2: Does the unsupervised PREVENT approach improve
over state-of-the-art (supervised) approaches?

RQ3: Does PREVENT improve over LOUD, that is, the
Anomaly ranker used as a standalone component?

RQ1 studies the ability of PREVENT to predict failures. We
consider both PREVENTA and PREVENTE , and comparatively
evaluate their ability to predict failures in terms of false alarm
rate, prediction earliness, and stability of true predictions.

We compute the false alarm rate in terms of false-prediction
and false-location alarms. The false-prediction alarms are the
timestamps that correspond to states wrongly identified as
anomalous during normal execution. The false-location alarms
are the timestamps that correspond to states that are identi-
fied as anomalous, but with failures wrongly located in non-
anomalous nodes, during failing execution. The lower the false
alarm rate of either types is, the higher the reliability of the
prediction is.

We compute prediction earliness as the number of times-
tamps between the first true prediction and the observed system
failure, that is, the time interval for activating a healing action
before a system failure. We compute the stability as the true
positive rate after the first prediction, that is, the ratio between
predictions after the first true prediction and timestamps before
the observed system failure. Intuitively, the stability indicates
the continuity in correctly reporting the failing component in
the presence of error states.

RQ2 investigates the advantages and limitations of train-
ing without failing executions. PREVENT trains models with
data from normal (non-failing) executions only, while su-
pervised techniques rely on training with both normal and
failing executions. The non-necessity of training with failing
execution extends the applicability of PREVENT with respect to
supervised techniques. PREVENT discriminates failure-prone
conditions as executions that significantly differ from observa-
tions at training time, while supervised techniques can iden-
tify only failures of types considered during training. As a
result, PREVENT is failure-type agnostic, that is, it can predict
failures of any types, while supervised techniques foster ef-
fectiveness by limiting the focus on specific types of failures.
We answer RQ2 by comparing both PREVENTA and PREVENTE

with PREMISE, a state-of-the-art supervised approach that we
studied in the last years and successfully applied in industrial
settings [43], in terms of true positive, true negative, and false
alarm rates.

A comparison with state-of-the-art approaches requires a
conceivable effort to set up the experimental context and ex-
ecute the experiments. By comparing PREVENT with PREMISE

we offer a fair comparative evaluation while keeping the costs
within an acceptable threshold. The original PREMISE paper
[43] reports a comparative evaluation with both Operation
Analytics - Predictive Insights (OA-PI)3, a widely adopted
industrial anomaly-based tool, and G-BDA [57], a state-of-the-
art signature-based approach, both outperformed by PREMISE.

3IBM. Operation Analytics - Predictive Insights Last access: July 2019.

https://www.ibm.com/support/knowledgecenter/en/SSJQQ3_1.3.3/com.ibm.scapi.doc/kc_welcome-scapi.html


5144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023

Fig. 4. Structure of the Redis Cluster.

Thus, the comparison with PREMISE offers a good data spec-
trum, within acceptable set-up costs because of our full access
to PREMISE.

RQ3 evaluates the contribution of the synergetic combination
of the State classifier and Anomaly ranker, to skim the false
alarms that derive from ranking anomalous KPIs in either non-
anomalous states or non-anomalous components. We evaluate
the contribution of combining State classifier and Anomaly
ranker by comparing both PREVENTA and PREVENTE with
LOUD, the Anomaly ranker component standalone that locates
faults failures for any state, by referring to the improved ap-
proach that we integrated in the PREVENT Anomaly ranker.

B. Experimental Settings

We report the results of experimenting with PREVENT on
Redis Cluster, a popular open-source enterprise application that
provides in-memory data storage.4 A Redis Cluster deploys the
in-memory data storage services on a cluster of computational
nodes, and balances the request workload across the nodes to
improve throughput and response time. Fig. 4 illustrates the
structure of the Redis Cluster that we deployed for our experi-
ments: twenty computational nodes running on separate virtual
machines, combined pairwise as ten master and ten slave nodes.
We integrated the Redis Cluster with a monitoring facility built
on top of Elasticsearch [1], to collect the 85 KPIs indicated in
Table I for each of the twenty nodes of the cluster, on a per-
minute basis, resulting in 1,700 KPIs collected per minute.5

We executed Redis Cluster on Google cloud with a workload
consisting of calls to operations for both storing and retriev-
ing data into and from the Cluster. The synthetic workload
implements a typical workload of applications in a working
environment, with a high amount of calls at daytime and a
decreased workload at nighttime, peaks at 7 PM and 9 AM,
low traffic in weekends and high traffic in workdays: between
0 and 26 requests per second in the weekends, between 0 and
40 in workdays [42].

4https://redis.io
5The monitoring infrastructure is commonly part of the deployment of

distributed applications like Redis, and executing PREVENT at runtime has
negligible overhead (less than 1 second) every minute.

Injecting Failures

We executed the Redis cluster with either no or injected
failures, to collect data during normal executions (normal
execution data) and in the presence of failures (failing
execution data), respectively. We reinitialized Redis and
restarted the virtual machines before each execution, and
dropped the first 15 timestamps (15 minutes) of execution under
normal conditions, to collect data on completely separated runs
and experiment in a stable and unbiased context, respectively.
We injected failures after 15 timestamps of execution under
normal conditions. In this way, we reproduce the occurrence of
failures in production at any time in normal execution condi-
tions. We injected a failure type at a time, to reproduce failures
that appear rarely in production.

We injected failures with Chaos Mesh6, a popular tool for
injecting failures in the cloud. We experimented with five of the
most common types of failures as defined in Chaos Mesh: CPU
stress, memory stress, network packet loss, network packet
delay, and network packet corruption.

We executed the Redis cluster with no injected failures for
a total of three weeks. We used two weeks of continuous
execution for training (80%) and validation (20%). We used
the third week of execution, disjoint from the previous two
weeks, to collect independent data to check for false positives.
We injected each failure at a master-slave node pair of the
Redis Cluster, and repeated each experiment three times, with
failures injected in three different master-slave pairs to reduce
statistical biases.

Experimenting With PREVENT

We trained the Deep autoencoder and the RBM neural net-
work, and we built the granger-causality graph for the granger-
causality analyzer with the unlabeled data collected in two
weeks of normal execution. We preprocessed the collected
KPIs, and discard the ones that kept a stable value all the
time, which we identified as the ones for which the variance is
below 10−5 for the entire time series, since these KPIs are not
representative of the how the application reacts to input stimuli.
We trained our models by considering 719 KPIs out of the 1,700
KPIs initially collected.

We used the data collected during a third week of nor-
mal execution to evaluate the impact of false-prediction
alarms, that is, timestamps that the prediction approaches
might erroneously indicate as anomalous states during nor-
mal executions.

We used the failing execution data to evaluate (i) the ability
of revealing failures, (ii) the ability to correctly locate the corre-
sponding failing nodes, (iii) the impact of both false prediction
and false location alarms, that is, the timestamps that corre-
spond to states wrongly identified as anomalous during normal
executions, and the timestamps that correspond to wrongly
identified localizations during failing executions, respectively,
as defined in Section II.

6https://chaos-mesh.org/

https://redis.io
https://chaos-mesh.org/


DENARO et al.: PREVENT: AN UNSUPERVISED APPROACH TO PREDICT SOFTWARE FAILURES IN PRODUCTION 5145

TABLE I
KPIS COLLECTED AT EACH NODE OF THE REDIS CLUSTER

KPI
type

# of
KPI

KPI names

Core 9 Id (CPU Core Identifier), idle.pct (Percentage of Idle time), iowait.pct (Percentage of CPU time spent in wait), irq.pct (Percentage
of CPU time spent in handling hardware interrupts), nice.pct (Percentage of CPU time spent in low-priority processes), softirq.pct
(Percentage of CPU time spent in handling software interrupts), steal.pct (Percentage of CPU time spent in involuntary wait by the
virtual CPU while the hypervisor was servicing another processor), system.pct (Percentage of CPU time spent in kernel space), user.pct
(Percentage of CPU time spent in user space)

CPU 19 cores (Number of CPU cores on the host), idle.pct, iowait.pct, irq.pct, nice.pct, softirq.pct, steal.pct, system.pct, total.pct (Percentage
of CPU time spent in states other than Idle and IOWait), user.pct norm.idle.pct, norm.iowait.pct, norm.irq.pct, norm.nice.pct,
norm.softirq.pct, norm.steal.pct, norm.system.pct, norm.total.pct, norm.user.pct (norm prefix means normalized value of the corre-
sponding CPU metric without the norm prefix. They are normalized by considering number of cores)

File 5 count (Number of file systems), total files (Total number of files), total size.free (Total free space on disk), total size.total (Total disk
space either used or free), total size.used (Total used disk space)

Load 7 load.1 (Load average for the last minute), load.5 (Load average for the last 5 minutes), load.15 (Load average for the last 15 minutes),
cores (Number of CPU cores on the host), norm.1 (Load in the last minute divided by number of cores), norm.15, norm.5

Memory 18 actual.free, actual.used.bytes, actual.used.pct, free, hugepages.default size, hugepages.free, hugepages.reserved, hugepages.total,
hugepages.used.pct, swap.used.bytes, swap.used.pct, total, used.bytes, used.pct

Process 8 dead (Number of dead processes), idle (Number of idle processes), running (Number of running processes), sleeping (Number of
sleeping processes), stopped (Number of stopped processes), total (Total number of processes), un-known (Number of processes for
which the state could not be retrieved or is unknown), zombie (Number of zombie processes)

Socket 11 all.count (All open connections), all.listening (All listening ports), tcp.all.close wait (Number of TCP connections in close_wait state),
tcp.all.count (All open TCP connections), tcp.all.established (Number of established TCP connections), tcp.all.listening (All TCP
listening ports), tcp.all.orphan (Number of all orphaned tcp sockets), tcp.all.time wait (Number of TCP connections in time_wait state),
tcp.memory (Memory used by TCP sockets), udp.all.count (All open UDP connections), udp.memory (Memory used by UDP sockets)

Network 8 in.bytes (Number of bytes received), in.dropped (Number of incoming packets that were dropped), in.errors (Number of errors while
receiving), in.packets (Number or packets received), out.bytes (Number of bytes sent), out.dropped (Number of outgoing packets that
were dropped), out.errors (Number of errors while sending), out.packets (Number or packets received)

Total 85 KPI/node (1,700 KPI in the Redis Cluster with 20 nodes)

Experimenting With PREMISE and LOUD

The supervised PREMISE approach requires training with
labeled data. To train PREMISE, we labeled normal execution
data as no-failure, and we labelled the failing execution data
as 〈failure type,master-slave node pair〉 to indicate the type of
the injected failure and the pair of nodes at which the failures
were injected, respectively. We augmented the training data set
to include failing execution data for all nodes, synthesized by
replicating failures on symmetric nodes. In this way, we ob-
tained ten failing data sets for each original failing data set, one
per node pair. For each failure type FT , we trained PREMISE

with the labeled data from both normal and failing executions,
without the data from the failing executions corresponding to
FT , and we evaluated the ability of PREMISE to predict failures
when induced by faults of type FT .

We compared PREVENT with LOUD, by considering the
same embodiment of LOUD that we exploit in PREVENT,
that is, the standalone Anomaly ranker component trained as
described above.

LOUD (the standalone Anomaly ranker) ranks anomalous
KPIs for all execution states, regardless of any prediction,
and thus suffers from many false-prediction alarms on normal
execution data. For a fair comparison, we filtered out false-
prediction alarms by signaling failure predictions only when
LOUD reports the same node at the top of the anomalous node
ranking for N consecutive timestamps. This follows the intu-
ition that anomalies increase in the presence of failures, and thus
the failing nodes should likely persist as the top ranked nodes
if the failing conditions keep occurring. We report the false-
prediction alarm rate of LOUD for N = 3, 4, 5, 6, after observing

Fig. 5. Failure predictions for CPU stress.

Fig. 6. Failure predictions for memory leak.

a huge amount of false alarms for values of N less than 3, and
an unacceptable delay in signaling anomalous states for values
of N greater than 6.

C. Results

Figs. 5, 6, 7, 8, 9 visualize the results of PREVENTA,
PREVENTE , and PREMISE in the experiments with the injected
failures. Each figure shows three plots that report the results of
three replicas of the experiments for PREVENTA, PREVENTE ,
and PREMISE, respectively. The plots of PREMISE report the
data obtained with the PREMISE model trained without the
failures of the type considered in the plot.



5146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023

Fig. 7. Failure predictions for packet loss.

Fig. 8. Failure predictions for packet delay.

The x-axis indicates the timeline of each experiment in min-
utes: Each experiment includes a (not showed) initial 15 min-
utes lag to stabilize the system, a fault injection after additional
15 minutes of normal execution (the vertical red line in the
plots), and a failing execution (the area after the red line) up
to an observable system failure (a red square at the end of
the plots).

We observe a Redis failures when the memory fragmenta-
tion ratio of Redis servers exceeds 1.5, following the Redis
documentation that requires the memory fragmentation ratio
of Redis servers to be lower than 1.5, and the servers to be
restarted otherwise.7

Each plot shows three rows of colored squares, one row for
each experiment replica. The colors visualize the strength of the
predictions of the different approaches at each timestamp:

• Blue squares indicate successful failure predictions, that is,
failure predictions reported along with correct localization
results. In the case of PREVENT this means that the node
reported at the top of the localization ranking is a node in
which we injected the failure.

• Grey squares indicate either false prediction alarms be-
fore the injection or false location alarms after the injec-
tion, that is, states wrongly identified as anomalous during
normal executions and failures wrongly located in non-
anomalous nodes, respectively.

• Yellow squares indicate the absence of prediction, which
correspond to either true negatives before the start of the
failure injection or false negatives after the injection.

• The red squares indicate the timestamps at which the in-
jected failures manifest as observable failures of the clus-
ter, and the experiment terminates.

7https://redis.io/docs

Fig. 9. Failure predictions for packet corruption.

We add the legend only to Fig. 5 to reduce redundancy. In a
nutshell, the more the yellow squares occur before the injection
and the blue squares occur after the injection, the better the
approach is. As we discuss below, the three experiment replicas
yields consistent results in all cases, thus suggesting that three
replicas are sufficient indeed.

RQ1: Effectiveness

RQ1 focuses on PREVENTA and PREVENTE(the bottom and
mid plots in Figs. 5, 6, 7, 8, 9). We comparatively evaluate the
effectiveness of PREVENTA and PREVENTE to predict failures
in terms of false prediction alarm rate, reaction time, prediction
earliness and true positive rate that we define as follows:

• False prediction alarm rate: The portion of false predic-
tions during normal execution, before the failure injection,
that is, the portion of grey squares before the vertical
red line;

• Reaction time: The time interval between the injection
and the first true prediction, that is, the number of squares
between the failure injection and the first blue square;

• Prediction earliness: The time interval between the first
true positive and the observable system failures, that is,
the number of squares between the first blue square and
the red square;

• True positive rate: The portion of true positives between
the first true positive and the observable system failures,
that is, the portion of blue squares between the first blue
square and the red square.

The false prediction alarm rate quantifies the annoyance of
operators receiving useless alerts. The reaction time quantifies
the delay in alerting the operators. The prediction earliness
quantifies the time offered to the operators to adopt countermea-
sures before the observable system failure. The true positive rate
indicates the stability of the failure location alarms, once they
are first raised. Predictions with high stability are most desirable
since they indicate good sensitivity of the models after they start
sensing the failure symptoms.

The plots in the figures show that both PREVENTA (the bottom
plots) and PREVENTE (the mid plots) successfully predict all
five types of failures, consistently across the experiment repli-
cas. PREVENTA predicts both slightly earlier and with slightly
better stability than PREVENTE both packet delay and packet
corruption failures. The yellow squares before the injection of
the failure indicate that both PREVENTA and PREVENTE do not
suffer from false-prediction alarms during normal execution.

https://redis.io/docs


DENARO et al.: PREVENT: AN UNSUPERVISED APPROACH TO PREDICT SOFTWARE FAILURES IN PRODUCTION 5147

TABLE II
PREDICTION EARLINESS FOR PREVENTA

Failure
Type

Experiment
replica

reaction
interval

earliness
interval

TPR

(in minutes)

CPU stress
r1 0 26 100%
r2 0 24 100%
r3 0 26 100%

Mem leak
r1 2 33 100%
r2 2 25 100%
r3 3 30 100%

Pckt loss
r1 1 8 100%
r2 0 6 100%
r3 0 7 100%

Pckt delay
r1 1 8 88%
r2 0 8 100%
r3 1 6 100%

Pckt corr
r1 0 8 100%
r2 0 12 100%
r3 0 9 100%

Tables II and III report in detail the reaction time interval,
the prediction earliness interval, and the true positive rate of
predictions (TPR) per failure type and experiment replica, for
PREVENTA and PREVENTE , respectively. The data indicate that
both PREVENTA and PREVENTE predict failures within the first
minute after the failure injection in most cases (reaction in-
terval ≤ 1), and in four minutes in the worst case. In details,
PREVENTE predicts the failure in less than a minute in 13 out of
15 cases, and PREVENTA in 12 out of 15 cases. The predictions
of PREVENTA are more stable than the predictions of PREVENTE

for packet loss, packet delay and packet corruption. The TPR
of PREVENTA is 100% in 14 out of 15 cases, and 88% in a
single replica of the packet delay experiment, while the TPR of
PREVENTE is 100% in 10 cases; it is between 60% and 71% in 4
cases; It is 33% in a replica of the packet corruption experiment.

Overall both PREVENTA and PREVENTE predict failures early
and with good stability in most cases. The two approaches have
comparable performance, although PREVENTA provides slightly
more stable predictions than PREVENTE . These results confirm
the ability of the general PREVENT approach to predict fail-
ures in unsupervised fashion, and the relevance of the original
PREVENTA instantiation that we propose in this paper.

RQ2: Comparative Evaluation

RQ2 focuses on the advantages and limitations of the unsu-
pervised PREVENT approach with respect to state-of-the-art (su-
pervised) approaches. Unsupervised approaches do not require
training with data collected during failing executions, thus they
can be used in the many industrially relevant cases where it is
not possible to seed failures during operations, as required for
supervised approaches.

We experimentally compare PREVENT with PREMISE, a rep-
resentative supervised state-of-the-art approach as we discuss
in Section II at page II, to understand the impact of the lack of
training with data from failing execution on earliness and true
positive rate. The top plots in Figs. 5, 6, 7, 8, 9 visualize the
results of executing PREMISE on the same data we use in the
experiments with PREVENTA and PREVENTE .

TABLE III
PREDICTION EARLINESS FOR PREVENTE

Failure
Type

Experiment
replica

reaction
interval

earliness
interval

TPR

(in minutes)

CPU stress
r1 0 26 100%
r2 0 24 100%
r3 0 26 100%

Mem leak
r1 1 34 100%
r2 2 25 100%
r3 1 32 100%

Pckt loss
r1 1 8 63%
r2 0 6 100%
r3 0 7 71%

Pckt delay
r1 4 5 60%
r2 1 7 100%
r3 1 6 67%

Pckt corr
r1 0 8 100%
r2 0 12 33%
r3 1 8 100%

TABLE IV
FALSE ALARM RATE ON THE NORMAL

EXECUTION DATA

Approach False-prediction alarm rate

PREVENTA 2%
PREVENTE 5%
LOUDN3 57%
LOUDN4 43%
LOUDN5 32%
LOUDN6 22%

In the experiments PREMISE rarely predicts failures and
never localizes the faulty component (grey squares after fail-
ure injection, that is, false location alarms). The experiments
confirm that the original combination of a state classifier with
an anomaly ranker of both PREVENTA and PREVENTE is more
effective than the PREMISE supervised learning approach, in
terms of both true and false positive rate.

RQ3: State Classifier and Anomaly Ranker Interplay

RQ3 focuses on the effectiveness of the original combination
of an anomaly ranker with a state classifier in both PREVENTA

and PREVENTE . We compare PREVENTA and PREVENTE with
LOUD, the state-of-the-art anomaly ranker that inspired our
anomaly ranker. We estimated the false-prediction alarm rate
of PREVENTA, PREVENTE , and LOUD (with N = 3, 4, 5, 6) by
executing each approach with the data that we collected during
a week of normal execution of the Redis Cluster (the third week
of our collected data, disjoint from the two weeks of data that
we used for training).

Table IV reports the false-prediction alarm rate, that is, the
portion of false predictions during the week of normal data.
The false-prediction alarm rate quantifies the annoyance of
operators receiving useless alerts. PREVENTA and PREVENTE

dramatically reduced the false-prediction alarm rate from un-
acceptable values between 22% and 57%, when using LOUD

stand-alone, to 2% and 5%, respectively, by combining LOUD

with failure predictors, as in PREVENT. PREVENTA outperforms
all approaches.



5148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023

Threats to Validity

We evaluated PREVENT by executing a prototype implemen-
tation on a large dataset that we collected on a complex cluster.
We carefully implemented the approach and carefully designed
our experiments to avoid biases. We understand that the limited
experimental framework may threaten the validity of the results,
and we would like to conclude this section by discussing how
we mitigated the main threats to the validity of the experiments
that we identified in our work.

Threats to the external validity: Possible threats to the ex-
ternal validity of the experiments derive from the experimental
evidence being available for a single system and five failure
types, which in turn depend on the effort required to set up a
proper experimental environment and collect data for validating
the approach. The main threats derive from the experimental
setting, and the set of failures.

Experimental setting: We experimented with a dataset
collected from a Redis cluster that we implemented on the
Google Cloud Platform, controlling the stability of the cluster
and guaranteeing the same running conditions for all experi-
ments, and the results may not generalise to other systems. We
mitigated the threat that derive from experimenting with a single
system by collecting data from a standard installation of a pop-
ular distributed application that is widely used in commercial
environments, and by collecting a large set of data from several
weeks of experiments. The data we used in the experiments are
available in a replication package8 for replicating the results and
for comparative studies with new systems.

Set of failures: We experimented with five failure types,
and the results may not generalize to other failure types. We
limited the experiments to five failure types due to the large
effort required to properly install and tune failure injectors and
collect valid data sets for each failure. We mitigated this threat
to the validity of our results by choosing types of failures which
are both common and very relevant in complex cloud systems,
and by injecting the failures with Chaos Mesh9, a failures
injector commonly used to study failure in cloud systems.

Threats to the internal validity: Possible threats to the
internal validity of the experiments derive from the prototype
implementation of the approaches and the traffic profile used in
the experiments.

Prototype implementation: We carried on the experi-
ments on an in-house prototype implementation of PREVENT,
PREMISE and LOUD. We mitigated the threats to the validity of
the experiments that may derive from a faulty implementation
by carefully designing and testing our implementation, by (i)
comparing the data obtained with our PREMISE and LOUD

implementations with the data available in the literature, (ii)
repeating the experiments three times, and (iii) making the
prototype implementation available in a replication package, to
allow for replicating the results.

Traffic profile: We mitigated the threats to the validity
of the results that may derive from the traffic profile that we
use to collect the experimental data, by experimenting with

8The replication package at https://star.inf.usi.ch/#/software-data/14
9https://chaos-mesh.org/

a seasonal traffic profile excerpted from industrial collabora-
tions, and that we compared with analogous traffic profiles
publicly available in the literature. We carried on the experi-
ments by collecting data over weeks of continuous executions
with profiles that correspond to traffic commonly observed in
commercial settings.

IV. RELATED WORK

In this section we overview the applications of machine learn-
ing to software engineering, and discuss in detail the approaches
for predicting software failures at runtime.

A. Machine Learning for Software Engineering

Many studies address software engineering problems
with supervised, unsupervised, weakly-supervised and semi-
supervised machine learning strategies.

Supervised learning approaches require training samples an-
notated (labelled) with the prediction outcomes. The supervised
training phase tunes the parameters of the model by minimizing
the errors with respect to the outcomes encoded with the labels.
There are many supervised learning approaches for predicting
failures [40], [43], [49], [50], [57].

Unsupervised learning approaches work with unlabelled
datasets, and either do not require training at all or tune models
that represent the characteristics of the samples as a whole, as
in our PREVENT approach. In production, unsupervised learning
approaches either discriminate clusters of mutually similar sam-
ples [48] or identify anomalies as samples that notably differ
from the samples used in the training phase [8], [18], [20],
[47], as in PREVENT. Unsupervised approaches do not require
the expensive effort of annotating large training samples, while
supervised approaches precisely predict the outcomes observed
in the training set.

Semi-supervised approaches are an interesting tradeoff be-
tween costs and precision, and have been recently applied to
solve several software engineering problems, including predict-
ing software fault-proneness [36], [65], [67].

Weak-supervised approaches aim to achieve the benefits
of supervised learning, while reducing the costs of labelling
[4], [35], [51], [53], [61], [66]. The popular active learning
approaches require to label a relatively small set of train-
ing samples that the active learning algorithms select as the
samples that contribute most to improve the quality of the
predictions [17].

Semi-supervised learning approaches are weak-supervised
approaches that rely on samples that the approaches auto-
matically label from the characteristics of a small set of
data that come with known labels [5], [12], [33], [41].
Bodo et al. propose a semi-supervised learning approach to
analyze the performance indicators related to the software
process, and show that the semi-supervised algorithm outper-
forms supervised learning approaches [7]. There are many
semi-supervised learning approaches for software analytics,
and in particular for predicting fault-prone software modules
[36], [65], [67].

https://star.inf.usi.ch/#/software-data/14
https://chaos-mesh.org/


DENARO et al.: PREVENT: AN UNSUPERVISED APPROACH TO PREDICT SOFTWARE FAILURES IN PRODUCTION 5149

Classic approaches identify fault-prone modules with su-
pervised models based on metrics that reflect the complex-
ity of the code. These approaches require training datasets
labeled either as defective or non-defective according to
historical data, with a high cost for collecting the training
samples [25]. Zhang et al. alleviate the labelling cost by
exploiting the similarity among the code-level metrics of soft-
ware modules. They propose a semi-supervised learning ap-
proach that propagate an initially small set of the labelled
samples to unlabelled samples, by applying spectral clus-
tering [67]. Tu and Menzies’ FRUGAL approach extends the
semi-supervised approach from fault-proneness predictions to
other software analytics, like code warnings and issue close
time [65].

The problem of identifying fault-prone software from both
historical data on the defects identified in the software and
code metrics that can be measured during software testing and
maintenance radically differs from the problem of predicting
failures at runtime from metrics that measure the execution of
the software and not the code. To the best of our knowledge,
there exist no semi-supervised or weak-supervised approaches
to predict failures at runtime.

B. Failure Prediction and Diagnosis

Salfner et al.’s survey identifies online failure prediction
as the first step to proactively manage faults in production,
followed by diagnosis, action scheduling and execution of
corrective actions, and defines failure symptoms as the out-
of-norm behavior of some system parameters before the oc-
currence of a failure, due to side effects of the faults that
are causing the failure [55]. In this section we focus on the
failure prediction and diagnosis steps of Salfner et al.’s fault
management process, the steps related to PREVENT. We refer
the interested readers to Colman-Meixner et al.’s comprehen-
sive survey for a discussion of mechanisms for scheduling
and executing corrective actions to tolerate or recover from
failures [14].

Detecting failure symptoms, often referred to as anomalies,
is the most common approach to predict failures online. The
problem of detecting anomalies has been studied in many appli-
cation domains, to reveal intrusions in computer systems, frauds
in commercial organizations, abnormal patient conditions in
medical systems, damages in industrial equipments, abnormal
elements in images and texts, abnormal events in sensor net-
works, failing conditions in complex software systems [11].
Approaches to detect anomalies heavily depend on the charac-
teristics of the application domain. In this section, we discuss
approaches to detect anomalies in complex software systems,
to predict failures in production.

A distinctive characteristics of approaches for detecting
anomalies is the model that the approaches use to interpret
the data monitored in production, models that are either man-
ually derived by software analysts in the form of rules that
the system shall satisfy [13] or automatically inferred from the
monitored data. Approaches that automatically infer models
from monitored data work in either supervised or unsupervised

fashion, and do or do not require labeled data to synthesize the
models, respectively.

Rule-based approaches leverage analysts’ knowledge about
the symptoms that characterize failures, and rely on rules
manually defined for each application and context. Super-
vised approaches that are also referred to as signature-based
approaches [28] build the models by relying on previously
observed anomalies, and offer limited support for detect-
ing anomalies that were not previously observed. Unsuper-
vised approaches derive models without requiring labeled
data, thus better balancing accuracy and required information.
Some approaches focus on failure predictions only, yet others
approaches support both prediction and diagnosis, thus ad-
dressing the first two steps of Salfner et al.’s proactive fault
management process.

The PREVENT approach that we propose in this paper is an
unsupervised approach that both predicts and diagnoses fail-
ures, by detecting anomalies in the KPI values monitored on
distributed enterprise applications. The PREVENT State classifier
predicts upcoming failures as it observes system states with
significant sets of anomalous KPIs. The PREVENT Anomaly
ranker diagnoses the components that correspond to the largest
sets of representative anomalies as the likely originators of the
failures. In the remainder of this section we review the relevant
automatic approaches to predict and diagnose faults in complex
software systems.

Failure Prediction

The failure prediction approaches reported in the literature
predict failures in either datacenter hosts that serve cloud-based
applications and services or distributed applications that span
multiple hosts.

Approaches that predict failures in datacenter hosts monitor
metrics about resource consumption at host levels, like CPU,
disk, network and memory consumption, to infer whether a host
is likely to incur some failure in the near future, and proactively
migrate applications that run on likely-failing hosts. Tehrani
and Safi exploit a support-vector-machine model against (dis-
cretized) data on CPU usage, network bandwidth and avail-
able memory of the hosts, to identify hosts that are about
to fail [19]. Both Islam and Manivannan and Gao et al. in-
vestigate the relationship between resource consumption and
task/job failures, to predict failures in cloud applications [23],
[31]. Both David et al. and Sun et al. exploit neural networks
against data on disk and memory usage, to predict hardware
failures, isolate the at-risk hardware, and backup the data [15],
[62]. Approaches that predict failures in distributed applica-
tions, like PREVENT, address the complex challenge of sets
of anomalies that span multiple physical and virtual hosts
and devices.

Signature-based approaches leverage the information of ob-
served anomalies with supervised learning models, to capture
the behavior of the monitored system when affected by specific
failures. Signature-based approaches are very popular and sup-
port a large variety of approaches. Among the most representa-
tive approaches, both Seers [50] and Malik et al.’s approaches
[40] label runtime performance data as related to either passing



5150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023

or failing executions, and train classifiers to identify incoming
failures by processing runtime data in production, Sauvanaud
et al. classify service level agreement violations based on data
collected at the architectural tier [57], The SunCat approach
models and predicts performance problems in smartphone
applications [49].

Signature-based approaches suffer from two main limita-
tions: they both require labeled failure data for training, which
may not be easy to collect, and foster predictions that overfit
the failures available in the training set, without well capturing
other failures and failure patterns.

Both semi-supervised and unsupervised approaches learn
models from data observed during normal (non-failing)
executions, and identify anomalies when the data observed
in production deviate from the normal behaviors captured
in the models, thus discharging the burden of labelling the
training data.

Most approaches that claim a semi-supervised nature com-
bine semi-supervised learning with signature-based models to
yield their final prediction verdicts [22], [27], [63], [64]. As rep-
resentative examples, Mariani et al.’s PREMISE approach uses
a semi-supervised approach on monitored KPIs (IBM SCAPI
[30]) to identify anomalous KPIs, and builds a signature-
based model to identify failure-prone anomalies, by captur-
ing the relation between failures observed in the past and the
sets of anomalous KPIs [43]. Fulp et al.’s approach builds
failure prediction models with a support vector machine (a
signature-based approach) based on features distilled in semi-
supervised fashion from system log files [22]. Tan et al.’s
PREPARE approach predicts anomalies with a Bayesian net-
works trained in semi-supervised fashion, and feeds the anoma-
lies to a 2-dependent Markov model (a signature based model)
to predict failures [64]. Tan et al.’s ALERT approach refers
to unsupervised clustering to map the failure data to distinct
failure contexts, aiming to predict failures by using a dis-
tinct decision tree (a signature-based approach) for each failure
context [63].

These approaches are in essence signature-based approach
themselves, although they preprocess the input data in semi-
supervised fashion. They may successfully increase the preci-
sion of the predictions, by training the signature-based models
on pre-classified anomalies rather than plain runtime data, but
share the same limitations of signature-based models of requir-
ing labeled failure data for training, and fostering predictions
that overfit the failures of the training set. Indeed, in our exper-
iments, the PREMISE approach was ineffective against failures
and failure patterns that did not correspond to the signatures
considers during training.

Guan et al.’s approach [27] combines supervised and unsu-
pervised learning in a different way. They exploit Bayesian net-
works to automatically label the anomalous behaviors that they
feed to supervised learning models for training, thus potentially
relieving the burden of labelling the data.

Only few approaches work in unsupervised fashion like
PREVENT and EMBED [47] the energy-based failure prediction
approach that PREVENT exploits as state classifier and that we
have already described in Section II-B. Fernandes and al.’s

approach [20] matches the actual traffic again models of the
normal traffic built with either principal component analysis
or the ant colony optimisation metaheuristic to detect anoma-
lous traffic in computer networks. Ibidunmoye et al.’s unsuper-
vised approach [29] estimates statistical and temporal properties
of KPIs during normal executions, and detects deviations by
means of adaptive control charts. Both Bontemps et al.’s [8]
and Du et al.’s [18] approaches detect anomalies with long
short-term memory recurrent neural networks trained on normal
execution data. Ahmad et al.’s approach [2] uses hierarchical
temporal memory networks to detect anomalies in streaming
data time series.

Roumani and Nwankpa [54] propose a radically different
approach that extrapolates the trend of occurrence of past
incidents (extracted from historical data) to predict when other
incidents will likely occur again in the future, without requiring
data monitored in production.

Failure Diagnosis

Failure Diagnosis is the process of identifying the appli-
cation components responsible for predicted failures. Most
approaches proposed in the literature target performance bot-
tlenecks in enterprise applications, and include knowledge-
driven, dependency-driven, observational and signature-based
approaches [28].

Knowledge-driven approaches rely on knowledge that an-
alysts manually extract from historical records, and encode
in rules that the inference engine processes to detect per-
formance issues and identify the root-cause component. As
representative example, Chung et al.’s approach [13], is
designed to work at both development- and maintenance-
time, to provide testing-as-a-service, and assumes that ana-
lysts frequently update the underlying rules when observing
new issues.

Dependency-driven approaches analyze the communica-
tion flow among components, measure the frequency of the
flows, and perform causal path analysis to detect anoma-
lies and their causes. As a representative example, Samba-
sivan et al.’s Spectroscope [56] approach assists developers
to diagnose the causes of performance degrades after a soft-
ware change. It identifies significant variations in response
time or execution frequency, by comparing request flows be-
tween two corresponding executions, observed before and after
the change.

Observational approaches directly analyze the distribution
of the profiled data to explain which application component
correlates the most with a given system-level failure. As a
representative example, Magalhaes and Silva’s approach [37]
identifies performance anomalies of Web applications, by ana-
lyzing the correlation between the workload and response time
of the transactions: A response time variation that does not
correlate with a workload variation is pinpointed as a perfor-
mance anomaly. Then, they analyze the profiled data of each
component with ANOVA (analysis of variance) to spot which
data (and thus which components) explain the variance in the
response time [38], [39].



DENARO et al.: PREVENT: AN UNSUPERVISED APPROACH TO PREDICT SOFTWARE FAILURES IN PRODUCTION 5151

Signature-based strategies use prior knowledge about the
mapping between failures and components to diagnose failures
of previously observed types [32]. As representative examples,
both PREMISE and ALERT that we already mentioned above
consider the failure location as an additional independent vari-
able of their signature-based prediction models [43], [63].

All approaches suffer from restrictions that limit their ap-
plicability to distributed enterprise applications. Knowledge-
driven and dependence-driven approaches, like Chung et al.’s
approach [13] and Sambasivan et al.’s Spectroscope [56], are
defined to assist developers in offline analyses, for instance,
after a software change. Signature-based approaches suffer
from the same limitations of signature-based failure predic-
tion approaches: They require labeled failure data for train-
ing, and foster predictions that overfit the failures available
in the training set, without well capturing other failures and
failure patterns.

Magalhaes and Silva’s observational approach [38] is the
closest approach to PREVENT anomaly ranker, since both ap-
proaches identify failing components as the components re-
lated to data strongly connected to anomalies. Magalhaes
and Silva’s approach and PREVENT differ in their technical
core: PREVENT uses Granger-causality centrality of the anoma-
lous KPIs of the component, while Magalhaes and Silva rely
on the ANOVA analysis. In this respect, PREVENT is more
failure-type-agnostic than Magalhaes and Silva’s approach,
since the Granger-causality models only causal relations among
KPIs, while the ANOVA analysis refer to some specific
failure metric, like poor response time in Magalhaes and
Silva’s approach.

Overall all approaches face challenges in balancing high
detection rates with low false-alarm rates, and the effective-
ness of the different strategies largely depends on the system
observability, the detection mode (real-time or post-mortem),
the availability of labelled data, the dynamics of the application
workload, the underlying execution context, and the nature of
the collected data.

V. CONCLUSION

Software failures in production are unavoidable [24]. Pre-
dicting failures and locating failing components online are the
first steps to proactively manage faults in production [55].
In this paper we discuss advantages and limitations of the
approaches reported in the literature, and propose PREVENT,
a novel approach that overcomes the main limitations of
current approaches.

PREVENT originally combines Deep autoencoder with
Granger causality analysis and PageRank centrality, to effec-
tively predict failures and locate failing components. By relying
on a combination of unsupervised approaches, PREVENT

overcomes a core limitation of supervised approaches that
require seeding failures to gather labeled training data, activity
hardly possible in commercial systems in production.

The experimental results that we obtained on data collected
by monitoring for several weeks a popular distributed
application used in commercial environments show that the

original combination of unsupervised techniques in PREVENT

outperforms supervised failure prediction approaches in
the majority of the experiments, and largely reduces the
unacceptable false positive rate of fault localizers used
in isolation.

The main contribution of this paper are (i) PREVENT, an orig-
inal combination of unsupervised techniques to predict failures
and localize failing resources in distributed enterprise appli-
cations, (ii) a large set of data that we collected on Redis, a
cluster widely used in commercial environments, data that we
offer in a replication package,10 (iii) a thorough evaluation that
indicates the effectiveness of PREVENT with respect to the start
of the art.

The results presented in this paper indicate the feasibility
of unsupervised machine-learning-based approaches to pre-
dict failures and locate failing components in commercial
environments, and open the horizon to study the effective-
ness of unsupervised approaches for predicting failure in
complex systems.

REFERENCES

[1] Elasticsearch—A distributed, RESTful search and analytics engine. Ac-
cessed: Nov. 3, 2023. [Online]. Available: https://www.elastic.co/elastic
search/

[2] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-
time anomaly detection for streaming data,” Neurocomputing, vol. 262,
pp. 134–147, Nov. 2017.

[3] A. Arnold, Y. Liu, and N. Abe, “Temporal causal modeling with
graphical granger methods,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), New York, NY, USA: ACM, 2007,
pp. 66–75.

[4] S. H. Bach, B. He, A. Ratner, and C. Ré, “Learning the structure
of generative models without labeled data,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2017, pp. 273–282.

[5] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised
learning,” in Proc. Advances Neural Inf. Process. Syst., 2019, vol. 32,
pp. 5049–5059.

[6] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: Automated classification of performance
crises,” in Proc. 5th Eur. Conf. Comput. Syst., 2010, pp. 111–124.

[7] L. Bodo, H. Oliveira, F. A. Breve, and D. M. Eler, “Semi-supervised
learning applied to performance indicators in software engineering
processes,” in Proc. Int. Conf. Softw. Eng. Res. Pract. (SERP), Las Vegas,
NV, USA, 2015, pp. 255–261.

[8] L. Bontemps et al., “Collective anomaly detection based on long short-
term memory recurrent neural networks,” in Proc. Int. Conf. Future Data
Secur. Eng., New York, NY, USA: Springer, 2016, pp. 141–152.

[9] M. Á. Carreira-Perpiñán and G. E. Hinton, “On contrastive divergence
learning,” in Proc. Int. Workshop Artif. Intell. Statist., Soc. Artif. Intell.
Statist., 2005, pp. 33–40.

[10] D. Chandler, Introduction to Modern Statistical Mechanics. Oxford, UK:
Oxford Univ. Press, Sep. 1987.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, 2009, Art. no. 15.

[12] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning.
Cambridge, MA, USA: MIT Press, 2006.

[13] I.-H. Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and H.-F.
Wen, “A framework for automated performance bottleneck detection,” in
Proc. IEEE Int. Symp. Parallel Distrib. Process., Piscataway, NJ, USA:
IEEE, 2008, pp. 1–7.

[14] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee, “A
survey on resiliency techniques in cloud computing infrastructures and
applications,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2244–
2281, thirdquarter 2016.

10The replication package at https://star.inf.usi.ch/#/software-data/14

https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://star.inf.usi.ch/#/software-data/14


5152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 12, DECEMBER 2023

[15] N. A. Davis, A. Rezgui, H. Soliman, S. Manzanares, and M. Coates,
“FailureSim: A system for predicting hardware failures in cloud data
centers using neural networks,” in Proc. IEEE 10th Int. Conf. Cloud
Comput. (CLOUD), Piscataway, NJ, USA: IEEE, 2017, pp. 544–551.

[16] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “Critical
phenomena in complex networks,” Rev. Modern Phys., vol. 80, no. 4,
pp. 1275–1335, Oct. 2008.

[17] G. Druck, B. Settles, and A. McCallum, “Active learning by labeling
features,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2009, pp. 81–90.

[18] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 1285–1298.

[19] A. Fadaei Tehrani and F. Safi-Esfahani, “A threshold sensitive failure
prediction method using support vector machine,” Multiagent Grid Syst.,
vol. 13, no. 2, pp. 97–111, 2017.

[20] G. Fernandes Jr., L. F. Carvalho, J. J. Rodrigues, and M. L. Proença Jr.,
“Network anomaly detection using IP flows with principal component
analysis and ant colony optimization,” J. Netw. Comput. Appl., vol. 64,
pp. 1–11, Apr. 2016.

[21] A. Fischer and C. Igel, “An introduction to restricted Boltzmann
machines,” in Proc. Iberoamerican Congr. Pattern Recognit., Berlin,
Germany: Springer, 2012, pp. 14–36.

[22] E. W. Fulp, G. A. Fink, and J. N. Haack, “Predicting computer
system failures using support vector machines,” in Proc. USENIX Conf.
Anal. Syst. Logs (WASL), San Diego, CA, USA: USENIX Association,
2008, p. 5.

[23] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data
centers using deep learning,” IEEE Trans. Services Comput., vol. 15,
no. 3, pp. 1411–1422, May/Jun. 2022.

[24] L. Gazzola, L. Mariani, F. Pastore, and M. Pezzè, “An exploratory study
of field failures,” in Proc. Int. Symp. Softw. Rel. Eng. (ISSRE), 2017,
pp. 67–77.

[25] D. Giovanni, S. Morasca, and M. Pezzè, “Deriving models of software
fault-proneness,” in Proc. 14th Int. Conf. Softw. Eng. Knowl. Eng.
(SEKE), 2002, pp. 361–368.

[26] C. W. J. Granger, “Investigating causal relations by econometric models
and cross-spectral methods,” Econometrica, vol. 37, no. 3, pp. 424–438,
Aug. 1969.

[27] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of Bayesian predictors and
decision trees for proactive failure management in cloud computing
systems,” J. Commun., vol. 7, no. 1, pp. 52–61, 2012.

[28] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Comput. Surv.,
vol. 48, no. 1, pp. 4:1–4:35, 2015.

[29] O. Ibidunmoye, A.-R. Rezaie, and E. Elmroth, “Adaptive anomaly
detection in performance metric streams,” IEEE Trans. Netw. Service
Manag., vol. 15, no. 1, pp. 217–231, Mar. 2018.

[30] IBM Corporation. “Operations Analytics Predictive Insights 1.3.6”.
Accessed: Nov. 3, 2023. [Online]. Available: https://www.ibm.com/
support/pages/download-operations-analytics-predictive-insights-136

[31] T. Islam and D. Manivannan, “Predicting application failure in cloud:
A machine learning approach,” in Proc. IEEE Int. Conf. Cogn. Comput.
(ICCC), Piscataway, NJ, USA: IEEE, 2017, pp. 24–31.

[32] H. Kang, X. Zhu, and J. L. Wong, “DAPA: Diagnosing application
performance anomalies for virtualized infrastructures,” in Proc. 2nd
{USENIX} Workshop Hot Topics Manage. Internet, Cloud, Enterprise
Netw. Services (Hot-ICE), 2012.

[33] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learn-
ing,” 2016, arXiv:1610.02242.

[34] A. N. Langville and C. D. Meyer, “A survey of eigenvector meth-
ods for web information retrieval,” SIAM Rev., vol. 47, no. 1,
pp. 135–161, 2005.

[35] P. Liang, M. I. Jordan, and D. Klein, “Learning from measurements
in exponential families,” in Proc. 26th Annu. Int. Conf. Mach. Learn.,
2009, pp. 641–648.

[36] H. Lu, B. Cukic, and M. Culp, “Software defect prediction using semi-
supervised learning with dimension reduction,” in Proc. 27th IEEE/ACM
Int. Conf. Automated Softw. Eng., 2012, pp. 314–317.

[37] J. P. Magalhaes and L. M. Silva, “Detection of performance anomalies
in web-based applications,” in Proc. 9th IEEE Int. Symp. Netw. Comput.
Appl., Piscataway, NJ, USA: IEEE, 2010, pp. 60–67.

[38] J. P. Magalhaes and L. M. Silva, “Adaptive profiling for root-cause
analysis of performance anomalies in web-based applications,” in Proc.
IEEE 10th Int. Symp. Netw. Comput. Appl., Piscataway, NJ, USA: IEEE,
2011, pp. 171–178.

[39] J. P. Magalhaes and L. M. Silva, “Root-cause analysis of performance
anomalies in web-based applications,” in Proc. ACM Symp. Appl.
Comput., 2011, pp. 209–216.

[40] H. Malik, H. Hemmati, and A. E. Hassan, “Automatic detection of
performance deviations in the load testing of Large Scale Systems,”
in Proc. Int. Conf. Softw. Eng. (ICSE), San Francisco, CA, USA: IEEE
Computer Society, 2013, pp. 1012–1021.

[41] G. S. Mann and A. McCallum, “Generalized expectation criteria for
semi-supervised learning with weakly labeled data,” J. Mach. Learn.
Res., vol. 11, no. 2, pp. 955–984, 2010.

[42] L. Mariani, C. Monni, M. Pezzè, O. Riganelli, and R. Xin, “Localizing
faults in cloud systems,” in Proc. Int. Conf. Softw. Testing, Verification
Validation (ICST), Vasteras, Sweden: IEEE Computer Society, 2018,
pp. 262–273.

[43] L. Mariani, M. Pezzè, O. Riganelli, and R. Xin, “Predicting failures in
multi-tier distributed systems,” J. Syst. Softw., vol. 161, 2020.

[44] T. Martin, X. Zhang, and M. E. J. Newman, “Localization and centrality
in networks,” Phys. Rev. E, vol. 90, Nov. 2014, Art. no. 052808.

[45] W. McKinney, J. Perktold, and S. Seabold, “Time series analysis in
python with statsmodels,” in Proc. 10th Python Sci. Conf., Austin, Texas,
Jul. 2011, pp. 96–102, doi: 10.25080/Majora-ebaa42b7-014.

[46] C. Monni and M. Pezzè, “Energy-based anomaly detection a new
perspective for predicting software failures,” in Proc. 41st Int. Conf.
Softw. Eng., New Ideas Emerg. Results, ICSE (NIER), Montreal, QC,
Canada, May 29–31, 2019, pp 69–72.

[47] C. Monni, M. Pezzè, and G. Prisco, “An RBM anomaly detector for the
cloud,” in Proc. 12th IEEE Conf. Softw. Testing, Validation Verification
(ICST), Xi’an, China, Piscataway, NJ, USA: IEEE, Apr. 22–27, 2019,
pp 148–159.

[48] J. Nam and S. Kim, “CLAMI: Defect prediction on unlabeled datasets
(T),” in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Piscataway, NJ, USA: IEEE, 2015, pp. 452–463.

[49] A. Nistor and L. Ravindranath, “SunCat: Helping developers understand
and predict performance problems in smartphone applications,” in Proc.
Int. Symp. Softw. Testing Anal. (ISSTA), New York, NY, USA: ACM,
2014, pp. 282–292.

[50] B. Ozcelik and C. Yilmaz, “Seer: A lightweight online failure prediction
approach,” IEEE Trans. Softw. Eng., vol. 42, no. 1, pp. 26–46, Jan. 2016.

[51] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[52] V. A. Profillidis and G. N. Botzoris, Modeling of Transport De-
mand: Analyzing, Calculating, and Forecasting Transport Demand.
Amsterdam, The Netherlands: Elsevier, 2018.

[53] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data
programming: Creating large training sets, quickly,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 29, 2016, pp. 3567–3575.

[54] Y. Roumani and J. K. Nwankpa, “An empirical study on predicting cloud
incidents,” Int. J. Inf. Manage., vol. 47, pp. 131–139, Aug. 2019.

[55] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,” ACM Comput. Surv., vol. 42, no. 3, pp. 1–42, 2010.

[56] R. R. Sambasivan et al., “Diagnosing performance changes by compar-
ing request flows,” in Proc. NSDI, 2011, vol. 5, p. 1.

[57] C. Sauvanaud, K. Lazri, M. Kaâniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,” in
Proc. Int. Symp. Softw. Rel. Eng. (ISSRE), Ottawa, ON, Canada: IEEE
Computer Society, 2016, pp. 196–206.

[58] J. P. Scott and P. J. Carrington, The SAGE Handbook of Social Network
Analysis. London, U.K.: Sage Publications, 2011.

[59] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with python,” in Proc. 9th Python Sci. Conf., Austin, TX,
USA, 2010, vol. 57, p. 61.

[60] P. Stack, H. Xiong, D. Mersel, M. Makhloufi, G. Terpend, and
D. Dong, “Self-healing in a decentralised cloud management system,” in
Proc. 1st Int. Workshop Next Gener. Cloud Archit. (CloudNG@EuroSys),
Belgrade, Serbia, Apr. 23–26, 2017, pp. 3:1–3:6.

[61] R. Stewart and S. Ermon, “Label-free supervision of neural networks
with physics and domain knowledge,” in Proc. 31st AAAI Conf. Artif.
Intell., 2017, pp. 2576–2582.

[62] X. Sun et al., “System-level hardware failure prediction using deep learn-
ing,” in Proc. 56th ACM/IEEE Des. Automat. Conf. (DAC), Piscataway,
NJ, USA: IEEE, 2019, pp. 1–6.

[63] Y. Tan, X. Gu, and H. Wang, “Adaptive system anomaly prediction
for large-scale hosting infrastructures,” in Proc. Symp. Princ. Distrib.
Comput. (PODC), New York, NY, USA: ACM, 2010, pp. 173–182.

[64] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“Prepare: Predictive performance anomaly prevention for virtualized

https://www.ibm.com/support/pages/download-operations-analytics-predictive-insights-136
https://www.ibm.com/support/pages/download-operations-analytics-predictive-insights-136
http://dx.doi.org/10.25080/Majora-ebaa42b7-014


DENARO et al.: PREVENT: AN UNSUPERVISED APPROACH TO PREDICT SOFTWARE FAILURES IN PRODUCTION 5153

cloud systems,” in Proc. IEEE 32nd Int. Conf. Distrib. Comput. Syst.,
Piscataway, NJ, USA: IEEE, 2012, pp. 285–294.

[65] H. Tu and T. Menzies, “FRUGAL: Unlocking semi-supervised learning
for software analytics,” in Proc. 36th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE, 2021, pp. 394–406.

[66] J. Zhang, C. Hsieh, Y. Yu, C. Zhang, and A. Ratner, “A survey on
programmatic weak supervision,” 2022, arXiv:2202.05433.

[67] Z.-W. Zhang, X.-Y. Jing, and F. Wu, “Low-rank representation for
semi-supervised software defect prediction,” IET Softw., vol. 12, no. 6,
pp. 527–535, 2018.

Giovanni Denaro (Member, IEEE) received the
Ph.D. degree in computer science and engineering
from Politecnico di Milano, in 2002. He is an Asso-
ciate Professor in computer science with Università
degli Studi di Milano–Bicocca, Milan. His research
interests include software testing and analysis, for-
mal methods for software verification and cyberse-
curity, distributed and service-oriented systems, and
software metrics. He has been investigator in several
research and development projects in collaboration
with leading European universities and companies.

He is involved in the organization of major software engineering conferences.

Rahim Heydarov is working toward the Ph.D.
degree in computer science with USI Università
della Svizzera Italiana, Lugano, Switzerland. His
research is at the forefront of anomaly detection,
failure prediction, and fault localization in complex
software systems. His work is driven by a profound
interest in harnessing the power of machine learn-
ing techniques to analyze and predict the behavior
of distributed and decentralized in-cloud-deployed
systems operating in non-stable environments.

Ali Mohebbi received the Ph.D. degree in computer
science from USI Università della Svizzera Italiana,
Lugano, Switzerland, in 2023. He is working on
applications of Natural Language Processing and
Machine Learning in software testing. His work
focuses on automatic generation of test cases for in-
teractive applications, failure prediction, and defect
localization in complex cloud systems. His work is
published in the proceedings of prominent software
engineering conferences, and he actively contributes
as a Reviewer for software engineering publications.

His passion lies in bridging the gap between research and industry, striving to
develop practical software engineering solutions with real-world applications.

Mauro Pezzè (Senior Member, IEEE) is a Pro-
fessor in software engineering with USI Univer-
sità della Svizzera Italiana, Lugano, since 2006,
and with Constructor Institute, Schaffhausen, since
2020. He is Professor in software engineering with
Università degli Studi di Milano–Bicocca, Milan,
since 2000, on absence of leave since 2020. He
is the Editor-in-Chief of the ACM Transactions
on Software Methodologies. He has served as an
Associate Editor of the IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, as the General Chair of
the ACM International Symposium on Software Testing and Analysis in
2013, and the Program Chair of the International Conference on Software
Engineering in 2012 and the ACM International Symposium on Software
Testing and Analysis in 2006. He is known for his work in software testing,
program analysis, self-healing, and self-adaptive software systems. He is a
distinguished member of the ACM.



<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


