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Human-in-the-Loop Automatic Program Repair
Charaka Geethal , Marcel Böhme , and Van-Thuan Pham

Abstract—LEARN2FIX is a human-in-the-loop interactive pro-
gram repair technique, which can be applied when no bug
oracle—except the user who is reporting the bug—is available.
This approach incrementally learns the condition under which
the bug is observed by systematic negotiation with the user. In
this process, LEARN2FIX generates alternative test inputs and
sends some of those to the user for obtaining their labels. A
limited query budget is assigned to the user for this task. A
query is a Yes/No question: “When executing this alternative test
input, the program under test produces the following output; is
the bug observed?”. Using the labelled test inputs, LEARN2FIX
incrementally learns an automatic bug oracle to predict the
user’s response. A classification algorithm in machine learning
is used for this task. Our key challenge is to maximise the
oracle’s accuracy in predicting the tests that expose the bug
given a practical, small budget of queries. After learning the
automatic oracle, an existing program repair tool attempts to
repair the bug using the alternative tests that the user has
labelled. Our experiments demonstrate that LEARN2FIX trains
a sufficiently accurate automatic oracle with a reasonably low
labelling effort (lt. 20 queries), and the oracles represented by
interpolation-based classifiers produce more accurate predictions
than those represented by approximation-based classifiers. Given
the user-labelled test inputs, generated using the interpolation-
based approach, the GenProg and Angelix automatic program
repair tools produce patches that pass a much larger proportion
of validation tests than the manually constructed test suites
provided by the repair benchmark.

Index Terms—Automated test oracles, semi-automatic program
repair, classification algorithms, active machine learning.

I. INTRODUCTION

F INDING and fixing software bugs is a significant con-
cern in software development. The growing complexity

of software systems has made this task challenging. Therefore,
test-driven Automated Program Repair (APR) [1], [2] has be-
come an emerging research area. Recent advancements in APR
technologies have been able to repair large software systems
cost-effectively. However, the surveys of Gazzola et al. [1] and
Le Goues et al. [2] indicate that there are some challenges to
be addressed in APR. Among these challenges, finding a test
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suite from a single bug-revealing input for test-driven APR to
produce an accurate patch is an important one.

Test-driven automated program repair techniques require a
test suite (i.e. repair test suite): one or more failing tests expos-
ing the bug that should be fixed and passing tests indicating the
behaviour that should not be changed. Given a repair test suite,
APR changes the buggy program to pass all the tests. Thus, the
repair test suite has a significant impact on the quality of the
repair. Obtaining a repair test suite that leads to high-quality
repair is an interesting research problem in APR. The works of
Yu et al. [3], Yang et al. [4] and Xiong et al. [5] have focused on
this problem. All these approaches assume that a repair test suite
is given in advance. Next, some test generation techniques are
applied to augment the repair test suite in a manner improving
the correctness of the patch. However, in most scenarios, the
user reports a bug only with a single input exposing it (i.e., a
single failing test case). These approaches cannot be directly
used in such cases. Therefore, it is important to explore methods
to obtain high-quality repair test suites beginning from a single
input exposing a bug.

To address the problem mentioned above, we envision a
semi-automatic approach that generates a repair test suite by
systematically learning, refining, and confirming the condition
under which the bug is exposed from the human (user or devel-
oper). Our human-in-the-loop approach strategically asks the
user: “For the input �i, the program produces the output o; is
the bug observed?”. Even a user who has no experience with
programming can answer this kind of question if they know
the expected behaviour of the program. Based on the user’s
answers, our approach incrementally trains an automatic bug
oracle that can predict the user’s responses. The trained oracle
can be used to ask the user more strategically. The key challenge
in this setup is to maximise the oracle’s accuracy under a limited
number of queries to the user. The user-labelled test inputs are
used to develop the repair test suite for the bug.

In this paper, we introduce LEARN2FIX, a technique that
implements our approach for programs taking numeric inputs.
LEARN2FIX begins with one failing test case of the buggy pro-
gram. It uses mutational fuzzing [6] to generate alternative test
cases, active learning [7] with a classification algorithm to train
a classifier, and automatic program repair to fix the bug, using
the human-labelled tests as the repair test suite. We expect that
the test cases are sufficient to train a classifier as the oracle and
repair the bug.

LEARN2FIX uses mutational fuzzing to generate new test cases
in the “neighbourhood” of the given failing test. By exploring
the neighbourhood, we can identify the “boundaries” of the bug
and generate more failing tests in the “vicinity” of the given
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failing test. In mutational fuzzing, a test case is modelled as
a sequence of numbers (i.e., bytes or integers), and new test
inputs are generated by applying mutation operators at random
positions in the sequence.

The test cases generated by mutational fuzzing should be
human-labelled to be used in oracle learning. However, there
are two main issues associated with this setup. Firstly, send-
ing every generated input to the human would be impractical.
Secondly, bugs are rarely exposed; hence, passing test cases
are generated more frequently than failing test cases rendering
the oracle learning subject to the class imbalance problem [8]:
Given insufficient evidence about the bug (i.e. a relatively small
number of failing test cases), the trained oracle might classify
failing test cases with low accuracy. To address these issues, the
most reasonable strategy would be to present to the human test
cases having a higher probability of being labelled as failing.

As an automatic oracle is a binary classifier, a test case is
classified either as “passing” or “failing”. Thus, finding test
cases with a higher probability of being “failing” is meaningless
with respect to a single binary classifier whose prediction abil-
ity is unknown. Therefore, inspired by the approach of Holub
et al. [9], LEARN2FIX creates an unbiased committee of oracles
by applying slight changes to the training dataset that was used
to train the original oracle. Given the test case t, LEARN2FIX

asks each member of the committee to predict the label of t,
and estimates the probability that t is failing as the proportion
of members that classify t as “failing”. If this probability is
greater than a threshold θ̂ = 0.5, then t is presented to the
human. LEARN2FIX trains the automatic oracle applying a clas-
sification algorithm to the human-labelled test cases. Human la-
belling and oracle training happen incrementally in this process.
Through this process, we expect to maximise human-labelling
of failing tests and train highly accurate test oracles under a
limited query budget.

In this paper, we extend our previous approach and results
presented at ICST’20 [10] to investigate (i) the impact of choice
of classifier to represent the automatic oracle, (ii) the impact
of the choice of APR approach (search-based vs constrained-
based), and (iii) the impact of mislabelling on the oracle quality
and on the labelling effort. We also investigate (iv) the utility
of LEARN2FIX in a pilot user study.

In terms of the choice of classifier, we distinguish
interpolation-based and approximation-based approaches,
where interpolation-based approaches must classify the training
samples according to the given labels while approximation-
based approaches are allowed to classify those differently
to prevent overfitting. Previously, we used the Incremental
SMT Constraint Learner (INCAL) [11] as the classification
algorithm of LEARN2FIX and conducted experiments using
only GenProg [12] as the automated program repair tool.
In this extension, we evaluated which category of classifier
representation from interpolation-based and approximation-
based is most suitable for semantic bug automatic oracles.
Interpolation and approximation are the two main classifier
representations used in supervised machine learning [13], [14].

In terms of APR approach, we evaluate a constraint-based
based approach Angelix [15] in addition to the search-based,

generate-and-validate approach GenProg [12] under each
classification algorithm. This is to analyse whether LEARN2FIX

auto-generated test suites can be applied to constraint-based
repair. We chose Angelix [15], as it is a scalable multi-line
APR technique that follows core principles of constraint-based
repair.

Previously, we assumed that the user always provides the cor-
rect label for a test input generated by LEARN2FIX. However, in
real situations, the user can incorrectly label test cases in oracle
learning. Hence, we also analyse the impact of such noisy labels
on oracle learning and automated program repair. Moreover,
we conducted a pilot user study to study the applicability of
LEARN2FIX in an actual human-in-the-loop environment.

Our experimental results demonstrate that
I. LEARN2FIX can train a sufficiently accurate automatic test

oracle that can distinguish between passing and failing
test under a reasonably low labelling effort. For the major-
ity of subjects, the automatic oracles show more than 89%
accuracy. LEARN2FIX uses a maximum of 20 queries to the
user to train oracles with this much accuracy. Also, the
user would mostly label failing tests, even though failing
tests are rarely generated in the learning process (i.e., the
probability of labelling a failing test is greater than the
probability of generating a failing test). Thus, LEARN2FIX

significantly reduces the effort of finding the failing tests
of a bug.

II. LEARN2FIX shows better performance in terms of ora-
cle quality and human labelling effort with interpolating
binary classifiers than approximating binary classifiers.
Firstly, LEARN2FIX can train more accurate automatic
oracles with interpolation-based approaches than with
approximation-based approaches. Secondly, interpolation
based approaches reduce the effort of exploring failing
tests than approximation-based approaches. LEARN2FIX

can send most of generated failing tests to the human
with interpolation-based approaches. Compared to our
previous results [10], in which INCAL [11] was used as
the classification algorithm, we find significant improve-
ments in the oracle quality and probability of labelling
failing tests when the decision tree representation is used.
We believe that decision trees are able to more accurately
capture the condition under which the bug is exposed than
the other representations.

III. Both generate-and-validate and constraint-based program
repair approaches produce more accurate patches with
LEARN2FIX auto-generated repair test suites than with the
manual repair test suites given by Codeflaws. LEARN2FIX

auto-generated test suites through interpolation-based ap-
proaches show better performance in both APR ap-
proaches. In most repairable subjects, these test suites
lead to producing patches that pass all the repair valida-
tion tests.

IV. Incorrectly labelled tests negatively affect the quality
of the automatic oracles. Also, LEARN2FIX becomes
unable to send failing tests to the user more frequently.
Incorrectly labelled tests significantly affect the repair
quality of the auto-generated test suites. The reason is
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that test-driven APR assumes that the test cases in the
repair test suite contains correctly labelled test cases.
In addition, the lack of failing tests in repair test suites
further reduces the repair quality. Our pilot user study
demonstrates that LEARN2FIX would work in a real
human-in-the-loop environment.

In summary, the main contributions are as follows.
1) Active Oracle Learning. We introduce an active learn-

ing approach to derive an automatic oracle for a semantic
bug by systematically interacting with the human. In this
approach, we address the class imbalance problem by
maximising human labelling of failing tests.

2) Semi-Automatic Repair. We introduce the first human-
in-the-loop program repair technique, which systemati-
cally learns the condition under which the bug is exposed
from the user before attempting to repair the program.

3) Minimise Repair Overfitting. Repair over-fitting is a
key problem in automated program repair [2]. In this
work, we propose a systematic approach to generate re-
pair test suites that can mitigate repair overfitting.

4) Evaluation and ablation. We evaluate the quality
of the automatic oracles and the patches generated
by LEARN2FIX under approximation- and interpolation-
based classifiers as automatic oracle, under different
query budgets, and under APR tools implementing the
search-based and constrained-based approach.

5) Evaluation under mislabeling. Generally, in automatic
program repair as well as specifically in our human-in-
the-loop approach to APR, we assume that the gener-
ated test inputs are correctly labelled. We analyze what
happens if this assumption does not hold and how such in-
correctly labelled test cases affect the active oracle learn-
ing process, oracle quality and semi-automatic automated
program repair.

Reproducibility. To facilitate the reproducibility, we
make our implementation of LEARN2FIX, our collection data,
and scripts available at: https://github.com/charakageethal/
learn2fix-journal-ext/.

II. MOTIVATING EXAMPLE

We demonstrate the existing challenges of automatic pro-
gram repair using an example C program in Listing 1. This ex-
ample is taken from an experiment conducted by Russ Williams
[16]. In this experiment, 12 participants were asked to write pro-
grams to the Triangle Classification Problem, i.e., classifying
triangles as equilateral, isosceles, scalene, and invalid given the
lengths of the sides.

f_steve_classify function takes 3 inputs that
represent the lengths of the sides of a triangle and re-
turns an integer where the return value

• 1 means it is equilateral (all sides equal in length)
• 2 means it is isosceles (exactly 2 equal sides)
• 3 means it is scalene (no equal sides)
• 4 means it is an invalid triangle

Listing 1. Buggy triangle classification program.

1 int f_steve_classify(int a,int b,int c){
2 if(a<=0 || b<=0 || c<=0)
3 return 4; //Invalid
4 if(a<=c-b || b<=a-c || c<=b-a)
5 return 4; //Invalid
6 if(a==b==c) //BUG !
7 return 1; //Equilateral
8 if(a==b || b==c || c==a)
9 return 2; //Isosceles

10 return 3;
11 }

Functional bug. The C program in Listing 1 is Steve’s im-
plementation of triangle classification, which has a bug in Line
6. The programmer uses the C statement a==b==c (Line 6)
instead of a==b && b==c to check whether the triangle is
equilateral. Thus, given the input t= (2, 2, 2), Line 6 evaluates
it as follows.

(2==2==2) → ((2==2) ==2) → ((1)==2) → 0

The reason is that C represents boolean values True as
1 and False as 0, and thus 2==2 → 1 and 1==2 → 0.
Therefore, Listing 1 is incorrect for all equilateral triangles,
except 〈1, 1, 1〉, and for all isosceles triangles where c=1. For
test input t, Listing 1 returns 2 (isosceles), while we expect it to
return 1 (equilateral). This is a Functional bug or Semantic bug.
Due to the difference between the actual and expected output,
we identify t as a failing test case.

To identify t as a failing test case, we need to know the
expected, correct output that Listing 1 should produce for t.
Similarly, it is essential to know the expected, correct program
behaviour of the Program Under Test (PUT) to detect func-
tional bugs. Because of this reason, only the human (the devel-
oper or the user) can detect this category of bugs. However, bug
detection through human involvement has many limitations.
Therefore, developing techniques to learn automatic test oracles
for functional bugs has a significant importance.

Automatic oracle. The program in Listing 1 fails for all inputs
satisfying the following linear arithmetic constraint.

[(a= b) ∧ (b= c) ∧ (a �= 1) ∧ (o= 2)]

∨ [(a= b) ∧ (c= 1) ∧ (a �= 1) ∧ (o= 1)] (1)

where o= f_steve_classify(a,b,c) is the program
output. We call this an automatic oracle for Steve’s bug, as it
identifies whether the given test case exposes Steve’s bug.

Automatic Repair. Under a repair test suite containing a
sufficient number of passing and failing test cases, an automated
program repair tool [1] such as GenProg [12] or Semfix [17]
would first identify Line 6 as the faulty statement. The reason
is that most failing and least passing test cases actually execute
this line (Spectrum Based Fault Localization [1]). Next, the
repair tool would repair Line 6 such that all test cases are
passing. However, we assume that there exists only one failing
test case. Although Line 6 was detected as the faulty statement,
the produce patch may be plausible but incorrect [18]. As an
example, substituting “if” statement in Line 6 with if(a==2)

https://github.com/charakageethal/learn2fix-journal-ext/
https://github.com/charakageethal/learn2fix-journal-ext/
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Algorithm 1 LEARN2FIX Active Oracle Learning

Input: Buggy program (P), Failing test case (f = 〈�i, o〉)
Input: Human oracle (H), Maximum labelling queries (L)

1: Failing test cases T✗ ←{f}
2: Labelled test cases T ←{f}
3: Automatic Oracle O ← TRAIN_CLASSIFIER(T )
4: while (|T |< L) and not timed out do
5: Failing test case f

′ ← RANDOM_SELECT(T✗)
6: Generate test case t← MUTATE_FUZZ(f

′
)

7: if DECIDE2LABEL(t,O) = true then
8: Human label h=H(t)
9: if h= fail then

10: Failing test cases T✗ ← T✗ ∪ {t}
11: end if
12: Labelled test cases T ← T ∪ {t}
13: Automatic Oracle O ← TRAIN_CLASSIFIER(T )
14: end if
15: end while

would turn the test case 〈2, 2, 2〉 into a passing one. However,
this patch is overfitting and actually introduces a different bug.

Automatic oracle. If there was an automatic oracle, more
failing test cases could be explored to generate a high-quality
repair test suite. However, due to the necessity of expected
program behaviour, only the user reporting the bug or the de-
velopers are the only oracles for functional bugs. Considering
these limitations, we present an active learning approach to
automatically derive automatic oracles similar to the one in
Equation (1) for functional bugs.

III. LEARN2FIX METHODOLOGY

Given a buggy program (P), we assume that there are one
failing test case (f ) and the human (H) to answer whether a
test is passing or failing. A test case t is of the form t= 〈�i, o〉,
where�i is a vector of input variable values, and o= P(�i) is the
output of P for�i. Also, we assume that�i has a fixed length, and
the human can answer at most L queries.

Algorithm 1 shows an overview of LEARN2FIX. The algorithm
maintains two sets of test cases: T for all human labelled test
cases and T✗ for human labelled failing test cases (T✗ ⊆ T ).
Firstly, using the given failing input (f ), LEARN2FIX trains an
automatic oracle (O) by a classification algorithm. As trained
with a single failing input, O predicts everything as failing at
this point.

More training data is required to improve the accuracy of
the automatic oracle (O). Hence, LEARN2FIX randomly selects a
failing test case (f

′
) from T✗ and applies arithmetic mutations to

generate a new test case (t) (Line 6 - Algorithm 1). t is presented
to the human oracle (H) for labelling if DECIDE2LABEL returns
true (Line 7 - Algorithm 1). Next, t is added to T , and
the automatic oracle (O) is retrained with T (Line 13). if t
is a failing test case, it is added to T✗ (Line 9). This process
continues until the maximum number of labelling queries (L)
is reached, or a timeout occurs.

A. Generating More Failing Test Cases

A set of human labelled passing and failing test cases
are required to train a classifier as an automatic test oracle.
LEARN2FIX uses mutational fuzzing [6] for this task. Because
of numeric inputs, LEARN2FIX applies arithmetic mutations
[19] to f to generate new test cases. RANDOM_SELECT(T ) in
Algorithm 1 (Line 5) first randomly selects a seed failing test
case f ′ ∈ T✗. Then MUTATE_FUZZ applies arithmetic mutation
operations (e.g. add one, subtract one, multiply by ten etc.) to
f ′, which results in a new test case t. t= 〈�i′, o′〉 where �i′ is
the input vector and o′ = P(�i′). This process generates new test
cases in the “vicinity” of f .

The ability of mutational fuzzing to generate more test cases
in the neighbourhood of a failing helps to collect more evidence
of the location and behaviour of the bug. This approach has
been proven to be successful in the coverage-based, mutational
fuzzer American Fuzzy Lop (AFL) [20], which generates more
crashing inputs by mutating a seed crashing input. The neigh-
bourhood test cases generated given by mutations demonstrate
how the program’s behaviour changes from buggy to correct
and vice versa, under small changes to the input. Also, muta-
tional fuzzing has a higher probability of generating failing test
cases compared to generational fuzzing [21].

Example: t✗ = 〈〈2, 2, 2〉, 2〉 is a failing test case of the mo-
tivating example in Listing 1. For illustration, assume that for
each position a in�i, we employ one of the three mutation oper-
ators uniformly chosen at random: �i′[a] =�i[a], �i′[a] =�i[a] + 1,
or �i′[a] =�i[a]− 1. The following test cases are generated when
actually running the mutational fuzzer on t✗.

〈〈2, 2, 1〉, 1〉? 〈〈1, 3, 3〉, 2〉?
〈〈1, 3, 2〉, 4〉? 〈〈3, 3, 1〉, 1〉?
〈〈2, 1, 3〉, 4〉? 〈〈3, 3, 3〉, 2〉?
〈〈2, 1, 1〉, 4〉? 〈〈1, 2, 3〉, 4〉?
〈〈3, 2, 2〉, 2〉? 〈〈2, 3, 2〉, 2〉?

Three out of ten cases generated above expose Steve’s error (if
labelled byH), i.e., 〈〈2, 2, 1〉, 1〉, 〈〈3, 3, 1〉, 1〉, and 〈〈3, 3, 3〉, 2〉.

In contrast to mutational fuzzing, generational fuzzing gen-
erates random inputs that adhere to the input format of the
system under test [21]. The inputs (a, b and c) in Listing
1 can take any integer values specified by C programming
language. Assume that we randomly generate three integers in
the range [−263, 263 − 1]. In this approach, the probability of
finding a test case representing an isosceles triangle with c= 1
or an equilateral triangle with c �= 1 is extremely low. Thus,
mutational fuzzing has a higher probability of generating failing
test cases than generational fuzzing.

B. Training a Classifier as a Test Oracle

To compute the automatic oracle, LEARN2FIX trains a binary
classifier based on a human labelled training data set. The func-
tion TRAIN_CLASSIFIER uses the same classification algorithm
in both Algorithm 1 and Algorithm 2. We consider the input (�i)
and the corresponding program output values (o) of a test case
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Algorithm 2 DECIDE2LABEL

Input: Unlabelled test case t?, Automatic Oracle O
Input: Committee Size S

1: Let T be training test cases that O has been trained
2: Predicted label LO ←O(t?)
3: if LO = Failing then
4: return true
5: else
6: votes = 0
7: for i← 1 to S do
8: Generated test case t′? = MUTATE_FUZZ(t?)
9: t′✓ ← Assume that t? label as Passing

10: t′✗ ← Assume that t? label as Failing
11: Hypothetical Oracle O✓ ← TRAIN_CLASSIFIER(T ∪

{t′✓})
12: Hypothetical Oracle O✗ ← TRAIN_CLASSIFIER(T ∪

{t′✗})
13: if O✓(t?) = Failing or O✗(t?) = Failing then
14: votes ← votes + 1
15: end if
16: end for
17: ̂θ = votes

2×S

18: if ̂θ ≥ 0.5 then
19: return true
20: else
21: return false
22: end if
23: end if

as the features for the classification algorithm. We consider the
labels Passing and Failing as the two classes to be predicted.
The function TRAIN_CLASSIFIER uses test cases labelled by the
human (T ) to train a binary classifier as the automatic oracle
(O). Given a test case, an automatic oracle (O) predicts the
label based on the input (�i) and corresponding buggy program
output (o).

Usually, a classification algorithm requires at least one data
point from each class. However, human-labelled test suites
(training test suites) containing only failing tests can be gener-
ated in oracle learning. If so, we assume that TRAIN_CLASSIFIER

returns a classifier that predicts every test case as failing.
There are many binary classification algorithms in machine

learning to work with numeric data. Based on the classifier
representation, classification algorithms can be divided into two
categories: interpolating [13] and approximation [14].

Interpolation-based classification algorithms explore a
model that exactly fits the training data. Some classification
algorithms under this category infer a set of constraints
fitting the given data points. AdaBoost and Decision Tree are
examples of such algorithms. The work of Braga et al. [22]
uses AdaBoost algorithm to develop test oracles. Also, the
survey paper of Briand et al. [23] suggests that decision trees
are effective in modelling the failure condition of a bug. Due
to these reasons, we evaluated the performance of AdaBoost
and Decision Tree classification algorithms with LEARN2FIX.
In addition, we selected Incremental SMT Constraint Learner

(INCAL) [11], which generates interpolation binary classifiers
as Satisfiability Modulo Theory (SMT) [24] formula. Symbolic
Execution [25] uses SMT constraints to group the inputs that
exercise a particular path. Thus, SMT formula can be used to
group the failing and passing inputs of a bug. For this reason,
we selected INCAL [11] as a classification algorithm for our
experiments.

Approximation-based classification algorithms approximate
a model for the training data as minimizing the empirical error.
Thus, the model does not exactly fit the training data. Artificial
Neural Networks belong to this category. The work of Jin
et al. [26] uses two artificial neural network setups to generate
automatic test oracles. One setup has two hidden layer with
20 and 5 neurons (MLP(20,5)). The other setup has only one
hidden layer with 20 neurons (MLP(20)). We selected these
neural network configurations for our experiments. In addition,
we chose Support Vector Machine and Naïve Bayes under
approximation-based classification algorithms. Support Vector
Machine is an algorithm that can be used in high-dimensional
or infinite-dimensional space [27]. Naïve Bayes is based on
the Bayes theorem and able to learn an accurate classifier with
relatively less training data [27]. These two algorithms have
been applied in different domains; however, their applicability
to test oracle automation has not been explored.

The selected set of classification algorithms is as follows.
i. Incremental SMT Constraint Learner (INCAL)

ii. Decision Tree (DT)
iii. AdaBoost (ADB)
iv. Support Vector Machine (SVM)
v. Naïve Bayes (NB)

vi. Neural Networks / Multi-Layer perceptrons (MLP)
We experimentally evaluate the performance of these algo-

rithms to know which category of classifier representation (in-
terpolation or approximation) is most suitable for LEARN2FIX.
Moreover, we explore the best-performing classifier represen-
tation with LEARN2FIX.

C. Maximising the Probability of Labelling Failing Test Cases

As the minority class is failing, LEARN2FIX improves the
classifier’s ability to identify failing test cases, using the limited
human queries. For this purpose, LEARN2FIX maximises the
probability of labelling failing test cases in oracle learning. This
strategy helps to address the class imbalance problem. To max-
imise the probability of labelling failing test cases, LEARN2FIX

selects test cases with higher failure likelihood. Algorithm 2
(DECIDE2LABEL) describes this process. This method has been
influenced by the work of Holub et al. [9]. Following Holub’s
method, DECIDE2LABEL estimates the failure likelihood based
on the current status of the automatic oracle (O).

The key concept in Holub’s method is to select the Most
Informative Unlabelled Point (MIUP) for labelling based on
the current status of the classifier. Holub’s method considers the
data point with the Minimum Expected Entropy (MEE) [9] as
the MIUP. In finding the data point with MEE, Holub’s method
estimates the look-ahead probability of each class based on a
committee of classifiers with hypothesized labels [9].
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The DECIDE2LABEL-algorithm sends test cases predicted as
failing by the automatic oracle being trained (O) for human
labelling. If the given test case (t?) is actually failing, human
labelling of t? allows O to learn more about the failure. If t?
is actually a passing test case, it implies that O has not been
trained correctly. In this case, LEARN2FIX rectifies O by human
labelling of t? and using it in training.

If O predicts t? as passing, the DECIDE2LABEL-algorithm
calculates the probability that O predicts t? as failing. Intu-
itively, there is an equal probability of classifying a test case
into either class. LEARN2FIX estimates the probability that O
predicts t? as failing one-step ahead. Following Holub’s look-
ahead probability estimation method [9], the DECIDE2LABEL-
algorithm constructs a committee of automatic oracles (Lines
7–16) for this task.

In creating the oracle committee, first, the DECIDE2LABEL-
algorithm generates a new test case (t′?) by applying mutational
fuzzing to t?. The new test input t′? is hypothetically labelled
as passing (t′✓) (Line 9). Then, a new hypothetical oracle (O✓)
is trained with the training set T ∪ {t′✓} (Line 11, T : The
initial training set of O). The same test case is hypothetically
labelled as failing (t′✗)(Line 10). Another hypothetical oracle
(O✗) is trained with the training set T ∪ {t′✗} (Line 12). The
DECIDE2LABEL-algorithm generates 2 hypothetical oracles for a
newly generated test case. Thus, in S fuzzing iterations, a com-
mittee containing 2× S automatic oracles is generated. Each
hypothetical oracle created by adding a hypothetically labelled
test case to the initial training (T ) set demonstrates a possible
status of the automatic oracle (O) one step ahead. As each
newly generated test case (t?) is hypothetically labelled as both
passing and failing contributing to two different hypothetical
oracles, the oracle committee overall is unbiased.

Finally, the unlabelled test case t? is presented to the oracle
committee, and the occurrences that t? is predicted as failing,
i.e., fail_votes, are counted (Lines 11–12). As there are 2× S
oracles in the committee, the probability of labelling t? as
failing is estimated by ̂θ = fail_votes

2×S . As the oracles in the com-

mittee are some possible future states of O, ̂θ is a look-ahead
estimation of the probability of failing. The DECIDE2LABEL-
algorithm considers that test cases with ̂θ ≥ 0.5 have higher
failure likelihood and sends those for human labelling (Line 18).
According to the oracle committee, if t? has a higher failure
probability, it implies that the automatic oracle (O) has not
been trained adequately to identify the failing test cases. Thus,
labelling such test cases and using them in training rectify the
automatic oracle (O).

D. Automatic Program Repair

Algorithm 1 returns a human-labelled test suite T , containing
both passing and failing tests, as an additional outcome of the
oracle learning. The labelled test suite T is used as a repair test
suite with a test-driven automated program repair (APR) tool
[12], [15] to repair the buggy program (P).

To generate a fix for the given buggy program, test-driven
APR techniques use a test suite containing passing and failing
test cases. The failing tests exercise the bug to be fixed, while the

passing tests indicate the behaviour that should not be changed.
This test suite is known as repair test suite. Given the repair test
suite, the APR technique changes the buggy program to pass all
the test cases. According to Le Goues et al. [2], Heuristic repair
and Constrained-based repair are the two main categories of
test-driven automated program repair techniques. In common,
these two categories use the repair test suite for fault localiza-
tion [28], i.e., finding the code locations that are likely to be
buggy.

Heuristic / generate-and-validate techniques iteratively gen-
erate and validate repair candidates, modifying the given buggy
program. To generate repair candidates, these techniques apply
syntactical modifications to the given buggy program. The ab-
stract syntax tree (AST) representation of the buggy program
is used in this process. To reduce the search space and guide
the syntactical modifications, heuristic repair techniques use the
information obtained in the fault localization. After a repair
candidate is generated, the validation step calculates the number
of tests in the repair test suite passed by the candidate. The
generate and validate process continues until a repair candidate
passing all the tests in the repair test suite is found. GenProg
[12] is a popular heuristic repair technique that uses an extended
form of genetic programming [29] to generate repair candi-
dates.

Constraint-based repair techniques explore a repair con-
straint that the patched program should satisfy, rather than
modifying the program to generate patches [1], [2]. The patch
(typically a code segment) to be generated is considered as
an unknown function. The fault localization indicates where
the patch should be placed. The properties about the unknown
function are extracted through symbolic execution [25] or other
methods; these properties constitute the repair constraint. A
patch for the bug is explored by finding a solution to the repair
constraint. This is usually achieved by search or constraint
solving. Angelix [15] is an example of constraint-based repair
technique.

IV. EXPERIMENTAL SETUP

We empirically evaluated the different aspects of LEARN2FIX.
Firstly, we evaluated the quality of the automatic oracles and
the human effort involved in the learning process. Secondly, we
analysed how these two factors vary across different classifier
representations. Thirdly, we examined the applicability of the
test suites generated in oracle learning (T - Algorithm 1) to
automated program repair. Finally, we analysed the impact of
mislabelled tests on the oracle quality, human effort and auto-
mated program repair. The research questions in Section IV-A
were used to guide these experimental tasks.

A. Research Questions

RQ.1. (Oracle Quality) How accurate are automatic ora-
cles trained by LEARN2FIX in classifying test cases
in the repair benchmark?

RQ.2. (Labelling Effort) What is the proportion of gener-
ated test cases that are sent to the human oracle for
labelling? Does the probability of sending failing test
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TABLE I
TOP 10 DEFECT CLASSES (OUT OF 34) OF THE 552 CODEFLAWS SUBJECTS SELECTED FOR THE EXPERIMENTS

Defect Class Description Example
No. of
Subjects

DCCR
Replace Constant
with variable/constant

- for(i=n+1;i<=90;i++)
+ for(i=n+1;i<=100;i++) 71

OILN
Tighten condition or
loosen condition

- if(t%2==0)
+ if(t%2==0 && t=2) 64

ORRN Replace relational operator
- if(sum>n)
+ if(sum>=n) 59

HIMS
Insert multiple non-branch
statements

+ frepoen("input.txt","r",stdin);
+ freopen("input.txt","w",stdout); 52

HOTH
Other higher order
defect classes

- scanf("%s",h);
+ for(i=0;i<71;i++)
+ scanf("%c",&h[i]);

48

OAIS
Insert / Delete arithmetic
operator

- max += days%2
+ max += (days%7)%2 47

STYP
Replace variable declaration
type

- int a;
+ long a; 37

DRVA
Replace a read variable
with a variable/constant

- for(i=0;i<l;i++)
+ for(i=0;i<m;i++) 28

SMOV Move statement
- scanf("%d",&i);
scanf("%s",&a);

+ scanf("%d",&i);
19

DRWV
Replace a write variable
with a variable

- b=0;
+ a=0; 17

cases indeed increase versus a random choice of test
cases?

RQ.3. (Oracle Representation) Which category of classi-
fier representation (interpolation or approximation)
works better with LEARN2FIX?

RQ.4. (Patch Quality) How does the quality of patches
produced through LEARN2FIX’s automatically gener-
ated test suites compare to the quality of patches pro-
duced through the manually constructed test suites
given by the benchmark? How many subjects can
be repaired, and what is the proportion of validation
test cases that the patched program passes? How
does the patch quality vary across different classifier
representations?

RQ.5. (Impact of Noisy Labels) How do incorrectly
(noisy) labelled test cases affect the oracle quality,
human effort and patch quality?

B. Experimental Subjects

To evaluate LEARN2FIX and answer the research questions,
we selected 552 programs from Codeflaws [30] benchmark
according to the following criteria.

1) There should be a sufficiently large number of programs
that are algorithmically complex.

2) There should be a diverse set of real world defects that
cause functional bugs, i.e., programs produce incorrect
or unexpected output for certain inputs. There should be
one functional bug for each subject.

3) For each subject, there should be a golden version, i.e.,
a program that produces the expected, correct output for
an input. For a given input we simulate the Human oracle
(H) by comparing the subject’s (buggy program’s) out-
put with its golden version’s output. If both outputs are

different, the human label of the test case is considered
as failing.

4) For each subject, there should be a manually constructed
and labelled repair test suite and repair validation test
suite. We use both test suites combined to evaluate oracle
quality. The repair test suite is used to generate a patch
with the automated program repair tool, and the repair
validation test suite is used to evaluate the patch.

5) For each subject, there should be at least one failing test
case in the repair test suite, i.e., a test input for which the
buggy program and its golden version produce different
outputs. Otherwise, LEARN2FIX cannot be started.

6) For each subject, there should be test inputs having a con-
stant number of numeric values. For each such test input,
the program should produce a numeric output. Otherwise,
the classification algorithms cannot be applied to learn the
automatic oracle (O).

Codeflaws consists of 3902 buggy programs that belong to
40 real-world defect classes. These programs have been written
in C programming language and extracted from the Codeforces
online database. For each buggy program, there is a manually
constructed and labelled repair test suite and repair validation
test suite. In this benchmark, the repair validation test suites are
named held-out test suites. Tan et al., the authors of Codeflaws,
claim that “to our best knowledge, in automatic program repair
evaluation, our benchmark has the largest number of real defects
obtained from the largest number of subject programs to date”
[30].

The selected subjects from Codeflaws for the experiments
belong to 34 defect classes (Table I). Each program takes a fixed
number of numeric inputs and returns a numeric output. Fig. 2
shows the distributions of the manually constructed test cases,
given by Codeflaws, of the selected subjects. In most subjects,
there are more passing test cases than failing test cases (Fig. 2b).
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Fig. 1. Workflow of LEARN2FIX.

We ignored IntroClass and ManyBugs benchmarks [31], as
those do not satisfy our selection criteria. ManyBugs con-
tains programs taking complex and non-numeric inputs, which
violates our sixth criterion. The programs taking numeric inputs
in IntroClass have very simple functions (e.g. return the smallest
of three numbers), which does not satisfy the first criterion.

C. Automated Program Repair Tools

We selected GenProg [12] and Angelix [15] as the automated
program repair (APR) tools in the experiments. Several studies
related to APR have considered these two tools as the state-of-
art APR tools (e.g. Le Goues et al. [2], Yi et al. [32], Motwani
[33] and Le et al. [34]). GenProg is a Heuristic / Generate-
and-validate repair tool, whereas Angelix is a Constraint-based
repair tool [2]. These APR tools have shown their capability
to repair large programs cost-effectively. Also, these both Gen-
Prog and Angelix are already set up with Codeflaws benchmark.

D. Setup and Evaluation

First, we select one from the algorithms listed in Section III-B
as the classification algorithm of LEARN2FIX. For each program
subject, we randomly select a failing test case from the repair
test suite as the input to LEARN2FIX. After LEARN2FIX generates
the automatic oracle, we apply it to predict the labels of the test
cases in the manually constructed test suite (i.e., repair test suite
+ held-out test suite) given by the benchmark.

A human-labelled test suite (T -Algorithm 1), including both
passing and failing test cases, is generated in this process. The
failing test cases in T do not contain the expected, correct
outputs for the inputs. We replace the output of each failing test
case with its expected output to convert T to a repair test suite.
We call this repair test suite auto-generated repair test suite.
Then, we attempt to repair the program with the auto-generated
repair test suite and the manually constructed repair test suite,
given by the benchmark, separately using an APR technique
in Section IV-C. Under each test suite, if the APR technique
generates a patch, we count the number of tests in the held-out
test suite (validation test suite) passed on the patched program.

Fig. 1 shows the detailed workflow of this process. We repeat
this process for each classification algorithm (Section III-B) and

for each automated program repair technique (Section IV-C).
The results of the best-performing classification algorithm in
oracle learning are used to answer RQ.1 and RQ.2. To answer
RQ.3, we use the data collected under all the classification algo-
rithms. The data collected under the program repair experiments
are used to answer RQ.4.

To answer RQ.5, we consider 5%, 10% and 20% of the
allocated human queries (i.e., maximum labelling effort-L) are
incorrectly answered. The incorrectly labelled test cases are
introduced at random positions in active oracle learning. Under
each noise level above, we repeat the experiments related to
RQ.1, RQ.2 and RQ.4.

For our experiments, we fixed the following values.
• Timeouts. In each subject, we allocated 10 minutes per

each for oracle learning (Algorithm 1) and auto-generating
a patch.

• Committee Size. We set the size of the oracle committee
to 20 members (i.e., S = 10 in Algorithm 2).

• Maximum Labelling Effort. We set the maximum labelling
effort to the human oracle (O) to 20 (i.e., L= 20 in Al-
gorithm 1).

Related to RQ.1, comparing the predicted labels by the auto-
matic oracle (O) with the actual labels of the test cases, we cal-
culated Accuracy (Equation (2)) Recall - Failing (Equation (3)),
Recall - Passing (Equation (3)), Precision-Failing (Equation
(5)) and Precision-Passing (Equation (6)). In some experiments,
we considered F-scores (Equation (7)) of passing and failing
tests. It can indicate the variations of both precision and recall.

Accuracy =
Number of correctly predicted tests

Number of test inputs in the test suite
(2)

Recall-Failing =

Number of correctly predicted

failing tests

Number of failing inputs

in the test suite

(3)

Recall-Passing =

Number of correctly predicted

passing tests

Number of passing tests

in the test suite

(4)

Precision-Failing =

Number of correctly predicted

failing tests

Total number of tests

predicted as failing

(5)

Precision-Passing =

Number of correctly predicted

passing tests

Total number of tests

predicted as passing

(6)
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Fig. 2. Manually constructed test suites of Codeflaws. On the left (a): Distribution of passing and failing tests and the number of total tests. In the middle
(b): Failing tests to passing tests ratio. On the right (c): Statement coverage of held-out test suites in buggy and golden versions of the selected subjects.

F-Score =
2× Precision × Recall

Precision + Recall
(7)

We have identified that the labelled test suites of most se-
lected subjects from Codeflaws have more passing test cases
and fewer failing test cases. Thus, the Class Imbalance Problem
[8] impacts the evaluation. For this reason, Accuracy is not a
good metric of oracle quality. For example, an oracle predicting
everything as passing would be 90% accurate for a test suite
containing 90% of passing test cases. Therefore, we report Ac-
curacy, Recall-Failing, Recall-Passing, Precision-Failing and
Precision-Passing. Also, these metrics help to evaluate the ef-
fectiveness of the techniques that LEARN2FIX uses to deal with
the class imbalance problem (Sections III-C and III-C).

To address RQ.2, we measured the following.
1. The proportion of generated tests that are labelled (Equa-

tion (8)).
2. The proportion of failing tests that are labelled from the

generated (Equation (9))
3. The probability to generate a failing test (Equation (10))
4. The probability to label a failing test (Equation (11).

Proportion of generated

tests labelled
=

Number of tests labelled

Number of tests generated
(8)

Proportion of failing

tests labelled
=

Number of failing tests labelled

Number of failing tests generated
(9)

Probability to generate

a failing test case
=

Number of failing tests generated

Total number of tests generated
(10)

Probability to label

a failing test case
=

Number of labelled failing tests

Total number of labelled tests
(11)

One objective of LEARN2FIX is to reduce the number of
labelling queries to the human while maximising the probability

of human labelling a failing test case. Equation (10) indicates
the probability of generating a failing test case in oracle learn-
ing. This is also the probability that the human would find a
failing test only by mutational fuzzing and without LEARN2FIX.
We compare this with the probability of labelling a failing test
case (Equation (11)). If the probability of labelling a failing test
case is greater than the probability of generating a failing test
case, the human needs less effort than usual to explore failing
test cases. Equation (9) assesses the capability of LEARN2FIX

to select failing test cases given by mutational fuzzing. By
comparing this with the proportion of generated tests that are
labelled, we can identify how effectively LEARN2FIX utilizes the
given query budget to explore failing tests.

For exploring answer to RQ.3, we computed the same met-
rics used in RQ.1 and RQ.2 for each classification algorithm.

Regarding RQ.4, we measured the following for the manual
test suite given by the benchmark and the auto-generated test
suite by LEARN2FIX.

i. Repairability: The proportion of the subject that can be
repaired by the APR tool (Equation (12))

ii. Validation Score: The proportion of validation test cases
that the patched program passes (Equation (13)).

Repairability =

Number of subjects that were

successfully repaired

Total number of subjects
(12)

Validation Score =

Number of repair validation tests passed

on the patched program

Total number of tests in the

repair validation test suite
(13)

In addition to these metrics, we computed the statement cover-
age and composition (i.e., total number of tests, passing and
failing tests) of the manual and auto-generated test suites to
support our analysis. In each APR technique, we examined
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Fig. 3. LEARN2FIX oracle quality under the decision tree algorithm.

the defect categories repaired by using the manual and auto-
generated test suites with all the classification algorithms.

We measured the repairability (Equation (12)), as APR tools
fail to produce repairs with some repair test suites within an
allocated time. If the APR tool generates a patch, the validation
score (Equation (13)) can be calculated. Regarding a program
subject, we used the held-out test suite as the repair validation
test suite. According to Tan et al. [30], the held-out test suites in
Codeflaws are large enough for evaluating patch correctness. In
addition, we observed that the heldout-test suite achieved 100%
statement coverage [35] in the golden versions of most subjects
(Fig. 2c-Golden box). It implies that the held-out test suite
can exercise all the expected correct behaviours of a subject.
Therefore, the manually created held-out test suites are suitable
for evaluating patch correctness in APR. If a patch can achieve
100% validation score, it implies that the patch is accurate and
non-overfitting.

Similar to our study, Motwani et al. [36] and Brun et al.
[37] use separate repair validation test suites to evaluate the
correctness of a patch. These works also use the metrics re-
pairability and validation score. Motwani’s study claims that
using a separate repair validation test suite is more objective
than manually evaluating patch correctness and reproducible in
a fully-automated manner.

To mitigate the impact of randomness and to gain statistical
power for the experimental results, we repeat each experiment
30 times.

V. EXPERIMENTAL RESULTS

A. RQ.1: Oracle Quality

We investigate the quality of the automatic oracle under the
best-performing oracle representation (i.e., Decision Tree).1

Fig. 3 shows the results for the automatic oracles trained by
LEARN2FIX as average over 30 runs distributed over the different
subjects.

1We report results for other classifier representations in Section V-C.
According to the results, decision tree is one of the best-performing classifier
representations with LEARN2FIX.

Under a maximum of 20 queries to the user, for the
majority of subjects, the automatic oracles trained by
LEARN2FIX are able to accurately predict the labels of
more than 89% of the manually labelled tests given
by the benchmark (“Overall”; Fig. 3). Even though
LEARN2FIX has seen only one failing test, the automatic
oracle correctly identifies more than 80% of the failing
tests in most subjects (“Failing-Recall”). In addition,
the precision and recall of passing test cases are more
than 90% for the median subject (“Failing-Precision”).

Fig. 3 shows the results for a fixed budget of 20 queries to
the user. The median values of all the metrics are above 75%.
Thus, LEARN2FIX is able to train automatic oracles that accu-
rately distinguish the passing and failing tests of the majority of
subjects, using just one failing test. The higher median values
in failing-recall and failing-precision suggest that LEARN2FIX

is able to successfully deal with the class imbalance problem.
The results suggest that LEARN2FIX can train highly accurate
test oracles getting the maximum use of the available human
queries. The number of queries (20) is reasonable to the human,
as these are yes/no questions.

Fig. 4 shows how oracle quality is impacted if we change the
allocated query budget (i.e., the maximum number of labelling
queries) to the human.

As the maximum number of labelling queries increases,
the oracle quality is improved as well.

When the maximum number of queries to the human in-
creases, LEARN2FIX can obtain more labelled test cases for
oracle learning. Consequently, LEARN2FIX can learn the failure
condition of a bug more accurately. Hence, the overall accu-
racy increases (Fig. 4-Overall). Also, the ability to correctly
distinguish between passing and failing test cases is improved.
The increases in F-score of passing and failing test cases imply
this fact. When there are fewer labelled test cases, the decision
tree algorithm over-approximates the failure condition. As an
example, when the maximum labelling effort is 5, the median
of failing-recall is above 75%, while the median of failing-
precision is below 50%.

B. RQ.2: Labelling Effort

We investigate the labelling effort under the best-performing
oracle representation. The boxplots in Fig. 5(a) show the pro-
portion of generated (left) and failing (right) tests that are
labelled. In addition, Fig. 5(b) shows the distribution of the
probability to generate (left) and label (right) label a failing test.

Despite choosing only a small proportion of gener-
ated test inputs for labelling, LEARN2FIX is effective
at sending mostly failing test inputs for labelling and
successfully tackles the class imbalance problem.

Under a maximum of 20 queries to the user, Fig. 5(a) shows
that for the median subject, despite sending less than 25% of
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Fig. 4. Variations of oracle quality under the maximum number of queries 5, 10, 20, 30, 40 and 50.

Fig. 5. LEARN2FIX labelling effort under the decision tree algorithm.

generated test inputs for labelling, LEARN2FIX asks for the label
of more than 75% of generated failing test inputs. In contrast,
a random selection of generated inputs would send substan-
tially less failing inputs for labelling, indicating a substantial
reduction in labelling effort by LEARN2FIX. Fig. 5(b) Shows
that for the median subject despite a probability of less than
25% of generating failing test inputs, the probability that a test
input that is sent for labelling is failing is more than 60%. As
failing test inputs are in the minority class during generation,
this means that LEARN2FIX is effective at tackling the class
imbalance problem during training.

Fig. 6 shows how labelling effort is impacted if we change the
allocated query budget (i.e., the maximum number of labelling
queries) to the human.

As the query budget increases, the proportion of gen-
erated tests sent for labelling decreases (Fig. 6a-left).
Nevertheless, the median percentage of failing tests sent
for labelling is above 70% across all query budgets (Fig.
6a-right). The probability of generating a failing test
case does not significantly change (almost the same)
across query budgets (Fig. 6b-left). Nonetheless, the
probability of labelling a failing test case increases as
more queries are sent for labelling (Fig. 6b-right).

We previously observed that the accuracy of the automatic or-
acle increases as more labelling queries are sent (Fig. 4). As the
accuracy of the automatic oracle increases, the DECIDE2LABEL

algorithm can select more failing test cases for labelling, thus

increasing the percentage of labelled failing test cases (Fig. 6a-
right). Due to the same reason, most of generated passing test
cases (the majority class) are not sent for labelling. This is the
reason for the decreases in the percentage of generated tests
sent for human labelling (Fig. 6a-left). All these facts lead to
increasing the probability of labelling a failing test case (Fig.
6b-right). The increasing probability of labelling a failing test
case implies that the human receives more failing tests as the
number of queries increases in LEARN2FIX.

C. RQ.3: Oracle Representation

Tables II and III show the oracle quality and labelling effort
of LEARN2FIX under the classification algorithms in Section
III-B, respectively. Not all classifier representations are capable
of accurately modelling the failure condition of a bug. Thus,
it is necessary to empirically evaluate the most appropriate
representation for this task.

LEARN2FIX trains better automatic oracles through
interpolation-based classification algorithms than
approximation-based classification algorithms. The
median recall-failing is above 75% in these algorithms
(Table II). Decision Tree and AdaBoost algorithms
generate the best automatic oracles with LEARN2FIX.

Interpolation-based approaches work better with LEARN2FIX

than approximation-based approaches. Both Decision Tree and
AdaBoost are better than INCAL in terms of oracle quality. The
median precision-failing of INCAL is significantly lower (the
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Fig. 6. Variations of labelling effort under the maximum number of queries 5,10,20,30,40 and 50.

TABLE II
MEAN AND MEDIAN VALUES OF THE ORACLE QUALITY OF LEARN2FIX UNDER DIFFERENT

Classification ALGORITHMS

Classification
Algorithm

Overall
Accuracy (%)

Recall
Failing (%)

Precision
Failing (%)

Recall
Passing (%)

Precision
Passing (%)

Mean Median Mean Median Mean Median Mean Median Mean Median

Interpolation-based
INCAL 80.74 81.68 71.68 76.65 59.30 58.56 79.29 84.93 82.80 92.09
Decision Tree 85.01 88.95 72.44 79.69 71.07 75.75 84.93 93.53 84.57 94.21
AdaBoost 85.38 89.34 70.64 77.05 74.02 79.01 85.87 95.31 85.25 94.10

Approximation-based
SVM 77.70 82.46 39.51 31.25 58.79 58.24 77.51 97.27 80.41 87.27
Naïve Bayes 79.25 83.04 63.82 65.63 66.12 68 80.34 92.12 81.46 89.39
MLP (20) 72.43 72.35 48.15 47.77 39.67 33.33 70.67 73.68 79.09 86.10
MLP (20,5) 72.03 72.07 47.68 46.88 39.08 31.96 70.81 74.53 77.56 85.43

difference is greater than 10%) than that of both algorithms
(Table II). According to the two-sided Wilcoxon test, the dif-
ferences in the metrics between Decision Tree and AdaBoost
are statistically insignificant (p > 0.05).

In approximation-based approaches, only Naïve Bayes pro-
duces automatic oracles that identify test failures with signif-
icant accuracy (> 60%) in most subjects. Even though SVM,
MLP(20) and MLP(20,5) show more than 70% overall median
accuracy, their median recall-failing is below 50% (Table II).

Under all the classification algorithms, LEARN2FIX

sends less than half (< 50%) of the generated tests for
labelling in most subjects (Table III). The interpolation-
based approaches Decision Tree and AdaBoost show
around 60% median probability to label a failing test,
which is approximately three times greater than finding
a failing test by random labelling.

In the interpolation-based classification algorithms, more
than 70% of the generated failing tests are sent for labelling in
most subjects (Table III). LEARN2FIX shows the highest median
probability values for labelling a failing test case. According to
the two-sided Wilcoxon test, the differences between AdaBoost
and Decision Tree in the probability of labelling a failing test
are insignificant (p > 0.05).

Even though the approximation-based approaches send only
less than half of the generated tests, not the majority of the
generated failing tests is sent for labelling. In SVM and Naïve

Bayes, at least 10% of the generated failing tests is not sent for
labelling in most subjects. This implies that the DECIDE2LABEL-
algorithm works better with interpolation-based approaches
than with approximation-based ones. The DECIDE2LABEL-
algorithm achieves its intended objective, i.e., maximising the
probability of sending failing tests, with interpolation-based
approaches well.

When considering both labelling effort and oracle quality,
the interpolation-based classification algorithms more effec-
tively use the available query budget to improve the oracle
quality than the approximation-based approaches. We believe
that interpolation-based classification algorithms can incremen-
tally model the condition under which a semantic bug is ex-
posed more accurately than approximation-based ones. Hence,
the DECIDE2LABEL algorithm is able to send more of the gen-
erated failing tests and increase the probability of labelling a
failing test in oracle learning. This is helpful in dealing with the
class imbalance problem. All these facts lead to high-quality au-
tomatic test oracles with the interpolation-based classification.

Among the approximation-based approaches, the Naïve
Bayes algorithm differently behaves from the other approaches.
It uses fewer failing tests than most classification algorithms
(Table III); however, the recall-failing and precision-failing
of the automatic test oracles are above 60% for the medianl
subject. This implies that Naïve Bayes can learn automatic
test oracles at considerable accuracy using fewer training data.
However, the DECIDE2LABEL algorithm fails to improve the test
oracles obtaining more failing tests in Naïve Bayes.
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TABLE III
MEAN AND MEDIAN VALUES OF THE LABELLING EFFORT OF LEARN2FIX UNDER DIFFERENT

CLASSIFICATION ALGORITHM

Classification
Algorithm

Percentage of
generated tests

that are labelled

Percentage of
Failing tests

that are labelled

Probability to
generate

a failing test (%)

Probability to
label

a failing test (%)

Mean Median Mean Median Mean Median Mean Median

Interpolation-based
INCAL 36.92 31.09 64.13 70.26 30.20 21.55 48.08 47.92
Decision Tree 31.45 22.78 64.77 76.71 30.65 22.70 59.68 62.11
AdaBoost 29.64 18.1 62.42 71.70 30.60 22.97 59.13 61.63

Approximation-based
SVM 17.33 0.38 22.26 1.19 30.26 21.63 45.63 50.15
Naïve Bayes 17. 53 1.51 28.80 7.6 29.58 20.72 53.49 54.40
MLP(20) 33.90 23.71 45.21 42.08 30.36 21.72 39.97 34.53
MLP(20,5) 28.89 10.70 38.95 22.37 30.36 21.14 40.07 34.84

TABLE IV
MEAN AND MEDIAN VALUES OF THE REPAIRABILITY AND VALIDATION SCORE UNDER GENPROG AND

ANGELIX

Test Suite
GenProg Angelix

Repairability (%) Validation Score(%) Repairability (%) Validation Score(%)

Mean Median Mean Median Mean Median Mean Median

Auto-generated Interpolation-based
INCAL 17.14 17.15 90.35 100 15.66 15.57 90.65 100
Decision Tree 16.48 16.48 90.45 100 16.49 16.45 90.66 100
AdaBoost 16.47 16.54 89.71 100 16.19 16.29 90.44 100

Auto-generated Approximation-based
SVM 24.15 24.13 81.77 94.52 22.71 22.70 82.64 91.67
Naïve Bayes 21.06 21.08 84.64 97.3 20.97 20.89 84.21 94.44
MLP (20) 18.64 18.51 86.75 100 18.49 18.50 88.51 97.14
MLP (20,5) 18.91 18.94 86.63 100 18.41 18.60 88.13 95.83

Manual
Manual 23.52 24.50 85.14 97.56 25.53 25.50 83.94 91.67

D. RQ.4: Patch Quality

We investigate the quality of the patches generated using the
test inputs that LEARN2FIX sent for labelling. The statement cov-
erage of the manual and auto-generated test suites is computed
as well. Related to each APR technique, we count the number
of repairable subjects in terms of defect categories under all
the repair test suites. Table IV summarises the results of pro-
gram repair experiments under all the classification algorithms.
Fig. 7 shows the statement coverage of the manual and
LEARN2FIX auto-generated repair test suites. Fig. 8 shows the
composition of the repair test suites.

For both test-driven APR approaches, the patches pro-
duced using auto-generated test suites outperform the
patches produced using the manual test suites in terms
of the validation score of the generated patches. For
both APR approaches, all (100%) test cases in the held-
out test suite pass on the majority of subjects when
interpolation-based classification algorithms are used.
Both types of test suites can repair less than 30% of
the selected subjects. While with manual test suites
the APR tools can repair more subjects than with the
auto-generated test suites, the quality of the generated
patches is better for auto-generated test suites.

Number of failing tests. Each manual repair test suite given
by Codeflaws contains a single failing input exposing the bug
(Fig. 8). This kind of repair test suite could lead to producing
an overfitting or incorrect patches [18]. In contrast, the auto-
generated repair test suite given by LEARN2FIX contains more
than one failing test in most subjects, as DECIDE2LABEL al-
gorithm prioritizes the labelling of failing tests. Thus, it can
exercise the faulty behaviours of the bug more precisely than
the manual repair test suite. For this reason, the APR tools
can produce more accurate and non-overfitting patches with the
auto-generated repair test suites under most classification algo-
rithms. Interpolation-based oracle. The auto-generated repair
test suites with the interpolation-based classification algorithms
show 100% validation score for the median subject (Table IV).
It implies that an auto-generated repair test suite under these
algorithms contains enough failing tests to indicate the bug and
enough passing tests to indicate the behaviour that should not
be changed. In (RQ.3), we observed that interpolation-based
classification algorithms can train highly accurate automatic
oracles with LEARN2FIX (Table II). Therefore, most generated
failing tests and the passing tests in the vicinity of those are
sent for labelling. As a result, repair test suites leading to high-
quality program repair are generated.

Approximation-based oracle. The auto-generated repair test
suites with SVM do not outperform the manual test suites in
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Fig. 7. Statement coverage of Codeflaws manual repair test suites and
LEARN2FIX auto-generated repair test suites under different classification
algorithms.

terms of the validation score in any APR tool. LEARN2FIX sends
very few generated tests for labelling with SVM (Table III).
Fig. 8 shows that the number of passing tests in these repair
test suites is lower than the other auto-generated repair test
suites and manual test suites (SVM box). On average, there
are four (4) passing tests in an SVM repair test suite, which is
the lowest compared to the others. Consequently, such a repair
test suite cannot completely exercise the behaviour that should
not be changed. The reductions in statement coverage (Fig. 7)
in these repair test suites also imply this fact. LEARN2FIX gen-
erates smaller repair test suites with lower statement coverage
with Naïve Bayes as well. Nevertheless, these repair test suites
perform better than the repair test suites generated with SVM.

Search-based versus constraint-based APR. The results in
Table IV indicate that GenProg works more successfully with
the auto-generated repair test suites than Angelix. Except SVM
and Naïve Bayes, the classification algorithms show 100%
validation score for the median subject in GenProg. Only the
interpolation-based approaches achieve this much accuracy in
Angelix. Using the manual repair test suites, GenProg produces
more accurate patches than Angelix.

Code coverage of auto-generated test suites. According to
Fig. 7, the auto-generated test suites cover all (100%) code
in the median subject. This is same in the manual test suites
as well. These results imply that LEARN2FIX’s semi-automatic
approach can generate a repair test suite that completely covers
the code in most programs. In a few subjects, we observed
that the manual repair test suite shows higher statement cov-
erage than the auto-generated test suites. The reason is that the
DECIDE2LABEL algorithm sends failing tests for labelling with
priority. Consequently, passing test cases that cover certain code
segments might not be sent for labelling. Another observation
in Fig. 7 is that the auto-generated repair test suites with SVM
and Naïve Bayes report lower code coverage than the other auto-
generated test suites (SVM and NB boxes). As explained before,
we believe that the incapability of these algorithms to send
more test inputs for labelling in oracle learning is the reason
for this outcome. Even though the manual repair test suites

contain only one failing test, those have been created to achieve
100% statement coverage. However, the single failing test can
be insufficient to exercise all the faulty behaviours of the bug,
which leads the APR tools to produce lower-quality patches.

Defect categories. Fig. 9 shows the distributions of repairable
subjects by the defect categories (Table I) in both APR tools.
Most repairable subjects by both manual and auto-generated
test repair test suites belong to ORRN, i.e., replace relational
operator. In both APR techniques, we observe lower repairabil-
ity in the auto-generated repair test suites than in the man-
ual ones (Table IV). The technical issues associated with the
APR techniques are the key reason for this situation. When
a repair test suite contains many failing test cases, the APR
technique might not be able to produce a patch that passes
all the failing tests within the allocated time. However, less
accurate patches, similar to the ones generated with the manual
test suites, do not fix bugs completely and can create new bugs
in programs. Therefore, we conclude that the auto-generated
test suites under the interpolation-based approaches are more
suitable for automated program repair than the manual test
suites.

LEARN2FIX auto-generated test suites and the manual
test suites show 100% statement coverage in most sub-
jects. In both APR tools, most repairable subjects under
the auto-generated and manual repair test suites belong
to the ORRN, i.e., replace relational operator, category.

E. RQ.5: Impact of Noisy Labels

We investigate the impact of mislabelling on the oracle qual-
ity and labelling effort under the best-performing classifier (de-
cision tree) and a budget of 20 queries. The human can make
mistakes in labelling tests. As LEARN2FIX uses human-labelled
tests to train automatic oracles and to repair programs, it is
important to analyze the impact of incorrectly labelled tests. We
allow between 0% and 20% of labelling queries to be incorrect
(noise levels). Fig. 10 shows the distributions of the overall
accuracy, failing-recall/precision and passing-recall/precision.

The oracle quality decreases under incorrectly labelled
test cases. The highest decreases can be seen in preci-
sion for failing tests (failing-precision box).

According to Fig. 10, as expected incorrectly labelled test
cases negatively affect the oracle quality. Furthermore, the au-
tomatic oracle’s (O) ability to identify both passing and failing
tests reduces when the test cases are incorrectly labelled in
LEARN2FIX active oracle learning (Algorithm 1). Fig. 10 fur-
ther implies that the precision for failing inputs is significantly
affected by incorrectly labelled test cases. The median failing-
precision drops by 10% when 5% noise is present (failing-
precision box).
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Fig. 8. Composition of the repair test suites (manual and auto-generated).

Fig. 9. Number of repairable subjects in GenProg and Angelix by defect categories under manual and auto-generated test suites.

Fig. 10. Variations of oracle quality under the noise levels 5%, 10% and 20%.
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Fig. 11. Variations of labelling effort under the noise levels 5%, 10% and 20%.

There is a significant drop in effectiveness of
LEARN2FIX to accurately identify failing test inputs to
be sent for labelling. The number of failing test cases
sent for labelling reduces under incorrectly labelled
test cases. The probability of labelling a failing test
decreases, as well.

Impact on oracle quality. Fig. 11 shows how the labelling
effort varies under the previous noise levels. Maximizing the
labelling of failing test cases is an objective of LEARN2FIX active
oracle learning. According to the results in Fig. 11, incorrectly
labelled test cases prevent achieving this objective. As test cases
are incorrectly labelled, LEARN2FIX’s ability to select failing test
cases for labelling decreases. Fig. 11a-Right shows this fact.
When the noise level is 20%, LEARN2FIX sends less than 50% of
the generated failing test cases for labelling in most subjects. As
LEARN2FIX misses failing tests, the test cases sent for labelling
are not frequently failing tests. Thus, the probability of labelling
a failing test case reduces as in Fig. 11b-right. In the noise levels
10% and 20%, the median probability of labelling a failing test
is below 50%.

Interpretation. LEARN2FIX starts the oracle learning from a
single failing test case and incrementally expands the training
test suite (T ). The label given by the user in one step affects the
subsequent steps of the learning process. In the beginning, the
training test suites do not contain many test cases. Therefore,
the oracle accuracy is significantly affected when the user incor-
rectly labels a test case in the initial stages. When the automatic
oracle is inaccurate, Algorithm 2 cannot correctly select the
failing test cases in the subsequent steps for human labelling.
The decreasing percentages of human-labelled failing tests in
Fig. 11a-right demonstrate this fact. In addition, when failing
tests are labelled as passing, the chance to explore more failing
tests is reduced. When passing test cases are labelled as failing,
those are used to generate new test cases by fuzzing(Algorithm
1-Lines 5 and 10). Finding more failing test cases by mutating
passing test cases is difficult. All these facts reduce LEARN2FIX’s
ability to explore failing test cases. The lack of failing tests in
T reduces the automatic oracle’s ability to correctly identify
failing tests, resulting in a drop in the oracle quality.

When there are incorrectly labelled test cases, the re-
pairability of LEARN2FIX auto-generated test suites de-
creases in both GenProg and Angelix. Moreover, the
validation score of the patches decreases as well.

Impact on repairability. The test suites generated by
LEARN2FIX under the above noise levels were used to repair
the programs using GenProg and Angelix. Figs. 12(a) and 13(a)
indicate that the ability of LEARN2FIX auto-generated test suites
to repair buggy programs is reduced when there are incorrectly
labelled test cases. The drop in repairability in GenProg is more
significant than in Angelix under the noise level. In GenProg,
from 0% to 5% noise, the median repairability drops from
16% to 1% (Fig. 12a). One reason for the lower repairability
in GenProg is associated with its fault localization technique.
GenProg uses Equation (14) to calculate the suspiciousness of
a statement [1].

suspG(s) =

⎧

⎪

⎨

⎪

⎩

0, failed(s) = 0

1.0, passed(s) = 0 ∧ failed(s) = 1

0.1, otherwise

(14)

Interpretation. According to Equation (14), the suspicious-
ness of a statement is highest if it is only executed by failing test
cases (1.0, passed(s) = 0 ∧ failed(s) = 1). A single passing
test case is enough for reducing the score of a statement from
1.0 to 0.1. If a failing test case is incorrectly labelled as passing,
the faulty statements executed by that test case receives 0 or
0.1. Consequently, GenProg cannot correctly identify the actual
faulty statements. As a result, GenProg tries to change unnec-
essary statements and produces no repair. The same problem
can be observed under passing test cases incorrectly labelled
as failing as well. In addition, we observed in the experiments
that the search space gets larger with incorrectly labelled test
cases, and, therefore, GenProg cannot produce a repair within
the allocated time. All these facts lead to the significantly lower
repairability of GenProg under incorrectly labelled test cases. In
contrast to GenProg, Angelix uses Jaccard formula (Equation
(15)) for the fault localization [15].

suspJ(s) =
failed(s)

execute(s) + ( totalFailed − failed(s))
(15)
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Fig. 12. Variations of repairability and validation score in GenProg under the noise levels 5%, 10% and 20%.

Fig. 13. Variations of repairability and validation score in Angelix under the noise levels 5%, 10% and 20%.

Jaccard formula is not sensitive to incorrectly labelled test
cases as Equation (14), i.e., an incorrectly labelled test case can-
not significantly reduce the suspiciousness score of a statement
when there are enough correctly labelled test cases. Therefore,
the drops in repairability in Angelix under different noise levels
are not as large as in GenProg.

Impact on patch quality. Fig. 12(b) and Fig. 13(b) indi-
cate decreases in the median validation scores under the auto-
generated test suites with incorrectly labelled test cases in both
APR tools. According to the one-sided Wilcoxon-test, the ob-
served decrease in the validation scores in GenProg are statisti-
cally significant (p < 0.05). In Angelix, statistically significant
decreases can be seen from the 10% noise level. Compared to
the manual repair test suites, the validation scores of the auto-
generated repair test suites are higher in Angelix, even though
incorrectly labelled test cases exist. In GenProg, all the median
validation scores of the auto-generated repair test suites with
incorrectly labelled tests are below the median of the manual
test suites.

Interpretation. The higher sensitivity to incorrectly labelled
tests in GenProg’s fault localization technique leads to reducing
the validation score of the generated patches. GenProg follows
a generate-and-validate approach that highly depends on the
fault localization information [12]. When the fault localization
is faulty, the generated patch becomes less accurate. These
drawbacks cannot be seen in Angelix. As described before,

the Angelix’s fault localization is less sensitive compared to
GenProg fault localization. Also, after finding the faulty pro-
gram statements, Angelix uses a constraint solving approach
to generate the patch [15]. This approach is not significantly
affected by a few incorrectly labelled tests when there are
enough correctly labelled tests. For this reason, the validation
scores of the patches are not reduced as in GenProg.

Incorrectly labelled test cases negatively affects the or-
acle quality, labelling effort and patch quality in au-
tomated program repair. Test-driven APR techniques
assume that the repair test contains correctly labelled
test cases. Thus, incorrectly labelled tests significantly
affect the patch quality of the auto-generated test suites.
The classification algorithms cannot produce accurate
oracles with incorrectly labelled test cases. As a result,
LEARN2FIX becomes unable to send failing tests more
frequently for human labelling. The lack of failing tests
also reduces the patch quality.

VI. PILOT USER STUDY

We conducted a pilot user study with six (6) participants to
assess the usability of LEARN2FIX in an actual human-in-the-
loop environment. In this study, we especially focused on the
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human effort involved in deciding the label of a test case and
providing the expected, correct output of a failing test case.

Study Design. We used the program in the motivating
example (Listing 1) as the buggy subject (P). The Decision
Tree (DT) algorithm was used as the classification algorithm
of LEARN2FIX based on the results in Section V-C. We im-
plemented a user interface for the participants to interact with
LEARN2FIX.

At the beginning of the study, each participant was given a
brief introduction to the task, including a demonstration of the
user interface. Also, they were informed that the intended func-
tionality of the buggy subject (Listing 1) is to classify triangles
based on the lengths of their sides. However, the source code
of the program was not revealed to them. For each participant,
we allocated 10 minutes to interact with LEARN2FIX and set the
maximum number of labelling queries to 20 (L= 20).

As described in Algorithm 1, a participant was presented with
a series of labelling queries to learn an automatic oracle. A
labelling query shows the values of the three inputs and the
corresponding output given by the buggy subject. Then, the
participant has to answer the question “Did the program return
the correct output ?”. If the answer is “No”, the participant
is asked to provide the correct output. Otherwise, the next
labelling query is presented to the participant. Each participant
was allowed to interact with LEARN2FIX until the timeout was
reached, or the allocated query budget is exhausted. At the end
of oracle learning, the participant was allowed to provide any
feedback on our approach.

While interacting with LEARN2FIX, we measured the time that
the participant spent answering each labelling query. In the test
cases labelled as failing, the total time for deciding the label and
providing the correct output was measured. At the end of oracle
learning, we calculated the oracle quality and labelling effort.
To measure the oracle quality, we used a manually constructed
and labelled test suite.

Selection of Participants. We followed the Belmont principle
[38] of respect people. We introduced ourselves, explained that
they are being asked to participate in our pilot study, described
the study procedures and how their anonymized data is used,
explained that the participation is voluntary, and provided our
contact information for questions and concerns about our re-
search. The six people who agreed to participate in our pilot user
study had sufficient mathematical knowledge to understand the
triangle classification problem. This kind of person is eligible
for this study, as we assume that the human interacting with
LEARN2FIX knows the expected behaviour of the program under
test.

Results. Table V summarizes the results of our pilot user
study. A user took 2–40 seconds to answer a labelling query, in-
cluding the time for providing the expected outputs of a failing
test case. Only one participant incorrectly labelled two passing
tests as failing. All the other participants made no mistakes
in answering the queries. Only two participants received 20
queries to answer, and all the others received less than that in
the allocated time.

Similar to Section V-A, LEARN2FIX produces high-quality
automatic oracles for the program in Listing 1. There is a rare

TABLE V
SUMMARY OF THE RESULTS IN THE PILOT USER STUDY

Mean (%) Median (%)

Oracle Quality

Overall Accuracy 90.91 90.91

Recall-Failing 100 100

Precision-Failing 75 75

Recall-Passing 87.50 87.50

Precision-Passing 100 100

Labelling Effort

Proportion of generated tests
that are labelled 1.7 0.2

Proportion of labelled failing
tests from generated 94.71 100

Probability to generate a
failing test 0.18 0.12

Probability to label a
failing test 58.39 66.06

Min (s) Max (s)

Response time (Seconds)
Answering a labelling query
(Including providing the
expected output
of a failing test case)

2 40

chance of generating a failing test for this program (i.e., the
probability of generating a failing test is < 1%). Also, very few
tests from the generated tests are sent for human labelling. Nev-
ertheless, LEARN2FIX can select most generated failing tests and
let the participant receive those more frequently. This outcome
is similar to the results obtained in Section V-B.

User Feedback on Labelling Queries. All the participants
claimed that the queries presented were easy to answer. Also,
they said that the time to generate the next query after answer-
ing the current query was significant in some situations. Most
participants received the passing tests in the first few queries
and the failing tests in the later queries. The reason for these
incidents is that the automatic oracle becomes accurate as more
test cases are received; therefore, the DECIDE2LABEL algorithm
accurately selects the failing tests while excluding most gen-
erated passing tests. As explained in Section III-A, the failing
tests of Listing 1 are rarely generated. The results in Table V
also confirm this fact. Due to the tendency of LEARN2FIX to
select failing tests for human labelling, the time to generate the
queries can be longer.

Additional User Feedback. We received some additional
important feedback regarding LEARN2FIX from the participants
in this pilot user study. Firstly, they mentioned that this is a
practical approach, as the user (i.e., person who answering)
only needs to know the expected behaviour of the system un-
der test. Experience in programming is optional for working
with LEARN2FIX. Secondly, the participants got familiar with
the pattern of the failing tests as answering the queries. As a
result, some participants answered the last few queries quicker
than the earlier ones. This is also an advantageous property in
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LEARN2FIX. In addition, a few participants commented that the
chance of occurring errors in labelling tests is minimal in real
scenarios, as a person (e.g. developer) trying to fix a bug usually
studies the expected behaviour of the given program.

To summarize, LEARN2FIX successfully works with the actual
human participants for the selected buggy subject. The user
response time for labelling queries and user feedback indi-
cate that a human participant can easily answer the labelling
queries. This is a reasonable outcome, as we selected partici-
pants who know the expected behaviour of the subject buggy
program. Similar outcomes could be expected for other pro-
grams if it is possible to find a user who correctly knows the
expected behaviour of the program under test (PUT) to work
with LEARN2FIX. However, the response time for the labelling
queries could vary depending on the complexity of the PUT and
the skill of the human participant.

VII. THREATS TO VALIDITY

Similar to the other empirical studies, there are various
threats to the validity of our results and conclusions. The first
concern is the external validity, i.e., to what extent our findings
can be generalized to and across other subjects and tools. Our
results may not hold for other subjects. The classification algo-
rithms in Section III-B work only for programs taking numeric
data. Thus, our program subjects were required to take numeric
input values and return numeric output values. Nevertheless, we
selected a large number of real, arithmetically complex faulty
programs under diverse defect categories (i.e., 552 programs
under 34 defect categories). To answer RQ.4, we used GenProg
[12] and Angelix [15] as the automated program repair tools.
GenProg is a heuristic / generate-and-validate repair technique,
whereas Angelix is a constraint-based repair technique. These
two techniques are state-of-the-art and have been shown to
repair large open-source programs cost effectively. The results
of the pilot user study (Section VI) demonstrate that LEARN2FIX

would work with real human participants. However, we used
only the program in Listing 1 in the study, as conducting this
kind of experiment for a large group of programs is impractical.
The key reason is that finding a group of participants who are
familiar with the expected behaviours of a large set of programs
is difficult. The expected behaviour of Listing 1, i.e., classifying
triangles based on side lengths, is a famous and simple concept
in geometry, hence easier to find participants for the study. The
challenges faced by the human might be different in labelling
test cases in other programs.

The second concern is internal validity, i.e., to what extent
our study minimizes the systematic error. For each subject,
we repeat each experiment 30 times and report the average
values of the metrics. This approach helps to mitigate spurious
observations due to the randomness of the mutational fuzzer
and classification algorithms. Also, it helps to gain statistical
power for the results. Similar to other implementations of other
techniques, our tool may not faithfully implement LEARN2FIX

as presented in Algorithm 1 and 2. However, to facilitate
scrutiny and reproducibility, we make the source code and all
data available.

The third concern is construct validity, i.e., to what extent
a test measures what it claims to be measuring. To reduce this
threat, we discuss at least two measures for each of the three
independent variables: oracle quality, human effort and patch
quality.

VIII. RELATED WORK

Test oracle automation is an important topic in automated
software engineering. Several surveys on the oracle problem,
such as the works of Earl et al. [39] and Pezzè et al. [40], em-
phasise the importance of having automated test oracles in test
automation. However, this topic has received significantly less
research attention than the other areas in automated software
engineering [39]. Also, the work of Briand [23] suggests that
test oracle automation is probably one of the most difficult prob-
lems in software testing. All these facts indicate that significant
improvements are required in the area of test oracle automation.

The survey paper of Earl et al. [39] categorises test oracles
into three groups as implicit oracles, specified oracles and de-
rived oracles. Implicit oracles use general implicit knowledge
of incorrect program behaviours, such as program crashes and
timeouts. Also, implicit oracles can be injected. As an example,
ASAN [41] induces a crash for an input exposing a memory
safety error. However, this category of oracles cannot be used
for semantic bugs or functional bugs. Specified oracles, i.e.,
test oracles based formal specifications, are ideal for semantic
bugs. However, developing these oracles is impractical in most
scenarios due to the difficulty of finding a formal specifica-
tion of a program [39]. For this reason, derived oracles, i.e.,
oracles derived from sources other than formal specifications,
are most suitable for semantic bugs. Based on these facts, we
focused on a method to derive test oracles based on test cases.
Explicit oracles are applied to detect functional and other bugs
and should be manually added. Typically, developers introduce
explicit oracles to programs as assertions [42]. These assertions
should be added proactively. However, our objective is to de-
velop oracles retroactively, i.e., the oracle should identify new
test cases exposing a known failure.

The works of Jin et al. [26], Vanmali et al. [43] and Shahamiri
et al. [44], [45] are some supervised machine learning [46]
based oracle learning approaches. The automatic oracles given
by these methods are black-box, i.e., only the program inputs
and outputs are used to determine test failures. All these works
use artificial neural networks to learn the relationship between
(i.e., the function) the program inputs and outputs. The learned
function can be explicitly represented as program assertions
or likely invariants [47]. Given an input, the neural network
model or the learned function predicts the expected output. The
predicted output is compared with the output produced by the
program under test for the same input. If the two outputs are
similar, the test is predicted as passing; otherwise, it is failing.
To learn an accurate model for this task, these works ([26], [43],
[44], [45]) require a large training test suite. When the human
is the only oracle, finding such a test suite is a challenging task.

In contrast to these works, LEARN2FIX learns the condition
under which the bug is exposed and thus produces bug oracles.
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We believe that this is not a complicated task as learning the
relationship between the program inputs and outputs. Also, it
can be done more efficiently. For instance, in our motivating
example (Section II), LEARN2FIX does not learn how to classify
a triangle. Instead, it learns which triangles the program in
Listing 1 incorrectly classifies. The work of Braga et al. [22]
uses AdaBoost to produce bug oracles based on user actions.
However, this approach is only applicable to web applications.
In contrast, LEARN2FIX can be applied to a wide range of pro-
grams taking numeric inputs.

The active learning method used in LEARN2FIX was inspired
by the work of Holub et al. [9]. The key objective of this work is
to reduce the human labelling effort during image classification
by sequentially presenting unlabelled images that are informa-
tive when labelled to the human (or oracle). In each iteration,
Holub’s method selects the most informative unlabelled point
(MIUP), i.e., the image that the classifier is most uncertain about
its label, based on the current status of the classifier. The work
of Joshi et al. [48] is similar to this work.

LEARN2FIX uses the concept of look-ahead probability es-
timation from Holub’s work [9] to select test cases with
higher failure likelihood for human labelling. This is one way
that LEARN2FIX addresses the class imbalance problem. More-
over, we extended Holub’s pool-based approach, where the
number of data points is fixed, into stream-based approach,
where data points are continuously generated and decided
upon. Our insight is that a reliable probability estimate for a
point’s label can be derived with a fixed-size random classifier
committee.

The idea of generating more failing tests by mutating a single
failing test has been applied in AFL fuzzer [20] and its recent
developments [49], [50], [51]. The main focus of these works
is to explore the bugs leading to program crashes. Generating
new test cases helps to isolate faults (BUGEX [52]) and improve
auto-generated patches [53]. Given only a stack trace, there
exist techniques to generate crashing inputs [54] [55]. Unlike
in our work, an automated oracle, probably program crashes, is
already assumed in all these works.

LEARN2FIX interacts with a human oracle in the learning
process, and reducing the human effort is an important con-
sideration in our work. Several works have been proposed to
reduce the effort of human oracles in qualitative and quantita-
tive aspects [39]. The quantitative approaches focus on reducing
test suite and test case size. The works of Harman et al. [56],
Ferrer et al. [57] and Taylor et al. [58] focus on exercising all the
different behaviours of the program under test with fewer test
cases. The qualitative approaches focus on improving the com-
prehension of the tasks performed by the human as a test oracle.
For example, the work of Afshan et al. [59] incorporates a nat-
ural language model into the test generation process to improve
the human readability of the generated test cases. McMinn et
al. [60] propose a method to facilitate domain-aware test gen-
eration by incorporating knowledge from programmers, source
code and documentation into automatic test generation. This
method can generate more human readable test cases as well.

In addition, Staats et al. [61] propose a technique to select
oracle data, i.e., the subset of internal variables that should

be monitored during testing. Focusing on these variables re-
duces the effort of human oracles. Distributing test cases among
different users is another strategy to reduce the human effort.
Pastore et al. [62] suggest an approach to present test cases
to a crowd for labelling. However, none of these approaches
addresses the problem of developing an automatic oracle by
systematically labelling generated test cases. Nevertheless, the
qualitative approaches could be useful to improve the human
readability of our work.

GRAMMAR2FIX [63] is closely related to our work. Given
a failing input of the semantic bug, GRAMMAR2FIX gener-
ates an automatic oracle and a repair test suites for the bug.
The automatic oracle is given as a regular grammar that de-
scribes the pattern of all the failing inputs of the bug. Unlike
LEARN2FIX, GRAMMAR2FIX cannot be applied under a limited
number of human queries. The work of Bowring et al. [64]
is another active oracle learning approach similar to our ap-
proach. In contrast to LEARN2FIX, this method uses some white-
box information such as event transitions. To reach signifi-
cant prediction accuracy, this approach requires more than 100
human labelled executions. In contrast, LEARN2FIX achieves
high oracle quality with significantly fewer human queries
(20), even without knowing the source code of the program
under test.

Automated program repair (APR) is an emerging research
area that focuses on reducing the cost of manual debugging
while improving software quality [1], [2]. In test-driven auto-
mated program repair, the quality of the patch depends on the
quality of the repair test suite. Low-quality repair test suites
lead to repair overfitting [1], [18]. Yu et al. [3], Yang et al.
[4] and Xiong et al. [5] present several methods to generate
high-quality repair test suites for test-driven APR, avoiding
repair-overfitting. Unlike LEARN2FIX, all these methods require
an initial repair test suite (containing both passing and fail-
ing test cases). The given repair test suite is systematically
augmented in a manner improving the quality of the patch.
UnsatGuided by Yu et al. focuses on constrained-based repair
techniques [3], while Yang’s method [4] focuses on heuristic
repair. Xiong’s method [5] can be applied to both categories
of repair techniques, similar to LEARN2FIX. However, Xiong’s
method needs a patch as an input in addition to a repair test
suites. In contrast to all these methods, LEARN2FIX can be
applied to all types of test-driven repair techniques, given a
single failing input of a bug.

Evaluating the correctness of patches is an important task in
the researches related to APR. Manual inspection (e.g. [34],
[65]) and using a validation test suite independent from the
repair test suite (e.g. [37], [18]) are the two main methods
for evaluating patch correctness. The study of Motwani et al.
[36] suggests that using an independent repair validation test
suite is more objective than manual inspection. The study of Le
et al. [34] reveals that manual-inspection-based methods can be
inaccurate due to their subjective nature. For this reason, Le’s
study emphasises that the results of manual-inspection-based
patch evaluations should be publicly available. In contrast, the
patch evaluations using independent repair validation suites can
be reproduced fully automatically.
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The study of Yi et al. [66] explores the correlation between
traditional test suite metrics proposed for software testing (e.g.
statement coverage, test suite size, mutation score etc.) and
the reliability of generated repairs by APR. Its conclusion is
that the traditional metrics are useful for APR to improve
the reliability of repairs. For example, this study shows that
regression-causing repairs [67] (i.e. pass all positive tests, but
fail one of positive tests) can be mitigated by improving the
statement coverage of repair test suites. Our work also focuses
on improving the quality of program repair by improving the
quality of repair test suites.

IX. DISCUSSION AND FUTURE WORK

Given a program with a semantic bug and its single failing
test, LEARN2FIX learns a bug oracle as a classifier, which is
the automatic oracle. The learned automatic oracle (O) ex-
presses the condition under which the bug is exposed (i.e.,
failure condition of the semantic bug) LEARN2FIX improves the
overall oracle quality by improving the classifier’s ability to cor-
rectly identify failing tests, the minority class. For this purpose,
LEARN2FIX maximises human labelling of failing tests in the
learning process. The results of oracle quality (Section V-A)
and labelling effort (Section V-B) suggest that LEARN2FIX’s
oracle learning strategy works for many real world semantic
bugs in programs taking numeric inputs. The automatic oracles
show more than 75% accuracy in identifying both passing and
failing tests for most subjects. Manually exploring the failing
tests of a semantic bug is a difficult task in programs taking nu-
meric inputs. LEARN2FIX effectively addresses this issue by its
DECIDE2LABEL-algorithm. With the DECIDE2LABEL-algorithm,
the probability of finding a failing test is three times higher than
with random labelling. Thus, the human would receive failing
test cases frequently, even though those are rarely generated.
Hence, exploring failing tests would be easier for the human
through LEARN2FIX rather than doing it solely by mutational
fuzzing.

The experiments in Section V-C reveal that LEARN2FIX works
as intended with few classification algorithms. If the classifica-
tion algorithm is capable enough to accurately infer the failure
condition of a semantic bug, the DECIDE2LABEL algorithm sends
more failing tests generated by mutational fuzzing for human-
labelling. As failing tests are the minority class, it is helpful
in improving the oracle quality while dealing with the class
imbalance problem [8].

Our results suggest that interpolating binary classifiers
produce better automatic oracles than approximating binary
classifiers with LEARN2FIX. It implies that interpolating binary
classifiers can better represent the failure condition of a se-
mantic bug; i.e., highly accurate automatic test oracles can be
produced by finding a model that exactly fits the training data
(human-labelled passing and failing test). The interpolation-
based approaches used in the experiments create classifiers as a
set of constraints on a numeric domain. According to the results,
such constraints can effectively represent the failure condition
of a semantic bug. According to Section V-C, LEARN2FIX shows

the best performance with Decision Tree and AdaBoost. Ad-
aBoost is an ensemble version of decision trees. Therefore,
the decision tree representation is most suitable for developing
automatic test oracles for semantic bugs.

In approximation-based approaches, we observed higher or-
acle quality in Naïve Bayes than in the other approaches. Naïve
Bayes uses the Bayesian probability model [68] to develop
classifiers. Our results indicate that the Naïve Bayes algorithm
can accurately learn the failure condition of a semantic bug as a
probability model with fewer training data. However, this algo-
rithm does not outperform the interpolation-based approaches
in terms of oracle quality. Also, it does not perform well in the
program repair experiments.

As the maximum number of queries to the human increases,
the automatic oracle’s ability to distinguish between passing
and failing tests increases as well (Fig. 4). This is an intuitive
outcome in machine learning, as the classification algorithm
receives more data to learn an automatic oracle. In addition, the
probability of labelling a failing test case also increases under
the increasing query budget (Fig. 6). It implies that LEARN2FIX

always uses the query budget targeting failing tests and does not
send passing tests more frequently, even though human queries
are available.

The experimental results related to automated program repair
(Section V-D) suggest that LEARN2FIX produces high-quality
repair test suites with the interpolation-based approaches in
GenProg and Angelix. These approaches produce high-quality
automatic test oracles for semantic bugs (Section V-C). There-
fore, these results imply that classification algorithms that pro-
duce high-quality test oracles generate high-quality repair test
suites for both APR techniques. Finding a repair test suite
leading to high-quality fixes, i.e., non-overfitting and accurate
patches, is a challenging task in automated program repair.
This issue becomes more intense in semantic bugs, as only a
human can answer about a test failure. Providing an effective
answer to this issue, LEARN2FIX facilitates a human-in-the-loop
interactive program repair environment. Even a person without
experience in programming can contribute to the LEARN2FIX’s
program repair process.

In LEARN2FIX, we assume that the human always provides the
accurate label of a test case. However, the human can make mis-
takes in deciding the label of a test case in practical scenarios.
In Section V-E, we explored the consequences of incorrectly
labelled test cases in oracle learning and APR. The results
suggest that LEARN2FIX cannot achieve its objectives when the
human provides incorrect labels. Moreover, the repairability
of the auto-generated repair test suites and the correctness of
patches are reduced. The reason for all these issues is the
incremental learning process in LEARN2FIX, i.e., if the human
makes a mistake at one point, it affects the subsequent oracle
learning steps. This is a drawback in LEARN2FIX.

According to the results in Figs. 12 and 13, a higher impact
from incorrectly labelled tests can be seen in GenProg than
in Angelix. GenProg’s fault localization method is significantly
misguided by incorrectly labelled test cases. The result is that
GenProg produces no repair or less accurate repairs. Indeed,
Angelix’s program repair methodology cannot be misguided
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by a few incorrectly labelled tests when the repair test suite
contains sufficient correctly labelled tests (see Section V-E).
This is an advantage in Angelix over GenProg.

Test-driven APR techniques always assume that the repair
test suite has correctly labelled test cases. Thus, generating
no repair or incorrect repair can be expected when there are
incorrectly labelled test cases in the repair test suite. The results
of (RQ.5) indicate this fact. Even the manual repair test suites
would not achieve this much repairability and validation score
if it contained incorrectly labelled tests. All these facts imply
that repair test suites for test-driven APR should be prepared
under scrutiny.

In future work, we will explore techniques to deal with in-
correctly labelled test cases in oracle learning. The errors in
labelling test cases can be avoided. Pair programming [69] con-
cepts can be applied to this task. Another option is to distribute
test cases among multiple people as in [62]. LEARN2FIX gener-
ates test cases by mutational fuzzing. As mutation operators are
randomly applied in fuzzing, these test cases can be less human-
readable in some scenarios. Hence, we will explore techniques
to improve the human readability of the generated test cases.
The works of Afshan et al. [59], McMinn et al. [60] and Bozkurt
et al. [70] will be helpful for this task.

An automatic test oracle produced by LEARN2FIX expresses
the condition under which a semantic bug is exposed. Hence,
the automatic test oracle can serve as a specification of the bug.
A bug specification describes the behaviour of a bug, and the
failure condition is an essential part of it. Such a specification
would be useful for developers. However, LEARN2FIX requires
some improvements for producing bug specifications, as it does
not always produce 100% accurate test oracles under the limited
labelling queries. In future work, we will discover methods to
convert LEARN2FIX for producing bug specifications.

In constrained-based program repair techniques, exploring
the repair constraint of the given program is an important
task [1], [2]. The accuracy of the repair constraint determines
the quality of the patch. An automatic oracle produced by
LEARN2FIX consists of constraints that that explain the failure
condition of a semantic bug. We will explore how to incorporate
these constraints into a repair constraint used in constraint-
based program repair. This will help to generate more accurate
repair constraints.

X. CONCLUSION

We introduced LEARN2FIX, a human-in-the-loop approach,
to repair programs with semantic bugs. Given a single failing
input of the bug, it learns a high-quality automatic test oracle for
the bug. In oracle learning, LEARN2FIX maximises the human
labelling of the failing tests. In the experiments with different
classifier representations, we identified that LEARN2FIX works
better with interpolating binary classifiers than approximat-
ing binary classifiers. Also, the automatic oracles represented
as decision trees are the most accurate. With both GenProg
and Angelix, the auto-generated test suites in oracle learn-
ing produce better repairs compared the manual test suites
of the benchmark. All these findings indicate that LEARN2FIX

addresses some important problems in test oracle automation
and automated program repair.
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