
4886 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

VulHunter: Hunting Vulnerable Smart Contracts
at EVM Bytecode-Level via Multiple

Instance Learning
Zhaoxuan Li , Student Member, IEEE, Siqi Lu , Rui Zhang , Ziming Zhao , Rujin Liang ,

Rui Xue , Member, IEEE, Wenhao Li , Graduate Student Member, IEEE, Fan Zhang , Member, IEEE,
and Sheng Gao , Member, IEEE

Abstract—With the economic development of Ethereum, the
frequent security incidents involving smart contracts running on
this platform have caused billions of dollars in losses. Conse-
quently, there is a pressing need to identify the vulnerabilities in
contracts, while the state-of-the-art (SOTA) detection methods
have been limited in this regard as they cannot overcome
three challenges at the same time. (i) Meet the requirements
of detecting the source code, bytecode, and opcode of contracts
simultaneously; (ii) reduce the reliance on manual pre-defined
rules/patterns and expert involvement; (iii) assist contract devel-
opers in completing the contract lifecycle more safely, e.g., vulner-
ability repair and abnormal monitoring. With the development of
machine learning (ML), using it to detect the contract runtime
execution sequences (called instances) has made it possible to
address these challenges. However, the lack of datasets with
fine-grained sequence labels poses a significant obstacle, given
the unreadability of bytecode/opcode. To this end, we propose

Manuscript received 3 September 2022; revised 3 September 2023; ac-
cepted 6 September 2023. Date of publication 22 September 2023; date of
current version 14 November 2023. This work was supported in part by
the National Key R&D Program of China under Grant 2021YFB2700603;
in part by the National Natural Science Foundation of China under Grants
62172405, 62072487, 62227805, and 62072398; in part by the Major Public
Welfare Projects Foundation of Henan under Grant 201300210200; in part
by the Beijing Natural Science Foundation under Grant M21036; in part
by the Zhejiang Key R&D Plan under Grant 2021C01116; in part by the
Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang
under Grant 2018R01005; and in part by the Zhejiang Provincial Natural
Science Foundation of China under Grant LD22F020002. Recommended for
acceptance by T. Menzies. (Corresponding author: Rui Zhang.)

Zhaoxuan Li, Rui Zhang, Rui Xue, and Wenhao Li are with the State
Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China, and also with the
School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China (e-mail: lizhaoxuan@iie.ac.cn; zhangrui@iie.ac.cn;
xuerui@iie.ac.cn; liwenhao@iie.ac.cn).

Siqi Lu and Rujin Liang are with the Information Engineering Univer-
sity, Zhengzhou 450001, China, and also with the Henan Key Laboratory
of Network Cryptography Technology, Zhengzhou 450001, China (e-mail:
080lusiqi@sina.com; coderlrj@163.com).

Ziming Zhao is with the College of Computer Science and Technology, Zhe-
jiang University, Hangzhou 310027, China (e-mail: zhaoziming@zju.edu.cn).

Fan Zhang is with the College of Computer Science and Technol-
ogy, Zhejiang University, Hangzhou 310027, China, also with the ZJU-
Hangzhou Global Scientific and Technological Innovation Center, Hangzhou
311200, also with the Key Laboratory of Blockchain and Cyberspace
Governance of Zhejiang Province, Hangzhou 310027, and also with Jiax-
ing Research Institute, Zhejiang University, Jiaxing 314000, China (e-mail:
fanzhang@zju.edu.cn).

Sheng Gao is with the School of Information, Central University of Finance
and Economics, Beijing 100081, China (e-mail: sgao@cufe.edu.cn).

Digital Object Identifier 10.1109/TSE.2023.3317209

a method named VulHunter that extracts the instances by
traversing the Control Flow Graph built from contract opcodes.
Based on the hybrid attention and multi-instance learning mech-
anisms, VulHunter reasons the instance labels and designs an
optional classifier to automatically capture the subtle features
of both normal and defective contracts, thereby identifying the
vulnerable instances. Then, it combines the symbolic execution
to construct and solve symbolic constraints to validate their
feasibility. Finally, we implement a prototype of VulHunter with
15K lines of code and compare it with 9 SOTA methods on
five open source datasets including 52,042 source codes and
184,289 bytecodes. The results indicate that VulHunter can detect
contract vulnerabilities more accurately (90.04% accuracy and
85.60% F1 score), efficiently (only 4.4 seconds per contract), and
robustly (0% analysis failure rate) than SOTA methods. Also,
it can focus on specific metrics such as precision and recall
by employing different baseline models and hyperparameters to
meet the various user requirements, e.g., vulnerability discovery
and misreport mitigation. More importantly, compared with the
previous ML-based arts, it can not only provide classification
results, defective contract source code statements, key opcode
fragments, and vulnerable execution paths, but also eliminate
misreports and facilitate more operations such as vulnerability
repair and attack simulation during the contract lifecycle.

Index Terms—Blockchain, smart contract, security analysis,
multiple instance learning, symbolic execution.

I. INTRODUCTION

BLOCKCHAIN and its killer applications, e.g., Bitcoin,
Metaverse, and Non-Fungible Token (NFT), are taking

the world by storm [1], [2], [3]. Smart contracts are pro-
grams running on top of the blockchain [3], [4]. Millions of
smart contracts have been deployed on the Ethereum blockchain
platform, the most popular blockchain network for Web3 and
decentralized apps (dApps), enabling a wide range of applica-
tions including wallets, crowdfunding, decentralized gambling,
online gaming, and cross-industry finance [5].

Security issues of smart contracts. Currently, smart
contracts from various fields hold more than $10 billion worth
of virtual currencies. This gives much incentive to malicious
users for discovering and exploiting potential vulnerabilities in
smart contracts. For example, in May 2019, Binance suffered a
hacking attack that resulted in the theft of over 7,000 Bitcoins
[6], and then it also lost $100 million of cryptocurrency due to
the cross-chain bridge contract’s vulnerability in October 2022.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2195-0799
https://orcid.org/0000-0002-8593-9636
https://orcid.org/0000-0003-0002-5593
https://orcid.org/0000-0003-1455-4330
https://orcid.org/0009-0004-3104-3051
https://orcid.org/0000-0001-6024-3635
https://orcid.org/0000-0003-2268-7416
https://orcid.org/0000-0001-6087-8243
https://orcid.org/0000-0001-8118-411X
mailto:lizhaoxuan@iie.ac.cn
mailto:zhangrui@iie.ac.cn
mailto:xuerui@iie.ac.cn
mailto:liwenhao@iie.ac.cn
mailto:080lusiqi@sina.com
mailto:coderlrj@163.com
mailto:fanzhang@zju.edu.cn
mailto:sgao@cufe.edu.cn
https://creativecommons.org/licenses/by/4.0/

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4887

In addition to the economic value carried by smart contracts,
these attacks stem from several critical characteristics. First,
smart contracts run in a permission-less network, which
means hackers can check them freely, and try to find their
bugs. Second, the consensus protocol makes them immutable
once deployed, requiring developers to anticipate all possible
execution statuses, which is undoubtedly difficult. Therefore,
effective vulnerability checkers1 are essential to ensure smart
contracts are bug-free and well-designed before deploying them
to Ethereum.

Key challenges in contract vulnerability detection. The
existing contract analysis arts leverage techniques such as pat-
tern matching (e.g., SmartCheck [7] and Slither [8]), symbolic
execution (e.g., Oyente [4] and Mythril [9]), fuzzy testing (e.g.,
Contractfuzzer [10] and ILF [11]), and machine learning (ML)
(e.g., DR-GCN [12] and S-gram [13]) to identify vulnerabilities,
as described in Table I. However, it is very challenging for them
to conduct automated inspections that address the following
challenges at the same time.

Challenge 1: (Requirement) Support analysis of source code
and bytecode/opcode simultaneously. The source code of smart
contracts is usually developed using a high-level programming
language, such as Solidity [31]. It has been analyzed by many
methods due to its legibility, such as pattern matching (e.g.,
NeuCheck [14] and Zeus [3]), similarity code matching (e.g.,
SMARTEMBED [15]), and machine learning (e.g., Peculiar
[16] and DeeSCVHunter [17]). Nonetheless, according to the
latest records, among the 1 million smart contracts running
on Ethereum, only less than 2% open their source code [18],
[32], [33]. Also, contracts usually invoke others, and the called
contracts may not open their source code for inspection. Since
these works can only build intermediate representations/graphs
based on the source code, it is difficult to analyze the vast
contracts on Ethereum.

Instead, the Ethereum Virtual Machine (EVM) bytecode is
compiled from the contract source code and stored in each node
on the Ethereum system. Everyone can check it and convert it
from/to opcode (i.e., the code executed directly on the EVM)
unconditionally and lossless. Therefore, in order to meet the
various developers’ requirements, a practicable contract checker
should work with the bytecode/opcode, not just the source code.
However, this is hard to implement for the following reasons.

(i) The bytecode loses some contract semantics. When com-
piling a smart contract to bytecode, EVM will refine the source
code, which means some information will be removed or opti-
mized, so it is hard to know the original semantics of the source
code from the bytecode. For instance, detecting whether func-
tions have return values in the source code is straightforward.
However, this is difficult to complete at the bytecode level as
the EVM will automatically add default values for functions
without return values. Also, the more details are discussed in
Section V.B.1.

(ii) The contract introduces a lot of benign interference. A
vulnerability generally involves few statements, yet vulnerable

1In order to enable developers or auditors to understand the contract status
comprehensively, the vulnerabilities or defects mentioned in this paper not
only refer to contract bugs, but also include code optimizations.

contracts hold many vulnerability-irrelevant statements, called
noise code, which may confuse code matching.

Challenge 2: (Intelligent & Unmanned) Reduce the re-
liance on pre-manually defined rules/patterns and expert
involvement. Even though there have been some studies on
vulnerability detection based on bytecode, such as symbolic
execution (e.g., teEther [25] and DefectChecker [20]) and fuzzy
testing (e.g., Contractfuzzer [10] and SMARTIAN [28]), there
is still a growing need to detect and prevent more and more
kinds of contract vulnerabilities. A main limitation of these
methods is that they require specific vulnerability patterns/
oracles or specification rules (collectively patterns) defined
by experts to construct vulnerability detectors and/or code in-
spectors. This hinders their application to Ethereum for the
following reasons.

(i) The manually defined patterns are subject to the knowl-
edge of expensive contract experts and bear the risk of errors.
Also, some complex vulnerabilities are non-trivial to be covered
completely. For example, it is difficult to describe consistency
rules for the transaction order dependent (TOD) vulnerability
manually, and define bytecode-level patterns to consider all
expressions of vulnerabilities, such as reentrancy. Even crafty
attackers may use tricks to bypass fixed patterns.

(ii) The diversity of bytecode generation will impede the
formation of vulnerability patterns. Currently, there are dozens
of compiler versions, and a compiler may generate different
bytecode for the same code pieces under diverse versions. As
mentioned in [29], the bytecode similarity between the newer
and older compilers is only 77.8% for the same contract. There-
fore, the bytecode-based patterns may be ineffective just as vul-
nerable/defective codes were compiled with different versions
and contain distinct instructions.

(iii) With the race between attackers and defenders, it can be
far too slow and costly to write new patterns/oracles in response
to the emerging vulnerabilities created by attackers.

Challenge 3: (Practical) Help developers to complete the
contract lifecycle safely, such as vulnerability identification,
verification, repairment, simulation, and monitoring. To mit-
igate the above limitations, ML-based methods (e.g., TMP
[12] and ContractWard [30]) are used for automated learning
of contract vulnerability features, thereby making full use of
existing vulnerable (refers to defective and optimizable) con-
tracts to express vulnerabilities more perfectly. Nevertheless,
these approaches are limited in terms of scalability, generaliz-
ability, and interpretability, giving their insufficient detection
accuracy and running speed. More importantly, as shown in
Table I, they only inspect whether the contract is vulnerable,
which is not enough to help developers to fix vulnerabilities,
let alone verification, simulation, and monitoring. Therefore,
it is an emerging yet crucial issue to detect various vulner-
abilities (e.g., reentrancy and timestamp) of contracts in an
effective, efficient, and interpretable manner, while enabling
developers to finish the contract lifecycle more safely in the
real world. Specifically, (i) report the defective source code
statements, key bytecode fragments, and possible suggestions
to them for further contract repairs during contract development
and deployment phases. (ii) Support automated vulnerability

4888 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

TABLE I
QUALITATIVE COMPARISON OF VULHUNTER AND EXISTING SMART CONTRACT VULNERABILITY DETECTION METHODS

Method Name Required Input Technology Manual Interpretable Extensible Path Locate Verify & Simulate Speed
SmartCheck [7] Source code Pattern matching Rules Yes Medium No Yes No Medium

Slither [8] Source code Pattern matching Rules Yes Medium No Yes No Medium
NeuCheck [14] Source code Pattern matching Rules Yes Medium No Yes No Medium

Zeus [3] Source code Pattern matching Rules Yes Medium No Yes No Medium
SMARTEMBED [15] Source code Similarity code matching No Yes Easy No Yes No Medium

TMP [12] Source code ML (GNN) No Yes Easy No No No Medium
Peculiar [16] Source code ML (Pre-training) No Yes Easy No No No Medium

DeeSCVHunter [17] Source code ML (Integration framework) No No Easy No No No Fast
S-gram [13] Source code ML (N-gram) No No Easy No No No Fast
Oyente [4] Source code and bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow
Osiris [18] Source code and bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow

Securify [19] Source code and bytecode Pattern matching Rules Yes Medium Yes Yes No Medium
Mythril [9] Source code and bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow

DefectChecker [20] Source code and bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Fast
Maian [21] Bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow
Eosafe [22] Bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow

Honeybadger [23] Bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow
Manticore [24] Bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow
TeEther [25] Bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow
Sailfish [26] Bytecode Symbolic execution Rules Yes Hard Yes Yes Yes Slow

Contractguard [27] Bytecode+transaction Path matching Review Yes Medium No No No Medium
Contractfuzzer [10] Bytecode+ABI Fuzzy testing Oracles Yes Hard Yes No Yes Slow

ILF [11] Bytecode+transaction Fuzzy testing Oracles Yes Hard Yes No Yes Slow
SMARTIAN [28] Bytecode Fuzzy testing Oracles Yes Hard Yes No Yes Slow

Contractembed [29] Bytecode ML (Graph embedding) No Yes Easy No No No Medium
ContractWard [30] Source code and bytecode ML (XGBoost, etc.) No No Easy No No No Fast
VulHunter (Ours) Source code, bytecode and opcode ML+Symbolic execution No Yes Easy Yes Yes Yes Fast

verification to eliminate false positives and reduce the workload
of manual review. (iii) Provide possible inputs for invoking con-
tracts to trigger the vulnerabilities. (iv) Monitor contract calls
to judge abnormal behavior in contract execution and destruc-
tion stages.

An insight into achieving these services is to combine ML
with traditional methods instead of using the former alone,
given the unique advantages of traditional methods, e.g., sym-
bolic execution-based arts can obtain the contract inputs trigger-
ing the vulnerabilities. This could require ML-based methods
to focus on the critical slices of contract runtime execution
sequences in the bytecode/opcode form, rather than the entire
contract bytecode. However, since a contract generally contains
multiple incomprehensible execution sequences, it is challeng-
ing to get the specific labels of sequences when only knowing
their contract vulnerability categories in the training dataset,
so that the ML classifiers for identifying sequences cannot be
trained. This problem is also known as the classification lacking
fine-grained labels.

Contribution. To overcome the above challenges, we
propose VulHunter, a method that can effectively detect vul-
nerable bytecode/opcode paths without manual pre-defined pat-
terns. It extracted the contract execution sequences/paths based
on the opcode, and completed the process of source code-
to-bytecode-to-opcode conversion combined with the contract
compilers such as solc [34]. Then, it leverages multi-instance
learning (MIL) to infer the fine-grained labels of contract
execution sequences automatically, and employs Bag-instance/
self-model attentions based Bi-directional Long Short-Term
Memory (Bi2-LSTM) model to inspect them accurately and
output the vulnerable sequences with attention vectors. Also, it
extracts the key opcodes with large weights in sequences, and
locates the defective contract source code statements by map-
ping from the assembly language source code file. Furthermore,

based on symbolic execution technology, the reported vulner-
able sequences are used to construct and solve the symbolic
constraints to validate their feasibility. Meanwhile, the solved
parameters can be obtained to trigger the vulnerabilities such as
integer-overflow, and the abnormal contract calls can be deter-
mined by verifying their inputs with the constraints. This paper
mainly presents the design, implementation and evaluation of
VulHunter. In total, we make the following contributions:

• Comprehensive design requirements. We examine the nu-
merous contract vulnerability types (c.f., Section II) and
security analysis arts (c.f., Section VI), and further clarify
the field demands (i.e., three challenges) to guide our de-
signs. To the best of our knowledge, VulHunter is the most
accurate and practical contract vulnerability method based
on ML and symbolic execution.

• Novel detection approach. We design and develop Vul-
Hunter with six components, such as Vulnerability Learner,
to detect vulnerabilities in contract source code or byte-
code/opcode without expert involvement (c.f., Section III),
thereby meeting the challenges (i)–(ii). It employs Bi2-
LSTM model to identify/output the vulnerable runtime
execution sequences and defective source code statements.
Also, it delivers an optional constraint-solving module
to construct the constraints of vulnerable sequences and
compute contract inputs automatically, thus addressing the
challenge (iii).

• Superior analytical performance. We evaluate the perfor-
mance of VulHunter on five open source datasets (c.f.,
Section IV). Compared with SOTA methods based on var-
ious technologies such as pattern matching and symbolic
execution, our solution can detect contract vulnerabilities
more accurately, efficiently, and robustly. Also, VulHunter
is flexible given it can be configured with various base-
line models and hyperparameters to adapt to diverse user

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4889

requirements. More importantly, compared with ML-
based arts, it can produce classification results accurately
while providing defective source code statements, key op-
code fragments, and vulnerable runtime execution paths,
benefiting the automated validation and vulnerability re-
pair. Finally, we theoretically demonstrate its effectiveness
and discuss the limitations, improvements, and more appli-
cation scenarios in Section V.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the background informa-
tion about smart contracts, as well as their vulnerabilities.

A. Smart Contracts

Operation procedure or lifecycle. The procedure of smart
contracts consists of four states: development, deployment, ex-
ecution, and destruction. Users can develop a contract with
solidity language and deploy it to the Ethereum platform. Then,
the contract source code will be compiled to EVM bytecode
and identified by a unique 160-bit hexadecimal hash called
contract address. The contract holds an amount of virtual cur-
rency Ether (called balance), whose execution depends on its
code. It usually runs on a permissionless network, and anyone
can invoke its methods through ABI (Application Binary In-
terface) [31]. Specifically, the user at address αU can call the
contract by sending a transaction T= 〈αU , αA, E,G,D, . . .〉
to the contract address αA, where E, D, and G denote the
input amount, call parameters, and execution cost, respectively.
Finally, the contract owner can destroy the contract by invoking
the “selfdestruct” function.

Ethereum development language. Solidity is an object-
oriented and Turing-complete programming language for im-
plementing contracts on various blockchain platforms, most
notably, Ethereum. Its grammar is similar to JavaScript, e.g.,
they both implement object-oriented features such as inheri-
tance and complex user-defined types. Nevertheless, Solidity
has some unique properties. For example, it can provide key-
words like payable to mark payment operations, thus making
transfer operations easier. Moreover, although some alternative
programming languages (e.g., Obsidian [35] and Vyper [36])
have been proposed, Solidity is still the most popular language
in Ethereum. Notably, the diversity of contract languages is
challenging for auditors. Fortunately, contracts developed in
various languages on Ethereum are executed in EVM bytecode,
so that the contract security can better benefit from bytecode-
oriented analysis methods.

Ethereum Virtual Machine (EVM) bytecode and
opcode. EVM is a stack-based machine that maintains a stack of
uint256s to hold local variables, function arguments, etc. When
a transaction needs to be executed, EVM will split bytecode
into bytes, each representing a unique instruction called opcode.
There are 150+ opcodes by April 2022 [37]. As described in
Table II, they can be divided into 9 types according to their
function.2 Monitoring them can benefit vulnerability detection.

2The information of all opcodes is detailed in https://github.com/Secbrain/
VulHunter/tree/main/Opcodes.

TABLE II
LIST OF OPCODE INSTRUCTIONS

Type Instructions

Compute ADD, MUL. SUB, DIV, MOD, ADDMOD, EXP, SIGNEXTEND, ...
Compare LT, GT, SLT, SGT, EQ, ISZERO, ...
Bit operation AND, OR, XOR, NOT, BYTE, SHL, SHR, SAR, ...
Transaction data ADDRESS, BALANCE, ORIGIN, CALLER, GAS, ...

Memory
MLOAD, MSTORE, MSTORE8, SLOAD, SSTORE, MSIZE,
CREATE, DELEGATECALL, STATICCALL, CALL, ...

Call data &
Code data

CALLCODE, CALLVALUE, CALLDATALOAD, CALLDATASIZE,
CALLDATACOPY, CODESIZE, CODECOPY, EXTCODECOPY, ...

Block data
GASPRICE, GASLIMIT, DIFFICULTY, NUMBER, TIMESTAMP,
COINBASE, BLOCKHASH, SHA3(KECCAK256), ...

Jump & Stop
STOP, JUMP, JUMPI, PC, GETPC, RETURN, REVERT, INVALID,
SELFDESTRUCT, RETURNDATASIZE, RETURNDATACOPY, ...

Stack PUSH1-32, POP, SWAP1-16, DUP1-16, LOG0-4, ...

Fig. 1. The relationships among source code, bytecode and opcode.

For instance, the opcodes of computing type (e.g., ADD and
MUL) perform arithmetic operations and can be used to identify
integer-overflow vulnerabilities.

Furthermore, EVM utilizes these opcodes to execute the task.
Fig. 1 shows an example of contract transformation to illustrate
the relationships among source code, bytecode, and opcode.
The source code was compiled into bytecode 0x600060...5050
using compilers such as solc [34]. EVM splits this bytecode
into bytes (0x60, 0x00,..., 0x50), and executes the first byte
0x60, which refers to opcode PUSH1. PUSH1 pushes one-byte
data (i.e., 0x00) to the EVM stack. Then, EVM reads 0x60
and pushes 0x01 (i.e., number 1) into the stack. Subsequently,
it executes the remaining bytecodes, such as 0x80, 0x43, and
0x03, i.e., opcodes DUP1, NUMBER, and SUB. Among them,
NUMBER extracts the block number. SUB obtains the top two
values from the stack, i.e., block.number and 0x01, and puts
their subtraction result into the stack.

B. Vulnerabilities in Smart Contracts

1) Definition of Impact Levels: A sound and reasonable
vulnerability assessment scheme for contract bugs or code op-
timizations can help developers to understand their contract
security better. To this end, combined with CVSS2.0 (Com-
mon Vulnerability Scoring System), the vulnerability severity
of smart contract can be rated as High, Medium, Low, Informa-
tional (Info), and Optimization (Opt) in terms of risk degrees
and utilization difficulties. The detailed partitioning is shown in
Fig. 2. The risk degree refers to the impact of vulnerability on
the blockchain systems, users, and other resources. According
to the three impact dimensions of confidentiality (C), integrity
(I), and availability (A), the harm degree is divided into High,
Medium, Low, Info and Opt. The utilization difficulty refers to
the possibility of vulnerability occurrence. Based on the attack
cost (e.g., money, time and technology), utilization condition

https://github.com/Secbrain/VulHunter/tree/main/Opcodes
https://github.com/Secbrain/VulHunter/tree/main/Opcodes

4890 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

Fig. 2. Vulnerability assessment mechanism.

TABLE III
THE SEVERITY OF VULNERABILITIES (BUGS AND OPTS) SUPPORTED BY

VULHUNTER

ID Vulnerability Name Severity ID Vulnerability Name Severity

RE Reentrancy-eth High E20IF Erc20-interface Medium
CAL Controlled-array-length High CTL Costly-loop Low
SU Suicidal High TS Timestamp Low

CDC Controlled-delegatecall High BP Block-other-parameters Low
AS Arbitrary-send High CLL Calls-loop Low

TOD TOD High LLC Low-level-calls Info
UIS Uninitialized-state High E20ID Erc20-indexed Info
IE Incorrect-equality Medium E20TR Erc20-throw Info
IO Integer-overflow Medium HC Hardcoded Info

UCL Unchecked-lowlevel Medium AIB Array-instead-bytes Opt
TO Tx-origin Medium UUS Unused-state Opt
LE Locked-ether Medium COL Costly-operations-loop Opt

UCS Unchecked-send Medium ST Send-transfer Opt
BC Boolean-cst Medium BE Boolean-equal Opt

E721IF Erc721-interface Medium EF External-function Opt

(i.e., the difficulty of attack utilization) and trigger probability
(e.g., vulnerabilities can only be triggered by a few people), it
is ranked into exactly, probably, and possibly.3

2) Examples of Smart Contract Vulnerabilities: In order
to understand the contract vulnerability detection at the byte-
code/opcode level, we combine the contract code to explain
some simple examples of vulnerabilities (c.f., Table III) sup-
ported by VulHunter in terms of occurrence principle, severity,
repair strategies, and insights in bytecode.4

(i) Reentrancy with Ether (reentrancy-eth): Reentrancy
vulnerability is a classic problem, which leads to the loss of
assets with a market value of nearly $60 million in 2016 [10].
It refers to reentry with the following features: reentrant calling,
Ether sending, and reading before writing.

Severity: High severity. RE can cause massive assets to be
overspent or stolen (High risk). Also, it requires some condi-
tions to trigger (probably utilization). For instance, the auxiliary
contract is needed to complete the attack.

Listing 1. The sample of reentrancy-eth.

1 contract PullPayment {
2 mapping (address => uint) userBalances;
3 function withdraw(){
4 //Reenter the function
5 if(!(msg.sender.call.value(userBalance[msg.sender])

())){ throw; }
6 userBalance[msg.sender] = 0;
7 }
8 }
9 contract Attack {

10 PullPayment object;
11 function attack() payable {object.withdraw(1 ether);}
12 function() public payable {object.withdraw(1 ether);}
13 }

Example: An attack scenario is depicted in Listing 1. Bob
constructs an Attack contract and performs the “withdraw()”

3The vulnerability assessment scheme is detailed in https://github.com/
Secbrain/VulHunter/tree/main/Severity_assessment.

4The details of more vulnerabilities are illustrated in https://github.com/
Secbrain/VulHunter/tree/main/Vulnerability_examples.

function by invoking the “attack()” function, which will trigger
the fallback function. By this means, Bob implements multiple
calls to “withdraw()”. Since the “userBalance” variable hasn’t
changed before the secondary call, Bob obtained more than the
amount he deposited into the contract.

Improvements to contracts: Put userBalance[msg.sender] =
0 before the call function. That is, the contracts should use the
check-effects-interactions pattern to avoid this vulnerability.

Possible insight at bytecode-level: Ethereum provides
three methods to transfer Ethers, i.e., address.send(), ad-
dress.transfer(), and address.call().value(). These methods all
generate a CALL instruction, which reads seven values from
the EVM stack. The first three values represent the gas lim-
itation, recipient address, and transfer amounts, respectively.
The CALL instruction that meets the following conditions is
almost generated by call().value(). (i) the gas limitation does
not contain a specific value “2300”; (ii) the transfer amount is
greater than 0. In addition, the SLOAD instruction is used to
get a key value (named Slot ID) from the EVM stack and puts
the mapping result read from storage back onto the stack [37].
If the conditional expression contains the SLOAD instruction
and its Slot ID are written by the SSTORE instruction after
executing the CALL instruction, it means the CALL instruction
can be executed again and cause Reentrancy. Among them, the
SSTORE instruction is used to save data into storage, and it
reads two values from the EVM stack, i.e., Slot ID and the
stored value.

(ii) Transfer replaces send (send-transfer): Both the send
and transfer functions specify that the operation has a limit of
2300 gas, but a failure of the send function does not trigger
the exception and can be reentered easily. Thus, developers are
recommended to use the transfer function.

Severity: Opt severity. ST can help developers improve the
security of transfer operations (Opt risk). Also, it can be trig-
gered by executing vulnerable codes (exactly utilization).

Example: As shown in Listing 2, the “func” function utilizes
“send” to extract amounts, which can be improved.

Improvements to contracts: It is suggested to replace “send”
with the “transfer” to keep the funds secure.

Possible insight at bytecode-level: There exists a CALL
instruction that meets (i) the gas limitation contains a specific
value “2300”; (ii) the transfer amount is larger than 0.

Listing 2. The sample of send-transfer.

1 contract Crowdsale {
2 address owner = msg.sender;
3 modifier verify() { require(tx.origin == owner); _; }
4 function func(address payable dst) payable verify(){
5 dst.send(msg.value);
6 }
7 }

III. THE VULHUNTER APPROACH

In this section, we elaborate on the design principles and
workflow of VulHunter, as well as its components.

https://github.com/Secbrain/VulHunter/tree/main/Severity_assessment
https://github.com/Secbrain/VulHunter/tree/main/Severity_assessment
https://github.com/Secbrain/VulHunter/tree/main/Vulnerability_examples
https://github.com/Secbrain/VulHunter/tree/main/Vulnerability_examples

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4891

Fig. 3. Overview architecture of VulHunter.

A. Design Overview

Fig. 3 depicts an overview architecture of VulHunter. Vul-
Hunter can take the Solidity source code, bytecode, or opcode of
smart contracts as input, and eventually output contract vulner-
abilities (e.g., RE, TO, and TS) with their severity as described
in Section II-B, as well as the corresponding vulnerable runtime
opcodes and their key fragments. In particular, it can highlight
the defective contract statements when analyzing the source
code. Also, the runtime opcodes can be used to build symbolic
constraints and then execute secondary verification and utiliza-
tion. Specifically, VulHunter contains six components. Contract
Inputter is responsible for generating the contract opcodes, and
CFG Builder constructs a CFG with three kinds of blocks. Then,
Instance Builder performs the depth-first traversal to obtain
the runtime opcode sequences (called instances). Vulnerability
Learner captures vulnerability features automatically by train-
ing detectors on benign and malicious (vulnerable) contracts.
Vulnerability Identifier employs the detectors to identify the vul-
nerable instances of contracts. Finally, Result Exporter locates
the defective source code statements, validates the instance
feasibility, and outputs the contract audit reports.

B. Contract Inputter

As shown in the left part of Fig. 3, Contract Inputter can feed
the source code, bytecode, and opcode of contracts as input.
Specifically, due to the opcode is directly used by CFG builder,
the source code needs to be compiled into the bytecode, and
then disassembled into opcodes using the API of Geth [38].
Fig. 1 depicts this process vividly. In particular, the compiler can
resolve multiple associated contracts uniformly to generate their
bytecode. Also, the assembly language source code file (ASM)
can be obtained during the contract compiling and further
used to map bytecodes/opcodes to source codes, as illustrated
in Section III-G.

C. CFG Builder

CFG Builder constructs the CFG of contracts based on
their opcodes to explore the state transitions during the actual
execution. This process is similar to the methods such as
DefectChecker [20] and EtherSolve [39], including block iden-
tification and edge inference. At first, he splits the opcode
into several basic blocks. A basic block is a straight-line code
sequence without branches except for the entry and the exit. Its
type is presented by the exit instruction, which usually marks

Fig. 4. Example of symbolic reasoning by the CFG Builder.

the end of the continuous operations. If the last instruction is
JUMPI, the block type is conditional. If the last instruction
belongs to the stop type shown in Table II (e.g., STOP and
RETURN), the block type is terminal. The blocks that do not
fall into both types are assigned as unconditional.

Then, CFG Builder performs symbolic inference on the in-
structions in each block to establish connections with neigh-
boring blocks. Different from other stack-based machines (e.g.,
JVM), the jump positions of EVM opcodes need to be computed
during instruction reasoning. Specifically, when operating an
instruction, it reads several symbolic states from the top of the
EVM stack and puts the computation result back on the stack.
Through continuous reasoning operations, we can obtain jump
relations between blocks, and their types are consistent with
blocks, i.e., conditional and unconditional.

As an example shown in Fig. 4, there are 4 blocks, each
containing several instructions. The instructions in block 1 rep-
resent the code if(val==0). Block 2 and block 3 put the value
(1 or 0) to the EVM stack, respectively. Block 4 returns the
value (0 or 1) to the environment. The leftmost number in each
line indicates the instruction index ID, and the middle part is
the instruction that needs to be reasoned. All instructions will
reason sequentially based on their index ID. There is a Program
Counter (PC) that records the ID executed at the current time.
Specifically, the PC starts from ID 10 in block 1. Before the

4892 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

EVM executes the JUMPDEST instruction, there is a symbol
“val” in the EVM stack, which represents the input value of the
“iszero” function. JUMPDEST marks a valid jump destination
and does not read or push any values. Then the PC points to ID
11, and EVM pushes a value 1 to the EVM stack. Also, “0” is
pushed into the EVM stack and PC point to 13. DUP3 duplicates
the 3rd stack item, i.e., the symbol “val” is pushed into the
EVM stack again. EQ reads two values from the EVM stack.
If the two values are equal, then the EVM pushes 1 into the
stack, otherwise 0 is pushed. After that, ISZERO reads a value
from the top of the EVM stack. If the value is equal to 0, then
1 is pushed into the stack, otherwise 0 is pushed. JUMPI (ID
17) reads two values from the stack, i.e., the jump position and
a conditional expression. According to the expression’s result,
the PC will conditionally jump to the positions of IDs 23 and
18, respectively.

When the PC points to ID 23, it will execute the instructions
on IDs 23–26, otherwise 18–22, and both eventually jump to
block 4 unconditionally. When performing the first instruction
of block 4, the EVM stack holds two values, i.e., val and 0/1.
Eventually, block 4 (type of terminal) returns the value 0/1 and
uses the STOP instruction to finish the execution. Notably, given
the complex computation of destinations for jumps without im-
mediate target offsets, the sensitive observations of ML models
such as Bi2-LSTM (c.f., Section III-E) can tolerate slight CFG
biases, thus enabling VulHunter to deliver robust and accurate
detection5. Also, the feasibility validation (c.f., Section III-G)
of paths may mitigate the impacts of imprecise/unsound CFGs,
and multi-threaded operations can be used to improve the effi-
ciency of CFG construction.

D. Instance Builder

In order to make VulHunter discover vulnerable execution
paths, the Instance Builder focuses on each opcode sequence
(called instance) that the contract actually runs, rather than a
hodgepodge of all opcodes. The process of instance extraction
is detailed in Algorithm 1. Specifically, CFG Builder constructs
the contract CFG through the steps in Section III-C (lines
12–14). Then, Instance Builder obtains the instances by per-
forming the procedure SEQDFS (lines 2–10) from the initial
blocks according to the CFG (lines 16–19). Furthermore, SE-
QDFS leverages the depth-first traversal to record in-block op-
codes along the execution path. The search for the execution
path is stopped when it meets one of the three conditions. (i)
Continuous ncycle blocks that have been searched, which is
considered as a cyclic execution path. (ii) The length of the
path exceeds the limit nblock. (iii) The type of the last block
is terminal, representing the ends of paths.

Finally, due to sequence space explosion and performance
limitations, the Instance Builder outputs the contract’s nseq

selected instances (lines 20–21). Note that he has various op-
tions such as random selection and ordered assignment. In
Section IV-G, we tested the performance of different selection
schemes (e.g., longest, shortest and interval) and the number

5The CFG building process and its correctness analysis are detailed in
https://github.com/Secbrain/VulHunter/tree/main/CFG.

Algorithm 1 Opcode Execution Sequence Extraction
Input: Contract source code / bytecode / opcode; maximum

number of block cycles ncycle; maximum length of blocks
nblock; number of sequences nseq

Output: The set of opcode execution sequences opseqs
1: Recursively traverse blocks to obtain the opcode sequences
2: procedure SEQDFS(seq, names, block, num, seqset)
3: num += 1
4: if block.name /∈ names then num = 0
5: names ∪= block.name, seq ∪= block.opcodes
6: if num == ncycle or len(names)≥ nblock or
7: block.type == terminal then seqset ∪= seq;

8: else for blocknext ∈ block.outblocks do
9: seqset = SEQDFS(seq,names,blocknext,num,seqset)

10: return seqset � Return the opcode sequences

11: Step 1: Build CFG of the contract

12: source code
compile−−−−→ bytecode

disasm−−−→ opcode
13: blocks = block_split(opcode)
14: cfg = construct(blocks) � Build the links between blocks
15: Step 2: Obtain the execution sequences of the contract
16: opseqs = ∅ � Initialize the set of opcode sequences
17: for block ∈ cfg.blocks do
18: if block.inblocks == ∅ then
19: opseqs ∪= SEQDFS(∅, ∅, block, 0, ∅)

20: opseqs=sorted(opseqs,key=lambda d:len(d),reverse=True)
21: return choose(opseqs, nseq) � Choose the opcode sequences

of selected instances under the same other settings, i.e., control
variables. The instances with longer lengths generally achieve
better effects, which may be attributed to the fact that they hold
more opcodes and semantic information.

E. Vulnerability Learner

To detect contract vulnerabilities at the bytecode level, Vul-
nerability Learner leverages multi-instance learning mechanism
to identify malicious contract behaviors automatically from the
instances extracted by Instance Builder. Specifically, it trains
a binary classification model for each vulnerability, and mul-
tiple models grant VulHunter the ability to analyze contracts
comprehensively. In this part, taking a model as an example,
we introduce the process of vulnerability feature learning and
vulnerable instance detection, which consists of three parts:
instance label initialization, model training/classification, and
instance optimization, as depicted in Fig. 5. Also, its effective-
ness/correctness will be discussed in Section V.A.2.

(i) Instance tag initialization. During the vulnerability
feature learning stage, the training dataset includes instances
opseqs of multiple benign and malicious contracts, and each
contract can be vividly described as a bag. However, since it
is challenging to understand the opcodes and label each in-
stance of contracts, we only determine whether the contract is
malicious/vulnerable (i.e., existing the target vulnerability) and
cannot get the specific tags of its instances. In other words, mali-
cious contracts include at least one vulnerable instance, yet the
specific instance tag is unknown. This is known as the problem

https://github.com/Secbrain/VulHunter/tree/main/CFG

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4893

Fig. 5. The architecture of Vulnerability Learner with multiple instance learning.

of missing fine-grained labels, preventing the model from being
trained on instances. To this end, we first initialize the instance
tag to coincide with its bag and integrate all instances as the
training dataset D0.

(ii) Model training and classification. To distinguish be-
tween benign and malicious instances, we employ a basic Bi-
directional LSTM (Bi-LSTM) model to focus on the underlying
contextual relationships of the opcodes in instances. Next, the
Bag-instance and self-model attentions based Bi-LSTM (called
Bi2-LSTM) model is proposed to catch the salient instance
fragments and consider both bag and instance learning effects.
Notably, given the generality and extensibility framework of
Vulnerability Learner, he can also employ other ML models
(e.g., Random Forest) to further improve the detection perfor-
mance, which is discussed in Section IV-F. This part details the
components of Bi2-LSTM model.

Instance encoding. The instance consists of T opcodes
opseq = {x1, · · · , xT }, and each opcode xi is converted into
its bytecode ei by assembly. Then the vector is fed into the next
layer as a real-valued vector Copseq = {e1, · · · , eT }.

Bi-LSTM network. For the opcode sequence modelling task,
it is beneficial to consider future and past contexts. To this end,
Bi-LSTM networks extend the unidirectional LSTM networks
by introducing a second layer, where the hidden to hidden con-
nections flow in the opposite temporal order. As shown in step
2 of Fig. 5, the Bi2-LSTM layer contains two sub-networks of
LSTM units for the left and right sequence context, representing
the forward and backward passes, respectively. In the forward-
pass tth time step operation, the forget gate ft and input gate vt
can be calculated as

ft = σ(Wf · [−−→ht−1, et] + bf) (1)

vt = σ(Wv · [
−−→
ht−1, et] + bv) (2)

where
−−→
ht−1 is the current hidden state and et denotes the tth

input of the LSTM unit. Then the temporary memory cell C̃t

and the next cell state can be computed and updated by

C̃t = tanh(Wc · [
−−→
ht−1, et] + bc) (3)

−→
Ct = ft ·

−−→
Ct−1 + vt · C̃t (4)

Finally, the output gate ot and the next hidden state
−→
ht can be

obtained as follows. Particularly, W (i.e.,Wf , Wv , Wc, and Wo)

and b (i.e.,bf , bv , bc, and bo) are learnable parameters.

ot =σ(Wo · [
−−→
ht−1, et] + bo) (5)

−→
ht = ot · tanh(

−→
Ct) (6)

The data flow of the backward-pass operations is similar to
the above process, and the final output ht of the Bi-LSTM layer
for the tth input is shown in the following equation:

ht =
[−→
ht ⊕

←−
ht

]
(7)

Self-model attention. Let H be a matrix consisting of out-
put vectors [h1, h2, · · · , hT] that the Bi-LSTM layer produced,
where T is the sequence length. The sequence’s representation
r is formed by a weighted sum of these output vectors.

H̃ = tanh(H) (8)

α= softmax(w∗H̃) = [α1, α2, · · · , αT] (9)

r =Hα∗ (10)

where H ∈ R
T , w is a trained parameter vector, and w∗ is its

transpose. The dimensions of w, α, and r are 1, T , and 1,
respectively. Notably, the weight α reflects the importance of
the input xt in each time step t during model inference and can
be utilized to calculate the key sequence fragments, as further
detailed in Section III-G. Therefore, this mechanism enables
VulHunter to discover defective contract fragments. Then, the
final sequence-pair representation h∗ = tanh(r) is obtained.

Classifying. We use a softmax function to predict the label ŷ
from a discrete class set Y = {0, 1} for a sequence opseq.

p̂(y|opseq) = softmax
(
W (opseq)h∗ + b(opseq)

)
(11)

ŷ = argmax
y∈Y

p̂(y|opseq) (12)

Training with Bag-instance hybrid attention. As shown in
the model training part of Fig. 5, Vulnerability Learner utilizes
Bi2-LSTM to classify each instance of bags and takes the cross
entropy as the loss lossins of the instance features learning.
Specifically, the average lossins of the bag Cj can be calculated
from Eq. (13), where p(x) represents the probability that an
instance x with the tag y(x) (0 and 1 denoting benign and
malicious, respectively) is predicted as malicious.

lossins =−
∑
x∈Cj

(y(x) log p(x)+(1−y(x)) log(1−p(x)))

|Cj |
(13)

4894 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

More importantly, a key judgment is whether the bag is
malicious, i.e., there are malicious instances in the bag. To this
end, Vulnerability Learner takes the result of predicting the
most like the malicious instance (i.e., instance with the largest
p(x)) in the bag as the prediction result of the bag, and further
calculates the cross-entropy loss lossbag combined with the tag
ybag of the bag Cj . Then, two losses are fused to constitute the
Bag-instance hybrid attention mechanism, enabling the model
to identify malicious instances in the bag guided by the bag/-
contract identification. This mechanism is the key to mitigating
the impact of inevitable false instance labels during the training
process, as detailed in Section V.A.1.

pbag = max([p(x)]x∈Cj
) (14)

lossbag =−ybag log pbag + (ybag − 1) log(1− pbag) (15)

loss=λlossins + lossbag (16)

where a larger value of the weight λ ∈ (0, 1] ∈Q
+ indicates that

the learner concentrates on instances, otherwise bags.
(iii) Instance optimization. As shown in step 3 of Fig. 5,

the training dataset was updated after the Bi2-LSTM training,
and then used for iterative training again. Specifically, the Vul-
nerability Learner employs the trained model to identify the
original datasets D0, and filters some distinguishable instances
to construct a new training dataset. The dataset consists of
two parts, one is from the benign bags predicting like the
benign instances, i.e., for the bag Ci, the instances are ar-
ranged in ascending order of p(x), qb of the selected instances
[sorted(Ci)[k]]k∈{1,··· ,�qb|Ci|�} has a smaller p(x). Another
comes from the malicious bags predicting like the malicious
instances, i.e., for the sorted package Cj , and qm of the se-
lected instances [sorted(Cj)[k]]k∈{�(1−qm)|Cj |�+1,··· ,|Cj |} has
a larger p(x). The value of qm enables the model to consider
vulnerabilities triggered by multiple instances, such as extract-
ing contract permissions and stealing the balance. The impact of
these parameters and training epochs on feature learning were
evaluated in Section IV-G, and their values were suggested by
considering detection accuracy and overhead.

F. Vulnerability Identifier

Vulnerability Identifier employs multiple Bi2-LSTM models
to detect contract vulnerabilities. Specifically, for each vulner-
ability described in Section II-B, a detector that identifies con-
tract instances with corresponding vulnerability features can be
trained on pre-collected datasets. Note that the instance extrac-
tion of contract samples takes only once during the vulnerabil-
ity detection. Then the model performs fast inference, so that
multiple detectors only require little time overhead and outper-
form many SOTA methods, which is discussed in Section IV-D.
Also, since different models are independent during inference,
technologies such as parallel computing [40] can be used to
improve performance. More importantly, given the scalability
of Vulnerability Learner, detectors can be easily trained based
on datasets to identify new vulnerabilities.

G. Result Exporter

After the vulnerability detection, the Result Exporter gen-
erates a security analysis report for the contract, which

consists of security conclusions and repair suggestions.6 Specif-
ically, he outputs the “safety” conclusion and corresponding
evidence (i.e., analysis details) when there is no instance with
vulnerability features. Otherwise, the contract vulnerabilities
with their severity (i.e., High, Medium, Low, Info, and Opt)
are indicated. More importantly, the vulnerable instances and
their key fragments can be further used to perform symbolic
constraint solving and defective source codes mapping, thus
granting VulHunter the ability to execute secondary verification
and utilization. Also, he can output the possible suggestions
based on the above information to enable developers to fix
the vulnerabilities.

Locating the defective source code statements. After
the model prediction for contracts, Result Exporter obtains the
contracts’ instances with labels and their weight vectors α from
Vulnerability Identifier. He computes the index vector L of the
largest m weight values and extracts the corresponding opcodes
opskey, as stated in Eqs. (17) and (18). When the contract source
codes are provided, he can map the begin and end positions
(i.e., lines and columns) of these opcodes in the source codes
from the ASM file extracted by Contract Inputter. Then, the
defective contract statements are obtained by intercepting the
source codes of the specific positions.

T∑
t=1

αt=1,L=arg max
t∈[1,T]

(α,m)=[�1, �2, · · · , �m] (17)

opskey=[xt]t∈L, begin, end←ASM(opskey) (18)

Symbolic constraint solving for instances. The identified
vulnerable instances describe the state transitions during
contract execution, as described in Section III-C. Inspired by
the symbolic execution technique, Result Exporter presents
an optional constraint-solving module. It employs these
instances to build the accumulating constraints satisfied by
the symbolic inputs, which can be further translated to the
Satisfiability Modulo Theories Library (SMT-LIB) language.
This process is mature and performed in tools like Oyente [4]
and Manticore [24]. Then, based on an SMT solver [41], it
reports the instance is infeasible when its constraint condition is
unsatisfiable. Otherwise, outputting the feasible conclusion and
the input values that meet the conditions. As stated in [20], there
will be some dead code in bytecode. In this way, the infeasible
instances will be corrected as benign, thus eliminating some
false positives. Currently, this module supports several SMT
solvers (including Z3 [42], Yices [43], and CVC4 [44]), and
users can employ either of them or a combination [45], given
their unique performance and built-in theories. For instance,
Z3 can handle linear/non-linear operations on more data types
such as bitvectors and arrays, while Yices can achieve a
faster solving process [46]. Notably, compared with symbolic
execution-based methods, VulHunter can be regarded as
an automatic rule-maker for vulnerabilities and a filter for
contract execution paths (works like reinforcement learning
[11]), which performs fast reasoning to prune normal paths.

6The examples of audit reports are shown in https://github.com/Secbrain/
VulHunter/tree/main/Reports_examples.

https://github.com/Secbrain/VulHunter/tree/main/Reports_examples
https://github.com/Secbrain/VulHunter/tree/main/Reports_examples

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4895

TABLE IV
THE KINDS OF VULNERABILITIES DETECTED BY THE METHODS. AMONG THEM, THE COLUMN ‘‘OTHERS’’ REPRESENTS THE NUMBER

OF VULNERABILITIES WITH EACH SEVERITY OUTSIDE TABLE 2. MOREOVER, “∼” INDICATES THAT THE VULNERABILITY KINDS CAN

BE EXTENDED EASILY

Methods High Others Medium Others Low Others Info Others Opt Others

SmartCheck [7] - 3 IE,UCL,TO,LE 10 CTL,TS,CLL 2 LLC,E20ID,E20TR,HC 12 AIB,ST,EF 3

Slither [8]
RE,CAL,SU,
CDC,AS,UIS 11

IE,UCL,TO,LE,UCS,
BC,E721IF,E20IF 12 TS,CLL 12 LLC,E20ID 11

UUS,COL,
BE,EF 3

Securify [19] RE,TOD 2 UCL,LE,UCS 1 - 1 - 1 - 0

Oyente [4] RE,TOD 1 IO 3 TS 0 - 0 - 0

Mythril [9] RE,SU,CDC 1 IO,UCL,TO,UCS 2 BP 2 - 0 - 0

DefectChecker [20] RE 0 IE,UCL,TO,LE,UCS 0 CTL,BP,CLL 0 - 0 - 0

SMARTIAN [28] RE,SU,CDC,AS 0 IO,UCL,TO,LE,UCS 2 TS,BP,CLL 1 - 0 - 0

TMP [12] RE,CAL,SU,
CDC,AS,
TOD,UIS

∼
IE,IO,UCL,TO,LE,

UCS,BC,
E721IF,E20IF

∼ CTL,TS,
BP,CLL

∼ LLC,E20ID,
E20TR,HC

∼
AIB,UUS,
COL,ST,
BE,EF

∼ContractWard [30]
VulHunter (Ours)

Furthermore, other feasible and misreported instances are
discussed in Section V.C.1.

Secondary verification and utilization. In addition to al-
lowing developers to determine the audit correctness quickly
through instance feasibility detection and defective statement
positioning, VulHunter can also support other services not pro-
vided by current ML-based methods. For instance, auditors
can invoke the vulnerable contract with the parameters calcu-
lated by symbolic constraints to trigger the vulnerabilities such
as integer-overflow. Also, they can identify abnormal contract
transactions by verifying vulnerability constraints, and these
applications are detailed in Section V-D.

IV. EVALUATION

In this section, we comprehensively evaluate the performance
of VulHunter on open-source datasets and real-world contracts.
Section IV-A describes the baselines and related settings. Sec-
tions IV-B∼IV-I answer the following research questions:

RQ1. [Effectiveness] What is the effectiveness of VulHunter
compared to SOTA methods in detecting contract vul-
nerabilities based on source code and bytecode?

RQ2. [Production] How many vulnerabilities are present in
the Ethereum blockchain?

RQ3. [Performance] How much overhead (such as time and
memory) does VulHunter require to analyze contracts?

RQ4. [Authenticity] Can VulHunter discover contracts with
substantial and serious vulnerabilities in Ethereum?
The goal is to verify its effectiveness in real scenarios.

RQ5. [Compatibility & Scalability] Can VulHunter support
other baseline models for detection?

RQ6. [Regularity] What is the effect of the variable param-
eters in VulHunter on its detection performance?

RQ7. [Versatility] What are the advantages of VulHunter
over other ML-based methods in vulnerability repair?

RQ8. [Verification] What is the performance or capability of
the constraint-solving module in VulHunter?

A. Experiments Setup

1) Baselines: We compare VulHunter with 9 SOTA methods
(described in Section VI) at the time of writing. As shown

TABLE V
DETAILS OF DATASETS

DATASET
NUMBER OF ISSUES CONTRACT DETAILS

HIGH MEDIUM LOW INFO OPT ROWS SIZE NUMS

Dataset_1 13,149 35,155 10,175 19,659 38,314 12,412,520 433.3MB 38,600
Dataset_2 12 37 54 - - - 6.3MB 579
Dataset_3 - - - - - 7,954,979 284.3MB 13,413
Dataset_4 - - - - - - 1.295GB 183,710
Dataset_5 - - - - - 7,565 273.9KB 29

in Table I, these methods can be divided into 4 classes ac-
cording to their techniques, namely, pattern matching (Slither
v0.8.3 [8], SmartCheck v2.0.3 [7], and Securify v1.0 [19] at
GitHub commit 51ba124), symbolic execution (Oyente v0.2.7
[4], Mythril v0.22.41 [9], and DefectChecker [20] at GitHub
commit e24c4c3), fuzzy testing (SMARTIAN [28] at GitHub
commit 4543032) and ML (ContractWard [30] and TMP [12] at
GitHub commit ab93541). In this section, we tested the 30 kinds
of critical vulnerabilities mentioned in Table III. As shown in
Table IV, we manually annotated each vulnerability category
detected by the methods with uniform labels.7

2) Implementation Details: All experiments were
performed on a PC running Ubuntu 18.04 and equipped
with an Intel Core i7-10875H and 8GB of RAM. VulHunter is
mainly implemented in Python with an estimated 15K lines of
code.8 Also, Bi2-LSTM network is implemented with PyTorch,
Adam optimizer [47], and CrossEntropyLoss function [48].
Besides, we employ solc with multiple Solidity versions
such as 0.4.24 to compile source code into bytecode, utilize
pyevmasm 0.2.3 to disassemble bytecode into opcode, and
then use evm_cfg_builder 0.3.1 to build the CFG of contracts.
Nowadays, the constraint-solving module is equipped with
the Python versions of SMT libraries, including Z3 v4.12.1.0,
Yices v2.6.4, and CVC4 v1.7.

3) Datasets: Table V shows the details of five datasets in the
experiment. Datasets_1~2 are both open-source datasets with
partial labels, which are suitable for assessing the precision

7The mapping of vulnerabilities is detailed in https://github.com/Secbrain/
VulHunter/tree/main/VulnerabilityMapping.

8VulHunter is available at https://github.com/Secbrain/VulHunter/tree/main/
VulHunter.

https://github.com/Secbrain/VulHunter/tree/main/VulnerabilityMapping
https://github.com/Secbrain/VulHunter/tree/main/VulnerabilityMapping
https://github.com/Secbrain/VulHunter/tree/main/VulHunter
https://github.com/Secbrain/VulHunter/tree/main/VulHunter

4896 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

of the methods (exploring RQ1, RQ5, and RQ6). In order to
ensure the correctness of the labels, we have manually checked
and supplemented these labels based on the verification re-
sults of multi-methods such as SmartFast [6], Slither [8] and
Oyente [4]. We make these datasets and labels public to enable
cross-checks from other researchers and further guarantee their
accuracy. Among them, Dataset_1 consists of 38,600 real-world
Ethereum contracts with source code, excluding the empty and
uncompiled contracts. It has been used in [5], [12], [17], [49].
According to the vulnerability severity mentioned in Table III,
we can count the number of 30 kinds of vulnerabilities in
Dataset_1 as High (13,149), INFO (19,659), OPT (38,314),
etc.9 Dataset_2 contains 579 contracts with only bytecode and
is marked with 8 kinds of known vulnerabilities, which is the
same used in [20]. In order to obtain a representative picture of
vulnerabilities in the production environment, we have down-
loaded 13,413 contract Solidity codes in actual use by invoking
the Etherscan API [32]. These contracts make up Dataset_3 (the
size is 284.3MB). Also, we collected 183,710 contracts with
runtime bytecodes as the Dataset_4, which were crawled and
filtered from Ethereum by Chen et al. [50]. Note that the amount
of bytecode far exceeds the source code, reflecting the necessity
of bytecode-level analysis. Both datasets are employed to dis-
cuss the number of vulnerabilities in the Ethereum blockchain
(exploring RQ2~RQ4 and RQ7). In addition, Dataset_5 consists
of the collected contract source code for 29 well-known vulnera-
bility events, which was used to further evaluate the authenticity
of VulHunter.

4) Metrics: We define the discovery of vulnerable contracts
as a problem. By comparing the methods’ detection results with
the previous vulnerability labels, we can measure whether the
problem occurs, which can be regarded as a binary classifica-
tion. In this way, all problems found by methods are marked
as true positive (TP), false positive (FP), true negative (TN)
and false negative (FN). TP and TN indicate the results which
correctly predict a contract with and without a vulnerability.
In contrast, FP and FN describe false detection. Furthermore,
the accuracy (ACC), precision (P), recall (R), and F-Measure
(F1) are calculated as follows to evaluate each method, where
#TP , #TN , #FP , and #FN refer to the number of contracts
marked accordingly.

ACC =
#TP +#TN

#TP +#TN +#FP +#FN

P =
#TP

#TP +#FP
,R=

#TP

#TP +#FN
,F1 =

2× P ×R

P +R

5) Parameter Settings: Without special mention in texts,
we report the performance of all models with the following
empirical settings: ncycle = 2, nblock = 32, nseq = 10, T = 512,
λ= 0.6, qb = 0.8, qm = 0.2, epoch= 50, nneurons = 512, and
the instances with the longer lengths. Also, the Bi2-LSTM is
selected by default, and the baseline models and hyperparam-
eters are evaluated in Sections IV-F and IV-G. For ML-based
methods on Datasets_1~2, in order to explore the effect of dif-
ferent proportions between benign and malicious contracts, we

9The number of each vulnerability is detailed in https://github.com/
Secbrain/VulHunter/tree/main/Dataset_vul_num.

randomly select 80% of benign/malicious contracts as the train-
ing dataset and the other 20% as the testing dataset based on the
five random seeds (i.e., 42, 1234, 2345, 3456, and 4567) respec-
tively, and report the averaged results with standard deviations.
Furthermore, the Bi2-LSTM model trained on Datasets_1~2
was employed to identify the contracts in Datasets_3~5.

B. Precision of VulHunter (RQ1)

To answer the first research question, we compared the ability
of VulHunter with SOTA methods based on traditional analysis
and ML to detect contract source code in Dataset_1 and byte-
code in Dataset_2. Specifically, (i) we executed the methods on
these contracts.10 (ii) We extracted all vulnerabilities detected
by methods into JSON files. (iii) We transformed each vul-
nerability category detected by the method into a pre-uniform
name, as described in Table IV. For instance, SmartCheck de-
tects a vulnerability called SOLIDITY_TX_ORIGIN that we link
to the tx-origin (TO) category. (iv) We used the true labels
of contracts to calculate the metrics based on the detec-
tion results.

In order to balance the training dataset and evaluate the
effect of different ratios between the benign and malicious
contracts on VulHunter performance, we set two proportions
of 2:1 and 5:1 for considering the minimum requirements of
the sample numbers. The results are presented in Tables VI and
VII, which illustrate the performance for each method.11 Note
that methods such as SmartCheck have no standard deviations
given their deterministic detection. Both tables contain the three
parts: (i) metrics such as ACC and F1 of some vulnerabilities
(e.g., reentrancy-eth); (ii) the total AVG and NAVG metrics of
each vulnerability severity, where the NAVG only covers the
vulnerability categories that methods can identify; (iii) the AVG
and NAVG metrics of each method.

First of all, in the 2:1 experiment, we can summarize from
part (i): VulHunter overperforms other methods for most vul-
nerabilities, such as controlled-delegatecall and timestamp. In
contrast, the performance of traditional detection methods such
as SmartCheck and Securify is restrained by their unrenewed
rules. On the one hand, this reflects that the contract expression
difference caused by the vulnerability evolution and the com-
piler upgrades can bypass their fixed detection rules. This
reminds their experts to constantly develop and update the
detection rules to stay current, which is quite cumbersome. On
the other hand, it indicates that VulHunter can automatically
capture the effective vulnerability features based on datasets
through the Bi2-LSTM model, given its data representations/
fitting and temporal contextual correlation ability for contract
instances. Nonetheless, there are some vulnerabilities such as
reentrancy-eth, VulHunter is slightly insufficient to the meth-
ods such as Slither. It is because these vulnerabilities can be
deterministically described by pre-defined rules, which can en-
able sophisticated detection by using pattern matching. This
inspires ML-based methods including VulHunter to incorpo-
rate some deterministic knowledge, similar to AME [49] and

10The source code and execution result of contracts are available in https://
github.com/Secbrain/VulHunter/tree/main/Dataset1.

11The specific other results are detailed in https://github.com/Secbrain/
VulHunter/tree/main/Dataset1/Detection_result.

https://github.com/Secbrain/VulHunter/tree/main/Dataset_vul_num
https://github.com/Secbrain/VulHunter/tree/main/Dataset_vul_num
https://github.com/Secbrain/VulHunter/tree/main/Dataset1
https://github.com/Secbrain/VulHunter/tree/main/Dataset1
https://github.com/Secbrain/VulHunter/tree/main/Dataset1/Detection_result
https://github.com/Secbrain/VulHunter/tree/main/Dataset1/Detection_result

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4897

TABLE VI
COMPARATIVE RESULTS DETECTED BY EACH METHOD ON DATASET_1 (BENIGN:VULNERABLE = 2:1). THE FORMS OF BOLD AND UNDERLINES HIGHLIGHT

THE BEST AND SECOND RESULTS FOR EACH PROJECT, RESPECTIVELY. NOTE THAT ‘‘SE.’’ IS THE ABBREVIATION OF ‘‘SEVERITY’’, AND ‘‘-’’ MEANS THE

PROJECT IS NOT SUPPORTED. ALSO, ‘‘TOTAL NAVG (NET AVERAGE)’’ REFERS TO THE AVERAGE RESULTS OF VULNERABILITIES SUPPORTED BY EACH

METHOD, WHILE ‘‘TOTAL AVG’’ REPRESENTS THAT OF ALL VULNERABILITIES

SE. Project Metrics VulHunter SmartCheck Slither Securify Oyente Mythril DefectChecker SMARTIAN TMP ContractWard

H
ig

h

RE
ACC P 95.29±0.78 95.06±0.82 - - 98.04 94.44 72.55 66.67 66.27 49.06 48.24 3.92 73.73 82.14 66.27 0.00 93.73±0.81 96.00±0.60 81.18±1.58 93.02±1.86

R F1 90.59±1.66 92.77±1.24 - - 100.00 97.14 35.29 46.15 30.59 37.68 2.35 2.94 27.06 40.71 0.00 0.00 84.71±2.02 90.00±1.38 47.06±4.05 62.50±3.93

CDC
ACC P 94.87±2.05 92.31±3.08 - - 94.87 100.00 - - - - 53.85 27.27 - - 64.10 0.00 82.05±2.51 68.75±3.45 66.67±0.00 0.00±0.00

R F1 92.31±3.08 92.31±3.08 - - 84.62 91.67 - - - - 23.08 25.00 - - 0.00 0.00 84.62±3.08 75.86±3.21 0.00±0.00 0.00±0.00

Total
NAVG

ACC P 89.61±1.98 85.35±2.90 - - 88.33 81.76 83.61 76.44 64.56 46.21 55.29 24.68 73.73 82.14 67.15 25.00 82.25±4.03 80.92±7.69 71.25±0.39 65.46±2.71
R F1 83.43±3.14 84.38±3.06 - - 66.46 73.32 67.65 71.78 33.91 39.11 16.17 19.54 27.06 40.71 4.49 7.61 64.60±8.73 71.84±8.63 14.51±1.03 23.75±1.04

M
ed

iu
m

LE
ACC P 88.03±2.02 80.54±3.14 73.58 67.12 97.17 99.87 62.90 46.93 - - - - 64.35 36.77 65.84 0.00 86.26±7.00 95.95±3.88 79.43±0.12 98.80±0.2

R F1 84.53±2.61 82.49±2.89 40.64 50.62 91.64 95.58 86.34 60.80 - - - - 9.66 15.30 0.00 0.00 61.37±20.78 74.86±20.28 38.75±0.28 55.67±0.32

UCL
ACC P 92.31±1.08 87.50±1.58 84.62 100.00 97.44 100.00 88.89 96.43 - - 60.68 33.33 93.16 100.00 80.34 100.00 82.91±2.23 70.21±3.38 66.67±0.00 0.00±0.00

R F1 89.74±1.62 88.61±1.60 53.85 70.00 92.31 96.00 69.23 80.60 - - 17.95 23.33 79.49 88.57 41.03 58.18 84.62±1.62 76.74±2.66 0.00±0.00 0.00±0.00

Total
NAVG

ACC P 90.78±1.70 88.99±2.08 82.13 91.41 90.45 93.70 75.51 68.53 76.74 82.25 46.62 22.59 84.16 86.63 67.34 74.97 82.00±3.23 76.91±4.69 71.09±1.87 63.22±1.17
R F1 86.31±2.34 87.63±2.35 51.41 65.81 72.00 81.43 72.60 70.51 90.25 86.06 10.24 14.09 56.30 68.24 29.82 42.67 69.73±6.86 73.14±6.84 21.44±2.68 32.02±2.64

Total
AVG

ACC P 90.78±1.70 88.99±2.08 36.50 40.63 80.40 83.28 25.17 22.84 8.53 9.14 20.72 10.04 46.76 48.13 37.41 41.65 82.00±3.23 76.91±4.69 71.09±1.87 63.22±1.17
R F1 86.31±2.34 87.63±2.35 22.85 29.25 64.00 72.38 24.20 23.50 10.03 9.56 4.55 6.26 31.28 37.91 16.57 23.70 69.73±6.86 73.14±6.84 21.44±2.68 32.02±2.64

L
ow

TS
ACC P 89.61±1.72 89.26±1.94 66.91 100.00 77.54 59.91 - - 59.66 35.05 - - - - 65.94 0.00 84.06±3.22 80.00±4.66 72.22±0.42 96.00±2.53

R F1 78.26±3.71 83.40±2.95 0.72 1.44 98.55 74.52 - - 24.64 28.94 - - - - 0.00 0.00 69.57±6.17 74.42±5.55 17.39±0.85 29.45±1.31

BP
ACC P 88.14±1.99 86.34±2.58 - - - - - - - - 51.56 15.09 88.00 99.65 65.83 7.69 81.40±3.90 79.39±5.82 69.48±0.36 91.11±2.02

R F1 76.48±3.96 81.11±3.36 - - - - - - - - 9.79 11.88 64.24 78.12 0.23 0.44 59.68±8.47 68.14±7.66 9.34±0.94 16.94±1.58

Total
NAVG

ACC P 91.00±1.51 88.87±1.98 79.06 99.92 86.07 79.85 - - 59.66 35.05 51.56 15.09 74.98 93.01 65.90 2.56 82.32±4.15 76.80±6.16 70.78±0.32 96.05±1.24
R F1 83.41±2.81 86.05±2.45 37.25 54.27 91.27 85.18 - - 24.64 28.94 9.79 11.88 25.32 39.81 0.08 0.15 67.79±7.44 72.01±6.98 12.86±0.81 22.68±1.30

In
fo

LLC
ACC P 90.61±1.60 88.31±2.13 68.98 100.00 84.49 99.82 - - - - - - - - - - 84.25±6.65 84.44±9.23 76.98±0.21 98.79±0.12

R F1 82.83±2.92 85.48±2.55 6.97 13.03 53.58 69.73 - - - - - - - - - - 64.68±18.18 73.25±16.55 31.33±0.60 47.57±0.70

Total
NAVG

ACC P 90.62±1.60 86.86±2.22 87.94 100.00 92.25 99.91 - - - - - - - - - - 81.78±3.95 78.35±5.01 72.29±0.23 49.20±0.07
R F1 85.25±2.49 86.05±2.46 64.24 78.23 76.79 86.84 - - - - - - - - - - 69.56±7.78 73.70±7.33 18.05±0.67 26.41±0.69

Total
AVG

ACC P 90.62±1.60 86.86±2.22 87.94 100.00 46.12 49.96 - - - - - - - - - - 81.78±3.95 78.35±5.01 72.29±0.23 49.20±0.07
R F1 85.25±2.49 86.05±2.46 64.24 78.23 38.40 43.42 - - - - - - - - - - 69.56±7.78 73.70±7.33 18.05±0.67 26.41±0.69

O
pt

ST
ACC P 85.42±2.57 82.69±3.58 100.00 100.00 - - - - - - - - - - - - 77.72±8.92 68.52±24.28 66.67±0.00 0.00±0.00

R F1 71.27±5.03 82.69±4.44 100.00 100.00 - - - - - - - - - - - - 61.33±19.72 64.72±21.25 0.00±0.00 0.00±0.00

Total
NAVG

ACC P 88.38±2.50 89.37±2.10 91.67 94.85 90.07 74.43 - - - - - - - - - - 80.85±4.63 83.53±6.90 65.18±0.67 62.55±0.90
R F1 77.82±5.15 83.20±4.59 92.16 93.48 71.34 72.85 - - - - - - - - - - 62.59±10.19 71.56±10.11 10.83±1.01 18.47±1.24

Total
AVG

ACC P 88.38±2.50 89.37±2.10 45.83 47.43 60.05 49.62 - - - - - - - - - - 80.85±4.63 83.53±6.90 65.18±0.67 62.55±0.90
R F1 77.82±5.15 83.20±4.59 46.08 46.74 47.56 48.57 - - - - - - - - - - 62.59±10.19 71.56±10.11 10.83±1.01 18.47±1.24

O
ve

ra
ll

Total
NAVG

ACC P 90.04±1.89 87.92±2.28 85.17 96.43 89.57 86.24 78.75 71.70 66.38 52.43 50.49 22.44 79.94 88.26 66.92 40.21 81.84±3.92 79.35±6.07 70.06±0.86 66.12±1.34
R F1 83.41±3.17 85.60±2.99 60.77 74.56 72.56 78.81 70.62 71.15 45.68 48.82 12.41 15.98 42.72 57.57 13.94 20.70 66.82±8.16 72.55±8.00 16.10±1.44 25.90±1.55

Total
AVG

ACC P 90.04±1.89 87.92±2.28 39.75 45.00 65.68 63.25 13.12 11.95 8.85 6.99 13.46 5.98 23.98 26.48 26.77 16.08 81.84±3.92 79.35±6.07 70.06±0.86 66.12±1.34
R F1 83.41±3.17 85.60±2.99 28.36 34.79 53.21 57.79 11.77 11.86 6.09 6.51 3.31 4.26 12.82 17.27 5.58 8.28 66.82±8.16 72.55±8.00 16.10±1.44 25.90±1.55

#Failed NUMS 0(0%) 0(0%) 17(0.04%) 229(0.59%) 6,275(16.26%) 8,490(21.99%) 26(0.07%) 395(1.02%) 0(0%) 0(0%)

CGE [5] Particularly, due to the variability and diversity of
ML, we can enhance the performance of VulHunter by adjust-
ing some variable parameters and baseline models, which is
discussed in Sections IV-F and IV-G. For example, increas-
ing the number of extracted instances can make the model
detect more paths, facilitating vulnerability discovery. More
importantly, VulHunter does not rely on manual pre-defined
rules, making it easier to detect new vulnerabilities without the
involvement of experts. This is one of the reasons why we used
ML models rather than traditional detection logic. Notably, it
identifies (almost) all vulnerabilities better than other ML-based
methods such as TMP and ContractWard. This stems from its
ability to focus on the runtime execution sequences (similar to
symbolic execution-based methods such as DefectChecker) and
accurately capture the subtle features of benign and malicious
samples during the contract execution. In contrast, TMP and
ContractWard are insensitive to vulnerability features by glob-
ally observing the generalized contract bytecode, holding the
inferior recall rate and F1 score. In addition, some vulnerabili-
ties or defects such as uninitialized-state and unused-state are
challenging to identify at the bytecode level, which is discussed
in Section V.B.1.

By observing the severity from Opt to High (i.e., part (ii)),
the detection performance of VulHunter is almost the best
compared to others. While some traditional methods, such
as Slither and DefectChecker, can only work well with their
supported vulnerabilities. For example, Slither just identifies
two problems with Info severity and achieves ACC = 92.25%
and P = 99.91%, indicating that these defects are adequately
described by their rules. Nevertheless, it is difficult to develop
well-established rules for complex vulnerabilities such as tod
as they cannot execute contracts and account for all situations.
Also, massive detection rules manually developed by experts
for each vulnerability are frequent and time-consuming,
restricting the vulnerabilities they can detect. Therefore, they
have an inferior total AVG for each severity. Besides, detection
rules based on the bytecode are more difficult to develop than
the source code, given their different readability. This is why
source code detection methods such as Slither can identify
more vulnerability types than those based on the bytecode, e.g.,
Securify. Conversely, VulHunter overcomes the bottleneck of
bytecode-based rule-making with its keen feature observation
and representation on massive datasets, thus achieving or

4898 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

TABLE VII
COMPARATIVE RESULTS DETECTED BY EACH METHOD ON DATASET_1 (BENIGN:VULNERABLE = 5:1)

SE. Project Metrics VulHunter SmartCheck Slither Securify Oyente Mythril DefectChecker SMARTIAN TMP ContractWard

H
ig

h

RE
ACC P 96.46±0.61 90.36±1.75 - - 99.02 94.44 81.18 37.78 73.53 16.22 61.37 0.88 84.31 58.06 81.76 0.00 94.51±0.67 89.04±1.76 86.67±0.28 86.96±1.92

R F1 88.24±2.02 89.29±1.88 - - 100.00 97.14 20.00 26.15 14.12 15.09 1.18 1.01 21.18 31.03 0.00 0.00 76.47±2.68 82.28±2.29 23.53±1.37 37.04±1.82

CDC
ACC P 96.15±0.51 100.00±0.00 - - 96.15 100.00 - - - - 71.79 15.38 - - 83.33 0.00 91.03±0.81 100.00±0.00 83.33±0.00 0.00±0.00

R F1 76.92±3.08 86.96±2.06 - - 76.92 86.96 - - - - 15.38 15.38 - - 0.00 0.00 46.15±4.87 63.16±4.57 0.00±0.00 0.00±0.00

Total
NAVG

ACC P 92.75±1.48 83.16±3.94 - - 93.94 80.88 87.08 55.68 70.67 20.90 65.89 9.51 84.31 58.06 83.33 21.88 89.32±1.32 82.64±5.13 84.58±0.10 53.89±0.40
R F1 73.38±5.31 77.96±4.84 - - 65.57 72.42 60.00 57.76 24.08 22.38 11.50 10.41 21.18 31.03 4.49 7.45 48.88±6.66 61.43±6.57 10.77±0.52 17.96±0.58

Total
AVG

ACC P 92.75±1.48 83.16±3.94 - - 80.52 69.32 24.88 15.91 20.19 5.97 28.24 4.08 12.04 8.29 47.62 12.50 89.32±1.32 82.64±5.13 84.58±0.10 53.89±0.40
R F1 73.38±5.31 77.96±4.84 - - 56.20 62.08 17.14 16.50 6.88 6.39 4.93 4.46 3.03 4.43 2.56 4.26 48.88±6.66 61.43±6.57 10.77±0.52 17.96±0.58

M
ed

iu
m

LE
ACC P 93.06±4.26 87.09±11.26 83.08 49.08 98.59 99.74 55.50 25.09 - - - - 77.03 16.63 82.08 0.00 93.15±3.73 90.85±7.79 89.14±0.03 98.68±0.16

R F1 68.56±23.99 76.72±22.13 40.75 44.53 91.76 95.58 84.10 38.65 - - - - 9.42 12.03 0.00 0.00 65.49±21.55 76.11±20.39 35.34±0.17 52.04±0.20

UCL
ACC P 94.87±0.88 96.55±1.61 91.45 91.30 97.86 100.00 90.17 78.57 - - 68.38 11.11 92.31 80.00 88.46 83.33 90.17±0.97 86.36±1.44 83.33±0.00 0.00±0.00

R F1 71.79±4.41 82.35±3.42 53.85 67.74 87.18 93.15 56.41 65.67 - - 12.82 11.90 71.79 75.68 38.46 52.63 48.72±5.85 62.30±5.16 0.00±0.00 0.00±0.00

Total
NAVG

ACC P 92.87±1.84 86.25±4.38 89.84 83.14 92.99 93.59 75.22 49.01 76.74 82.25 53.29 11.82 89.93 78.37 75.23 70.57 86.19±2.42 77.17±5.58 81.49±1.56 43.39±0.32
R F1 79.15±6.49 82.55±5.99 51.11 63.30 71.75 81.23 67.92 56.93 90.25 86.06 6.54 8.42 53.35 63.49 26.79 38.84 61.45±7.47 68.42±7.70 17.43±2.21 24.87±2.18

Total
AVG

ACC P 92.87±1.84 86.25±4.38 39.93 36.95 82.66 83.19 25.07 16.34 8.53 9.14 23.68 5.25 49.96 43.54 41.80 39.20 86.19±2.42 77.17±5.58 81.49±1.56 43.39±0.32
R F1 79.15±6.49 82.55±5.99 22.71 28.13 63.78 72.20 22.64 18.98 10.03 9.56 2.90 3.74 29.64 35.27 14.88 21.58 61.45±7.47 68.42±7.70 17.43±2.21 24.87±2.18

L
ow

TS
ACC P 95.15±0.83 83.56±2.61 83.56 100.00 76.78 41.72 - - 69.29 15.88 - - - - 81.98 0.00 93.11±0.89 84.62±2.50 83.31±0.00 0.00±0.00

R F1 88.41±2.05 85.92±2.34 1.45 2.86 98.55 58.62 - - 19.57 17.53 - - - - 0.00 0.00 71.74±3.50 77.65±3.10 0.00±0.00 0.00±0.00

BP
ACC P 89.19±4.47 67.92±20.46 - - - - - - - - 62.78 7.54 93.62 98.22 82.34 0.00 88.61±1.50 80.09±5.13 83.33±0.00 0.00±0.00

R F1 66.36±18.91 67.13±19.19 - - - - - - - - 10.93 8.92 62.87 76.67 0.00 0.00 42.14±7.43 55.22±7.49 0.00±0.00 0.00±0.00

Total
NAVG

ACC P 93.36±1.79 82.43±6.78 89.87 99.60 87.01 70.86 - - 69.29 15.88 62.78 7.54 85.64 89.87 82.28 0.00 89.01±2.14 80.02±10.47 82.49±0.01 47.95±0.42
R F1 79.27±6.84 80.82±6.72 39.38 56.45 91.01 79.68 - - 19.57 17.53 10.93 8.92 25.05 39.18 0.00 0.00 52.47±10.29 63.38±11.11 2.52±0.01 4.80±0.02

In
fo

LLC
ACC P 92.41±1.29 89.57±1.95 74.93 100.00 87.46 99.82 - - - - - - - - - - 87.27±4.00 81.05±6.50 80.24±0.07 99.12±0.08

R F1 81.39±3.17 85.28±2.62 6.97 13.03 53.58 69.73 - - - - - - - - - - 68.86±12.63 74.46±10.71 26.91±0.25 42.33±0.31

Total
NAVG

ACC P 91.37±1.91 84.60±4.53 90.22 93.75 93.73 99.91 - - - - - - - - - - 89.92±1.71 87.45±2.77 82.39±0.17 49.46±0.04
R F1 72.60±7.46 78.14±6.43 59.24 72.60 76.79 86.84 - - - - - - - - - - 64.83±5.84 74.46±5.01 17.34±0.58 25.68±0.59

Total
AVG

ACC P 91.37±1.91 84.60±4.53 90.22 93.75 46.87 49.96 - - - - - - - - - - 89.92±1.71 87.45±2.77 82.39±0.17 49.46±0.04
R F1 72.60±7.46 78.14±6.43 59.24 72.60 38.40 43.42 - - - - - - - - - - 64.83±5.84 74.46±5.01 17.34±0.58 25.68±0.59

O
pt

ST
ACC P 88.25±4.29 64.21±16.22 100.00 100.00 - - - - - - - - - - - - 88.10±3.59 69.70±28.85 83.30±0.00 0.00±0.00

R F1 67.40±15.73 65.77±15.31 100.00 100.00 - - - - - - - - - - - - 50.83±18.50 58.79±21.72 0.00±0.00 0.00±0.00

Total
NAVG

ACC P 92.19±2.08 86.22±4.71 91.83 97.32 94.99 74.58 - - - - - - - - - - 88.81±1.55 78.91±7.02 80.51±2.45 32.13±0.90
R F1 72.76±8.11 78.92±7.41 92.45 94.82 71.53 73.02 - - - - - - - - - - 65.15±6.55 71.37±7.25 12.81±2.99 18.32±3.09

Total
AVG

ACC P 92.19±2.08 86.22±4.71 45.92 48.66 63.32 49.72 - - - - - - - - - - 88.81±1.55 78.91±7.02 80.51±2.45 32.13±0.90
R F1 72.76±8.11 78.92±7.41 46.23 47.41 47.69 48.68 - - - - - - - - - - 65.15±6.55 71.37±7.25 12.81±2.99 18.32±3.09

O
ve

ra
ll

Total
NAVG

ACC P 92.57±1.81 84.79±4.68 90.38 92.74 93.14 85.17 79.97 51.68 71.84 34.98 59.20 10.42 87.87 79.95 79.70 36.69 88.32±1.86 80.55±6.04 82.27±1.00 45.01±0.43
R F1 75.67±6.72 79.97±6.16 59.78 72.70 72.23 78.17 64.75 57.48 39.49 37.10 8.95 9.63 40.34 53.63 12.66 18.82 58.51±7.26 67.78±7.44 12.96±1.46 20.12±1.49

Total
AVG

ACC P 92.57±1.81 84.79±4.68 42.18 43.28 68.30 62.46 13.33 8.61 9.58 4.66 15.79 2.78 26.36 23.98 31.88 14.68 88.32±1.86 80.55±6.04 82.27±1.00 45.01±0.43
R F1 75.67±6.72 79.97±6.16 27.90 33.93 52.97 57.33 10.79 9.58 5.27 4.95 2.39 2.57 12.10 16.09 5.06 7.53 58.51±7.26 67.78±7.44 12.96±1.46 20.12±1.49

#Failed NUMS 0(0%) 0(0%) 17(0.04%) 229(0.59%) 6,275(16.26%) 8,490(21.99%) 26(0.07%) 395(1.02%) 0(0%) 0(0%)

exceeding the detection performance of source code-based
methods without expert involvement.

From part (iii), it is concluded that VulHunter can de-
tect contracts more accurately, discover most vulnerabilities,
and perform with an acceptable standard deviation below
TMP, due to its effective information extraction and tailored
multi-attention mechanism. Notably, VulHunter can choose
suitable random seeds to achieve better results, which is impos-
sible for traditional methods. Also, some contracts cannot be
analyzed by other arts. Even Oyente and Mythril hold failure
rates of 16.26% and 21.99%, respectively. This may be a reason
for their poor detection. Instead, VulHunter can analyze more
contracts given its robust implementation and refined model.

From Table VII, we can draw similar conclusions as above.
VulHunter can still detect more vulnerabilities and overper-
form other methods. Since the proportion of the training set
grows 5:1, i.e., the benign samples are expanded, the model is
inclined to learn benign features, thereby improving the
identification accuracy and reducing the standard deviation, i.e.,
the overall ACC = 92.57% (2.33%↑) and STDACC = 1.81%
(0.08%↓). Nonetheless, the diluted malicious features enable
the model convergence biased to benign samples, reducing its
recall rate and increasing the standard deviation. Although other

methods may not require pre-training, this phenomenon also
applies to them due to the dataset variation. Even the changes
in the data distribution has seriously affected the performance
of ContractWard, such as the failure for the timestamp vulnera-
bility identification (P = 0 and R= 0). This reflects that their
robustness needs to be improved. Thus, the auditors can sample
in appropriate proportions based on their identification require-
ments and the contract distribution in collected dataset, so as to
achieve their specific effects. For example, reporting suspected
vulnerabilities as much as possible can set a small ratio between
benign and malicious contracts to perform a superior recall rate.
Instead, they can set a large proportion to detect more contracts
correctly, thereby relieving the pressure on manual review.

Second, we utilized 7 methods supporting bytecode analysis
to detect the contracts in Dataset_2. As described in Table VIII,
the results agree with the above conclusion that VulHunter
can detect most vulnerabilities accurately. Also, although the
individual detection result changes in small datasets can lead
to significant differences, VulHunter still keeps acceptable
standard deviations, demonstrating its stability. Notably, for
vulnerabilities such as reentrancy-eth, symbolic execution-
based methods (i.e., DefectChecker, Oyente, and Mythril)
achieve superior precision by executing symbolic inference,

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4899

TABLE VIII
COMPARATIVE RESULTS OF ACC, P, R, AND F1 DETECTED BY EACH TOOL ON DATASET_2 (BENIGN:VULNERABLE = 2:1)

SE. Project VulHunter Securify Oyente Mythril DefectChecker SMARTIAN ContractWard

ACC P R F1 ACC P R F1 ACC P R F1 ACC P R F1 ACC P R F1 ACC P R F1 ACC P R F1

High RE
100.00 100.00 100.00 100.00 41.67 23.53 33.33 27.59 77.78 100.00 33.33 50.00 66.67 0.00 0.00 0.00 88.89 100.00 66.67 80.00 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00
±0.00 ±0.00 ±0.00 ±0.00 / ±0.00 ±0.00 ±0.00 ±0.00

Medium

LE
94.12 83.33 100.00 90.91 61.11 44.44 66.67 53.33 - - - - - - - - 94.44 100.00 83.33 90.91 0.00 0.00 0.00 0.00 33.33 33.33 100.00 50.00
±3.72 ±9.11 ±0.00 ±5.28 / / / / / / / / / / / / / / / - - - - - - - - / ±0.00 ±0.00 ±0.00 ±0.00

TO
93.33 83.33 100.00 90.91 - - - - - - - - 80.00 100.00 40.00 57.14 93.33 100.00 80.00 88.89 0.00 0.00 0.00 0.00 33.33 33.33 100.00 50.00
±4.22 ±9.11 ±0.00 ±5.28 - - - - - - - - / ±0.00 ±0.00 ±0.00 ±0.00

IE
100.00 100.00 100.00 100.00 - - - - - - - - - - - - 73.33 100.00 20.00 33.33 - - - - 33.33 33.33 100.00 50.00
±0.00 ±0.00 ±0.00 ±0.00 - - - - - - - - - - - - / / / / / / / / / / / / / / / / - - - - ±0.00 ±0.00 ±0.00 ±0.00

UCL
UCS

95.45 95.24 90.91 93.02 50.00 33.33 50.00 40.00 - - - - 74.24 100.00 22.73 37.04 84.85 92.86 59.09 72.22 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00
±1.92 ±3.01 ±2.87 ±2.94 / / / / / / / / / / / / / / / - - - - / ±0.00 ±0.00 ±0.00 ±0.00

Total
NAVG

95.73 90.48 97.73 93.96 55.56 38.89 58.33 46.67 - - - - 77.12 100.00 31.36 47.75 86.49 98.21 60.61 74.96 0.00 0.00 0.00 0.00 41.67 25.00 75.00 37.50
±2.46 ±5.31 ±0.72 ±3.38 / / / / / / / / / / / / / / / - - - - / ±0.00 ±0.00 ±0.00 ±0.00

Low

BP,TS
95.97 93.02 95.24 94.12 - - - - 61.90 31.25 11.90 17.24 64.29 40.00 14.29 21.05 94.44 100.00 83.33 90.91 0.79 0.00 0.00 0.00 66.67 0.00 0.00 0.00
±1.61 ±3.15 ±1.51 ±2.30 - - - - / ±0.00 ±0.00 ±0.00 ±0.00

CTL
89.74 90.91 76.92 83.33 - - - - - - - - - - - - 71.79 100.00 15.38 26.67 - - - - 66.67 0.00 0.00 0.00
±5.13 ±6.36 ±10.88 ±8.91 - - - - - - - - - - - - / / / / / / / / / / / / / / / / - - - - ±0.00 ±0.00 ±0.00 ±0.00

CLL
88.89 83.33 83.33 83.33 - - - - - - - - - - - - 94.44 100.00 83.33 90.91 0.00 0.00 0.00 0.00 33.33 33.33 100.00 50.00
±7.03 ±10.54 ±10.54 ±10.54 - - - - - - - - - - - - / ±0.00 ±0.00 ±0.00 ±0.00

Total
NAVG

91.53 89.09 85.16 87.08 - - - - 61.90 31.25 11.90 17.24 64.29 40.00 14.29 21.05 86.89 100.00 60.68 75.53 0.40 0.00 0.00 0.00 55.56 11.11 33.33 16.67
±4.59 ±6.68 ±7.64 ±7.25 - - - - / ±0.00 ±0.00 ±0.00 ±0.00

Overall
Total

NAVG
94.69 91.15 93.30 92.21 50.93 33.77 50.00 40.31 69.84 65.63 22.62 33.64 71.30 60.00 19.25 29.15 86.94 99.11 61.39 75.82 0.13 0.00 0.00 0.00 50.00 16.67 50.00 25.00
±2.95 ±5.16 ±3.23 ±4.41 / ±0.00 ±0.00 ±0.00 ±0.00

#Failed 0(0%) 146(25.22%) 0(0%) 0(0%) 0(0%) 578(99.83%) 0(0%)

and DefectChecker makes the best performance. Nevertheless,
its inferior recall rate may be affected by incomplete pre-
defined rules, reflecting that it is difficult to cover all cases
given their massive number and unreadable bytecode. In
contrast, VulHunter performs the accurate model inference
to automatically capture the semantic features of benign
and vulnerable contracts, thus considering both precision and
recall, and holding a superior F1 score. Moreover, Securify and
SMARTIAN failed to analyze most contracts due to procedural
errors. They can improve the performance by optimizing their
implementation code. The imperfect features of ContractWard
lead to its limited analysis and zero fluctuations, suggesting its
model needs to be refined to focus on subtle runtime features.
In a word, VulHunter can perform a superior detection based on
bytecode due to its actual execution path inputs, well-designed
model, and meticulous prototype implementation.

Answer to RQ1. What is the effectiveness of Vul-
Hunter in detecting contract vulnerabilities? Compared
with SOTA methods on multiple datasets, VulHunter has
a superior contract detection performance and acceptable
standard deviations (ACC = 90.04%, P = 87.92%, R=
83.41% and F1 = 85.60%). Also, it can detect more con-
tracts normally (Failed= 0%), which illustrates its robust
implementation. More importantly, unlike traditional meth-
ods, it can analyze source code and bytecode accurately
without manual pre-defined rules, thus easily expanding to
identify new vulnerabilities and consider the complex rep-
resentations caused by vulnerability evolution and compiler
updates. In turn, its identified defective source code state-
ments and key opcode subsequences can help them main-
tain detection rules to consider more cases and improve
the performance.

C. Vulnerabilities in Production Smart Contracts (RQ2)

To answer the second research question, we ran the 10
methods on contract source code in Dataset_3 and bytecode
in Dataset_4. The detailed results are given in Tables IX and
X, which aim to show the frequency of each vulnerability
on Ethereum. Specifically, Table IX shows the detection sit-
uation of various severity for each method.12 Among them,
VulHunter and TMP detected the most contract vulnerabili-
ties. It can be attributed to the most vulnerability categories
they detected and the comprehensive vulnerability features they
learned, which require laborious development by many con-
tract experts for traditional methods. Specifically, VulHunter
discovered 443 contracts without vulnerabilities exceeding Info
severity, and more than half of the contracts have multiple
problems. Note that the higher number may be caused by
a few vulnerabilities, e.g., the integer-overflow accounts for
35.3% of Medium severity. Although, as mentioned in [51], [52],
many discovered defects with advanced utilization difficulties
or even not exploitable in practice (i.e., the proportions of prob-
ably and possibly in each severity are High (67.2%), Medium
(65.2%), Low (100.0%), respectively), identifying these prob-
lems can draw the attention of contract developers to possible
threats, thereby reducing the risk of contracts being attacked.
Moreover, numerous contracts analysis failed by Oyente and
SMARTIAN, which may be a significant factor restraining their
vulnerability discovery.

As conferred in Sections IV-B, IV-F, and IV-G, auditors
can adjust the contract proportion of the training dataset, base-
line models (e.g., Decision Tree and Random Forest), and
hyperparameters (e.g.,qm and qb) to determine whether Vul-
Hunter focuses on vulnerability discovery or benign contract

12The specific detection results can be found in https://github.com/Secbrain/
VulHunter/tree/main/Dataset3/Detection_result.

https://github.com/Secbrain/VulHunter/tree/main/Dataset3/Detection_result
https://github.com/Secbrain/VulHunter/tree/main/Dataset3/Detection_result

4900 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

TABLE IX
COMPARISON OF VULNERABILITY NUMBER DETECTED ON DATASET_3

SE. Project VulHunter SmartCheck Slither Securify Oyente Mythril DefectChecker SMARTIAN TMP ContractWard

High

RE 1,418 - 295 375 12 11 362 0 1,294 4,364
SU 3,374 - 77 - - 25 - 16 3,156 0

CDC 3,797 - 109 - - 19 - 0 6,453 0
Total sum 21,311 0 2,740 3238 246 55 362 16 21,020 4,392

Medium

LE 3,022 2,037 1,484 5,827 - - 4,296 0 374 45
TO 1,884 383 117 - - 19 279 19 4,551 0

UCS 2,207 - 127 1321 - 1 1,257 220 705 297
Total sum 28,459 2,690 4,530 7,394 5,058 69 7,170 712 35,665 2,859

Low

TS 968 26 3,147 - 73 - - 1 2,784 1,368
BP 1,522 - - - - 130 680 1 2,043 70

CLL 3,020 151 1,060 - - - 167 0 3,311 115
Total sum 9,697 3,572 4,207 0 73 130 875 2 11,955 1,570

Info

LLC 3,039 1,696 4,454 - - - - - 2,956 78
E20ID 5,787 19 17 - - - - - 1,895 0

HC 3,185 5,403 - - - - - - 3,519 1,627
Total sum 16,706 7,277 4,471 0 0 0 0 0 8,462 1,705

Opt

COL 2,440 - 130 - - - - - 671 1
ST 1,662 83 - - - - - - 3,486 0
BE 1,590 - 1,432 - - - - - 435 1,659

Total sum 22,203 11,759 15,085 0 0 0 0 0 16,970 4,133

Overall
Total sum 98,376 25,298 31,033 10,632 5,377 254 8,407 730 94,072 14,659

#Failed 0(0%) 0(0%) 191(1.42%) 235(1.75%) 8,742(65.18%) 227(1.69%) 749(5.58%) 1,327(9.89%) 0(0%) 0(0%)
#Secure 28 570 416 5,946 1,361 12,945 6,864 11,580 1 5,955

TABLE X
THE COMPARISON OF VULNERABILITY NUMBER DETECTED ON 10,000

BYTECODES SAMPLING FROM DATASET_4

SE. Project VulHunter Securify Oyente Mythril DefectChecker SMARTIAN ContractWard

H
ig

h

RE 870 741 141 2 215 0 53
SU 3,815 - - 22 - 0 0

CDC 2,033 - - 0 - 0 0
Total 15,899 4,010 1,118 24 215 0 92

M
ed

iu
m LE 1,820 3,127 - - 402 0 14

TO 1,799 - - 940 95 0 0
UCS 2,037 1,564 - 0 664 1 714
Total 21,415 5,237 0 1,289 1,846 2 1,742

L
ow

TS 976 - 298 - - 0 0
BP 2,324 - - 398 282 0 1

CLL 3,432 - - - 123 0 22
Total 9,915 0 298 398 471 0 62

In
fo

LLC 3,040 - - - - - 950
E20ID 2,050 - - - - - 0

HC 2,846 - - - - - 84
Total 10,050 0 0 0 0 0 1,034

O
pt

ST 3,185 - - - - - 0
BE 975 - - - - - 13
EF 4,141 - - - - - 1,273

Total 14,096 0 0 0 0 0 1,286

O
ve

ra
ll Total 71,375 9,247 1,416 1,711 2,532 2 4,216

#Failed 0% 14.97% 9.41% 0.02% 10.35% 99.86% 0%
#Secure 939 3,128 7,948 8,320 7,327 13 6,082

identification. In this section, we employed the settings of
ratio= 2:1, Bi2-LSTM model, qb = 0.8, and qm = 0.2 to de-
tect contract security threats as much as possible. Nevertheless,
this inevitably produces some false positives. To this end, as
detailed in Section III-G, on the one hand, VulHunter outputs
defective source code statements and key opcode fragments
to facilitate the manual secondary verification and estimate
false reports quickly. On the other hand, it can employ the
optional constraint-solving module to automatically validate the
feasibility of vulnerable instances and reduce the workload of
manual verification, which is explored in Section IV-I. Note
that the latter cannot be provided by other methods based
on static analysis and ML. Besides, some contracts are dis-
cussed in Section IV-E to illustrate the validity of partial results.
Overall, given the superior detection capabilities of VulHunter,
the security of contracts on Ethereum needs to be taken

seriously, and owners should develop contracts based on the
specifications [53].

Due to the expansive time overhead in other methods such as
Mythril and Oyente, we randomly sampled and detected 10,000
bytecodes from the Dataset_4, and all of the 183,710 bytecodes
were identified only by VulHunter.13 Table X describes similar
phenomena as mentioned above. Since the number of failed con-
tracts of methods such as Securify and SMARTIAN increases,
their results are incomplete but referable. Furthermore, Vul-
Hunter can also combine some relatively accurate detection pat-
terns from symbolic execution-based bytecode-level methods
(e.g., DefectChecker) to discover misreports, which is discussed
in Section V.C.1.

Besides, the harm caused by the contract is related to
both vulnerability number and frequency of use. The inactive
contracts with vulnerabilities alone may not cause damage to
users. Thus, in order to evaluate the contract severity more
reasonably, we have introduced the transaction number as the
activity frequency of contracts. Fig. 6 presents the correlation
between the number of vulnerabilities with various severity and
the number of contract transactions. It shows the following
phenomenon. (i) A similar distribution held for the different
severity, indicating that contracts tend to have vulnerabilities
with varying severity. (ii) The number of contract transactions
is widely distributed, and most transactions involve vulnera-
ble contracts, suggesting that the contracts on Ethereum can
be further improved. (iii) The number of vulnerable contracts
gradually decreases as their transactions increase, and this phe-
nomenon is most prominent in Medium and High severity. This
may be attributed to the importance of these contracts prompt-
ing the developers to review them in detail. Note that it is dan-
gerous to have many vulnerabilities in active contracts involving
numerous transactions, and instead, the harm of vulnerable
contracts with fewer transactions may not be serious.

13All detection results were detailed in https://github.com/Secbrain/
VulHunter/tree/main/Dataset4/Detection_result.

https://github.com/Secbrain/VulHunter/tree/main/Dataset4/Detection_result
https://github.com/Secbrain/VulHunter/tree/main/Dataset4/Detection_result

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4901

Fig. 6. Correlation between the number of vulnerability types in Dataset_4 detected by VulHunter and the number of contract transactions. In the figure,
the upper limit of the number of transactions is set to 20,000 (that is, 20,000 for more than 20,000).

Fig. 7. Comparison of program overhead in terms of time and memory. Each value in the figure refers to the average of 50 execution results.

Answer to RQ2. How many vulnerabilities are present
in the Ethereum blockchain? Most of the contract source
code in Dataset_3 and contract bytecode in Dataset_4 were
detected with vulnerabilities ranging from Low to High
severity. Although these vulnerabilities are not prone to ex-
ploit and cause harm, identifying them can allow contract
owners to focus on risky code and then develop normative
contracts. Also, many contracts in these datasets can be
optimized to improve their operation status. More impor-
tanly, given its detection scalability, performance flexibility,
and result verifiability, VulHunter can detect wild contracts
better in the future based on the requirements of auditors.

D. Execution Overhead of VulHunter (RQ3)

In this section, we present the execution overhead of methods
for analyzing Ethereum contracts. First, we selected about 100
contracts with a size of about 121KB, such as the contract
with address 0xce5b23f11c486be7f8be4fac3b4ee6372d7ee91e
(3,049 lines). Then Oscillo [54] was employed to monitor
the time and memory overhead of 10 methods for detect-
ing these contracts. As shown in Fig. 7(a), the ML-based
(e.g., VulHunter and TMP) and pattern matching-based (e.g.,
SmartCheck and Slither) methods generally require less time
overhead than those based on symbolic execution (e.g., Oyente
and Mythril) and fuzzy testing (SMARTIAN). But there are
exceptions. For instance, the time overhead of DefectChecker is
similar to SmartCheck as its lightweight design. Nevertheless,
VulHunter leverages ML to complete the detection within an
average of 4.4 seconds. Also, most of time overhead was used
to extract instances (3.7s) and load the model (0.65s), which
can be improved by parallelism. Notably, although models

learn numerous representations for vulnerabilities, they perform
fast inference (30 models only require 0.05s), allowing
them to be extended to identify more vulnerability types in
imperceptible time.

As illustrated in Fig. 7(b), due to thousands of search paths
need to be traversed and executed in symbolic execution-based
methods such as Oyente, they generally require more mem-
ory overhead than ML-based and pattern matching-based meth-
ods. Also, the actual running of contracts based on numer-
ous test cases introduces an additional memory overhead in
fuzzy testing-based methods. Similar to pattern matching-based
methods, the memory overhead of VulHunter mainly consists
of three parts: extracted instances, pre-trained models, and in-
termediate variables during the inference process. The lower
memory overhead reflects the main advantage of ML-based
methods, i.e., contracts can be accurately analyzed in resource-
limited devices. Furthermore, this phenomenon brings great
development potential for VulHunter. For instance, the remain-
ing space can be employed to deploy a private chain that exe-
cutes vulnerable sequences, thereby ensuring they can trigger
the vulnerabilities.

Answer to RQ3. How much overhead does VulHunter
require to analyze the smart contracts? VulHunter
takes an average of 4.4s and 81.3MB to analyze a 121KB
Ethereum contract, which is only one-tenth (or even less)
of fuzzy testing-based (e.g., SMARTIAN) and symbolic
execution-based (e.g., Oyente) methods. Even more, com-
pared with the pattern matching-based (e.g., Slither) and
ML-based (e.g., TMP) methods, VulHunter has superior per-
formance in both time and memory overhead, which delivers
the vast potential for future development.

4902 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

TABLE XI
REAL-WORLD EXAMPLES OF SMART CONTRACTS ON ETHEREUM. 1ST COLUMN: DETECTED CONTRACT VULNERABILITIES. 2ND COLUMN:
CONTRACT NAME. 3RD COLUMN: THE ETHEREUM ADDRESS OF THE CONTRACT. 4TH COLUMN: NUMBER OF CONTRACT TRANSACTIONS.
5TH COLUMN: CONTRACT BALANCE IN WEI (1 ETHER = 1.00E+18 WEI). 6TH COLUMN: THE LINE NUMBER OF THE VULNERABLE CODE.

7TH COLUMN: DETECTION RESULTS OF VULHUNTER, WHERE ‘‘TP’’ MEANS VULNERABILITY CAN BE DETECTED CORRECTLY. 8TH

COLUMN: DETECTION RESULTS OF OTHER METHODS, WHERE FNS AND FPS REPRESENT FALSE NEGATIVES AND FALSE

POSITIVES, RESPECTIVELY

Vulnerabilities Contract name Contract address #Txnums Balance Loc Ours Others

integer-overflow

WinStar 0x80d0f44bf75ec3e591ac137ac4b88989bb43a006 25 1.60E+15 43 TP FNs such as TMP
ETHMaximalist 0xc36fe594db560bfde1bdf5d6b40a7a775d702a1c 78 5.10E+17 171 TP FNs such as SMARTIAN

AceTokens 0xf87046beda71bf66c54b74b25ba4b116d93bdb85 143 2.06E+16 255 TP FNs such as Mythril
Eightherbank 0xc6e5e9c6f4f3d1667df6086e91637cc7c64a13eb 9,455 1.52E+19 585 TP FNs such as ContractWard

AceDapp 0xe65f525ec48c7e95654b9824ecc358454ea9185e 14,202 9.60E+19 242 TP FNs such as Slither

W/o
integer-overflow

DharmaTradeReserve 0x0efb068354c10c070ddd64a0e8eaf8f054df7e26 14,907 9.63E+19 - TN FPs such as Oyente
Trader 0x32c5c27cec2cafef14168451b5a903a2c8917173 29 1.00E+16 - TN FPs such as Oyente

DharmaTradeReserveStaging 0x2040f2f2bb228927235dc24c33e99e3a0a7922c1 1,816 1.23E+18 - TN FPs such as Oyente
DeFi 0x6d72ff6373c86f3b3cca09ff18068d3c8f2b62b6 7 4.00E+15 - TN FPs such as TMP

reentrancy-eth
RedExchange 0x5409Fcd56836e0e0459C12Ab45e7Ef23c6094bEd 266 2.00E+16 243 TP FNs such as Oyente

VokenPublicSale 0xfeb75b3cc7281b18f2d475a04f1ffaaa3c9a6e36 14 2.90E+15 1,060 TP FNs such as DefectChecker
Acid 0x23ea10cc1e6ebdb499d24e45369a35f43627062f 3,136 1.94E+22 77 TP FNs such as Slither

W/o
reentrancy-eth

KlerosGovernor 0x81dcc6246fe261035ffee91cd975faf3d3f3375f 72 0.00E+00 - TN FPs such as Slither
CoinRepublik 0x146645fbc468ad34464240cd494e4f4cd84a120b 158 1.54E+15 - TN FPs such as Securify

Matrix 0xf0542ed44d268c85875b3b84b0e7ce0773e9aeef 6,771 4.42E+19 - TN FPs such as Securify

TOD
Vesting 0x38cf1e7839b71171d236acee0bdf292232f7bc97 3 3.00E+10 257 TP FNs such as TMP

Marketplace 0x698ff47b84837d3971118a369c570172ee7e54c2 2,346 5.25E+18 78 TP FNs such as Oyente
StandardBounties 0x51598ae36102010feca5322098b22dd5b773428b 1,060 2.02E+18 80 TP FNs such as Securify

locked-ether
SavingAccountProxy 0x7a9E457991352F8feFB90AB1ce7488DF7cDa6ed5 2,348 2.15E+18 339 TP FNs such as Slither

Proxy 0x99afe4683d8f6142c2e29b5406db2b88d878cdd1 293 3.86E+15 36 TP FNs such as DefectChecker
KyberFeeBurner 0x7702CaaE3D8feE750c4464d80FCb14Ce05e00743 5 1.95E+14 61 TP FNs such as SMARTIAN

uninitialized-state
Token 0xf6E435b7e8a9fbC1C2B73c9a9FC08aaf65070671 9 1.10E+16 111 TP FNs such as Slither

ERC223I 0xaA5bBD5A177A588b9F213505cA3740b444Dbd586 20,000 6.72E+18 86 TP FNs such as ContractWard

unused-state
Oracle 0x634ab8f3f791a905b6e6ea72c33483401ed56e6b 5,462 5.16E+17 2,979 TP FNs such as ContractWard

GSNRecipient 0x2e61c63e045a978b51c6517c79c2592fcfbc82cd 2,912 3.37E+17 1,433 TP FNs such as TMP

W/o unused-state
Timelocker 0x00000000005330029d3de861454979d0dd8c89dc 1 0.00E+00 - TN FPs such as Slither
Timelocker 0x00000000003709edea9182789f1153e59cfe849e 1 0.00E+00 - TN FPs such as Slither

block-
other-parameters

Pets 0x540834aa7a6f445b9cd960dd52ea41d382898538 20 2.50E+16 81 TP FNs such as TMP
Revolution 0xf3122a43ee86214e04b255ba78c980c43d0073e2 43 4.74E+13 203 TP FNs such as SmartCheck

E. Authenticity of VulHunter (RQ4)

Towards exploring the superior performance of VulHunter,
we demonstrated the detection results of real-world contracts
(including those deployed on Ethereum in Dataset_3 and those
derived from vulnerability incidents in Dataset_5). Table XI
shows some examples of contracts in Dataset_3.14

Detection of reentrancy-eth vulnerabilities. VulHunter
detected a reentrancy-eth vulnerability in the contract RedEx-
change (2.00E+16Wei). The “payFund()” function (correspond-
ing to line 11 of Listing 3) is declared as public. Although
this function is guarded with the “onlyAdministrator” modifier,
anyone can become a member of administrators by invoking
the “RedExchange” function. Moreover, the gas specified by
the call function is too large, while the secure gas is usually
2300 (�40,000). Thus, attackers can construct an attacking
contract and utilize the “setBondFundAddress()” function to
set the withdrawal address “bondFundAddress” as the attacking
contract address, thereby realizing a reentrancy attack. However,
methods such as Oyente and DefectChecker missed this vul-
nerability. Particularly, when “RedExchange” is not provided,
the attackers will not be able to invoke “payFund” normally.
However, Bi2-LSTM and other methods such as Slither will
still identify this path that includes the reentrant call function as
the invariable execution sequence. As detailed in Section V.B.2,

14More examples and the “Others” column are detailed in https://github.
com/Secbrain/VulHunter/tree/main/Dataset3/Example_results.

it belongs to a false positive of multi-instance collaborations.
Notably, VulHunter can build symbolic constraints of vulner-
able paths and verify their feasibility with solvers, thus elim-
inating misreports. Also, this problem can be mitigated by
expanding similar contracts in the training dataset, making the
model observe these cooperation features. In addition, there are
reentrancy-eth vulnerabilities in line 1,060 of the VokenPublic-
Sale contract and line 77 of the Acid contract, which cannot be
identified by arts like Oyente, Securify, and Mythril.

Listing 3. Contract with reentrancy-eth (access control with tuples).

1 function RedExchange() public {
2 administrators[msg.sender] = true;
3 }
4 modifier onlyAdministrator() {
5 require(administrators[msg.sender]);
6 _;
7 }
8 function setBondFundAddress(address _newBondFundAddress)

onlyAdministrator() public {
9 bondFundAddress = _newBondFundAddress;

10 }
11 function payFund() payable public onlyAdministrator() {
12 ...;
13 totalEthFundRecieved = SafeMath.add(

totalEthFundRecieved, ethToPay);
14 if(!bondFundAddress.call.value(_bondEthToPay).gas

(400000)()) {
15 totalEthFundRecieved = SafeMath.sub(

totalEthFundRecieved, _bondEthToPay);
16 ...;
17 }
18 }

https://github.com/Secbrain/VulHunter/tree/main/Dataset3/Example_results
https://github.com/Secbrain/VulHunter/tree/main/Dataset3/Example_results

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4903

TABLE XII
EXAMPLES OF MAJOR SMART CONTRACT SECURITY INCIDENTS. AMONG

THEM, ‘‘-’’ INDICATES THAT THE INFORMATION IS UNKNOWN

Date Vulnerabilities Incidents Amounts Loc Ours Others

Feb. 2016 DOS KotET - 105 TP FNs such as Oyente
Jun. 2016 reentrancy-eth The Dao $60M 201 TP FNs such as SMARTIAN
Jul. 2017 parity-multisig-bug Parity bug $30M 223 TP FNs such as SmartCheck
Nov. 2017 access permissions Parity bug 2 $1.52B 111 TP FNs such as Slither
Feb. 2018 integer-overflow EMVC - 16 TP FNs such as Oyente
Apr. 2018 integer-overflow BEC $900M 261 TP FNs such as Slither
Apr. 2018 integer-overflow SmartMesh - 134 TP FNs such as SmartCheck
Jul. 2018 integer-overflow AMR - 205 TP FNs such as SMARTIN

- integer-overflow SIGMA - 1873 TP FNs such as SMARTIN
- integer-overflow UCN - 13 TP FNs such as SMARTIN
- integer-overflow ETHX - 205 TP FNs such as ContractWard
- integer-overflow H3H3 - 205 TP FNs such as ContractWard
- integer-overflow NUMB - 205 TP FNs such as ContractWard
- integer-overflow POSH - 183 TP FNs such as TMP
- integer-overflow POWC - 205 TP FNs such as TMP
- integer-overflow POWH - 205 TP FNs such as TMP
- integer-overflow POWH - 205 TP FNs such as Mythril
- integer-overflow POWH3 - 181 TP FNs such as Mythril
- integer-overflow PWHS - 207 TP FNs such as Mythril

Detection of tod vulnerabilities. This vulnerability refers
to inconsistent behavior caused by miners or nodes interfering
with the transaction sequence. It contains three types: key stor-
age variable, owner authentication, and approved tokens. For
Vesting contract (3.00E+10Wei), the state variable “tokenRe-
ward” is assigned in “createVestingPeriod” function and used
in “release” function (as shown in Lines 5 and 9 of Listing 4).
When the transactions that invoke these two functions appear in
the same block, the miner can alter the order of transactions to
cause an incorrect transfer account. Similarly, the state variable
“owner” in the Marketplace contract can be assigned twice in
a single block, confusing the user sets a different owner. The
“StandardBounties” contract is a representative of approved
tokens, and the vulnerability is caused by the “erc20-approve”
function declared in line 80. When the authorizer changes the
authorization, the user creates a consumption transaction that
spends the original authorization token and sets more gas than
the changed authorization transaction. In this way, the miners
will prioritize the consumption transaction, so that the user
can spend both old and new authorized amounts. VulHunter
successfully identified the above contracts, while methods such
as Securify, TMP, and Oyente misreported them. It is noted that
this vulnerability also belongs to the cooperation of multi-path
executions, which is discussed in Section V.B.2.

Listing 4. Contract with tod.

1 contract Vesting is ... {
2 Token public tokenReward;
3 function createVestingPeriod(..., address

addressOfTokenUsedAsReward) public {
4 ...
5 tokenReward = Token(addressOfTokenUsedAsReward);
6 }
7 function release(address token) public {
8 ...
9 tokenReward.transfer(_beneficiary, unreleased);

10 }
11 }

In addition, we employ the contracts of well-known
vulnerability incidents in Dataset_5 to further clarify the
performance of VulHunter. Table XII describes the information
of these contracts, including security incidents, vulnerability

names, economic losses, and detection results.15 The integer-
overflow vulnerability incident for the SmartMesh
contract. In April 2018, the transactions of the SmartMesh
contract were suspended by various platforms such as Ethereum
[55]. However, as shown in Listing 5, attackers can manipulate
the input parameter of the “transferProxy” function to make
_fee+_value= 0 (integer-overflow), so that the verification in
line 3 will be passed. In this way, attackers can obtain a lot of
money. Besides, contracts such as EMVC yielded economic
losses given the ineffective arithmetic examination performed
by the non-conforming SafeMath library. Particularly, although
these arithmetic variables are checked in BEC contract (as
shown in Line 4 of Listing 6), errors in its examination logic
also caused an integer-overflow vulnerability (line 3). Thanks
to focusing on contract runtime execution sequences and model
perception ability to their semantics, VulHunter successfully
identified these vulnerable contracts, which were missed by
methods such as Slither and SmartCheck.

Listing 5. Contract for SmartMesh incident.

1 mapping (address => uint256) balances;
2 function transferProxy(uint256 _value, uint256 _feeSmt

,...) public ...{
3 if(balances[_from]<_feeSmt+_value) revert();
4 Transfer(_from, msg.sender, _feeSmt);
5 ...
6 }

Listing 6. Contract for BEC incident.

1 mapping(address => uint256) balances;
2 function batchTransfer(address[] _receivers, uint256

_value) ... {
3 uint256 amount = uint256(_receivers.length) * _value;
4 require(_value>0 && balances[msg.sender]>=amount);
5 balances[msg.sender]=balances[msg.sender].sub(amount);
6 ...
7 }

Answer to RQ4. Can VulHunter discover contracts
with substantial and serious vulnerabilities in public
chains such as Ethereum? From the above examples, it is
concluded that VulHunter can indeed identify contracts that
are misreported and underreported by other methods. This
illustrates its detection effectiveness on Ethereum contracts.
Also, the contract examples in Dataset_3 indirectly verify
the authenticity of the detection results in § IV-C. Notably,
VulHunter is not only a method for error correction, but also
can optimize contracts and reduce unnecessary costs.

F. The Performance of Various Baseline Models for Vulnera-
bility Learner (RQ5)

Due to the extensibility of Vulnerability Learner, it can em-
ploy various ML models as its engines to make VulHunter
embrace different detection abilities, given their distinct char-
acteristics. To illustrate this fact, we ran VulHunter with 11
other supervised ML (i.e., DL and traditional ML) models on
contracts in Dataset_1. Note that all models ran under the frame-
work shown in Fig. 5 and used the Bag-instance hybrid attention

15More information such as the detection results is detailed in https://github.
com/Secbrain/VulHunter/tree/main/Dataset5.

https://github.com/Secbrain/VulHunter/tree/main/Dataset5
https://github.com/Secbrain/VulHunter/tree/main/Dataset5

4904 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

TABLE XIII
COMPARATIVE RESULTS DETECTED BY VARIOUS BASELINE MODELS FOR THE VULNERABILITY LEARNER ON DATASET_1 (BENIGN:VULNERABLE = 2:1)

SE. Project Metrics Bi2-LSTM Bi-LSTM LSTM Bi2-GRU Bi-GRU GRU CNN RF DT XGB SVM KNN

H
ig

h

RE
ACC P 95.29 95.06 94.90 95.00 95.69 94.05 96.08 97.47 94.90 92.86 92.94 86.02 96.47 100.00 96.47 98.72 88.63 77.45 96.08 97.47 96.08 98.70 86.67 73.39

R F1 90.59 92.77 89.41 92.12 92.94 93.49 90.59 93.90 91.76 92.31 94.12 89.89 89.41 94.41 90.59 94.48 92.94 84.49 90.59 93.90 89.41 93.83 94.12 82.47

CDC
ACC P 94.87 92.31 87.18 78.57 87.18 75.00 87.18 78.57 89.74 84.62 92.31 91.67 97.44 100.00 94.87 100.00 87.18 75.00 92.31 91.67 89.74 100.00 82.05 71.43

R F1 92.31 92.31 84.62 81.48 92.31 82.76 84.62 81.48 84.62 84.62 84.62 88.00 92.31 96.00 84.62 91.67 92.31 82.76 84.62 88.00 69.23 81.82 76.92 74.07

Total
NAVG

ACC P 89.61 85.35 86.22 78.79 86.34 79.48 86.94 82.24 86.91 81.22 86.88 79.78 88.64 86.02 89.50 93.10 83.55 70.44 88.13 89.44 85.55 89.74 81.83 69.54
R F1 83.43 84.38 81.09 79.92 80.22 79.85 77.79 79.95 79.11 80.15 82.21 80.98 79.02 82.37 74.00 82.46 88.36 78.38 72.74 80.23 65.22 75.54 82.83 75.60

M
ed

iu
m

LE
ACC P 88.03 80.54 88.23 85.31 88.46 84.80 88.46 89.01 88.07 87.67 88.27 87.25 89.17 86.48 90.55 87.33 84.96 72.38 89.84 95.80 89.33 90.22 86.50 78.70

R F1 84.53 82.49 78.16 81.58 79.69 82.17 74.62 81.18 74.73 80.69 75.91 81.19 80.05 83.14 83.83 85.54 88.78 79.75 72.73 82.68 76.27 82.66 81.58 80.12

UCL
ACC P 92.31 87.50 88.03 80.49 89.74 84.62 88.89 84.21 88.89 84.21 85.47 76.19 88.03 85.71 90.60 93.75 82.05 67.31 91.45 96.77 88.89 96.43 81.20 69.77

R F1 89.74 88.61 84.62 82.50 84.62 84.62 82.05 83.12 82.05 83.12 82.05 79.01 76.92 81.08 76.92 84.51 89.74 76.92 76.92 85.71 69.23 80.60 76.92 73.17

Total
NAVG

ACC P 90.78 88.99 88.84 86.89 88.55 86.13 87.10 85.59 88.50 86.44 88.16 87.45 86.15 83.06 90.54 94.42 85.13 74.35 89.09 93.61 87.41 91.01 83.39 75.09
R F1 86.31 87.63 82.48 84.63 82.38 84.21 74.59 79.71 82.13 84.23 79.89 83.50 76.96 79.89 79.23 86.16 90.65 81.69 76.11 83.96 72.44 80.67 81.41 78.12

L
ow

TS
ACC P 89.61 89.26 92.75 98.21 91.30 86.43 91.06 89.15 90.82 84.72 90.34 90.83 90.58 90.24 93.72 100.00 87.44 75.60 93.48 100.00 90.58 94.59 83.09 70.00

R F1 78.26 83.40 79.71 88.00 87.68 87.05 83.33 86.14 88.41 86.52 78.99 84.50 80.43 85.06 81.16 89.60 92.03 83.01 80.43 89.16 76.09 84.34 86.23 77.27

BP
ACC P 88.14 86.34 84.03 75.11 84.56 75.49 87.91 85.86 83.88 74.15 83.65 76.48 84.87 84.44 86.54 91.69 81.29 67.33 84.94 90.00 82.74 87.81 82.28 70.79

R F1 76.48 81.11 77.85 76.46 79.45 77.42 76.26 80.77 79.22 76.60 73.52 74.97 66.89 74.65 65.53 76.43 85.16 75.20 61.64 73.17 55.94 68.34 79.68 74.97

Total
NAVG

ACC P 91.00 88.87 89.60 88.05 89.20 84.08 91.18 90.15 89.09 83.32 89.14 86.20 88.96 87.67 89.99 95.75 85.78 73.76 89.39 93.91 87.70 91.93 85.67 76.35
R F1 83.41 86.05 80.50 84.11 83.65 83.87 82.54 86.18 84.43 83.87 80.45 83.22 77.75 82.41 73.13 82.93 89.33 80.80 72.78 82.00 69.02 78.84 83.51 79.77

In
fo

LLC
ACC P 90.61 88.31 87.36 88.54 87.29 87.83 89.81 87.80 87.84 82.33 88.16 81.85 87.28 79.39 90.92 93.25 87.44 76.69 87.07 96.43 87.64 96.45 88.29 83.24

R F1 82.83 85.48 71.33 79.01 71.86 79.05 80.66 84.08 80.90 81.61 82.88 82.36 83.55 81.42 78.45 85.21 89.56 82.63 63.59 76.64 65.37 77.92 81.24 82.23

Total
NAVG

ACC P 90.62 86.86 87.83 89.04 86.38 82.81 85.49 81.11 86.07 88.74 85.15 85.08 87.81 88.38 89.65 90.80 84.41 74.62 86.33 90.82 87.56 95.17 81.98 72.82
R F1 85.25 86.05 73.22 80.36 76.46 79.51 74.05 77.42 68.77 77.49 69.15 76.29 75.44 81.40 77.21 83.46 81.89 78.08 67.19 77.24 67.01 78.65 77.92 75.29

O
pt

ST
ACC P 85.42 82.69 79.89 72.78 79.15 75.00 81.37 78.17 82.84 76.83 83.21 76.47 83.03 79.47 85.79 96.43 76.38 60.82 85.06 94.64 80.44 89.47 77.86 64.59

R F1 71.27 82.69 63.54 67.85 56.35 64.35 61.33 68.73 69.61 73.04 71.82 74.07 66.30 72.29 59.67 73.72 82.32 69.95 58.56 72.35 46.96 61.59 74.59 69.23

BE
ACC P 92.57 92.28 89.66 87.52 90.04 85.68 92.04 92.89 90.68 84.71 91.32 88.24 86.19 77.92 87.93 94.93 85.36 73.12 86.61 93.18 85.29 92.77 85.06 77.07

R F1 84.89 88.43 80.61 83.92 84.33 85.00 82.53 87.40 88.05 86.35 85.46 86.83 81.96 79.89 67.53 78.92 88.95 80.26 64.71 76.38 60.77 73.43 78.80 77.93

Total
NAVG

ACC P 88.38 89.37 84.66 83.88 84.56 85.30 88.90 88.61 85.58 84.21 85.10 84.54 84.85 85.42 84.34 94.63 84.39 75.02 84.73 93.99 81.34 91.66 77.95 69.48
R F1 77.82 83.20 74.22 78.75 71.55 77.82 79.63 83.88 77.21 80.56 75.95 80.02 73.51 79.01 62.50 75.28 89.62 81.68 63.03 75.46 56.08 69.58 71.14 70.30

O
ve

ra
ll Total

NAVG

ACC P
90.04 87.92 87.36 84.84 87.03 83.69 87.75 85.42 87.30 84.67 86.98 84.60 87.07 85.54 88.87 93.85 84.60 73.53 87.67 92.38 85.82 91.52 82.06 72.54
±1.89 ±2.28 ±2.41 ±2.99 ±1.72 ±2.39 ±1.82 ±2.43 ±1.96 ±2.50 ±1.56 ±2.05 ±2.27 ±2.77 ±1.80 ±1.33 ±2.67 ±3.72 ±2.23 ±1.86 ±0.00 ±0.00 ±0.00 ±0.00

R F1
83.41 85.60 79.01 81.82 79.09 81.33 77.33 81.18 78.97 81.72 78.29 81.32 76.65 80.85 73.58 82.49 88.57 80.35 71.08 80.34 66.30 76.90 79.50 75.86
±3.17 ±2.99 ±4.10 ±3.83 ±2.82 ±2.68 ±3.64 ±3.22 ±3.27 ±3.16 ±2.54 ±2.40 ±4.14 ±3.73 ±4.27 ±3.31 ±2.05 ±3.09 ±5.47 ±4.74 ±0.00 ±0.00 ±0.00 ±0.00

#Failed NUMS 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)

described in Section III-E. Also, the Bi2-LSTM and Bi2-GRU
are equipped with the self-model attention based on the Bi-
LSTM and Bi-GRU, respectively. Table XIII shows their partial
results and total standard deviations.16 It reflects the follow-
ing laws.

(i) VulHunter is well compatible with multiple supervised
models, regardless of DL and traditional ML. It is because all
models achieved satisfactory results (e.g., ACC > 82%). Note
that Graph Neural Network (GNN) can play a better effect
in VulHunter than in TMP (81.84%), which also applies to
XGBoost (XGB) in ContractWard (70.06%). This reflects the
effectiveness of VulHunter in terms of instance information
extraction and MIL detection framework. Also, DL models
outperform most traditional ML models, as they have great itera-
tive learning, fitting, and generalization capabilities on massive
datasets. As shown in Fig. 10, with the training epoch growing,
they can gradually understand the data features and steadily
improve the metrics, such as accuracy and F1 score. This also
demonstrates the framework correctness of VulHunter. Notably,
traditional ML models are easy to interpret given their adequate
mathematical foundations, and most of them are so lightweight
that they can be trained on small datasets.

16The specific results are detailed in https://github.com/Secbrain/VulHunter/
tree/main/Learner_models.

(ii) More superior models tend to embrace better results
in VulHunter. For example, the performance ranking of DL
models is Bi2-LSTM > Bi-LSTM > LSTM and Bi2-GRU >
Bi-GRU > GRU. This can be attributed to their self-model at-
tention and bidirectional semantic association properties. Also,
LSTM-based models are slightly better than GRU-based ones
(e.g., Bi-LSTM > Bi-GRU), as LSTM has one more gating
unit than GRU, which facilitates it to fit samples. This fact
applies to traditional ML models, e.g., Random Forest (RF)
outperforms Decision Tree (DT) given its additional bootstrap
sampling mechanisms. Therefore, VulHunter can improve its
performance by employing superior models in the future.

(iii) Each model has various characteristics and can better
detect some vulnerabilities. For instance, DT achieves a high
recall rate of 88.57% given its convenience and randomness
detection, and RF achieves a high accuracy rate of 93.85%
by employing multiple DTs for voting. Moreover, due to the
unique model structure and reasoning style, other models de-
liver more observables on some vulnerabilities. For example,
for the reentrancy-eth detection, CNN achieved significant accu-
racy and precision rates (ACC = 94.47% and P = 100%), and
RF obtained the greatest recall rate and F1 score (R= 90.59%
and F1 = 94.48%). Nevertheless, thanks to modeling capabil-
ities for the front and rear elements in sequences, Bi2-LSTM
holds a superior overall performance, e.g., ACC = 90.04%
and F1 = 85.60%. More importantly, its self-model attention

https://github.com/Secbrain/VulHunter/tree/main/Learner_models
https://github.com/Secbrain/VulHunter/tree/main/Learner_models

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4905

TABLE XIV
EVALUATION FOR INSTANCE PRODUCTION HYPERPARAMETERS

Setting nblock = 32 ncycle = 2 nseq = 10 choose= longest

Metric ACC= 95.29 P= 95.06 R= 90.58 F1= 92.77 Time= 4.39s Memory= 81.27MB

Parm nblock ncycle nseq choose

Metric 10 16 50 1 5 10 5 20 50 shortest average random

ACC 87.45 92.16 96.47 86.67 95.69 96.08 87.84 97.65 97.25 82.35 89.41 89.02
P 84.30 92.79 95.69 85.84 95.61 95.65 87.50 96.52 95.76 80.17 90.00 87.83
R 88.70 89.57 96.52 84.35 94.78 95.65 85.22 96.52 98.26 80.87 86.09 87.83
F1 86.44 91.15 96.10 85.09 95.20 95.65 86.34 96.52 97.00 80.52 88.00 87.83

Time 3.98 4.18 5.02 4.17 4.43 4.44 4.26 4.50 5.12 4.38 4.41 4.40
Memory 76.24 79.24 85.35 79.22 82.15 82.21 76.84 86.47 90.24 79.81 80.84 80.44

is the key to locating the defective bytecode fragments and
source code statements. In the future, visualization tools such
as Captum [56] may help other models obtain the importance
distribution of inputs.

(iv) The standard deviation of detection results in VulHunter
is mainly related to the model structure/scale. Complex models
containing large numbers of neurons have strong generaliza-
tion/fitting capabilities while also introducing some random-
ness. For example, Bi-LSTM outperforms LSTM and holds a
higher standard deviation. Also, the voting mechanism of RF
and attention mechanism of Bi2-LSTM improve detection per-
formance and reduce prediction fluctuations, i.e., their metrics
are superior to those of DT and Bi-LSTM, respectively. Besides,
SVM and KNN are held constant during the training process
given the certainty of their predictions, obtaining zero standard
deviations and inferior performance. Overall, the standard de-
viation of each model is within an acceptable range, reflecting
the detection framework stability of VulHunter.

Answer to RQ5. Can VulHunter support other baseline
models for detection? VulHunter can employ multiple DL
(e.g., GRU and CNN) and traditional ML (e.g., RF and SVM)
models as its detectors and achieve satisfactory performance
with acceptable standard deviations. Also, the various mod-
els grant it diverse abilities. It can optimize or utilize supe-
rior models to improve its detection metrics, and contract
auditors can select different models to complete their goals
based on time requirements and hardware constraints. For
instance, they can combine VulHunter with DT to identify
more vulnerabilities, with RF to reduce the workload of
manual verification, and with Bi2-LSTM to make both re-
quirements as compatible as possible.

G. The Effect of Parameters on Performance (RQ6)

To evaluate VulHunter with different hyperparameters, we
produce the experiments with varying model settings for detect-
ing reentrancy-eth vulnerabilities based on the control variable
principle. Table XIV involves the hyperparameter evaluation
of instance production. The trends are similar in nblock and
ncycle. That is, as their values grow, the effective length of
instances gradually increases, so that the model can observe
more useful information and improve the metrics such as ACC
and P. However, since the available instance length for Bi2-
LSTM model is limited to the parameter T = 512, the metrics

TABLE XV
EVALUATION FOR MODEL BUILDING HYPERPARAMETERS

Setting T=512 epoch=50 λ=0.6 qb=0.8 qm=0.2 nneurons=512

Metric ACC=95.29 P=95.06 R=90.58 F1=92.77 Time=4.39s Memory=81.27MB

Parm T epoch λ qb qm nneurons

Metric 256 768 20 100 0.3 0.8 0.6 1.0 0.1 0.3 256 768

ACC 88.63 97.25 91.76 96.86 96.08 93.73 94.12 95.69 95.29 92.55 94.90 95.69
P 86.44 95.76 92.73 96.52 98.17 91.60 91.67 99.06 99.05 89.34 94.74 96.43
R 88.70 98.26 88.70 96.52 93.04 94.78 95.65 91.30 90.43 94.78 93.91 93.91
F1 87.55 97.00 90.67 96.52 95.54 93.16 93.62 95.02 94.55 91.98 94.32 95.15

Time 4.28 5.02 4.38 4.39 4.40 4.40 4.27 4.47 4.30 4.46 4.34 4.48
Memory 78.05 89.01 81.26 81.31 81.28 81.27 80.95 81.41 80.99 81.38 75.11 92.81

will stabilize when the length exceeds this value. Moreover,
the metrics also improve with the number nseq of instances, as
more contract execution paths are covered and then facilitate
the classifier to make decisions. Meanwhile, the probability
of the model outputting malicious (i.e., 1) will also increase,
thereby improving the recall rate and reducing the precision
rate slightly when nseq overreaches the critical value. For the
instance selection strategy, it is more practical to choose the
longest instances as the classifier can consider more semantic
information. In this way, some vulnerable paths with shorter
lengths can be viewed by expanding nseq.

We also test VulHunter with diverse parameters in building
the model. As described in Table XV, the metrics are improved
in T = 768, and reduced in T = 256, which can be attributed
to the more available information that can be delivered to the
classifier. Note that the instances are not as long as possible,
as the numerous bytes may dilute valuable information and
carry the opposite effect. The parameter epoch holds a similar
trend, that is, the model converges gradually as the number
of training rounds increases. Nevertheless, excessive rounds
may lead to overfitting problems. Moreover, the lower λ makes
VulHunter focus on the overall contract labels and more in-
clined to improve the ACC and P. Instead, it is biased toward
detecting individual instances, so that more vulnerabilities can
be discovered but inevitably present some FPs, thereby reducing
ACC and P. Given the feasibility verification of the instances,
VulHunter can correct some misreports, which is detailed in
Sections III-G and V.B.2. Besides, qb and qm can adjust the
number of benign and malicious instances during the iteration
process, and the larger qb can enhance the learning of benign in-
stances. Also, the larger qm improves the recall rate but reduces
the precision rate, due to the benign instances in vulnerable
contracts being mislabeled. As discussed in Section V.A.1, they
can help VulHunter mitigate the impact of model overfitting
and false instance labels. Finally, the number of neurons has an
unobvious effect on detection results, and an appropriate value
can also alleviate the overfitting problems.

In total, the detection time and memory overhead in these
experiments are stable and less device-demanding, which fa-
cilitates VulHunter to be deployed in more scenarios. There-
fore, serving as a path filter for symbolic executors, VulHunter
may help them alleviate the path explosion problem given its
accurate and fast inference capabilities. Also, similar to the
baseline models, we encourage developers and auditors to allo-
cate appropriate parameters based on their requirements (e.g.,

4906 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

Fig. 8. Case study of locating defective contract source code statements.

biased towards the precision or recall) and hardware limitations
(e.g., CPU and memory). In the future, with the maturity of hy-
perparameter optimization techniques such as scikit-learn [57],
they can be considered to tune parameters automatically for
better performance.

Answer to RQ6. What is the effect of the variable
parameters in VulHunter on its detection performance?
Similar to the baseline models, a variety of parameters can
also enable VulHunter to meet the various requirements of
the contract auditors. For example, working on discovering
as many vulnerabilities as possible while tolerating some
FPs by improving the value of qm. Overall, most parameters
perform the superior and stable effect, which can guide
VulHunter to analyze contract security well.

H. Assist in Vulnerability Analysis and Strategy Development
at the Source Code and Bytecode Levels (RQ7)

The ultimate goal of the contract inspection is to repair the
potential security threat, not just to discover them. However,
the current ML-based arts ignore this intention and can only
output whether the contracts hold vulnerabilities. To this end,
VulHunter identifies vulnerabilities accurately and outputs the
specific defective source code statements, key opcodes, and
vulnerable execution sequences of contracts, as well as the
universal repair methods and delivering remarkable insights for
contract developers. In this section, we present two cases on
how they can guide the repair of vulnerabilities.

The Dao vulnerability incident. In June 2016, the
reentrancy-eth vulnerability in the DAO contract caused a loss
of $60 million ETH. As shown in Listing 7, the behaviors
of lines 3–6 describe the implementation of the “withdrawRe-
wardFor” function. Thanks to the unique semantic association
and fitting properties, VulHunter identified two sequences with
reentrant features from ten contract runtime sequences, while
methods like Mythril, SMARTIAN, and TMP cannot. Fig. 8(a)
visualizes the attention weight distribution of reentrancy-eth
detector for instances, and VulHunter obtains the key opcode
CALL with weights of 99.94% and 89.55% from two defective
instances, respectively. Then it locates the defective statement
“msg.sender.call.value” in the contract source code by mapping
the ASM file. That is, attackers can deliver the attacks for
this statement, and auditors can update this statement to repair
this vulnerability.

Listing 7. The vulnerable code of the DAO contract.

1 function splitDAO(...) ... { ...
2 withdrawRewardFor(msg.sender);
3 // if ((balances[msg.sender] * ratio) / totalSupply <

paidOut[msg.sender]) throw;
4 // uint reward = (balances[msg.sender] * ratio) /

totalSupply - paidOut[msg.sender];
5 // msg.sender.call.value(reward)()
6 // paidOut[msg.sender] += reward;
7 totalSupply -= balances[msg.sender];
8 balances[msg.sender] = 0; ...
9 }

10 contract DAOAttack{
11 DAO daoObj;
12 fuction ReAttack() public payable {daoObj.splitDAO()}
13 function() public payable { daoObj.splitDAO()}
14 }

Moreover, from the bytecode perspective, auditors or at-
tacks can obtain the defective intersection subsequence [PUSH1
0x14, SLOAD, PUSH1 0x16, SLOAD... MLOAD... GAS
CALL... 0x16 SSTORE... 0x14 SSTORE] around the key op-
code, which can convey some useful information about the
vulnerability. Among them, 0x14 and 0x16 are the Slot ID
of state variables “balances”, “totalSupply”, respectively. By
analyzing these opcodes, the three features of the reentrancy-eth
vulnerability can be summarized: (i) the GAS consumed by the
CALL instruction is not restricted, i.e., there is no specific value
of 2300, representing it belongs to a call().value() function;
(ii) the “reward” variable loaded by an MLOAD instruction is
not a zero constant; (iii) the state variable with the same Slot
ID is read before invoking the call function and updated after
executing the call function.

Similarly, equivalent source code features can be obtained ac-
cording to the located defective statements. Nonetheless, given
that most contracts on Ethereum only own bytecode, observing
helpful information at the bytecode level may be slightly hard to
understand but more meaningful. Contract analysis tools based
on pattern matching, symbolic execution, and fuzzy testing
can further use key bytecode or source code to formulate and
optimize vulnerability detection rules/logic/oracles. Besides, an
attacker can create an attacking contract DAOAttack as shown
in Listing 7. It can trigger the fallback function by invoking the
“ReAttack()” function to execute the “msg.sender.call.value()”
statement in “splitDAO()” again and again, causing three vari-
ables to not be updated in time (i.e., lines 6–8 invalid temporar-
ily). Thus, the amount can be continuously withdrawn until the
contract balance becomes zero or the GAS is exhausted.

To fix this vulnerability, the developers can advance the
position of the SSTORE instruction to before the CALL in-
struction, preventing attackers from making secondary calls.
Also, they are advised to use the “transfer()” function instead
of “call.value()” in the source code, given that it can limit
2300 GAS overhead and roll back all transactions on transfer
errors. Furthermore, the analysis reports made by VulHunter
hold additional information such as vulnerability description,
location, key bytecode distribution, and examples with generic
repair methods17, so as to help them develop customized repair
strategies more conveniently.

17Refer to https://github.com/Secbrain/VulHunter/tree/main/Vulnerability_
examples/VulnerabilityDescription.xlsx.

https://github.com/Secbrain/VulHunter/tree/main/Vulnerability_examples/VulnerabilityDescription.xlsx
https://github.com/Secbrain/VulHunter/tree/main/Vulnerability_examples/VulnerabilityDescription.xlsx

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4907

TABLE XVI
THE VERIFICATION EXPERIMENTS FOR CONTRACTS WITH INFEASIBLE

PATHS. AMONG THEM, THE SYMBOL “→” REFERS TO THE

CONSTRAINT-SOLVING OPERATION

Contract name (w/wo Vul) VulHunter Slither DefectChecker SMARTIAN TMP ContractWard

CIN (w/ AS) �→� � - ✕ ✕ ✕
CIN_IFalse (w/o AS) ✕→� ✕ - � � �
CIN_ITrue (w/ AS) �→� � - ✕ ✕ ✕
CIN_IOFalse (w/o AS) ✕→� ✕ - � � �
CIN_IOTrue (w/ AS) �→� � - ✕ ✕ ✕
CIN_AFalse (w/o AS) ✕→� ✕ - � � �
CIN_ATrue (w/ AS) �→� � - ✕ ✕ ✕
CIN_AOFalse (w/o AS) ✕→� ✕ - � � �
CIN_AOTrue (w/ AS) �→� � - ✕ ✕ ✕
APR (w/ RE) �→� � ✕ ✕ ✕ ✕
APR_IFalse (w/o RE) ✕→� ✕ � � � �
Agent (w/ IO) �→Input - - ✕ ✕ ✕
Cloud (w/ BP) �→� - � ✕ ✕ ✕
Cloud_AFalse (w/o BP) ✕→� - ✕ � � �
Caller (w/ LLC) �→� � - - ✕ ✕
Caller_AOFalse (w/o LLC) ✕→� ✕ - - � �
Aether (w/ ST) �→� - - - ✕ ✕
AEther_IFalse (w/o ST) ✕→� - - - � �

Listing 8. Contract with block-other-parameters.

1 function closingLottery(...) ... {
2 if (testingMode == true) { return true; }
3 uint randomHash = uint(keccak256(abi.encodePacked(

block.difficulty,block.timestamp)));
4 uint million = 1000000;
5 uint randomInt = randomHash % million;
6 Trial storage trial = trials[_citizen];
7 uint blocksSince = block.number - trial.

lastClosingAttemptBlock;
8 if (blocksSince < distributionBlockPeriod) {
9 randomInt *= blocksSince / distributionBlockPeriod;

10 } ...
11 }

Detection of block-other-parameters vulnerabilities.
The contract Revolution (4.74E+13Wei) is an active and
wiled contract on Ethereum (as described in Table XI). The
part of the source code is shown in Listing 8. As shown in
Fig. 8(b), VulHunter identified six execution sequences
with the block-other-parameters features, and it accurately
found that the block parameter variables are used in the
“closingLottery()” function based on the key opcodes with
weights [84.28%,84.28%,3.94%,3.94%,84.28%,84.28%]. Also,
the common sequence around key opcodes is [ISZERO, EXP,
DIFFICULTY, TIMESTAMP, SHA3... MOD... PUSH1 0x8,
SLOAD,PUSH10x7,SLOAD,NUMBER,SUB...LT,ISZERO...
DIV, MUL]. Among them, 0x8 and 0x7 represent the address of
storage variables “trials” and “trial”, respectively. Both of them
need to be read from the storage using the SLOAD instruction.
Also, block-related instructions such as DIFFICULTY and
NUMBER are employed to generate random numbers. Since
these variables can be known in advance by miners and nodes,
the random numbers can be further inferred, thus destroying the
fairness of the contract and losing its balance. Therefore, similar
to the above case, VulHunter will report these defect positions in
the source code and bytecode, and recommend developers to (i)
use the business data as the seed of random number generators;
(ii) select a combination of multiple pseudo-random data; (iii)
employtheonlineorofflinerandomoracles.

In addition, VulHunter also detected the vulnerability
in the Pets contract (2.50E+16Wei), while methods such
as SmartCheck and TMP missed it. The contract uses
block.number to generate the random numbers in the “getRan-
domNumber” function (line 81), which can also be predicted
in advance by working with the miners and nodes. To this end,

the contract owners need to avoid these problems during the
contract development. Notably, thanks to focusing on the con-
tract execution paths (i.e., opcode sequence or instances), Vul-
Hunter can employ the constraint-solving module to verify the
feasibility of the vulnerable paths detected by models, thereby
eliminating some false positives automatically. The details are
illustrated in Section IV-I, and more applications of VulHunter
are discussed in Section V-D.

Answer to RQ7. What are the advantages of Vul-
Hunter over other ML-based methods in vulnerability
repair? Compared with the existing ML-based SOTA arts,
VulHunter delivers various services. For instance, it can
complete the contract analysis accurately while giving the
specific defective source code statements and key opcodes,
as well as the universal repair methods. This information can
enable developers to check and understand the occurrence
mechanisms of vulnerabilities, which can guide them in
formulating repair strategies. Also, VulHunter outputs the
vulnerable execution sequences, which can be used to build
symbolic constraints and compute inputs to eliminate some
false positives and restore defective-feasible execution paths,
thereby assisting contract auditors better.

I. The Capability of Constraint-Solving Module (RQ8)

As one of the main advantages of VulHunter, the symbolic
constraints of vulnerable paths can be constructed and further
solved by SMT solvers to verify their feasibility, like symbolic
execution-based methods such as Oyente [4] and Manticore
[24]. As detailed in Section III-G, we have initially designed
and implemented a constraint-solving module. In order to eval-
uate the performance of this module in contract vulnerability
detection, we analyzed some benign and malicious contract
examples holding feasible/infeasible paths. The experiment re-
sults are elaborated in Table XVI18. They reflect the following
facts. (i) The static analysis methods, such as pattern matching
(e.g., Slither and SmartCheck) and pattern analysis (e.g., Secu-
rify), are insufficient to reason the variable states during the
contract execution, resulting in some false positives, such as
the arbitrary-send detection for contracts related to CIN. Par-
ticularly, due to DefectChecker ignoring the constraint-solving
in its implementation, it also delivers false positives, e.g., the
block-other-parameters detection for Cloud_AFalse contract.

To this end, we employ the constraint-solving module to
solve the constraints of vulnerable instances and correct the
misreports. Note that, three solvers, i.e., Z3, Yices, and CVC4,
are used one-by-one to illustrate the fact that they are available
and effective in the module. As verification examples shown in
Fig. 9, the CIN contract is embedded with the breaking opera-
tions such as if-false and assert-false to construct the feasible
and infeasible vulnerable paths. This makes the contracts with/
without arbitrary-send vulnerabilities. Fig. 9(c) and 9(d) visu-
alizes the attention weight distribution of arbitrary-send detec-
tor for CIN_AOTrue and CIN_AOFalse contracts, respectively.

18Detection results of all tools are available at https://github.com/Secbrain/
VulHunter/tree/main/Verification/Infeasible_paths.

https://github.com/Secbrain/VulHunter/tree/main/Verification/Infeasible_paths
https://github.com/Secbrain/VulHunter/tree/main/Verification/Infeasible_paths

4908 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

Fig. 9. The feasibility verification for vulnerable paths of contract examples with and without arbitrary-send. Among them, each source code comment
corresponds to the contracts in Table XVI, respectively.

VulHunter located the suspicious statement “msg.sender.send()”
with the confidence of above 90% in both contracts, given
almost identical paths with only one different opcode LT (Less-
than) and GT (Greater-than). However, the latter vulnerable
path is terminated at the assert function, so that the send op-
eration cannot be executed, which belongs to a false positive.
The static analysis methods like Slither also misreport it, as
they ignore whether the paths can be performed normally. In
order to eliminate the false discoveries, VulHunter constructed
and solved the constraints of vulnerable paths. Three solvers ob-
tained the same verification results, which is shown in Fig. 9(a)
and 9(b). Among them, the “True” conclusion and inputs that
satisfy the constraints were outputted in the case of feasible
paths. In contrast, the “False” decision was obtained.

(ii) The imperfect manual detection rules or oracles may
make the traditional formal methods miss some vulnerabilities.
For example, SMARTIAN ignores the most vulnerabilities such
as arbitrary-send and integer-overflow. This fact is applied to
the ML-based methods given their coarse-grained observation.
Furthermore, developing the complement detection logic of
vulnerabilities requires massive efforts, making the traditional
formal analysis methods challenging to detect more types of
vulnerabilities. For instance, DefectChecker cannot check the
defects such as send-transfer and low-level-calls. On the con-
trary, VulHunter leverages ML technology to automatically
learn the subtle detection logic and fully exploit information
from existing contract datasets, thereby enabling AI-assisted
contract analysis.

(iii) The constraint-solving module makes methods such as
VulHunter and Oyente hold more capabilities, e.g., obtaining
the inputs that restore the vulnerable execution paths. For in-
stance, VulHunter can invoke the “bad” function of Agent con-
tract with the parameters solved by integer-overflow constraints
to cause numerical overflow and get unexpected results19. This
is conducive to verifying the correctness of detection results and
cannot be implemented by the current methods based on static
analysis and ML. Also, the ML-based methods such as TMP
and ContractWard missed almost defects, as they are insensitive
to the subtle features of vulnerabilities. Inspired by the perfor-
mance of VulHunter, they are suggested to adjust the processed

19More details are illustrated in https://github.com/Secbrain/VulHunter/tree/
main/Verification/Infeasible_paths.

inputs and adopt well-designed models based on mechanisms
such as attention, thus improving their detection capability.

In total, this module has implemented the constraint-solving
and feasibility verification for the single path at the bytecode/op-
code level. Nevertheless, parameter solving for multi-path exe-
cution has not been completed, as discussed in Section V.B.2.
Also, the challenges of solvers and usable solutions are dis-
cussed in Section V.C.2. Therefore, this module is currently
available as an optional function in VulHunter, given its incom-
plete functions and the time consumption for large-scale path
verification. In the future, it will optimize solvers and build a
state pool to maintain the values of storage variables during the
continuous runtime path operation, thus further considering the
impact of different path executions.

Answer to RQ8. What is the performance or capa-
bility of the constraint-solving module in VulHunter?
Currently, the constraint-solving module implements the
constraint construction, parameter solving, and feasibility
verification for each vulnerable instance, while it needs to
be perfected for multiple instance executions. Notably, com-
pared with the existing SOTA arts based on static analysis
and ML, VulHunter can not only correct false positives auto-
matically, but also solve the invoking parameters to perform
defective paths and trigger the vulnerabilities such as integer-
overflow.

V. DISCUSSION

A. The Rationality of VulHunter

1) The Impact of Imperfect Instance Labels: During the
training process of VulHunter, it is inevitable to introduce false
labels (called label noise) to instances, given the empirical
initialization and optimization operations on their labels. In
order to mitigate the impact of label noise, we propose the Bag-
instance hybrid attention mechanism for Bi2-LSTM model. It
enables the model to correct labels of instances in misreported
contracts, such as turning malicious instances of benign con-
tracts into benign ones. Fig.10 shows the detection performance
of VulHunter with and without this mechanism. Among them,
Fig. 10(a) depicts their detection accuracy for 30 types of vulner-
abilities.20 It illustrates that the Bag-instance hybrid attention

20Results of other metrics are detailed in https://github.com/Secbrain/
VulHunter/tree/main/Rationality.

https://github.com/Secbrain/VulHunter/tree/main/Verification/Infeasible_paths
https://github.com/Secbrain/VulHunter/tree/main/Verification/Infeasible_paths
https://github.com/Secbrain/VulHunter/tree/main/Rationality
https://github.com/Secbrain/VulHunter/tree/main/Rationality

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4909

Fig. 10. Performance comparison of VulHunter with and without Bag-instance hybrid attention on Dataset_1 (benign:vulnerable=2:1).

mechanism is indeed useful for VulHunter to correct misreports
and improve its detection metrics, as well as standard deviation.
Besides, Fig. 10(b) and 10(f) describes the changes in model
loss and metrics during the training process. The model with-
out this mechanism only learns instance-level features, whose
training loss drops rapidly and then becomes stable, i.e., fails
to converge. This can be attributed to the fact that it introduced
more false labels during the training process, which may lead to
model overfitting. Correspondingly, its metrics (e.g., accuracy
and precision) are increased and then maintained at an inferior
value. Meanwhile, since the larger number of benign instances
in the step of instance optimization, it may mistake the features
of malicious instances as benign ones and hold an insufficient
recall rate.

In contrast, with the guidance of this mechanism, the model
can adjust its prediction direction based on the contract true
labels, so that it can be continuously optimized (i.e., a declin-
ing loss) during the iterative optimization process to steadily
improve the recall rate and maintain a superior accuracy rate.
Therefore, the better performance of VulHunter is beneficial
from the Bag-instance hybrid attention. Also, as described in
Section IV-F, the model self-attention mechanism enhances the
recognition effect and can help mitigate label noise. Further-
more, the ratio of benign and malicious contracts in the train-
ing dataset (c.f., Section IV-B), as well as the model training
parameters λ, qb, and qm (c.f., Section IV-G), can be adjusted
to prevent model overfitting.

2) The Theoretical Analysis of Effectiveness: In this section,
we illustrate the effectiveness of VulHunter in terms of instance
extraction, model detection, and result validation with theoret-
ical analysis, respectively.21 Effective information coverage.

21The information modeling analysis, model effectiveness evidence, and
formal verification advantages are detailed in https://github.com/Secbrain/
VulHunter/tree/main/Effectiveness.

To demonstrate the effective coverage of instance information,
we develop a theoretical analysis framework (i.e., instance/
path recording entropy model) to quantitatively evaluate the
information preserved in the process of VulHunter. Specifically,
given that the aperiodic irreducible discrete-time Markov chain
(DTMC) can model sequence data [58], we leverage it to for-
malize an instance as a sequence of opcode operations (random
variables). Let G = {V, E} denote the state diagram of DTMC,
where V is the set of states (i.e., the variable values) and E
denotes the edges. We define s= |V| as the number of states and
use W = [wij]s×s to denote the weight matrix of G. The state
transition matrix P = [Pij]s×s is constructed based on weights,
i.e.,Pij = wij/wi. Similar to [58], we assume that the stationary
state distribution μ= [μi]s (μi = wi =

∑s
j=1 wij) of DTMC

is a binomial distribution with the parameter 0.1≤ p≤ 0.9 to
approach Gaussian distribution with low skewness, and the
length of instances obeys a geometric distribution with high
skewness (the parameter 0.5≤ q ≤ 0.9).

μ∼B(s, p)→N (sp, sp(1− p)), L∼G(q) (19)

Furthermore, it adopts three metrics: (i) the amount of informa-
tion, i.e., the average Shannon entropy obtained by recording
one opcode operation; (ii) the scale of data, i.e., the space
used to store the information; (iii) the density of information,
i.e., the amount of information on a unit of storage. By using
this framework, we model the opcode sequences-based instance
recording mode used by VulHunter, as well as four typical types
of recording modes, including (i) idealized mode that records
and stores all information of instances; (ii) event-based mode
that records specific events for instances denoted by random
variable sequences; (iii) sampling/summary-based mode that
records coarse-grained instance information, i.e., the sum of
opcode values; and (iv) statistics-based mode (e.g., S-gram [13],

https://github.com/Secbrain/VulHunter/tree/main/Effectiveness
https://github.com/Secbrain/VulHunter/tree/main/Effectiveness

4910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

Fig. 11. The instance/path information retained by different recording modes on the feasible region of the parameters.

ContractWard [30], and DeeSCVHunter [17]) that records the
statistical state information of instances via several counters.

Then, we select the opcode value as the per-operation fea-
ture and perform numerical studies to compare the instance
recording modes in real-world settings, i.e., measuring the pa-
rameters |V| and |E| based on instances of contracts (total of
222,310) in Dataset_1 and Dataset_4. The evaluation results
with distribution parameters p and q are shown in Fig. 11, they
depict three key facts. (i) VulHunter maintains more informa-
tion using the opcode sequences of instances than sampling
and statistics based recording modes, e.g., it achieves at least
1.5∼3 times information entropy than others. Note that the
more long instances (i.e.,q↓), the more obvious the gap. (ii)
VulHunter maintains near-optimal information as its informa-
tion loss ranging from 5.60× 10−14 to 6.80× 10−4nat. Also,
the larger the model hyper-parameter T , the less operation
loss. (iii) VulHunter has higher information density than other
recording modes, especially for the idealized system. Note that
the more long instances, the more obvious superiority. It can
be attributed to the fact that VulHunter restricts instance length
and reduces the data scale while maintaining as many instance
semantics as possible. In summary, VulHunter extracts high-
fidelity and compact instance information, which ensures that
the model observes enough semantics to identify malicious
instance fragments.

Accurate model inference. As tested in Section IV-F, Vul-
Hunter can employ DL networks (e.g., RNN and CNN) and
traditional ML models (e.g., RF and SVM) to detect extracted
instances. (i) For the former, their inference effectiveness de-
pends on that of neural networks and hybrid attention mecha-
nisms. Among them, a multi-layer neural network is essentially
a composite function, and its fitting ability is demonstrated by
the Universal Approximation Theorem, which is similar to the
polynomial approximation [59]. On this basis, as detailed in
Section III-E, RNN (e.g., LSTM and GRU) connect neurons

in the hidden layer through hidden states
−→
ht /

←−
ht and the gating

mechanism such as forget gate, enabling it to consider front/
back temporal relationships and better handle timing-related
tasks such as contract instance analysis. Also, CNN can
be viewed as a cascade of linearly weighted filters and
non-linear functions for scattering data, and its modeling
capabilities were elucidated in [60] from a mathematical
perspective.

(ii) VulHunter leverages the self-model attention to improve
the perception and fitting ability of the model, enabling it to
handle the inputs of long instances without vanishing gradients
and overfitting. Also, as discussed in Section V.A.1, the Bag-
instance hybrid attention can allow the model to be continu-
ously optimized and learn critical instance features under the
guidance of both contract and instance labels.

(iii) The effectiveness of traditional ML models is illustrated
by their inherent interpretability, such as adequate mathematical
foundations. They can be divided into two categories, namely,
mathematical theories-based and rules-based. The former is
designed and realized by a series of mathematical operations.
For instance, SVM and KNN perform based on the linear/non-
linear regression and similarity distance measurement (e.g.,
Euclidean and Manhattan), respectively. The rules-based algo-
rithms, such as DT, RF, and XGBoost, can be regarded as rule
collections in the form of a tree-like structure, which are learned
automatically based on contract instance datasets and easy to
interpret. Also, they are constructed on the statistical theories,
e.g., information gain and Gini index. Besides, more expla-
nations about their characteristics and reasons are illustrated
in Section IV-F.

(iv) Based on the above reasonable instance analysis by
ML models, the MIL framework is used to detect contract
defects, whose effectiveness has been demonstrated by its wide
spectrum of applications, such as computer vision and natural
language processing [61]. Also, some arts [62], [63] combine
theorems to analyze the effectiveness of MIL theoretically, and
it mainly relies on the premise that a positive bag contains at
least one positive instance, whereas a negative bag includes
only negative instances. Nevertheless, for contract analysis,
this premise retains exceptional cases. That is, against the
contract defects caused by multiple instances, the absence of
malicious cooperation instances may cause false positives. To
this end, as discussed above, the Bag-instance hybrid attention
can be utilized to allow the model to observe this nuance,
thereby delivering an accurate decision. Overall, the valuable
instance information of contracts can be fitted and represented
by the models, and finally make VulHunter identify them under
this framework.

Reliable path verification. As experimented in Sections
IV-I and V.B.2, the optional constraint-solving module can val-
idate the feasibility of identified instances and tolerate some
false positives of the model. It guarantees the reliability of

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4911

detection results while enhancing the overall interpretability of
our approach, given that the formal analysis method is based
on rigorous mathematical foundations (e.g., SMT).

In conclusion, VulHunter holds evidence-based effectiveness
in terms of instance information extraction, ML-based model in-
ference, contract overall detection, and result feasibility verifica-
tion. Notably, the empirical results, including the performance
evaluation and example visualization researches in Section IV,
illustrate the performance superiority of VulHunter, which also
can demonstrate the above theoretical analysis and confirm its
detection effectiveness.

B. The Limitation of VulHunter

1) Detect Vulnerabilities Without Bytecode-Level Features:
The deep insight of VulHunter is to discover the vulnerable ex-
ecution sequences of the contract bytecode automatically. How-
ever, some vulnerabilities make contracts compile failed, so
that their bytecode cannot be generated and VulHunter cannot
detect them. For example, contracts with multiple constructors
(multiple-constructors, High severity) cannot be compiled. In
fact, we can discover them by reviewing the compiler’s error
messages without using VulHunter.

Moreover, EVM will remove or optimize some semantics
(e.g., the compiled version) after the contract compilation.
Thus, it is hard to detect the vulnerabilities that depend on
this information. For example, incorrect (solc-version, Info)
or multiple (pragma, Info) developer-specified compiled ver-
sions will affect the contract compilation. These defects are
suggested to be marked before the contract deployment. How-
ever, the contract compilation information is ignored in the
bytecode, so as to they are missed. To this end, we must
check the pragma [53] in combination with the source codes.
Also, the use of the uninitialized state variables (uninitialized-
state, High), storage variables (uninitialized-storage, High), lo-
cal variables (uninitialized-local, Medium), and function point-
ers (uninitialized-fptr-cst, Low) will cause unpredictable bugs
such as storage slot 0 to be overwritten. It is insufficient to detect
them in the bytecode based on whether the contract modifies
the value of a specific storage location, as it is unknown that
the operation was performed by the vulnerability. As described
in Section IV-B, we discover the uninitialized-state with an
inferior ACC of 84.11%. Thus, we need to detect it in the
source code by checking whether the variables (e.g., array) are
pushed a value before being assigned a storage value.

On the contrary, there are some complex vulnerabilities with
many forms that are difficult to be detected by methods such
as symbolic execution at the bytecode level, while it is easy
to ML techniques. For example, after the execution of criti-
cal functions (events-access, Low) and arithmetic operations
(events-maths, Low), throwing a log event is recommended
to notify a caller whether the execution is successful. They
can help users track the operation states off-chain and reduce
unnecessary errors, as well as wasted gas. However, there
are many operations that require adding reminders, such as
receiving Ethers. To detect these vulnerabilities, the symbol
executors or fuzzers are asked to summarize what kinds of

TABLE XVII
THE RESULTS OF ABLATION EXPERIMENTS FOR DETECTING

VULNERABILITIES THAT RELY ON MULTI-INSTANCE COOPERATION

Project Contract name Ori. Delformer Dellatter Delboth Other methods

RE RedExchange TP FP TN TN FPs such as Slither
RE StandardToken TP FP TN TN FPs such as DefectChekcer
RE PullPayment TP FP TN TN FPs such as Securify
TOD Vesting TP FP TN TN FNs such as Oyente
AS AceDapp TP FP TN TN FNs such as SMARTIAN
UCL MyConc TP FP TN TN FPs such as SmartCheck

Fig. 12. Contract with reentrancy-eth (access control with owners).

functions need to add reminders, and then detect them one by
one. By contrast, VulHunter can detect the vulnerability easily
by employing the Bi2-LSTM model to learn various features of
vulnerabilities automatically.

2) Identify Multiple-Instance Collaboration Vulnerabilities:
Since the methods such as symbolic execution and ML cannot
run the contracts actually, they are challenging to simulate the
cooperation of multiple execution sequences (i.e., instances),
such as tod vulnerability. Nonetheless, VulHunter is doing its
best to meet the following observations: (i) For the vulnerabili-
ties triggered by multiple instances, there is a critical instance in
the operations triggering the vulnerability, e.g., the last executed
instance. In order to explore the key instance which enables
VulHunter to identify the vulnerabilities, we performed the
ablation experiments. Table XVII shows the detection results
of VulHunter and other methods22, and the first example is
detailed in Section IV-E. As an another example depicted in
Fig. 12, the StandardToken contract holds two functions, i.e.,
“modifierowner()” and “withdrawBalance()”. Attackers can first
invoke the former function to change the owner of the contract,
and bypass the permission of the latter function to execute
the reentrancy attack. In fact, the latter function is the key to
triggering the vulnerability, and the former is the prerequisite
for executing the latter. Specifically, we detected the contract
with/without the former and latter functions, respectively. Fig.
12(a) and 12(b) visualizes the weight distribution of reentrancy-
eth detector for contracts with and without the former function.

22The detection details are illustrated in https://github.com/Secbrain/
VulHunter/tree/main/Verification/Ablation_experiments.

https://github.com/Secbrain/VulHunter/tree/main/Verification/Ablation_experiments
https://github.com/Secbrain/VulHunter/tree/main/Verification/Ablation_experiments

4912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

Due to the path invariance, i.e., the deletion of the former in-
stance does not change the latter instance, VulHunter accurately
identified the CALL instruction with the 99.96% of confidence
and located the defective source code “msg.sender.call.value()”
in both contracts. Particularly, VulHunter detected the contract
without the latter function as benign. These facts are applied
to all examples in Table XVII, which reflect that the latter or
last instance is most likely the basis for VulHunter identifying
multi-instance collaboration vulnerabilities.

As shown in Fig. 12(a), the input solved of vulnerable in-
stance is “msg.sender= 0”, i.e., the initial value of the stor-
age variable “owner”. This can be attributed to the constraint-
solving module not implementing the solved parameters associ-
ated with the multiple instances at present. In order to discover
these false positives for missing cooperation paths, e.g., the
detection in Fig. 12(b), we can continue to refine the module
to correct them, as detailed in Section IV-I. Also, they can be
eliminated by checking the defective source code statements or
key opcode subsequences based on the tools such as Manticore
[24], which are further illustrated in Section V.C.1.

(ii) During the training process, multiple instances of the
contract are consecutively trained under the bag-instance atten-
tion mechanism to update the state of hidden neurons, thereby
realizing the potential connection between numerous instances
leading to vulnerabilities. For example, invoking multiple func-
tions (i.e., instances) that operate the same state variables si-
multaneously (e.g., read and assignment) may cause different
results, that is, the tod vulnerability. This mechanism can notify
the model to adjust its judgments by feedbacking a larger loss
when it misses cooperative and malicious instances in vulner-
able contracts, so as to make it identify the problems. In this
way, multiple malicious instances in some vulnerable contracts
can be reported, which may cooperate to trigger vulnerabilities
based on their constraint-solved parameters.

C. The Improvement of VulHunter

1) Correcting Misreports for Executable Benign Instances:
According to the correct rules of symbolic execution-based
tools such as DefectChecker [20] that support the source code
and bytecode, we can employ them to check the vulnerable
bytecode instances. Also, similar to Maian [21], ETHBMC
[46] and Manticore [24], VulHunter can build a private chain
or simulated executor to create the transaction sequence to
execute the suspicious function with the parameters solved by
symbolic constraints, and then observe whether the results are
unexpected, thus discovering the false positives.

2) Available Optimizations for Symbolic Constraint Solvers:
Nowadays, as core components of the constraint-solving mod-
ule, SMT solvers (e.g., Z3 [42]) are widely used in symbolic
execution-based methods such as Oyente [4] and Manticore
[24]. Nevertheless, they still need to be improved for the ver-
ification of large-scale vulnerable contract paths, e.g., solving
complex symbolic constraints with higher efficiency. Although
some solvers such as Z3 can handle non-linear and floating-
point arithmetic, these unique capabilities introduce additional
time overhead, especially for longer constraints. Therefore,

more efficient and effective solving algorithms are required
for these operations in actual use. The available solutions can
be divided into three parts according to their implementation
stages.23 Specifically, (i) pre-processing path constraints be-
fore the constraint solving to reduce the constraint complexity,
including independent constraint slicing, constraint simplify-
ing, and redundant constraint elimination [64]. (ii) Optimizing
solver operations during the solving process, e.g., fast unsatis-
fiability check, assertion stack optimization, and multi-solver
ensemble [45]. (iii) Storing and reusing constraint results after
solving, such as constraint storage and incremental solving [65].

D. The Application Prospect of VulHunter

Similar to tools such as Oyente, VulHunter inspects contracts
based on source code or bytecode, and report the defective
source code statements with multiple vulnerabilities, as well
as their opcode subsequences. Also, the symbol constraints
of contract execution paths can be built and solved to verify
their feasibility, as detailed in Section IV-I. As another way of
contract protection, run-time monitoring and validation are ex-
plored by some methods (e.g., Sereum [66] and Contractguard
[27]). They identify and prevent transactions related to vulnera-
bilities during the contract execution. Similarly, VulHunter can
take the execution parameters of contract transactions as inputs,
and determine abnormal transactions by verifying them with
constructed symbolic constraints for vulnerabilities, guarantee-
ing the contract operation security.

Meanwhile, as mentioned in Section IV-I, it can deliver the
contract execution with inputs that meet the constraints of
vulnerable instances to restore their paths and trigger the vul-
nerabilities such as integer-overflow. Nevertheless, some vul-
nerabilities need to execute one path repeatedly or multiple
paths simultaneously. For example, the reentrancy-eth vulnera-
bility requires repeated execution of paths with the reentrant
call function, and its invoking method needs to be selected
by implementers based on the vulnerability knowledge, i.e.,
achieving the reentrant through the auxiliary contract with
the fallback function. Therefore, with the refinement of the
constraint-solving module, VulHunter can protect the contract
security throughout the entire lifecycle from development to
deployment in the future.24

VI. RELATED WORK

Source code based vulnerability detection. Numerous
formal verification-based methods have attempted to model the
Ethereum contract source code. Bhargavan [67] and Jiao [68]
suggest translating a subset of Solidity to F* and K framework
for formal verification. Also, Trail of Bits developed a static
analysis method called Slither with pre-defined rules to detect
problematic source codes [8]. Similarly, SmartCheck [7] was
proposed by SmartDec and it employs detection rules to deter-
mine contract vulnerabilities. Other arts include ZEUS [3] and

23The detailed methods are discussed in https://github.com/Secbrain/
VulHunter/tree/main/Solvers.

24More improvements and applications are discussed in https://github.com/
Secbrain/VulHunter/tree/main/Discussion.

https://github.com/Secbrain/VulHunter/tree/main/Solvers
https://github.com/Secbrain/VulHunter/tree/main/Solvers
https://github.com/Secbrain/VulHunter/tree/main/Discussion
https://github.com/Secbrain/VulHunter/tree/main/Discussion

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4913

NeuCheck [14]. However, only < 2% of contracts on Ethereum
open up their source code [18], [32], [33], which restricts the
usage of these methods.

EVM bytecode/opcode based vulnerability detection. The
contract bytecodes are visible to everyone, giving an opportu-
nity to evaluate the security of Ethereum contracts. Theorem
proving based methods. Grishchenko [69] and Hildenbrandt
[70] employed F* and K frameworks to transform EVM byte-
code in formal tools. Park et al. [71] presented a deductive
verification tool to detect the contract bytecode. While these
approaches enable formal machine-assisted proofs of various
contract security properties, none of them can provide a fully
automated analysis. As a result, other automated works based
on symbolic execution, etc., have been proposed to ensure the
contract correctness and security.

Symbolic execution based methods. Oyente [4], developed
by Melonport, builds the CFG from EVM bytecodes and uses
pre-defined logical rules to find potential contract problems. On
this basis, Osiris [18] improved the detection of integer bugs.
Mythril [9], developed by ConsenSys, combines symbolic exe-
cution and taint analysis for control flow inspection. Recently,
Chen et al. [20] proposed DefectChecker to detect contract de-
fects that can cause unwanted behaviors of Ethereum contracts.
Similar methods include ETHBMC [46], Honeybadger [23],
VerX [72], and SAILFISH [26].

Fuzzy testing based methods. ContractFuzzer [10] utilizes
random fuzzing and pre-defined oracles to find potential con-
tract attack vectors. Subsequently, sFuzz [73] and Echidna [74]
combined analysis engines (e.g., TeEher [25]) to detect contract
vulnerabilities. Recently, some works [11], [28] have an interest
in improving fuzzing. For instance, SMARTIAN [28] generated
critical transaction sequences of contracts for the fuzzer with
static and dynamic data-flow analysis.

Other methods. Securify [19] and Securify2.0 [75] devel-
oped by SRI System Laboratory (ETH Zurich) uses semantic
facts and predefined patterns based on EVM bytecode to detect
contract vulnerabilities. Wang et al. [27] proposed Contract-
guard to defend Ethereum contracts against intrusion attacks
by matching the benign contract execution paths. In addition,
TokenScope [33] defined bytecode rules to detect inconsistent
token behaviors with token standards.

In summary, the above methods rely on several expert-
defined patterns, rules, or oracles to detect contract vulnerabil-
ities. However, expert rules have the risk of errors, and it is
difficult to define bytecode-level patterns that cover complex
vulnerabilities completely. Also, as the number of contracts
increases rapidly, it is impossible for a few expensive experts
to design precise rules by reviewing all contracts.

AI exploration in vulnerability detection. Some arts use
ML to analyze contracts without expert knowledge, which can
be divided into two categories based on their input types.

Source code based machine learning. Zhuang et al. [12]
proposed a temporal message propagation network (TMP) to
detect contract source code. Similar methods include AME [49]
and CGE [5]. Other arts [13], [15], [16], [17] use ML models
such as CNN to learn the characteristics of contract source
code and further complete the error detection. These methods

are tailored for the source code and cannot analyze numerous
contracts with only bytecodes on Ethereum.

Bytecode based machine learning. Huang et al. [29] iden-
tified vulnerable contracts by measuring the bytecode vector
similarity. Wang et al. [30] proposed a system called Contract-
Ward for automated contract vulnerability detection with ML
algorithms such as XGBoost and RF. Besides, Hara et al. [76]
employed Word2Vec to identify honeypot contract bytecode.

Different from the aforementioned works, on the one hand,
VulHunter employs the MIL mechanism and Bi2-LSTM model
to detect contract runtime bytecode paths with contract la-
bels, making it not only discover various vulnerabilities (e.g.,
reentrancy-eth and timestamp) in an effective, efficient and
interpretable manner, but also identify defective source code
statements and vulnerable bytecode sequences. On the other
hand, it actively seeks fusion with symbolic execution to build
and solve path constraints, thus enabling developers to complete
the contract lifecycle more safely.

VII. CONCLUSION AND FUTURE WORK

We presented VulHunter, a novel ML-assisted detection
method for analyzing source code and bytecode/opcode of
Ethereum smart contracts without manual pre-defined rules. It
leverages the MIL mechanism to address the problem of classifi-
cation lacking fine-grained labels, and employs a self-designed
Bi2-LSTM model to capture the subtle features of benign and
malicious contracts for identifying vulnerable instances. Then,
it automatically locates the defective source code statements
by mapping the key opcodes with the ASM file, and validates
their feasibility via SMT solvers. The experiment results on five
datasets demonstrate that VulHunter can detect contract vulner-
abilities more accurately, efficiently, robustly, and flexibly than
SOTA methods. More importantly, compared with ML-based
arts, it can provide the defect positions and vulnerable instances
while producing classification results, enabling the developers
to eliminate the false positives and repair the vulnerabilities
more conveniently. In the future, the perfection of the constraint-
solve module will make VulHunter embrace bright scenarios,
such as contract vulnerability simulation and abnormal moni-
toring for multiple cooperative transactions.

REFERENCES

[1] T. T. A. Dinh et al., “BLOCKBENCH: A framework for analyzing
private blockchains,” in Proc. SIGMOD. New York, NY, USA: ACM,
2017, pp. 1085–1100.

[2] C. Badertscher et al., “Bitcoin as a transaction ledger: A composable
treatment,” in Proc. 37th CRYPTO (1). Santa Barbara, CA, USA:
Springer, 2017, vol. 10401, pp. 324–356.

[3] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing safety
of smart contracts,” in Proc. 25th NDSS. San Diego, CA, USA: Internet
Soc., 2018, pp. 1–15.

[4] L. Luu et al., “Making smart contracts smarter,” in Proc. CCS.
New York, NY, USA: ACM, 2016, pp. 254–269.

[5] Z. Liu et al., “Combining graph neural networks with expert knowledge
for smart contract vulnerability detection,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 2, pp. 1296–1310, Feb. 2023.

[6] Z. Li et al., “SmartFast: An accurate and robust formal analysis tool
for Ethereum smart contracts,” Empirical Softw. Eng., vol. 27, no. 7,
p. 197, 2022.

4914 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

[7] S. Tikhomirov et al., “SmartCheck: Static analysis of Ethereum smart
contracts,” in Proc. IEEE/ACM 1st Int. Workshop Emerg. Trends Softw.
Eng. Blockchain (WETSEB@ICSE). New York, NY, USA: ACM, 2018,
pp. 9–16.

[8] J. Feist et al., “Slither: A static analysis framework for smart contracts,”
in Proc. IEEE/ACM 2nd Int. Workshop Emerg. Trends Softw. Eng.
Blockchain (WETSEB@ICSE). New York, NY, USA: IEEE / ACM, 2019,
pp. 8–15.

[9] C. Software. “Security analysis tool for EVM bytecode.” GitHub. Ac-
cessed: May 1, 2021. [Online]. Available: https://github.com/ConsenSys/
mythril

[10] B. Jiang et al., “ContractFuzzer: Fuzzing smart contracts for vulnera-
bility detection,” in Proc. 33rd IEEE/ACM Int. Conf. Automated Softw.
Eng. (ASE). New York, NY, USA: ACM, 2018, pp. 259–269.

[11] J. He et al., “Learning to fuzz from symbolic execution with application
to smart contracts,” in Proc. CCS. New York, NY, USA: ACM, 2019,
pp. 531–548.

[12] Y. Zhuang et al., “Smart contract vulnerability detection using graph
neural network,” in Proc. IJCAI, 2020, pp. 3283–3290.

[13] H. Liu et al., “S-gram: Towards semantic-aware security auditing
for Ethereum smart contracts,” in Proc. 33rd IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE). New York, NY, USA: ACM, 2018,
pp. 814–819.

[14] N. Lu et al., “NeuCheck: A more practical Ethereum smart contract
security analysis tool,” Softw. Pract. Exp., vol. 51, no. 10, pp. 2065–
2084, 2021.

[15] Z. Gao et al., “SmartEmbed: A tool for clone and bug detection in smart
contracts through structural code embedding,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evolution (ICSME). Piscataway, NJ, USA: IEEE,
2019, pp. 394–397.

[16] H. Wu et al., “Peculiar: Smart contract vulnerability detection based on
crucial data flow graph and pre-training techniques,” in Proc. IEEE 32nd
Int. Symp. Softw. Rel. Eng. (ISSRE). Piscataway, NJ, USA: IEEE, 2021,
pp. 378–389.

[17] X. Yu, H. Zhao, B. Hou, Z. Ying, and B. Wu, “DeeSCVHunter: A deep
learning-based framework for smart contract vulnerability detection,” in
Int. Joint Conf. Neural Netw. (IJCNN). Piscataway, NJ, USA: IEEE,
2021, pp. 1–8.

[18] C. F. Torres et al., “Osiris: Hunting for integer bugs in Ethereum
smart contracts,” in Proc. ACSAC. New York, NY, USA: ACM, 2018,
pp. 664–676.

[19] P. Tsankov et al., “Securify: Practical security analysis of smart con-
tracts,” in Proc. CCS. New York, NY, USA: ACM, 2018, pp. 67–82.

[20] J. Chen et al., “DefectChecker: Automated smart contract defect detec-
tion by analyzing EVM bytecode,” IEEE Trans. Softw. Eng., vol. 48, no.
7, pp. 2189–2207, Jul. 2022.

[21] I. Nikolic et al., “Finding the greedy, prodigal, and suicidal contracts at
scale,” in Proc. ACSAC. New York, NY, USA: ACM, 2018, pp. 653–663.

[22] N. He et al., “EOSAFE: Security analysis of EOSIO smart contracts,” in
Proc. 30th USENIX Secur. Symp. Vancouver, Canada: USENIX Assoc.,
2021, pp. 1271–1288.

[23] C. F. Torres, M. Steichen, and R. State, “The art of the scam: De-
mystifying honeypots in Ethereum smart contracts,” in Proc. 28th
USENIX Secur. Symp. Santa Clara, CA, USA: USENIX Assoc., 2019, pp.
1591–1607.

[24] M. Mossberg et al., “Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts,” in Proc. 34th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE). Piscataway, NJ, USA: IEEE,
2019, pp. 1186–1189.

[25] J. Krupp and C. Rossow, “Teether: Gnawing at Ethereum to automat-
ically exploit smart contracts,” in Proc. 27th USENIX Secur. Symp.
Baltimore, MD, USA: USENIX Assoc., 2018, pp. 1317–1333.

[26] P. Bose et al., “SAILFISH: Vetting smart contract state-inconsistency
bugs in seconds,” in Proc. IEEE Symp. Secur. Privacy (S&P). Piscataway,
NJ, USA: IEEE, 2022, pp. 161–178.

[27] X. Wang, J. He, Z. Xie, G. Zhao, and S. Cheung, “ContractGuard:
Defend Ethereum smart contracts with embedded intrusion detec-
tion,” IEEE Trans. Services Comput., vol. 13, no. 2, pp. 314–328,
Mar.–Apr. 2020.

[28] J. Choi et al., “SMARTIAN: Enhancing smart contract fuzzing with
static and dynamic data-flow analyses,” in Proc. ASE. Piscataway, NJ,
USA: IEEE, 2021, pp. 227–239.

[29] J. Huang et al., “Hunting vulnerable smart contracts via graph embed-
ding based bytecode matching,” IEEE Trans. Inf. Forensics Security, vol.
16, pp. 2144–2156, 2021.

[30] W. Wang et al., “ContractWard: Automated vulnerability detection
models for Ethereum smart contracts,” IEEE Trans. Netw. Sci. Eng.,
vol. 8, no. 2, pp. 1133–1144, Apr.–Jun. 2021.

[31] “Solidity v0.5.0 breaking changes.” Solidity. Accessed: May 1,
2021. [Online]. Available: https://docs.soliditylang.org/en/v0.5.0/050-
breaking-changes.html

[32] “Contracts with verified source codes only.” Etherscan. Accessed: May
1, 2021. [Online]. Available: https://etherscan.io/contractsVerified

[33] T. Chen et al., “TokenScope: Automatically detecting inconsistent behav-
iors of cryptocurrency tokens in Ethereum,” in Proc. CCS. New York,
NY, USA: ACM, 2019, pp. 1503–1520.

[34] “Ethereum/Solc-js.” GitHub. Accessed: May 1, 2021. [Online]. Avail-
able: https://github.com/ethereum/solc-js

[35] M. J. Coblenz, “Obsidian: A safer blockchain programming language,”
in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. Companion (ICSE-C).
Piscataway, NJ, USA: IEEE, 2017, pp. 97–99.

[36] V. Team, “Vyper documentation.” GitHub. Accessed: May 1, 2021.
[Online]. Available: https://vyper.readthedocs.io/en/latest/

[37] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[38] “Ethereum/go-ethereum.” GitHub. Accessed: May 1, 2021. [Online].
Available: https://github.com/ethereum/go-ethereum

[39] F. Contro et al., “EtherSolve: Computing an accurate control-flow
graph from Ethereum bytecode,” in Proc. IEEE/ACM 29th Int. Conf.
Program Comprehension (ICPC). Piscataway, NJ, USA: IEEE, 2021,
pp. 127–137.

[40] P. Ouyang, S. Yin, and S. Wei, “A fast and power efficient architecture
to parallelize LSTM based RNN for cognitive intelligence applications,”
in Proc. 54th ACM/EDAC/IEEE Des. Automat. Conf. (DAC). New York,
NY, USA: ACM, 2017, pp. 63:1–63:6.

[41] C. W. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Hand-
book of Model Checking. New York, NY, USA: Springer, 2018, pp.
305–343.

[42] L. M. de Moura and N. S. Bjørner, “Z3: An efficient SMT solver,”
in Proc. TACAS, vol. 4963. Budapest, Hungary: Springer, 2008, pp.
337–340.

[43] B. Dutertre, “Yices 2.2,” in Proc. CAV, vol. 8559. Vienna, Austria:
Springer, 2014, pp. 737–744.

[44] C. W. Barrett et al., “CVC4,” in Proc. CAV , vol. 6806. Snowbird, UT,
USA: Springer, 2011, pp. 171–177.

[45] H. Palikareva et al., “Multi-solver support in symbolic execution,” in
Proc. CAV , vol. 8044. Saint Petersburg, Russia: Springer, 2013, pp.
53–68.

[46] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A bounded model
checker for smart contracts,” in Proc. 29th USENIX Secur. Symp. Boston,
MA, USA: USENIX Assoc., 2020, pp. 2757–2774.

[47] “Optim.” PyTorch. Accessed: Jan. 1, 2023. [Online]. Available: https://
pytorch.org/docs/stable/optim.html

[48] “Crossentropyloss.” PyTorch. Accessed: Jan. 1, 2023. [Online]. Availa-
ble: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.
html

[49] Z. Liu et al., “Smart contract vulnerability detection: From pure neural
network to interpretable graph feature and expert pattern fusion,” in Proc.
IJCAI, 2021, pp. 2751–2759.

[50] J. Chen et al., “Defining smart contract defects on Ethereum,” IEEE
Trans. Softw. Eng., vol. 48, no. 2, pp. 327–345, Jan. 2022.

[51] T. Durieux et al., “Empirical review of automated analysis tools on
47,587 Ethereum smart contracts,” in Proc. IEEE/ACM 42nd Int. Conf.
Softw. Eng. (ICSE). New York, NY, USA: ACM, 2020, pp. 530–541.

[52] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable
does not imply exploited,” in Proc. 30th USENIX Secur. Symp. Vancou-
ver, Canada: USENIX Assoc., 2021, pp. 1325–1341.

[53] “Ethereum/the solidity programming language.” GitHub. Accessed: May
1, 2021. [Online]. Available: https://github.com/ethereum/solidity

[54] R. Mengnan. “Oscillo 1.0.0.” Pypi. Accessed: May 1, 2022. [Online].
Available: https://pypi.org/project/oscillo/

[55] M. Rodler et al., “EVMPatch: Timely and automated patching of
Ethereum smart contracts,” in Proc. 30th USENIX Secur. Symp.
Vancouver, Canada: USENIX Assoc., 2021, pp. 1289–1306.

https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://docs.soliditylang.org/en/v0.5.0/050-breaking-changes.html
https://docs.soliditylang.org/en/v0.5.0/050-breaking-changes.html
https://etherscan.io/contractsVerified
https://github.com/ethereum/solc-js
https://vyper.readthedocs.io/en/latest/
https://github.com/ethereum/go-ethereum
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://github.com/ethereum/solidity
https://pypi.org/project/oscillo/

LI et al.: VULHUNTER: HUNTING VULNERABLE SMART CONTRACTS AT EVM BYTECODE-LEVEL VIA MULTIPLE INSTANCE LEARNING 4915

[56] F. O. Source. “Captum: Model interpretability for pytorch.” Captum.
Accessed: Jan. 1, 2023. [Online]. Available: https://captum.ai

[57] “Tuning parameters.” SKlearn. Accessed: May 1, 2021. [Online]. Avail-
able: https://scikit-learn.org/stable/modules/grid_search.html

[58] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted malicious traffic
in real time via flow interaction graph analysis,” in Proc. 30th NDSS.
San Diego, CA, USA: Internet Soc., 2023.

[59] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[60] S. Mallat, “Understanding deep convolutional networks,” Philos. Trans.
Roy. Soc. A, vol. 374, no. 2065, 2016, Art. no. 20150203.

[61] Z. Fu et al., “MILIS: Multiple instance learning with instance selection,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 958–
977, 2011.

[62] X. Shi et al., “Loss-based attention for deep multiple instance learning,”
in Proc. AAAI. New York, NY, USA: AAAI Press, 2020, pp. 5742–5749.

[63] M. Ilse et al., “Attention-based deep multiple instance learning,” in Proc.
ICML, vol. 80. Stockholm, Sweden: PMLR, 2018, pp. 2132–2141.

[64] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proc. ESEC/SIGSOFT FSE. New York, NY, USA:
ACM, 2005, pp. 263–272.

[65] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in Proc. OSDI. San Diego, CA, USA: USENIX Assoc., 2008, pp.
209–224.

[66] M. Rodler et al., “Sereum: Protecting existing smart contracts against
re-entrancy attacks,” in Proc. 26th NDSS. San Diego, CA, USA: Internet
Soc., 2019, pp. 1–15.

[67] K. Bhargavan et al., “Formal verification of smart contracts: Short paper,”
in Proc. PLAS@CCS. New York, NY, USA: ACM, 2016, pp. 91–96.

[68] J. Jiao et al., “Semantic understanding of smart contracts: Executable
operational semantics of solidity,” in Proc. IEEE Symp. Security Privacy
(IEEE S&P). Piscataway, NJ, USA: IEEE, 2020, pp. 1695–1712.

[69] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of Ethereum smart contracts,” in Proc.
POST , vol. 10804. Thessaloniki, GR: Springer, 2018, pp. 243–269.

[70] E. Hildenbrandt et al., “KEVM: A complete formal semantics of the
Ethereum virtual machine,” in Proc. IEEE 31st Comput. Secur. Found.
Symp. (CSF). Oxford, UK: IEEE Comput. Soc., 2018, pp. 204–217.

[71] D. Park et al., “A formal verification tool for Ethereum VM bytecode,”
in Proc. ESEC/SIGSOFT FSE. New York, NY, USA: ACM, 2018, pp.
912–915.

[72] A. Permenev et al., “VerX: Safety verification of smart contracts,” in
Proc. IEEE Symp. Secur. Privacy (S&P). Piscataway, NJ, USA: IEEE,
2020, pp. 1661–1677.

[73] T. D. Nguyen et al., “sFuzz: An efficient adaptive fuzzer for solidity
smart contracts,” in Proc. ICSE. New York, NY, USA: ACM, 2020, pp.
778–788.

[74] G. Grieco et al., “Echidna: Effective, usable, and fast fuzzing for
smart contracts,” in Proc. ISSTA. New York, NY, USA: ACM, 2020,
pp. 557–560.

[75] E. Z. SRI Lab. “Securify v2.0.” GitHub. Accessed: May 1, 2021.
[Online]. Available: https://github.com/eth-sri/securify2

[76] K. Hara et al., “Machine-learning approach using solidity bytecode for
smart-contract honeypot detection in the ethereum,” in Proc. IEEE 21st
Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-C). Piscataway, NJ,
USA: IEEE, 2021, pp. 652–659.

Zhaoxuan Li (Student Member, IEEE) is working
toward the Ph.D. degree with the State Key Labo-
ratory of Information Security (SKLOIS), Institute
of Information Engineering (IIE), Chinese Academy
of Sciences (CAS), Beijing, China. He has pub-
lished more than ten papers in international jour-
nals and conference proceedings, including IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, IEEE TRANSACTIONS ON

MOBILE COMPUTING, ESE, COMNETS, and ICWS.
His research interests include blockchain security, formal methods, traffic
identification, and privacy-preserving.

Siqi Lu received the M.Sc. degree in cryptography,
in 2014, and the Ph.D. degree from Information
Engineering University, Zhengzhou, China, where
he is currently working as a Lecturer. His research
interests include formal methods, cryptographic pro-
tocol, blockchain, and big data security.

Rui Zhang received the Ph.D. degree in information
security from Beijing Jiaotong University, China, in
2011. She is an Associate Researcher with SKLOIS,
IIE, CAS, China. She was a Postdoctor with the
Institute of Software, CAS, from 2011 to 2013. She
was a Visiting Scholar with the Georgia Institute of
Technology, from 2009 to 2010 and from 2018 to
2019. She has published more than 40 technical pa-
pers in popular journals and conference proceedings.
Her research interests include blockchain security
and applied cryptography.

Ziming Zhao is working toward the Ph.D. degree
with Zhejiang University, Hangzhou, China. He has
published more than five papers in international jour-
nals and conference proceedings, including IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, IEEE TRANSACTIONS ON

MOBILE COMPUTING, ESE, CCS, and AAAI. His
research interests include machine learning, traffic
identification, and privacy-preserving.

Rujin Liang received the B.Sc. degree in cryp-
tography from Information Engineering Univer-
sity, in 2020. He is working toward the M.D.
degree with Information Engineering University,
Zhengzhou, China. His research interests include
formal methods and blockchain security.

Rui Xue (Member, IEEE) is currently a Research
Professor and the Vice Director with the SKLOIS,
IIE, CAS. He serves as the Vice Director mem-
ber of Security Protocols Association at Chinese
Association for Cryptologic Research. He has pub-
lished more than 150 papers in popular journals
and international conferences. His research interests
include information security and privacy in data
and information systems, with a focus on public-
key encryption and cryptographic protocols. He is
a member of ACM.

https://captum.ai
https://scikit-learn.org/stable/modules/grid_search.html
https://github.com/eth-sri/securify2

4916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

Wenhao Li (Graduate Student Member, IEEE)
received the B.E. degree in computer science
and technology from Jinan University. He is
now working toward the doctoral degree with
IIE, CAS, and with the School of Cyber Se-
curity, University of Chinese Academy of Sci-
ences, Beijing, China. He has published more
than six papers in network security in interna-
tional journals and conference proceedings, includ-
ing IEEE/ACM TRANSACTIONS ON NETWORKING,
IEEE TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY, COMNETS, HPCC, and ICCS. His research interests include
computer network security, cybersecurity, and AI security.

Fan Zhang (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the Department of
Computer Science and Engineering, University of
Connecticut, Mansfield, CT, USA, in 2001, 2004,
and 2011, respectively. He is currently a Full Pro-
fessor with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China,
and also with the Alibaba–Zhejiang University Joint
Institute of Frontier Technologies, Hangzhou, China.
His research interests include system security, hard-
ware security, and cryptography.

Sheng Gao (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Xidian University, in 2014. He is currently an As-
sociate Professor with the School of Information,
Central University of Finance and Economics. He
has published over 30 articles in refereed interna-
tional journals and conferences. His current research
interests include data security, privacy computing,
and blockchain technology.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

