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Optimizing Highly-Parallel Simulation-Based
Verification of Cyber-Physical Systems

Toni Mancini , Igor Melatti , and Enrico Tronci

Abstract—Cyber-Physical Systems (CPSs), comprising both
software and physical components, arise in many industry-
relevant domains and are often mission- or safety-critical.
System-Level Verification (SLV) of CPSs aims at certifying that
given (e.g., safety or liveness) specifications are met, or at
estimating the value of some Key Performance Indicators, when
the system runs in its operational environment, that is in presence
of inputs and/or of additional, uncontrolled disturbances. To
enable SLV of complex systems from the early design phases,
the currently most adopted approach envisions the simulation of
a system model under the (time bounded) operational scenarios
deemed of interest. Unfortunately, simulation-based SLV can be
computationally prohibitive (years of sequential simulation), since
system model simulation is computationally intensive and the set
of scenarios of interest can be extremely large. In this article, we
present a technique that, given a collection of scenarios of interest
(extracted from databases or from symbolic structures), computes
parallel shortest simulation campaigns, which drive a possibly
large number of system model simulators running in parallel in
a HPC infrastructure through all (and only) those scenarios in the
user-defined (possibly random) order, by wisely avoiding multiple
simulations of repeated trajectories, thus minimising completion
time. Our experiments on SLV of Modelica/FMU and Simulink
models with up to almost 200 million scenarios show that our
optimisation yields speedups as high as 8×. This, together with
the enabled massive parallelisation, makes practically viable (a
few weeks in a HPC infrastructure) verification tasks (both sta-
tistical and exhaustive) which would otherwise take inconceivably
long time.

Index Terms—System-level verification, simulation, cyber-
physical systems, systems engineering

I. INTRODUCTION

CYBER-PHYSICAL Systems (CPSs) consist of intercon-
nected hardware (the physical part) and software (the

cyber part). CPSs are ubiquitous in many industry-relevant ap-
plication domains, e.g., aerospace, automotive, energy, biology,
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healthcare, among many others. In many CPSs (e.g., in embed-
ded systems), the software part consists of a (typically micro-
programmed) controller which continuously senses the state of
the system and sends commands to the hardware actuators in
order to achieve an envisioned goal condition while satisfying
some requirements.

System-Level Verification (SLV) of a CPS aims at verifying
that the whole system (i.e., the software and the hardware
working together) meets the given specifications when running
in its operational environment, i.e., in presence of inputs and/or
additional limited uncontrolled (but possible) events (such as
faults, noise signals, or changes in system parameters, collec-
tively referred to as disturbances).

Since industry-relevant CPSs are often mission- or safety-
critical, their SLV is of paramount importance to build con-
fidence on their robustness and, ultimately, to perform their
qualification. To this end, SLV of CPSs is supported from the
early design stages by well-known model-based design soft-
ware tools, e.g., among the others, Simulink, VisSim, Dymola,
ESA Satellite Simulation Infrastructure SIMULUS. Such tools
allow the user to mathematically model the physical parts of
a CPS (the hardware model), by means of, e.g., differential
equations and/or algorithmic snippets to manage, e.g., the oc-
currence of events, and enable their numerical simulation, both
open-loop and closed-loop. In particular, during closed-loop
simulation, the actual software for the controller continuously
reads values from the connected hardware model and decides
control actions. During simulation of CPS models, the above
model-based design tools also allow the user to inject a time
series of inputs and other disturbances stemming from the en-
vironment, representing an actual operational scenario.

By designing a proper set of scenarios deemed plausible
(given the operational environment), SLV of the system is per-
formed either by verifying that the CPS model satisfies the
given specifications under all of them (aka exhaustive model
checking, where exhaustiveness is intended with respect to such
set of scenarios), or, when they are too many to be simulated ex-
haustively, the residual probability of errors or expected values
of suitable Key Performance Indicators (KPIs) are estimated by
simulating the system on a randomly chosen subset of scenarios
(statistical model checking [3]).

A. Background and Motivations

Unfortunately, models of industry-relevant CPSs are often
defined as systems of highly non-linear and possibly stiff differ-
ential equations, and their complexity hinders the possibility of
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any symbolic reasoning (via, e.g., model checkers for hybrid
systems). As a result, the main workhorse for SLV of such
system models is their black-box simulation on each single
scenario, in order to check whether the required system-level
specifications are satisfied on all of them or to estimate the
values for the KPIs of interest.

Simulating a CPS model on a single scenario can take from
seconds to minutes, depending on the requested simulation
time horizon and on the complexity of the system model. For
example, simulating our case study models on a single sce-
nario takes around 60 (Apollo Lunar Model Autopilot, ALMA,
by Simulink), 80 (Buck DC–DC Converter, BDC, by JMod-
elica/FMU) and 40 seconds (Fuel Control System, FCS, by
Simulink) on average. This is due to the frequent injections
of disturbances and/or changes of parameters, as prescribed by
the scenario being simulated. All this makes simulation-based
SLV campaigns of such CPSs a complex and extremely time-
consuming activity.

There are two major sources of complexity to deal with when
carrying out simulation-based SLV of CPSs.

The first source of complexity stems right from the definition
of the set of scenarios deemed plausible or worth of interest,
against which the system model must be verified. Traditionally,
such scenarios (which collectively define the CPS operational
environment) are manually defined by system verification teams
together with domain experts, and stored in large databases.
When a new version of the CPS model has to be verified,
such scenarios are injected during simulation and the resulting
model trajectories are evaluated. Beyond being extremely time-
consuming (possibly requiring months of work from expert de-
signers), this naïve operational environment definition activity
is extremely fragile, as it is hard to assure that the successful ver-
ification of the CPS model against such scenarios is sufficient to
certify absence of errors. This is because it would be impossible
to state whether the defined set of scenarios is representative of
all the possible situations of interest.

To overcome this obstruction, previous work [28], [38] pro-
posed to lift the hand-crafted definition of operational scenarios
into the definition of a declarative constraint-based specifica-
tion of the system operational environment via an automaton
encoded in a high-level language. The set of possible scenarios
against which to verify the CPS model is then defined as the set
of time series of inputs and other uncontrollable events encoded
by accepting computation paths on such an automaton. Also,
one such form of automaton, named scenario generator in [38],
allows the efficient extraction of any of its entailed scenarios
from their unique indices. The definition of the CPS operational
environment by such high-level models greatly eases the task
of the verification engineers to capture all scenarios deemed
plausible, also allowing them to dynamically focus on those
scenarios satisfying additional constraints (see [38] for exam-
ples), thus enabling prioritisation of the (typically very long)
verification activity.

Also, the availability of an environment model entailing a
possibly large, yet finite number of scenarios enables the ex-
haustive (with respect to such an environment model) verifi-
cation of the CPS at hand. Indeed, when the CPS model is

exercised on all the (finite number of) scenarios entailed by the
environment model, a clear degree of assurance is attained at
the end of the verification process. Furthermore, by properly
randomising the scenario verification order, suitable informa-
tion on the probability that a yet-to-be-simulated scenario exists
for which the CPS shows an error (omission probability) can be
returned any-time during verification [32]. This allows the user
to halt the verification process when the residual probability
of an error goes below a given threshold (graceful degrada-
tion). Similar advantages can be achieved when the environment
model yields a too large or an infinite number of scenarios,
which would hinder the possibility to verify the system on
all of them. In such cases, statistical model checking can be
exploited by randomly sampling a finite number of scenarios
from the environment model, and a statistically-sound degree
of assurance that the property under verification holds, or a
statistically sound estimation of the value of some KPIs can
be generated at the end of the (finite) verification process.

The second major source of complexity to deal with when
performing simulation-based SLV of CPSs is carrying out the
actual simulation of the system model on all the selected sce-
narios (regardless on how they are selected). This is because,
to achieve a high-enough level of assurance on its correctness,
the system must be typically simulated on a very large number
of scenarios (e.g., in our case studies we tackle verification
processes on up to almost 200 million scenarios), yielding
prohibitive simulation times. Tackling this last issue is the main
focus of this article.

B. Contributions

We present an approach to compute optimised simulation
campaigns to perform SLV of CPSs in a highly parallel en-
vironment (e.g., a large High-Performance Computing, HPC,
infrastructure), given identical simulators of the CPS model and
a (possibly large yet finite) collection of operational scenarios.
Our contributions are as follows.

Shortest Simulation Campaigns for Highly-Parallel CPS
Verification. We present an algorithm that, given as input a
(typically very large) set of operational scenarios (either gener-
ated from a high-level environment model or extracted from a
database), computes a set of optimised simulation campaigns
out of them, which drive multiple simulators of the CPS (run-
ning in parallel) through all (and only) such scenarios in the
(possibly random) order chosen by the user, while aiming at
minimising the verification completion time.

Since the parallel execution of the computed simulation cam-
paigns requires no inter-process communication, very large
HPC infrastructures can be seamlessly exploited to greatly
shorten the overall verification activity.

Case Studies. We show the applicability of our algorithm
on three case studies of industry-scale CPSs, by performing
their verification against very large sets of scenarios (up to
almost 200 million scenarios), using up to (virtually) 65 536
cores of a HPC infrastructure (that is 1024 64-core machines),
and evaluate the benefits of our optimised simulation cam-
paign computation algorithm and the scalability of our overall
approach.
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Thanks to our overall architecture which envisions a
simulator-independent campaign computation algorithm
and simulator-specific drivers, we can virtually control any
available simulation engine. We have currently developed (and
successfully used in our experiments) drivers for the widely
popular simulation platforms Simulink and JModelica/
Functional Mock-Up Unit (FMU).

II. FORMAL FRAMEWORK

We denote with R, R0+ and R+ the sets of, respectively, all,
non-negative, and strictly positive real numbers, and with N+

and N the sets of, respectively, strictly positive and non-negative
integer numbers. Also, given two sets A and B, we denote by
AB the set of functions from B to A.

We now briefly describe how we model our System Under
Verification (SUV), its operational environment, and the prop-
erty to be verified. For brevity, formal definitions (including no-
tation recap) and statements as well as their proofs are delayed
to Appendix A (see the supplementary material).

System Under Verification (SUV). We assume our
(black-box) SUVH to be a deterministic, time-invariant, causal,
state-input-output dynamical system (e.g., [29], [31], [48]) over
a continuous or discrete time set T (hence T is either N or
R0+, or an interval thereof), and whose input space U defines
the set of possible values for the user inputs and the other
uncontrollable events H is subject to, e.g., faults in sensors and
actuators or changes in system parameters. Thus, H takes as
input a time function u ∈ U

T, defining the SUV input values
at all time points (u is called an operational scenario, or just
scenario).

Property to Be Verified. For maximum generality, we
assume that the property to be verified and/or the KPIs to be
computed under each scenario are encoded as a monitor within
H. The monitor observes the state of the system and checks
whether the property under verification is satisfied and/or com-
putes the values of the KPIs of interest. The use of monitors
as black boxes gives us maximum flexibility and it allows
us to abstract away the actual formalism used to define the
property (e.g., it is immediate to define as monitors bounded
safety and bounded liveness properties as well as checkers for
formulas in any temporal logic; see, e.g., [27], [43] and citations
thereof). Since the monitor output is all we need to carry out our
verification task, in the sequel we assume that the only outputs
of the SUV are those from the monitor.

System-Level Verification (SLV). An SLV problem is
a pair π = (H,U), where H is a SUV (with an embedded
monitor) and U is a set of scenarios for it. The answer to SLV
problem π is the collection of the outputs of the SUV (monitor)
produced at the end of each scenario u ∈ U , where u is injected
in H starting from its initial state.

Our definition of (answer to an) SLV problem is very general
and, depending on how the SUV monitor is defined, seamlessly
accounts for verification activities aimed at either checking
whether a scenario in U exists which raises an error in the SUV
(error scenario), or at computing statistics on (e.g., expected
values of) some KPIs. Namely, to find an error scenario, it is
enough to define the monitor to return PASS or FAIL at the end

of each of them, depending on whether the scenario satisfies or
violates the property under verification. Conversely, to compute
any sort of statistics on any KPIs of interest, it is enough to
define the monitor to compute and output such KPI values at
the end of each scenario.

SUV Operational Environment. According to our focus
on verification tasks where numerical simulation is the only
means to get the trajectory of the SUV when fed with an input
scenario, we will assume that the set U is finite and finitely
representable, and that each scenario is time bounded. Hence,
we assume that the set of values taken by input scenarios in U
(actually, for simplicity, the set U itself) is finite (and, without
loss of generality, ordered) and scenarios in U are defined
via piecewise constant input time functions having disconti-
nuities at time points multiple of a given (arbitrarily small)
time quantum τ ∈ T \ {0}. Such scenarios can be conveniently
represented as input traces (Definition 1).

Definition 1: (Input trace). An input trace u with values in
U is a finite sequence (u0, . . . , uh−1) where all ui belong to U.
Value h is the trace horizon.

Given time quantum τ ∈ T \ {0}, an input trace u=
(u0, . . . , uh−1) is interpreted as the bounded-horizon piecewise
constant time function u ∈ U

[0,τh) defined as u(t) = u� t
τ � for

t ∈ [0, τh). From now on we assume that a time quantum τ
is given, and thus interchangeably refer to input traces and to
their uniquely associated time-bounded piecewise constant time
functions.

Our assumptions above naturally apply to scenarios whose
values denote events such as user requests or faults. However,
scenarios encoding input time functions assuming continuous
values can be tackled by means of a suitable discretisation of
their domains, whilst smooth continuous-time input functions
(e.g., additive noise signals) can be managed as long as they can
be cast into (or suitably approximated by) finitely parametris-
able functions, in which case the input space actually defines
such a (discrete or discretised) parameter space. Examples of fi-
nite parameterisations of the SUV input space are those defining
limited, quantised Taylor expansions of continuous-time inputs,
or those defining quantised values for the first coefficients (those
carrying out the most information) of the Fourier series of a
finite-bandwidth noise, see, e.g., [1], [34].

As argued in [38], our assumptions are in line with an engi-
neering (rather than purely mathematical) point of view, where
man-made CPSs need to satisfy the properties under verification
with some degree of robustness with respect to the actual input
time functions (see, e.g., [1], [16] and references thereof). Our
case studies in Section VI contain uses of several of such
features, and show that our setting can be easily met in practice.

III. SUV SIMULATORS

In our simulation-based setting, we aim at performing SLV
of our SUV by driving the execution of a simulator of the
SUV model (in e.g., Simulink, Modelica) via the simulation
engine scripting language, which also takes care of injecting
piecewise constant input time functions representing scenarios.
By extending the formal notion of SUV simulator in [31], [34],
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we provide a general mathematical framework that allows us
to link scenarios given as input to a SUV H (as input traces
encoding piecewise-constant input time functions) to inputs for
a simulator of H (simulation campaigns).

Formal definitions as well as statements and their proofs in
this section are delayed to Appendix B (available online).

A simulator for SUV H is a tuple (H,W), where W denotes
the set of simulator states. Each w ∈W has the form w =
(x,u,M), where: x is a state of H; u is an input time function
(an input trace in our setting) for H; M (simulator memory)
is a finite map whose elements are of the form: [λ �→ (x′,u′)],
with λ ∈ Λ being an identifier from a countable set (unique in
M), x′ a state of H, and u′ is an input trace.

A simulator S can take the following commands: OUTPUT,
which reads the output of S in the current state; LOAD(λ), which
loads from memory the state associated to identifier λ and
makes it the current simulator state (and raises an error if such
a state is not in memory); STORE(λ), which stores into memory
the current simulator state under identifier λ (and raises an error
if λ already occurs in memory); FREE(λ), which frees simulator
memory entry λ (and raises an error if no such entry exists);
RUN(u, t), which injects input u and advances simulation by
time t ∈ T. The time advancement due to a command is the
time simulated by S when executing it, and is t for RUN(u, t)
and 0 for all the other commands.

A simulation campaign X for S is a sequence CMD0

(args0) . . . CMDc−1(argsc−1) of simulator commands (with
their arguments). To X we can univocally associate: (i) the
sequence of states traversed by the simulator while executing
it; (ii) the length len(X ), which is the sum of the time advance-
ments of its commands; (iii) the required simulator memory
mem(X ), which is the maximum number of entries in the
simulator memory among the traversed states; (iv) the output
sequence, which is the sequence of the results of its OUTPUT

commands (i.e., the outputs of S in the states where an OUTPUT

command is issued). A simulation campaign is executable if it
does not raise errors.

Proposition 1 links inputs to a simulator S for H (i.e., simula-
tion campaigns) to inputs for H (input time functions), and lays
the foundations to our SLV approach, ensuring that we can carry
out a verification activity on H by properly driving its simulator
S . This will be the focus of Section IV.

Proposition 1: Let S be a simulator for H, X an executable
simulation campaign for S , and w0, ..., wc the associated se-
quence of simulator states. For each i ∈ [0, c], the input time
function ui inwi = (x,u,Mi) is such to drive H from its initial
state to xi.

IV. SIMULATION-BASED SLV

To perform simulation-based SLV of H over n input traces
U we need a simulator S = (H,W) for H and an executable
simulation campaign X for S that somewhat drives S along
the scenarios for H encoded by traces of U and collects the
simulator outputs at the end of each scenario.

To this end, Definition 2 allows us to associate to any ex-
ecutable simulation campaign X for S the sequence U(X ) of

SUV scenarios (as piecewise constant input time functions) for
H actually explored by X . Full definitions and statements in
this section as well as their proofs are delayed to Appendix C
(available online).

Definition 2: (Sequence of input time functions associated to
a simulation campaign). The sequence of input time functions
associated to simulation campaign X containing n OUTPUT

commands is U(X ) = uj0 , . . . ,ujn−1
, where uji is the input

time function associated to the state where the simulator exe-
cutes the i-th OUTPUT command of X .

Definition 3 formalises the notion of a simulation campaign
aimed at computing the answer to an SLV problem.

Definition 3: (Simulation campaign for an SLV problem).
A simulation campaign X for SLV problem π = (H,U) is an
executable campaign for a simulator S of H, such that the
sequence U(X ) = uj0 , . . . ,ujn−1

of its associated input time
functions is a permutation of U .

A simulation campaign X for π = (H,U) can be used to
compute the answer to π by executing X on a simulator S for
H and by collecting the simulator outputs during X . If π aims
at finding scenarios witnessing a property violation, the input
function associated to any simulator state whose output is FAIL
constitutes such an error scenario. Conversely, if π amounts to
compute statistics on some KPIs of interest, the KPI values
returned as the outputs of X (at the end of each simulated
scenario) can be used to build such statistics.

A. Shortest Simulation Campaigns

Among all the simulation campaigns for a given SLV prob-
lem, the shortest campaigns whose required simulator memory
is bounded by a given constant m ∈ N+ (the simulator memory
capacity) have a special interest (Definition 4).

Definition 4: (Shortest (m-memory) simulation campaign
for a SLV problem). Let m ∈ N+ ∪ {∞}. A shortest
m-memory simulation campaign X for π is a simulation
campaign for π such that mem(X )≤m and for which
no other simulation campaign X ′ for π exists such that
len(X ′)< len(X ) and mem(X ′)≤m. When m=∞ (i.e., we
do not put any limitation on the required simulator memory
capacity to execute X ), we call X simply a shortest simulation
campaign for π.

By definition, any shortest m-memory simulation campaign
for π is not shorter than any shortest (m+ 1)-memory simula-
tion campaign for π. Also, any shortest ∞-memory simulation
campaign for π would actually require only a finite simulator
memory capacity, which is upper bounded by the number m∗

of the distinct longest sequences of disturbances occurring as
prefixes of multiple traces of U (Longest Shared Prefixes, LSPs,
see Definition 13 in Appendix D.1, available online). Hence,
any shortest ∞-memory simulation campaign for π would ac-
tually be a m∗-memory simulation campaign.

Computation of shortest simulation campaigns can be pur-
sued by recalling that our SUV H is deterministic and needs
to be simulated, for each scenario (input trace), starting from
its initial state x0. Hence, if two input traces ua,ub ∈ U have
a common prefix, the SUV state at the end of such a prefix
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may be stored during simulation of the first simulated trace
(e.g., ub) and loaded back before simulating the other (e.g., ua),
whose inputs could then be injected from that point on only.
This avoids repeated simulation of the common prefix.

This form of compression is particularly effective in practice,
as the occurrence of multiple scenarios sharing a common prefix
is very frequent when defining SUV operational environments.
For example, in our case studies, the shortest simulation cam-
paigns, as computed by our algorithm, are shorter than naïve
ones by a factor of 5 to 8. This translates in similar speed-ups
of the required overall simulation time (see Section VI).

B. Randomised Simulation Campaigns

Proposition 2 states that, if we put no limitation on the re-
quired memory capacity, a shortest simulation campaign exists
for any ordering of the scenarios of the SLV problem at hand.

Proposition 2: Let π = (H,U) be an SLV problem (|U|= n)
and S be a simulator for H. For any permutation uj0 , . . . ,ujn−1

of input traces of U , there exists an executable shortest simula-
tion campaign X for π on S , such that U(X ) = uj0 , . . . ,ujn−1

.
However, the choice of the scenario verification order is an

important issue. For example, as long as this order is determinis-
tic, no partial conclusion can be drawn, during simulation, about
the absence of error scenarios. This is because in a verification
setting we need to adopt an adversarial model in which the
adversary will place the single error scenario of U as the last
scenario simulated by X . Previous work [29], [32] shows that
the upfront availability of all scenarios to be verified (set U )
allows us to adopt a simple yet very effective approach to draw,
at any time during simulation, mathematically-sound partial
conclusions on the probability that a property violation will
be witnessed by a yet-to-be-simulated scenario. The idea is
to choose our scenario verification order uniformly at random
among all possible orders. With such a randomised simulation
campaign, after having verified the absence of errors on the
first j ∈ [0, n] scenarios of U in the generated random order
(where n= |U|), the probability that an error will be found in
a yet-to-be-simulated scenario (omission probability) is upper-
bounded by 1− j

n . With this approach, we effectively conjugate
exhaustiveness with randomness.

Randomising the scenario verification order is also required
when approximations of statistics (e.g., expected values) of
KPIs for each scenario are to be computed with guaranteed
accuracy via statistical model checking.

Efficiently computing a shortest, possibly randomised sim-
ulation campaign for our SLV problem is the purpose of Sec-
tion V.

C. Parallel Simulation Campaigns

As anticipated in Section I-A, a major efficiency bottleneck
for simulation-based SLV of industry-relevant CPSs is simula-
tion time. This is due both to the typically very large number
of scenarios to simulate (e.g., up to almost 200 million in our
case studies) and to the time needed to numerically simulate the
CPS model (our SUV) on each such scenario (up to 80 seconds
in our case studies).

The answer to an SLV problem π = (H,U) (i.e., the collec-
tion of the simulator outputs at the end of each scenario) can
be computed by arbitrarily partitioning U into k ∈ N+ subsets
(slices) U0, . . . ,Uk−1 (where k is the number of available com-
putational nodes), and by computing and taking the union of
the answers to the k smaller SLV problems πi = (H,U i), i ∈
[0, k − 1]. In our simulation-based setting, this can be achieved
using k simulators for H running as k independent processes
(e.g., in parallel in a HPC infrastructure) and independently
driven by k simulation campaigns X1, . . . ,Xk, where, for all
i, Xi is a simulation campaign for πi. Definition 5 formalises
this concept.

Definition 5: (Parallel simulation campaign for an SLV prob-
lem). A k-parallel simulation campaign for SLV problem π =
(H,U) is a tuple Ξ = (X0, . . . ,Xk−1) such that there exists a
partition of U into sets U0, . . . ,Uk−1 such that, for all i, Xi is
a simulation campaign for πi = (H,U i).

The length of X is len(X ) = maxk−1
i=0 len(Xi). Given m ∈

N+ ∪ {∞}, Ξ is a k-parallel m-memory simulation campaign
if all Xis are m-memory simulation campaigns.

The concepts of shortest and shortest m-memory simulation
campaign are straightforwardly extended to parallel simulation
campaigns.

As shown in [32], when the SLV activity seeks to certify
absence of error scenarios, if all Xis of a parallel simulation
campaign Ξ = (X0, . . . ,Xk−1) are randomised (i.e., each Xi

implements a verification order of the scenarios in Ui chosen
independently and uniformly at random among all possible
orders), then, at any time during the parallel simulation-based
SLV activity, where Xi has verified the absence of errors on the
first ji ∈ [0, ni] scenarios of Ui in the generated random order
(where ni = |Ui|), the omission probability (i.e., the probability
that an error will be found in a yet-to-be-simulated scenario) is
upper-bounded by 1−mink−1

i=0

(
ji
ni

)
.

V. PARALLEL COMPUTATION OF PARALLEL SIMULATION

CAMPAIGNS

We are now ready to present our algorithm to compute a
parallel simulation campaign Ξ = (X0, . . . ,Xk−1) for the SLV
problem π = (H,U) at hand. The computed Ξ can be executed
on k simulators for H running independently on k nodes of a
HPC infrastructure.

Full definitions, additional pseudocode and its description,
as well as proofs of statements in this section are delayed to
Appendix D (available online).

A. Input

Our algorithm takes as input a collection U of n ∈ N+ input
traces (encoding the scenarios on which the SUV must be
verified) and the memory capacity m ∈ N+ of each of the k
simulators in terms of the maximum number of states that each
simulator can keep simultaneously stored.

Input traces are given either explicitly in the form of a
database in mass memory, or symbolically, by means of a
scenario generator, as designed in [38]. In particular, a sce-
nario generator G is a symbolic data structure built from a
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set of requirements (or constraints), in turn defined by means
of multiple automata (monitors). From G, input traces of any
horizon satisfying those requirements can be efficiently ex-
tracted from their unique indices. Namely, a scenario generator
G offers two main functions: nb_traces() and trace(). Function
nb_traces(G) returns the number n of input traces entailed by
G, while, for j ∈ [0, n− 1], trace(G, j) extracts the j-th trace
(in lexicographic order) from G. When the set of scenarios is
given via a scenario generator, the input traces are given as a set
of integers I representing unique indices of traces to extracted
from G. In other words, when a scenario generator are involved,
our set of input traces is defined as U = {trace(G, j) | j ∈ I}.

B. Enabling Parallelism

The typically very large number of input traces implies that
U cannot be represented explicitly in central memory, and
any form of global optimisation to find a shortest parallel
m-memory simulation campaign would be unviable. Hence, our
algorithm makes wise use of the available RAM and parallel
computational nodes, and exploits suitable heuristics in order to
compute an as-short-as-possible randomised m-memory sim-
ulation campaign. However, when the available capacity m
of each simulator memory is above a certain threshold which
depends on U , the algorithm will indeed compute k prov-
ably shortest m-memory simulation campaigns X0, . . . ,Xk−1

(Proposition 3).
Computing an as-short-as-possible parallel m-memory sim-

ulation campaign needs to heavily exploit the presence of multi-
ple traces sharing a prefix. Hence, when splitting U into slices,
it is important to keep as much as possible in the same slice
traces sharing long common prefixes.

To this end, our algorithm works best when input traces
can be accessed in lexicographic order (according to the total
order defined over the SUV input space U), since in this case it
can easily keep in the same slice traces that are close together
according to the lexicographic order.

Accessing traces in lexicographic order is immediate when
they are extracted from a scenario generator, since it would
be enough to access them in ascending order of their indices.
Hence, in this case slicing is performed by simply partitioning
of the set of indices I of the traces selected for SLV into k
evenly-long sequences I0, . . . , Ik−1, where each such sequence
defines trace indices in ascending order and, for each i > 0 the
trace indices in the i-th slice are all larger than those in the
(i− 1)-th slice. The i-th slice of traces would then simply be:
Ui = {trace(G, j) | j ∈ Ii}, i ∈ [0, k − 1].

Conversely, when input traces are extracted from a database,
standard mass-memory sorting algorithms are exploited to re-
order them lexicographically. Even when the number of traces
is very large, such mass-memory sorting algorithms offer good
scalability and can be effectively used for this purpose. In
particular, as shown in Section VI-D, the advantages (in terms
of savings in the simulation time) achieved by performing SLV
using optimised simulation campaigns heavily outperform the
additional cost of ordering them if needed, and this justifies
investing computation time in such a preprocessing.

Algorithm 1: Simulation campaign computation for a
slice
1 input Ui, slice of traces in desired (e.g., random) order
2 input τ ∈ T, time quantum
3 input m ∈ N+, the simulator memory capacity
4 output Xi, the output simulation campaign

5 Xi ← an empty sequence of commands;
6 T ← LSPT(Ui); /* build Longest Shared Prefix Tree */
7 j ← 0; /* trace counter */
8 foreach u ∈ Ui (in the given order) do
9 append sim_cmds(u, j, T ) to Xi; j ++;

10 return Xi;

For each slice, a desired, possibly randomised, verification
order can be easily defined by the user. For example, a uni-
formly random verification order can be computed by com-
puting a random permutation of trace indices (when traces are
extracted from a scenario generator) or of their keys (when pre-
sorted in mass-memory databases, see, e.g., [32]).

C. Computing a Simulation Campaign From Each Slice

From this point on, computation of the parallel simula-
tion campaign Ξ = (X0, . . . ,Xk−1) proceeds embarrassingly
in parallel, using up to k independent computational nodes, one
for each slice. Our algorithm to compute a simulation campaign
for a single slice Ui is sketched as Algorithm 1.

1) Longest Shared Prefix Tree: The first step of Algorithm
1 (function LSPT()) is to build a data structure called Longest
Shared Prefix Tree (LSPT), representing the longest prefixes
shared by multiple traces.

In the following, given two (possibly empty) sequences of
inputs ua and ub (i.e., sequences of values of U), we denote
by ua � ub (respectively, ua � ub) the fact that ua is a prefix
(respectively, proper prefix) of ub.

A Longest Shared Prefix (LSP) for Ui is a (possibly empty)
sequence u of inputs such that there exist two traces ua and ub

in Ui such that: u� ua, u� ub, and there exists no u′ in Ui

such that u� u′, u′ � ua, and u′ � ub. The intelligent storing
of the states reached by the simulator after having executed
such LSPs (under the available simulator memory capacity
constraints) would avoid their recomputation, thus producing
shorter simulation campaigns.

A LSPT for Ui (see Appendix D.1.1, available online, for
formal statements, details, and pseudocode) is a tree T =
(V, parent). Nodes (set V ) denote distinct LSPs of Ui and the
parent node parent(u) of node u (if one exists) is such that
parent(u)� u, and no sequence u′ exists as a node of T such
that parent(u)� u′ � u. The latter condition implies that a
LSPT is a rooted tree.

The depth of LSPT node u= (u0, . . . , ud−1) is depth(u) =
d, which represents the time point dτ reached by the simula-
tor (starting from its initial state) after having injected input
sequence u. The depth of the node associated to the empty
sequence is zero. To each node (u0, . . . , ud−1) ∈ V , the number
of traces in Ui having (u0, . . . , ud−1) as a (proper or non-
proper) prefix is stored as ntraces(u0, . . . , ud−1).
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A LSPT T for Ui is complete if no LSPT for Ui exists whose
nodes are a proper subset of those of T . The size of a LSPT is
the number of its nodes.

To compute a complete LSPT for Ui in central memory,
function LSPT() scans Ui in lexicographic order, since, under
this ordering, deciding which trace prefixes are nodes of the tree
is straightforward and memory-efficient.

To keep an as small as possible RAM footprint of the LSPT,
the algorithm represents in central memory each of its nodes
(u0, . . . , ud−1) by a unique identifier λ(u0, . . . , ud−1). Unique
identifiers for each trace prefix are available for free when
traces are extracted from a scenario generator. If traces are taken
from a database, any efficiently computable injective function
of finite sequences of input values (or even a cryptographic hash
function, when the probability of conflicts is small enough) can
be used.

2) Generation of Simulation Campaign Commands: Algo-
rithm 1 proceeds at generating an optimised simulation cam-
paign Xi which would drive simulator Si along all the input
traces according to the chosen (possibly random) order, still
trying to save as many simulation steps as possible, compatibly
with simulator memory capacity constraints.

To this end, the input traces Ui are considered sequentially
in the given order. For each trace u, function sim_cmds() is
invoked to append to Xi a sequence of commands to simulate it
from the best intermediate state available in the simulator mem-
ory (see below). During generation of simulator commands, for
each LSPT node λ, the algorithm keeps a boolean flag stored(λ)
(initialised to false) whose value reflects, at any point during the
computation of Xi, the fact that state λ would be available or
not in the memory of Si at that point during the execution of
Xi. Namely, stored(λ) is set to true (respectively, false) when
issuing a STORE(λ) (respectively, FREE(λ)) command.

Generating trace simulation commands. Algorithm 2
shows the pseudocode of function sim_cmds() which issues
the actual commands aimed at simulating trace u, which are
appended to Xi. The function proceeds as follows:

1. Selects λload, the state corresponding to the longest prefix
of u that, at the current point of the prospective simulation,
would be available in the simulator memory and appends
command LOAD(λload) to Xi, to load it back.

2. Revises the nodes of the LSPT associated to prefixes of
u (proceeding backwards from the full u). For each such
LSPT node λq, value ntraces(λq) is decremented (thus
memorising the fact that such prefix will occur in one less
future trace). If ntraces(λq) becomes zero, the algorithm
knows that the input sequence associated to λq will not
occur as a prefix in any future trace, and removes λq

from the LSPT (which, since prefixes of u are processed
backwards from the entire u, is a leaf of the LSPT). Also,
if λq is known to be stored in the simulator memory at
this point of the execution of Xi (i.e., stored(λq) = true), it
appends to Xi command FREE(λq) to free-up the simulator
memory.

3. Appends to Xi a RUN command for each maximally long
constant portion of u such that no intermediate state tra-
versed by the simulator needs to be stored to shorten

Algorithm 2: Function sim_cmds()

1 function sim_cmds(u, j, T )
2 input u= (u0, . . . , uh−1), current (j-th) trace
3 input T = (V, parent), Longest Shared Prefix Tree
4 output sequence of sim. commands for u
5 if j = 0 then load ← 0; /* first trace */
6 else /* not first trace */
7 load ← max q ∈ [0, h] s.t.
8 λload = λ(u0, . . . , uq−1) ∈ V ∧ stored(λload);
9 issue LOAD(λload);

10 for q from h− 1 downto 0 s.t.
λq = λ(u0, . . . , uq−1) ∈ V do /* revise T */

11 ntraces(λq)--;
12 if ntraces(λq) = 0 then

/* λq won’t occur in future
traces */

13 if stored(λq) then
14 issue FREE(λq); stored(λq) ← false;
15 remove λq from V ; /* λq is leaf

in T */
/* All nodes still in T will occur
in future traces */

16 start ← load;
17 while start < h do
18 end ← max e ∈ [start, h−1] s.t. ∀q ∈ [start+1, e]
19 uq = uq−1 ∧¬worth_storing(λ(u0, . . . , uq−1), T );

20 issue RUN(ustart, (end − start + 1)τ);
21 start ← end + 1;
22 if start ≤ h ∧ λstart = λ(u0, . . . , ustart−1) ∈ V ∧

worth_storing(λstart, T ) then
23 do_store(λstart, T , m, Xi); /* possibly

issues FREE(λ′) for some λ′ s.t.
stored(λ′) and sets stored(λ′)
to false, before issuing
STORE(λstart) */

24 stored(λstart)←true;
25 issue OUTPUT;

simulation of future traces (i.e., function worth_storing()
returns false for it).

4. If the state reached by the simulator after each RUN com-
mand is worth to be stored as it can shorten simulation of
a later trace (this implies it is a node of the LSPT), the
function proceeds at storing it (see below).

Storing intermediate simulation states. Given the lim-
ited capacity m of the simulator memory, the decision of which
LSPT simulator states will be actually stored must be taken
wisely. This is charge of function worth_storing().

Since the LSPT has no information on the order with which
simulator states represented by LSPT nodes will occur in Ui

(such data would be too large to be kept in RAM), any approach
to compute an optimal plan to decide which intermediate state
to store and free (and when to do that during the execution of the
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simulation campaign) is clearly not viable. Hence, the function
proceeds heuristically.

In particular, worth_storing(λ, T ) works as follows. If λ is
not a LSPT node or is expected to be already stored in memory
at that point of the execution of the simulation campaign (i.e.,
stored(λ) = true), then worth_storing() returns false; otherwise,
if the simulator memory is expected to have room to accom-
modate an additional state (i.e., the number of LSPT nodes
λ′ such that stored(λ′) = true is <m), then worth_storing()
returns true.

In case the simulator memory is expected to be full at that
point of the execution of the simulation campaign, then the
function decides whether it is best to make space for λ by
freeing up another simulator state λ′ already in memory, or to
rather ignore the request of storing λ in the first place.

To this end, the function searches for a currently stored
state λ′ whose associated node in the LSPT is not the root
node and has the smallest depth-difference with respect to its
parent node, where the depth-difference of λ′ is depth(λ′) −
depth(parent(λ′)) > 0. Since the depth-difference of a simu-
lator state defines the additional number of τ -simulation steps
needed by the simulator to reach that state when starting from
the state represented by its parent node in the LSPT, λ′ is a
currently stored state which could be used to shorten simulation
of a future trace, but whose removal from simulator memory
minimises the number of additional τ -simulation steps needed
to recompute it (from the state associated to its parent node in
the LSPT).

In case the depth-difference of λ′ is less than that of λ,
then the function decides that it is worth removing λ′ from
the simulator memory to make room for λ, and returns true.
Otherwise, the function knows that freeing-up λ′ to make room
for λ would cost more (in terms of additional τ -long sim-
ulation steps to recompute λ′ from the state represented by
its parent) than simply ignoring the request to store λ, and
returns false.

When worth_storing() returns true, function do_store()
appends STORE(λ) to Xi, preceded by FREE(λ′) in case
worth_storing() has selected λ′ as the state to be freed-up (in
which case stored(λ′) is set to false as well).

In order to efficiently find λ′, the currently stored LSPT nodes
are indexed so as to retrieve efficiently those having minimal
depth-difference with respect to their parents.

The following result holds (see Appendix D.2, available on-
line, for the full statement and proof).

Proposition 3: (Correctness of Algorithm 1). Let π = (H,U)
be an SLV problem for SUV H, with input traces U being asso-
ciated to time quantum τ , and let m be a positive integer. Given
any partition {U0, . . . ,Uk−1} of U , let Ξ = (X0, . . . ,Xk−1) be
the k-parallel simulation campaign such that Xi is computed by
Algorithm 1 on inputs Ui (under any user-defined order), τ , and
m. We have that:

1. For all i ∈ [0, k − 1], the sequence U(Xi) is Ui;
2. There exists m∗ ∈ N+ such that, if m≥m∗, all Xis are

shortest m-memory simulation campaigns.
Point 1. implies that Ξ is a k-parallel m-memory simulation

campaign for π. Each Xi drives an independent copy of a

simulator of SUV H along the scenarios in Ui in the chosen,
possibly random, order. In the latter case, an upper bound to
the omission probability can be computed at any time during
parallel simulation (Section IV-C).

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section we outline our implementation of the parallel
algorithm of Section V and analyse its performance and scala-
bility on three real case studies.

A. Implementation

We implemented our algorithm as a C-language tool which
takes as input positive integers k (number of slices) and m
(memory capacity of each simulator), and the set of input traces
U for which a parallel campaign is sought. In our experiments
we extracted the set of input traces from scenario generators,
defined as discussed in [38]. The computed campaign can be
executed on k simulators for the SUV H, running independently
on k computational nodes. Each simulator is steered by a driver
which receives the simulation campaign as input. This driver is
the only simulator-dependent component of our tool pipeline.
We implemented drivers for two popular simulators, namely:
Simulink and JModelica/FMU. Additional drivers can be easily
written along the same lines.

B. Case Studies

We selected three industry-relevant SUV models defined in
the language of two popular simulators, namely Simulink and
Modelica.

1) Buck DC–DC Converter (BDC): It is a mixed-mode
analog circuit converting the DC input voltage (denoted as Vi)
to a desired DC output voltage (Vo), often used off-chip to scale
down the typical laptop battery voltage (12–24 V) to the few
volts needed by, e.g., a laptop processor (the load) as well as
on-chip to support dynamic voltage and frequency scaling in
multicore processors (see, e.g., [40]). A BDC converter is self-
regulating, i.e., it is able to maintain the desired output voltage
Vo notwithstanding variations in the input voltage Vi or in the
load R. We used a Modelica model of the fuzzy logic–based
BDC controller of [47], converted into an FMU 2.0 object via
the JModelica extension in [45].

2) Apollo Lunar Model Autopilot (ALMA): It is a
Simulink/Stateflow model defining the logic that implements
the phase-plane control algorithm of the autopilot of the lunar
module used in the Apollo 11 mission. The Module is equipped
with actuators (16 reaction jets to rotate the Module along the
three axes) subject to temporary unavailabilities. The controller
takes as input requests to change the Module attitude (i.e., to
perform a rotation along the three axes) and computes which
reaction jets to fire to obey each request.

3) Fault Tolerant Fuel Control System (FCS): It is a
Simulink/Stateflow model of a controller for a fault tolerant
gasoline engine, which has also been used as a case study in
[11], [25], [26], [28], [32], [33], [55]. The FCS has four sensors
subject to temporary faults, and the whole control system is
expected to tolerate single sensor faults.
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TABLE I
SCENARIO GENERATORS FOR OUR CASE STUDIES

SUV |U| horizon n. traces constraints on traces

BDC 25 60 t.u. 49 971 109 Appendix E.1
ALMA 432 100 t.u. 107 535 209 Appendix E.2

FCS 6 100 t.u. 195 869 671 Appendix E.3

C. Experimental Setting

We defined a scenario generator for each SUV, entailing input
traces (time quantum τ = 1 time unit, t.u.) with the properties
listed in Table I. Several constraints have been enforced on
the input traces. This allows us to focus the SLV activities on
clearly selected portions of the space of inputs and to keep the
overall number of traces under control. The enforced constraints
are detailed in Appendix E (available online). Here, we just
point out that we experimented with the optimisation of parallel
simulation campaigns for up to around 50 (BDC), 100 (ALMA)
and 200 (FCS) million traces.

To show scalability of our algorithm when computing op-
timised parallel simulation campaigns as well as the overall
savings in simulation time provided by our approach to SLV,
we exploited (virtually) up to 1024 identical 64-core machines
(CPU: AMD EPYC 7301, RAM: 256GB) of our HPC in-
frastructure, thus our maximum number of slices k has been
set to 65 536.

Since actual simulation of the generated campaigns in all
the considered settings would be prohibitively long, simulation
time of each campaign has been estimated as follows. For each
SUV, we generated and actually simulated a random campaign
of 100k commands, where each command (LOAD, STORE, FREE,
OUTPUT, RUN for all needed durations) was evenly represented.
We then computed the average time needed by the simulator to
execute each single command, and used such expected values
(standard deviation showed to be negligible) to estimate the
completion time of each campaign.

D. Experimental Results

Our experimental results are summarised in Fig. 1 (BDC),
Fig. 2 (ALMA) and Fig. 3 (FCS). We computed several ran-
domised parallel simulation campaigns for each case study, one
of each of several random subsets of all the traces entailed by
our scenario generator.

In order to show performance and effectiveness of simula-
tion campaign optimisation in contexts ranging from statistical
model checking to random exhaustive verification, we sampled
trace subsets by fixing their size from 25% to 100% of the
overall number of traces.

Each experiment has been repeated for various amounts of
simulator memory available (1 state, meaning no optimisation
at all, since only one simulator state –typically the initial state–
can be stored and loaded back, up to m∗, the maximum number
of states required in each experiment for maximum optimi-
sation). Given the presence of randomisation, all experiments
have been repeated with 5 different random seeds, and all results
have been averaged.

1) Scalability of the Campaign Computation Algorithm:
The first (left-most) column of Figs. 1–3 shows the time
(in seconds) needed by our algorithm to compute a parallel
simulation campaign for each SUV and each combination of
values for the number of traces (row), the number of parallel
processes (slices), and the amount of simulator memory
(different line shapes).

The plots show that the computation time ranges from a few
seconds to a few hours, and this time is always negligible when
compared to the time savings that such optimisation yields
in terms of simulation time (see the corresponding plots on
right-most column, where time is expressed in days of parallel
computation).

2) Campaigns Efficiency With Respect to Parallelisation:
The second column of Figs. 1–3 shows how efficiency of the
computed campaigns is preserved when a higher number of
parallel processes are expected to be used in the verification
process (hence, the input traces are split in a higher number of
slices).

Namely, for each SUV and each combination of values
for the number of traces n (row), the number of parallel
processes (slices) k, and the amount of simulator memory
m (different line shapes), the charts plot the average value
(among our randomised experiments) of the following quan-
tity: sim_time(Xn,1024,m)× 1024

sim_time(Xn,k,m)× k , which measures, in terms of (esti-
mated) simulation time (sim_time), the efficiency of the parallel
simulation campaign Xn,k,m (which verifies n random traces in
parallel on k processes assuming that each simulator can keep
m states simultaneously stored) with respect to the correspond-
ing parallel simulation campaign Xn,1024,m (which verifies the
same traces under the same assumptions regarding the simula-
tor memory, but running on just 1024 parallel processes, our
minimum value).

The plots show how efficiency is always very high, and, even
when it degrades to a bit less than 90%, the induced overhead
in simulation time is always negligible when compared to the
very large time savings yielded by exploiting a higher number
of parallel simulators.

3) Campaigns Efficiency With Respect to Available Simu-
lator Memory: The third column of Figs. 1–3 shows how effi-
ciency of the computed campaigns is preserved when reducing
the memory available on each simulator.

Namely, for each SUV and each combination of values for
the number of traces n (row), the number of parallel processes
(slices) k, and for each value for the amount of simulator mem-
ory m (different line shapes), the charts plot the average value
of the following quantity: sim_time(Xn,k,m∗ )

sim_time(Xn,k,m) , which measures, in
terms of simulation time (sim_time), the efficiency of the paral-
lel simulation campaign Xn,k,m (which verifies n random traces
in parallel on k processes assuming that each simulator can keep
only m states simultaneously stored) with respect to the corre-
sponding parallel simulation campaign Xn,k,m∗ (which verifies
the same traces with the same number of parallel processes, but
assuming maximum simulator memory, i.e., m=m∗).

The plots show how efficiency is very well preserved
when reducing the value for m to up to m∗ × 50%, unsur-
prisingly degrading for lower values of m. We also point
out that the maximum memory required to each simulator
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Fig. 1. Experimental results: Buck DC–DC Converter (BDC).

(i.e., when m=m∗) is always very limited, and easily met in
practice. Namely, since simulator states occupy at most a few
dozens of Kilobytes, the memory requirements are always less
than (upper limits reached for 1024 parallel processes/slices):
2GB for BDC (m∗ ≤ 15 681); 4GB for ALMA (m∗ ≤ 62 050);
8GB for FCS (m∗ ≤ 156 115).

4) Simulation Speedups and Time Savings: The fourth
column of Figs. 1–3 shows the speedups in simulation time
achieved by our computed optimised campaigns under different
settings regarding the memory available on each simulator.

Namely, for each SUV and each combination of values for
the number of traces n (row), the number of parallel processes
(slices) k, and for each value for the amount of simulator
memory m (different line shapes), the charts plot the average
value of the following quantity: sim_time(Xn,k,1)

sim_time(Xn,k,m) , which mea-
sures, in terms of simulation time (sim_time), the speedup of
each parallel simulation campaign Xn,k,m (which verifies n
random traces in parallel on k processes assuming that each
simulator can keep only m states simultaneously stored) with
respect to the corresponding campaign Xn,k,1 (which verifies
the same traces with the same number of parallel processes, but
assuming that each simulator can keep simultaneously stored
only one state, that is no optimisation at all). The plots show
how our simulation campaign optimiser always achieves very
significant speedups, up to more than 8×.

The fifth column of Figs. 1–3 shows how these speedups
translate in huge reductions in simulation time (in days).
Namely, for each SUV and each combination of values for n, k,
andm, the charts plot the average value of the overall simulation
time of the parallel simulation campaigns Xn,k,m, which verify
the given SUV on n random traces under simulator memory
setting m. The plots clearly show that our simulation campaign
optimiser makes practically viable (in some days or at most
weeks of parallel simulation) verification tasks that would take

an inconceivable long time without optimisation (i.e., when
m= 1).

E. Limitations

Our optimised campaigns heavily rely on storing and loading
back intermediate simulator states to avoid simulating common
prefixes of different traces multiple times. Hence, for SUV
models exhibiting very large states (e.g., those defined via par-
tial differential equations, transport delays, or variable delay
blocks), the time to execute STORE and LOAD commands may
become substantial, and this raises a question on whether it
would be faster to skip optimisation altogether and just run the
non-optimised campaigns. Here we briefly discuss this issue.

In the case of SUV models showing larger states than
ours, but which are also proportionally slower to advance,
the speedups enabled by the campaign optimisation would be
somewhat preserved. Thus, the problematic situations for our
optimiser occur when dealing with SUV models whose states
are larger, but whose simulation is only sub-proportionally
slower to advance.

To assess to what extent our optimised campaigns still grant
time savings with respect to the non-optimised campaigns, we
reconsidered our experiments by artificially inflating the dura-
tion of STORE and LOAD commands by a factor f ranging from
1 to 100, keeping unchanged the duration of RUN commands.
Thus, we placed ourselves in the most hostile setting, i.e., the
verification of variations of our SUV models that, although
requiring the same time to be advanced, have larger states which
need f times the time needed by our original SUV models to
be stored and loaded back.

Unsurprisingly, the speedups achieved by optimised cam-
paigns gradually decrease when f increases, but still typically
grant substantial savings in simulation time. For example,
the speedups achieved for our case studies (100% traces) fall
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Fig. 2. Experimental results: Apollo Lunar Model Autopilot (ALMA).

Fig. 3. Experimental results: Fuel Control System (FCS).

to: 2.2–2.4× (BDC), 4.3–6.0× (ALMA), 3.7–5.5× (FCS) for
f = 10; 1.0–1.3× (BDC), 2.5–3.2× (ALMA), 2.5–3.1× (FCS)
for f = 50; 0.9–1.0× (BDC), 1.6–2.4× (ALMA), 1.7–2.3×
(FCS) for f = 100.

VII. RELATED WORK

Black-box simulation-based SLV of cyber-physical
systems has been widely addressed in the literature. For
example, simulation-based reachability analysis for large linear
continuous-time dynamical systems has been investigated

in [6], [14]. A simulation-based data-driven approach
to verification of hybrid control systems described by a
combination of a black-box simulator for trajectories and
a white-box transition graph specifying mode switches has
been investigated in [17]. Formal verification of discrete
time Simulink models (e.g., Stateflow or models restricted
to discrete time operators) with small domain variables has
been investigated in, e.g., [9], [41], [49], [52]. However, none
of the approaches above supports simulation-based bounded
model checking of arbitrary simulation models on a (typically
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extremely large) set of operational scenarios given as input,
and none of them addresses the issue of simulation campaign
optimisation.

To the best of our knowledge, the only available litera-
ture which deals with simulation campaign optimisation is our
previous works [28], [30], where preliminary versions of our
algorithm have been presented. With respect to those confer-
ence papers, the current article presents a new, more scalable
algorithm which guarantees to compute a shortest simulation
campaign when enough simulator memory is allowed, and ex-
ploits various heuristics to compute an as short campaign as
possible even when such memory requirements are not met.
Our algorithm computes simulation campaigns that obey to the
verification order decided by the user, possibly randomised so
as to compute, at any time during simulation, an upper bound
to the omission probability, using the results of [32].

Our algorithm takes as input a set of operational scenarios
that can be provided in several ways, e.g., from a high-level
constraint-based model as discussed in [38], or as a mass-
memory database of scenarios. This allows us to seamlessly
support both (random) exhaustive verification (when the given
scenarios completely define the set of operational scenarios of
interest for the verification task) and statistical model check-
ing (when the given scenarios are a random sample of such
scenarios).

When exhaustive verification is not a viable option, given
the huge number of scenarios of interest, simulation-based sta-
tistical model checking is often preferred, in order to com-
pute statistically-sound information about the SUV properties
of interest from a random sample of the possible scenarios,
see, e.g., [7], [8], [10], [18], [19], [20], [23], [24], [53], [54].
Simulation-based statistical model checking has been success-
fully applied in several domains, e.g., Simulink CPS models
[12], [55], mixed-analog circuits [11]; smart grid control poli-
cies [21], [35], [36], [37]; biological models [39], [42], [46],
[50]. Finally, simulation-based falsification of CPS properties
(e.g., for Simulink models) has been extensively investigated.
Examples are in [1], [2], [5], [13], [15], [22], [44], [51] and
citations thereof. Some of such works also propose suitable
data-structures (e.g., tree-like) to represent the set of possible
traces, as we do.

Our simulation campaign optimisation algorithm is indepen-
dent of the chosen verification technique, and the computed
campaigns would bring significant speedups in terms of sim-
ulation time to all of them. For example, the first row of Figs.
1–3 shows that speedups up to around 6× in simulation time
can be achieved even when a small random sample (only 25%)
of the entire sets of scenarios is chosen to perform statistical
model checking.

The ability to perform parallel verification of the SUV is also
a key enabler to make simulation-based SLV of industry-scale
CPSs practically viable. Parallel approaches have been investi-
gated, see e.g., [4] in the context of probabilistic properties. Our
approach seamlessly allows massive embarrassingly parallel
verification. This is because, once the input set of scenarios has
been split into slices, a parallel simulation campaign is com-
puted, which is used to feed independent verification processes
to be run in parallel.

VIII. CONCLUSIONS

In this article we focused on the generation of optimised
simulation campaigns to carry out SLV of CPSs using arbi-
trarily many simulators of the system model running in parallel
in a large HPC infrastructure, with the goal of minimising the
overall completion time.

By taking as input a user-defined collection of (a random
sample of) operational scenarios of interest from either a mass-
storage database or a symbolic structure such as a constraint-
based scenario generator in a (possibly random) user-defined
order, our optimiser computes shortest parallel campaigns
which exercise the system model on all (and only) the given sce-
narios. Our campaigns greatly speed-up verification by wisely
avoiding the repeated computation of recurrent system trajec-
tories as much as possible, compatibly with simulator memory
constraints.

Our experiments on SLV of Modelica/FMU and Simulink
case study models with up to almost 200 million scenarios
show that our optimisation yields speedups as high as 8× and
scales very well to large HPC infrastructures (efficiency almost
always ≥ 90% even when using 65 536 computational nodes,
i.e., 1024 64-core parallel machines).

The conjoint exploitation of simulation campaign optimisa-
tion and massive parallelism makes practically viable (a few
weeks in a HPC infrastructure) verification tasks (both exhaus-
tive and statistical) which would otherwise take inconceivably
long time.
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