
Mission Specification Patterns for Mobile Robots:
Providing Support for Quantitative Properties

Claudio Menghi , Christos Tsigkanos, Mehrnoosh Askarpour, Patrizio Pelliccione ,

Gricel V�azquez, Radu Calinescu , and Sergio Garcı́a

Abstract—With many applications across domains as diverse as logistics, healthcare, and agriculture, service robots are in

increasingly high demand. Nevertheless, the designers of these robots often struggle with specifying their tasks in a way that is both

human-understandable and sufficiently precise to enable automated verification and planning of robotic missions. Recent research

has addressed this problem for the functional aspects of robotic missions through the use ofmission specification patterns. These

patterns support the definition of robotic missions involving, for instance, the patrolling of a perimeter, the avoidance of unsafe locations

within an area, or reacting to specific events. Our article introduces a catalog of QUantitAtive RoboTic mission spEcificaTion patterns

(QUARTET) that tackles the complementary and equally important challenge of specifying the reliability, performance, resource usage,

and other key quantitative properties of robotic missions. Identified using a methodology that included the analysis of 73 research

papers published in 17 leading software engineering and robotics venues between 2014–2021, our 22 QUARTET patterns are defined

in a tool-supported domain-specific language. As such, QUARTETenables: (i) the precise definition of quantitative robotic-mission

requirements and (ii) the translation of these requirements into probabilistic reward computation tree logic (PRCTL), supporting their

formal verification and automated planning of robotic missions. We demonstrate the applicability of QUARTET by showing that it

supports the specification of over 95% of the quantitative robotic mission requirements from a systematically selected set of recent

research papers, of which 75% can be automatically translated into PRCTL for the purposes of verification through model checking

and mission planning.

Index Terms—Robotics software engineering, robotic missions specification, quantitative properties, domain-specific languages,

probabilistic reward computation tree logic

Ç

1 INTRODUCTION

THE engineering of robotic applications is a complex inter-
disciplinary activity. Similar to many other domains,

robotics requires contributions from different yet interde-
pendent engineering roles. Robotics engineers build low-

level primitives that allow higher-order control, while soft-
ware engineers develop higher-level software components
executed by robots [1]. As such, there is a great need for
software solutions that can support the multiple activities of
the engineering process – from requirements elicitation to
software development and validation, e.g., [2], [3], [4], [5],
[6], [7]. Mission specification is among the most important
of these activities, as it entails capturing the requirements of
robotic applications in a precise manner and in a form use-
ful for automatic processing. Mission specification touches
upon – and draws from – multiple aspects of development,
ranging from capturing what the robot(s) should do and how it
should be done to evaluating if the resulting behavior(s)
indeed satisfy what was intended for the mission. Due to this
multifaceted role, mission specification represents one of
the main challenges in engineering robotics software [8], [9].

Typically, the engineering of robotics software is boot-
strapped by requirements described in natural language,
which are then translated into precise mission specifications.
Such a mission requirement describes the high-level tasks that
a robotic application must accomplish [10]. To be accessible,
this description should use a notation that is high-level and
user-friendly [10], [11]. At the same time, it should preclude
misinterpretation and enable the automatic verification and
synthesis of the robotics software by formally and precisely
specifying what the robot(s) should do in terms of move-
ments and actions [12], [13], [14]. We use the term mission
specification problem for the problem of (automatically) gener-
ating a mission specification from a mission requirement.

� Claudio Menghi and Mehrnoosh Askarpour are with McMaster Univer-
sity, Hamilton, ON L8S 4L8, Canada. E-mail: {menghic, askarpom}
@mcmaster.ca.

� Christos Tsigkanos is with the University of Bern, 3012 Bern, Switzerland.
E-mail: christos.tsigkanos@inf.unibe.ch.

� Patrizio Pelliccione is with Gran Sasso Science Institute (GSSI), 67100
L’Aquila, AQ, Italy. E-mail: patrizio.pelliccione@gssi.it.

� Gricel V�azquez and Radu Calinescu are with the University of York, YO10
5DD York, U.K. E-mail: {gricel.vazquez, radu.calinescu}@york.ac.uk.

� Sergio Garcı́a is with Volvo Cars Corporation, 405 31 Gothenburg, Swe-
den. E-mail: sergio.garcia@volvocars.com.

Manuscript received 13 March 2022; revised 4 November 2022; accepted 5
December 2022. Date of publication 29 December 2022; date of current version
18 April 2023.
This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) under Grants RGPIN-2022-04622 and
DGECR-2022-0040. The work of Radu Calinescu was supported in part by
UKRI project under Grant EP/V026747/1 ‘Trustworthy Autonomous Systems
Node in Resilience’ and the Assuring Autonomy International Programme .
The work of Gricel Vazquez was supported in part by the Mexican National
Council for Science and Technology (CONACYT) . The work of Patrizio Pel-
liccione was supported in part by the Centre of EXcellence on Connected, Geo-
Localized and Cybersecure Vehicles (EX-Emerge) , funded by the Italian Gov-
ernment under CIPE resolution n. 70/2017 (Aug. 7, 2017).
(Corresponding author: Claudio Menghi.)
Recommended for acceptance by N. Bencomo.
Digital Object Identifier no. 10.1109/TSE.2022.3230059

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023 2741

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5303-8481
https://orcid.org/0000-0001-5303-8481
https://orcid.org/0000-0001-5303-8481
https://orcid.org/0000-0001-5303-8481
https://orcid.org/0000-0001-5303-8481
https://orcid.org/0000-0002-5438-2281
https://orcid.org/0000-0002-5438-2281
https://orcid.org/0000-0002-5438-2281
https://orcid.org/0000-0002-5438-2281
https://orcid.org/0000-0002-5438-2281
https://orcid.org/0000-0002-2678-9260
https://orcid.org/0000-0002-2678-9260
https://orcid.org/0000-0002-2678-9260
https://orcid.org/0000-0002-2678-9260
https://orcid.org/0000-0002-2678-9260
mailto:menghic@mcmaster.ca
mailto:askarpom@mcmaster.ca
mailto:christos.tsigkanos@inf.unibe.ch
mailto:patrizio.pelliccione@gssi.it
mailto:gricel.vazquez@york.ac.uk
mailto:radu.calinescu@york.ac.uk
mailto:sergio.garcia@volvocars.com

Themain uses of mission specifications are: (i) unambiguous
communication of the mission within the engineering team
developing a robotic application and to other stakeholders,
(ii) verification, where the robotic software or behaviors
sourced from a robotic system or its simulation are checked
against the specification, and (iii) synthesis, where behaviors
that provably satisfy the specification are constructed.

Mission specifications are often expressed in domain-
specific languages (DSLs), many of which have been proposed
over the last decades [15], [16]. These DLSs are usually inte-
grated with development environments, enabling the genera-
tion of code that can then be executed within simulators or by
real robots [17], [18], [19], [20], [21]. However, these languages
are typically bound to specific types of robots, and support a
limited class of missions. Moreover, these languages are proce-
dural and therefore require a step-by-step specification of the
precise tasks that the robots should perform.

Other research, especially from the robotics domain,
advocates the use of temporal logics to formally specify mis-
sions and they enable to specify missions in a declarative
way, i.e., to specify what should be achieved without
expressing how this should be achieved [22], [23], [24], [25].
However, specifying missions in terms of temporal logic
formulae is complex and error-prone for practitioners and
engineers. As such, defining robotic missions is generally
challenging, as widely recognized in both the software-engi-
neering and robotics communities [26], [27], [28], [29].
Indeed, while precise specifications in logical languages
enable reasoning [30], [31], their definition is difficult and
prone to errors [32], [33]. Practitioners are often unfamiliar
with the specification process and the complicated syntax
and semantics of logical languages [34]. To ameliorate this,
we recently proposed a set of specification patterns for
robotic missions [35], [36], [37] which provide template sol-
utions that support users in specifying common mission
concerns. Within this pattern-based approach, requirements
are expressed in a domain-specific language, and then auto-
matically translated into logic-based specifications that can
be fed into existing logic-based planners and verifiers (e.g.,
[31], [38], [39], [40], [41], [42], [43]). However, the patterns
from [35], [36], [37] target abstract robotic mission concerns
– such as constraints in the ordering of robot actions or trig-
gers – ignoring the quantitative aspects of robotic missions.

Quantitative aspects, however, are key to practical robot-
ics applications. Users and operators of robotic systems
often require behaviors that ensure quantitative constraints
such as upper bounds on the time a robot takes to perform
an action, the energy consumption to complete that action, or
the probability of failing to achieve a mission goal. In this
paper, we introduce a catalog of QUantitAtive RoboTic mis-
sion spEcificaTion patterns (QUARTET) that bridges this
gap. QUARTET provides declarative specification [44] pat-
terns that enable the definition of quantitative constraints
and optimisation objectives for robotic missions, and sup-
ports: (i) the unambiguous specification and communica-
tion of quantitative aspects associated with robotic
missions; (ii) the verification of mission plan compliance
with quantitative requirements; and (iii) the synthesis of
correct-by-construction mission plans that meet these
requirements. Moreover, we extended our previous catalog
of patterns and its DSL [35], [36], [37] instead of extending

an existing one (see the reference above), since other DSLs
are typically tailored to a specific target specification lan-
guage, e.g., the specification language of a particular model
checker, and this places boundaries on their expressiveness.
A key characteristic of our patterns is that they are built
from data collected from research literature. Therefore, col-
lected data shapes both the patterns and the DSL. Our pat-
terns are language-agnostic and can be used as main
building blocks for other DSLs specialized on specific needs,
as has already occurred for our previous catalog of pat-
terns [35], [36], [37], which has been exploited to build the
Promise DSL [21], [45]. These aspects are detailed in the
related work section.

Our main contributions lie within the area of software
engineering for robotics and are as follows:

� We introduce a comprehensive catalog of 22 quantita-
tive mission specification patterns, called QUARTET,
for the definition of quantitative constraints and
optimisation objectives for robotic missions. These
patterns support the mission specification problems
identified by systematically analyzing 51 quantitative
robotic-mission requirements published in 17 leading
software engineering and robotic venues over six
years (Section 5). Our patterns focus on robot move-
ment as one of the major aspects considered in the
robotics domain [46], [47], [48], as well as on how
robots perform actions as they move within their
environment.

� We define a pattern-based DSL that supports the usage
of both the existing (functional) mission specification
patterns from [35] and the quantitative patterns from
our QUARTET catalog, and a translation that maps
the constructs of the QUARTET DSL to Probabilistic
Reward Computation Tree Logic (PRCTL) formulae.
These PRCTL formulae precisely define the semantics
of our QUARTET language, enabling its use with
existing model checking and synthesis tools (Sec-
tion 6). The pattern-based DSL extends the DSL pro-
posed for the (non-quantitative) robotic specification
patternswe introduced in [35], [36], [37].

� We provide the QUARTET tool that supports the use
of our pattern-based DSL, enabling engineers to
(i) express complex behaviors involving quantitative
concepts and (ii) directly interface with the widely
used probabilistic symbolicmodel checker PRISM [49]
(Section 7).

� We evaluate the coverage of the QUARTET pattern
catalog (research question RQ1), the applicability of
our translation (RQ2), and the exploitability of the
logic formulae generated by our translation (RQ3).
For RQ1, our results show that our quantitative pat-
terns were able to fully express 20 out of the 21
(\raise.17ex�95%) mission requirements of the
benchmark we considered and that each pattern was
useful to express at least one requirement we col-
lected from the literature. For RQ2, our results show
that our translation was applicable for 15 out of the
20 mission requirements expressible using our DSL
(75%). For RQ3, our results show that the mission
specifications generated by our translation can be

2742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

used for synthesis and model checking, and that,
based on results from the literature, these activities
can be performed in practical time (Section 8).

� All of our artifacts are publicly available to allow for
study replication [50].

The rest of the paper is structured as follows. Section 2 intro-
duces a running example used to illustrate the QUARTET pat-
terns throughout the paper. Section 3 presents preliminary
background notions. Section 4 describes the hybrid methodol-
ogy we used to identify mission specification problems, and
the result of applying this methodology to collect requirements
relevant for our work. Section 5 presents our catalog of quanti-
tative patterns. Section 6 introduces the QUARTET DSL, which
enables using and combining the 22 robotic mission specifica-
tion patterns [35] and the new patterns from our QUARTET
catalog. Section 7 addresses implementation specifics. Section 8
evaluates our approach. Section 9 positions our work with
respect to related approaches in the software engineering for
robotics literature, and Section 10 concludes the paper with a
brief summary and a discussion of future work directions.

2 RUNNING EXAMPLE

Our running example concerns a robotics company develop-
ing general-purpose mobile robots. After the production of the
robots, the engineers can customize their behaviors by defin-
ing different types of missions the robots can perform. These
missions are defined depending on customer needs. Since the
company provides general-purpose robots deployed in cus-
tomer facilities, customers frequently ask the robotic company
to add, remove, or change robotic missions based on their spe-
cific needs. This customization can be performed either on-site
or remotely after the deployment of the robots.

For our running example, the customer is an electronics
store that purchased two robots (rob1 and rob2) and
deployed them in their store. The store is organized in three
areas: the computer-phone (CP), the tv-audio (TA), and the
household appliance (HA) areas. The robots have to perform
the following mission:

Example 1. “After closure, the robots shall clean the electronics
store. After cleaning, they shall visit a set of predefined store
locations, each at least once, to record the items present on
shelves after closure. The robots must minimize the time
required to perform this activity. The robots should also patrol
the store for security purposes, following any intruder while
raising an alarm. The robots should interleave cleaning and
security patrolling so that intruders do not remain undetected
while the robots are cleaning continually for long periods of
time. The robots should monitor their battery, optimize its
usage, and recharge when needed. They should avoid recharging
simultaneously and leaving the store unmonitored.”

This task, or mission requirement, is a natural-language
description of the activities that the robots have to per-
form [35]. Robotics engineers typically use a planner that
computes the set of actions the robots should perform to
accomplish a mission from a machine-processable descrip-
tion of that mission, i.e., from a mission specification. There-
fore, software tools are required for (a) expressing mission
requirements and (b) translating mission requirements into
mission specifications.

3 PRELIMINARIES

This section summarizes the robotic mission specification
patterns [35] (Section 3.1), that will be extended in this
work to express mission requirements, and Probabilistic
Reward Computation Tree Logic (PRCTL) [51] (Sec-
tion 3.2), the logic that will be considered for expressing
mission specifications.

3.1 Mission Specification Patterns

Robotic mission specification patterns [35] allow engineers to
tackle the mission specification problem. A pattern maps a
recurrent mission requirement (or parts of a mission
requirement) to a template specification. For simplifying
its usage, a pattern is associated with a description of the
usage intent, known uses, and relationships to other pat-
terns. Mission specification patterns are organized in a
mission specification pattern catalog: a collection of patterns
organized in a hierarchy aiding browsing and selecting
patterns to support decision making during mission speci-
fication. Given a mission requirement, the 22 mission spec-
ification patterns [35] support the automatic generation of
a mission specification. The mission specification is an
unambiguous description of the mission requirement,
often expressed in a logic-based or programming language
that supports robotic planning.

The (non-quantitative) patterns defined in [35] and lever-
aged by our complementary quantitative QUARTET pat-
terns are summarised in Table 1. The table contains the
name of the mission specification problem that each pattern
is solving and a natural language description of that prob-
lem. In addition, the table contains the constructs of the DSL
that enable the usage of the patterns that are introduced by
this work, and will be described in Section 6.1. The table is
partitioned into three parts that respectively contain the
Core Movement, Avoidance/Invariance, and Trigger patterns.
Core movement patterns describe how robots should move
within their environment. Avoidance/Invariance patterns
capture constraints that can be added to avoid the occur-
rence of a specific behavior. Trigger patterns express a robot
reactive behavior based on stimuli, or the robot’s inaction
until a stimulus occurs.

3.2 Probabilistic Reward Computation Tree
Logic (PRCTL)

The target logic we consider in this work to express mis-
sion specifications is Probabilistic Reward Computation
Tree Logic (PRCTL) [52]. PRCTL provides support for the
specification of temporal properties that contain probabil-
ity and rewards. Let AP be a set of atomic propositions
and a 2 AP , J � R�0, n 2 N, p 2 ½0; 1�, N � N [f1g, and
E 2 f< ; > ;�;�g, the syntax of a PRCTL formula f is
defined as follows:

f �a jf1 ^ f2 j :f j LE pðfÞ j PE pðf1UN
J f2Þ j PE pðFN

J fÞ j
PE pðGNJ fÞ j EnJðfÞ j EJðfÞ j CnJðfÞ j Yn

JðfÞ

PRCTL properties are interpreted over discrete-time
Markov reward models (e.g., [53]), i.e., state machines con-
taining states labelled with probabilities and rewards. Infor-
mally, the semantics of the PRCTL operators is as follows.

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2743

The semantics of the operators f1 ^ f2 and :f is the classi-
cal semantics of conjunction and negation. The other Bool-
ean operators are derived as usual. The operator f1UN

J f2

asserts that (a) f2 will be satisfied within j 2 N states, and
that all preceding states satisfy f1, and (b) the accumulated
reward until reaching the state that satisfied f2 is within
the interval J . The operator LE pðfÞ asserts that the average
probability in the states that satisfy f meets the bound E p.
The operator PE pðfUN

J fÞ asserts that the probability of the
paths that satisfy fUN

J f meets the bound E p. The operator
EnJðfÞ asserts that the expected reward rate in states
satisfying f after firing up to n transitions lies within the
interval J . The operator EJðfÞ asserts that the expected
reward rate in states satisfying f meets the bounds of J .
The operator CnJðfÞ asserts that the reward in states satisfy-
ing f after firing n transitions meets the bounds of J . The
operator Yn

JðfÞ asserts that the accumulated reward in
states satisfying f until the n-th transition is fired meets
the bounds of J . The eventually (FN

J f) and globally (GNJ f)
operators, that can also be used within the PE p operator,
are derived from the until operator (fUN

J f) as usual.
We will omit the intervals J and N when they are in the
form ½0;1Þ.

Multiple works in the literature (e.g., [54], [55], [56])
enable using additional operators to compute the probabil-
ity/reward of a formula or to query for the minimum and
maximum probability/reward of a PRCTL formula.

These operators are not formally defined in PRCTL and
are usually only informally introduced in PRCTL by exist-
ing tools (e.g., [57], [58]). To enable usage of these operators

in our translation, in this work, we extend the PRCTL syn-
tax previously discussed as follows:

f �P¼?ðfUN
J fÞ j Pmin¼?ðfUN

J fÞ j Pmax¼?ðfUN
J fÞ j

E¼?ðfUN
J fÞ j Emin¼?ðfUN

J fÞ j Emax¼?ðfUN
J fÞ:

The operators P¼? and E¼? compute the probability/reward of
the PRCTL formula fUN

J f when the Markov reward model is
deterministic. The operators Pmin¼? and Emin¼? compute the
minimum probability/reward of the PRCTL formula fUN

J f.
The operators Pmax¼? and Emax¼? compute the maximum
probability/reward of the PRCTL formula fUN

J f.

4 HYBRID METHODOLOGY TO IDENTIFY
QUANTITATIVE MISSION SPECIFICATION

PATTERNS

This section presents the hybrid methodology employed in
this work to identify quantitative mission specification pat-
terns. The hybrid methodology combines the benefits of the
bottom-up and top-down methodologies used in literature for
defining patterns. The bottom-up methodology (e.g., [34],
[35], [59], [60]) follows the intuition that patterns are solu-
tions for recurrent problems within some specific domain.
Therefore, it defines patterns by (i) performing a literature
analysis to identifying recurrent mission specification prob-
lems, and (ii) formulating solutions for those problems. The
top-down methodology (e.g., [61]) follows the intuition that
experts can propose patterns by relying on their experience
and use existing mission requirements to validate them.

TABLE 1
Mission Specification Problems From [35] and Constructs of the DSL Addressing the Problem

2744 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Therefore, it defines patterns by (i) proposing the patterns
upfront, and (ii) using existing mission requirements to
assess whether the proposed patterns are appropriate and
useful in practice.

The bottom-up and top-down methodologies are com-
plementary. The former exploits the data provided by the
users, i.e., mission requirements collected from the litera-
ture, for the definition of the patterns, the latter defines pat-
terns upfront and uses the data provided by the users (i.e.,
mission requirements) for assessing their applicability. Both
solutions have pros and cons. Since patterns are defined by
considering data, i.e., the mission requirements from the lit-
erature, the bottom-up methodology is more likely to lead
to patterns that are applicable in practical scenarios. How-
ever, if the set of mission requirements is limited, the cata-
log of patterns will only support the specification of a
narrow set of missions. The top-down process is more spec-
ulative since missions are defined based on experts’ experi-
ence. This may lead to a larger set of patterns. However,
some of these patterns may have limited applicability.
Therefore, we use a hybrid methodology that exploits the
benefits of both bottom-up and top-down methodologies
(Fig. 1). This hybrid methodology combines the bottom-up
(gray shadowed area) and the top-down (purple shadowed
area) methodologies as follows:

Collection of Mission Requirements. This activity uses the lit-
erature to collect the mission requirements that will be
used to extract the patterns (according to the bottom-up
methodology).

Definition of Mission Specification Problems. This activity uses
the mission requirements to extract the recurrent mis-
sion specification problems (according to the bottom-
up methodology). It also allows the upfront addition of
mission specification problems that are likely to be rele-
vant (according to the top-down methodology).

Pattern Formulation. This activity requires the formulation
of solutions, in terms of patterns, for the mission specifi-
cation problems (according to both the top-down and
the bottom-up methodologies).

Analysis of Applicability. This activity requires the evaluation
of the applicability of the patterns in practice (according
to the top-down methodology).

Steps , , and (collection of mission requirements, defini-
tion of mission specification problems, and pattern formula-
tion) are described in the following. Step , the analysis of
applicability, is part of our evaluation (see Section 8). All
data and artifacts produced in these steps can be found in
our publicly available replication package [50].

4.1 Collection of Mission Requirements

Our mission requirements were collected as follows:

� We considered all papers published in the software
engineering, robotics, and formal methods venues
presented in Table 2 from 2014 to 2019. The list of
venues includes a subset of the top software engi-
neering, robotics, and formal methods venues. We
subsequently adopted papers published in the soft-
ware engineering, robotics, and formal methods ven-
ues in 2020 and 2021 for validation purposes (see
Section 8.1).

� Each venue/year combination was assigned to one
of three authors tasked with the collection of mission
requirements, so that each of them handled a similar
number of venue/year combinations.

� Authors selected papers satisfying the following
criteria:
� The paper title contains a movement-related con-

cern related to the robotic domain. For example,
the papers “Reconfigurable Motion Planning and
Control in Obstacle Cluttered Environments
under Timed Temporal Tasks” [62] and “Dynamic
Routing of Energy-aware Vehicles with Temporal
Logic Constraints” [63] were selected since their
titles contain movement-related concerns, respec-
tively “reconfigurable motion planning” and
“dynamic routing” of “Vehicles”.

� The paper contains at least one formulation of a
mission requirement involving a movement
notion and additionally including a portion of
the requirement related to one or more quantita-
tive concerns (e.g., probability or time).

� Finally, authors extracted from the paper all natural
language requirements involving movement notions
and quantitative concerns.

4.2 Identification of Mission Specification Problems

We identified mission specification problems starting from
the mission requirements as follows:

� We divided the collected mission requirements
among three of the authors.

� Each mission requirement was labeled with two
types of keywords:
� Keywords that describe the mission specification

problems the robot has to achieve. Whenever a
mission refers to one of the baseline mission
specification patterns for robotic missions that
are extended in this work, we use the name of
the pattern as a keyword.

� Keywords describing the quantitative behavior
associated with the pattern.

� We created a graph structure representing semantic
relations between keywords. Each keyword is associ-
ated with a node of the graph structure. Two nodes
were connected if their keywords identify two simi-
lar mission specification problems.

� Nodes that were connected through edges and con-
tained keywords that identify the same mission spec-
ification problem were merged.

� We allowed each author to propose additional mis-
sion specification problems according to the top-
downmethodology.

Fig. 1. Methodology used to define the mission specification patterns.

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2745

We finally organized the mission specification problems
into a catalog represented through a graph structure that
facilitates browsing the mission specification problems.

4.3 Pattern Formulation

To formulate our mission specification patterns, we ana-
lyzed each mission specification problem. For each, we
formulated a mission specification pattern following estab-
lished practices [34], [60], [61]. Specifically, we define a
pattern by:

� a name that uniquely identifies the pattern;
� an intent that captures the purpose of the pattern, i.e.,

a description of the mission requirement related to
the corresponding mission specification problem;

� a template instance that contains the mission specifica-
tion associated with the pattern;

� variations describing possible minor changes that can
be applied to the pattern;

� examples and known uses describing examples col-
lected from the literature;

� relationships describing connections between differ-
ent patterns, and

� occurrences describing usages of the pattern in the
research literature.

We defined the mission specification of the template
instance by consulting the specifications presented in the
papers we surveyed and by cross-checking them.

In the next section, we describe our quantitative mission
specification patterns catalog.

5 QUANTITATIVE MISSION SPECIFICATION

PATTERNS CATALOG

This section presents QUARTET, our catalog of quantitative
mission specification patterns. First, we detail the recurrent
quantitative mission specification problems addressed by
our patterns (Section 5.1). Then, we describe our proposed

quantitative mission specification patterns to solve these
problems (Section 5.2).

5.1 Quantitative Mission Specification Problems

For each venue that contained at least one paper satisfying
our selection criteria, Table 3 contains the number of mis-
sion requirements collected for each year between 2014 to
2019 following the methodology described in Section 4. The
remaining seven venues from Table 2 contained no relevant
papers. The mission requirements corresponding to the
years of 2020 and 2021 are set aside to be later used for vali-
dation (see Section 8.1). An example of mission requirement
collected is: “In an emergency scenario, robots shall guide the
evacuees to the exit so that minimum time is spent to escape out of
the indoor environment”. This mission requirement was con-
sidered by Tang et al. [64] in a Transactions on Human-
Machine Systems (HMS) paper from 2016. In total, we col-
lected 51 natural-language mission requirements which
involve quantitative measures on concerns related to robotic

TABLE 2
List of Venues Considered for Collecting Mission Requirements

Venues Acronym

Transactions on Robotics TRO
International Journal of Robotics Research IJRR
Transactions on Automation Science and Engineering TASE
International Conference on Advanced Robotics ICAR
International Conference on Robotics and Automation ICRA
Transactions on Mechatronics TMECH
Symposium on Assembly and Manufacturing ISAM
Simulation, Modeling and Programming for Autonomous Robots SIMPAR
Transactions on Human-Machine Systems HMS
Formal Aspects of Computing FAC
International Conference on Software Engineering ICSE
Symposium on Software Reliability Engineering ISSRE
Transactions on Software Engineering TSE
Software Engineering and Formal Methods SEFM
Software Engineering for Adaptive and Self-Managing Systems SEAMS
Automated Software Engineering ASE
Foundations of Software Engineering ESEC/FSE
International Conference on Model Driven Engineering Languages and Systems MODELS

TABLE 3
Number of Mission Requirements Collected for Each

Venue and Year

Collected Mission Requirement Validation

Venue Year Year

2014 2015 2016 2017 2018 2019 Tot. 2020 2021 Tot.

TRO 2 4 0 0 0 7 13 8 2 10
IJRR 1 0 0 0 0 3 4 0 0 0
TASE 0 1 0 0 1 2 4 0 4 4
ICRA 0 6 4 2 5 5 22 4 3 7
TMECH 0 1 0 0 0 0 1 0 0 0
SIMPAR NA NA 0 NA 3 NA 3 NA NA 0
HMS 3 0 1 0 0 0 4 0 0 0
FAC 0 0 1 0 0 0 0 0 0 1

Total 6 12 6 2 9 17 51 12 9 21

NA in a cell indicates that an edition was not held/published on that year.
	 The remaining seven venues from Table 2 contained no relevant paper.

2746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

applications, such as energy consumption, the probability of
succeeding or failing in accomplishing missions, and the
time required for completing the missions. While these
quantitative measures are significantly different from a mis-
sion requirement perspective, they share similarities from a
specification perspective. For this reason, in the following,
we do not treat such measures separately, but instead pro-
vide a set of patterns that can be applied to any of those
quantitative measures.

The mission specification problems addressed by our mis-
sion specification patterns are summarized in the pattern cat-
alogs illustrated in Figs. 2a and 2b. They present elementary
and composite mission specification problems, respectively.
Elementary mission specification problems capture funda-
mental quantitative measures directly sourced and identified
from the mission specification phase. Composite mission
specification problems express higher-order robotics con-
cerns. Observe their compositional nature – composite prob-
lems are a form of syntactic sugar over elementary patterns,
yielding higher-order constructs. Specifically, composite mis-
sion specification problems consider cases in which the quan-
titative measure represents specific robotic concerns, such as
time and resources. While for these cases the elementary
mission specification patterns still apply (e.g., the mission
designer can use the pattern that will be proposed for the
‘minimize’ problem when the quantitative measure repre-
sents time), additional problems referring to specific needs
were identified (e.g., the need to pause the robot for a given
time). The leaves of the tree represent mission specification
problems. The mission specification problems identified by
following the bottom-up procedure are graphically indicated
with a solid border, while the mission specification problems
added by the authors according to the top-down procedure
are graphically indicated with a dashed border. We added
mission specification problems that are strictly related to
other problems covered by the patterns in the catalog. For
example, we have added the mission specification problem
“Less than” that is the dual of the mission specification prob-
lem “At least”. The intermediate nodes facilitate browsing
within the hierarchy and aid pattern selection and decision
making. We summarize our mission specification problems
in the following. Table 4 provides a sample mission require-
ment for each mission specification problem identified by fol-
lowing the bottom-up procedure and provides the reference
of the paper fromwhich the requirement has been extracted.

5.1.1 Elementary Mission Specification Problems

The elementary mission specification problems are depicted
in Fig. 2a and described in the following. The elementary
mission specification problems are grouped into three cate-
gories: Objective, Bounds, and Intervals. The Objective cate-
gory contains problems concerning the achievement of a
goal. The Bounds category contains problems requiring the
value of the quantitative measure to remain below or above
certain thresholds. The Intervals category contains problems
requiring the quantitative measure to be within certain
intervals. The top part of Table 5 (column “Description”)
contains a description of the respective elementary problem.

5.1.2 Composite Mission Specification Problems

The composite mission specification problems are depicted
in Fig. 2b and described in the following. Composite patterns
are grouped into four categories: Time, Performance &Depend-
ability, Space, and Resource. The Time category contains prob-
lems where the quantitative measure reflects time-related
requirements. The Performance & Dependability category con-
tains problems where the quantitative measure refers to
probabilistic, reliability or performance aspects of the mis-
sions. The Space category contains problems where the quan-
titative measure represents spatial concerns within missions.
The Resource category contains problemswhere the quantita-
tive measure represents some resource involved. The bottom
part of Table 5 (column “Description”) contains a description
of each composite problem.

The solution to each of these recurrent mission specifica-
tion problems is provided by a quantitative mission specifi-
cation pattern. Our quantitative mission specification
patterns are detailed in the following section.

5.2 Quantitative Mission Specification Patterns

This section presents the QUARTET catalog. Each mission
specification pattern addresses a mission specification prob-
lem; for example, the pattern addressing the Maximize prob-
lem is reported in Fig. 3. The pattern contains a description
of the intent (“the robotic application shall maximize the
value of the quantitative measure m while performing a mis-
sion”), template specifications, variations of the pattern,
examples and known uses, relationships with other patterns,
and occurrences of the pattern in the literature. Examples
and known uses provide exemplar usage scenarios and

Fig. 2. Elementary and composite mission specification problems. Filled nodes: problems, non-filled nodes: categories. Nodes with solid and dashed
borders respectively represent the mission specification problems identified by following the bottom-up and top-down procedures depicted in Fig. 1.

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2747

describe the applications of the patterns in the broad sense.
Differently, occurrences provide references to works from
the research literature using the patterns. Typically, occur-
rences contain references to works that led to pattern

identification. Notice that for each pattern, alternative speci-
fications can be provided depending on whether the quanti-
tative measure represents time, probability, reward, or other
quantitative measures. In Fig. 3, two template specifications

TABLE 4
Examples of Quantitative Mission Requirements Collected Using the Bottom-Up Methodology

Problem Mission requirement

Maximize Given a team of robots [...] find a control strategy for the robotic team that yields the maximum probability of satisfying
the task [39]

Minimize Picks up an object at an initial position and moves it to a final position, minimizing the time [65]
At most [...] the planner should find a path [...] that does not violate a maximum level of allowed risk [66]
At least A rover on a science exploration [...] is exploring an area looking for an object of interest for scientific studies. [...] the goal

would be to plan a path such that it gets connected with a minimum expected traveled distance [67]	
Exactly Each demand needs to be serviced exactly T time units after its generation, by a vehicle present at the demand

location [68]
Within We assume a set of robots [...] we have a set of tasks each with a location, an earliest start time, a latest finish time, and a

duration for each task. [...] Robots need to arrive to a task after its earliest start time and before its latest start time
[...] [69]

Pause Robots move at 10 m/s and encounter a traffic signal at every 300 m whose waiting time is [..] [70]
Timeout-deadline Each robot is given the same time budget to collect samples and return home [71]
End Each demand needs to be serviced exactly T time units after its generation, by a vehicle present at the demand

location [68]
Proportionality The expected duration of a navigation action is proportional to the distance between two locations [72]
Simultaneously A robot [...] simultaneously get coffee from either machine then buy cookies and then give to person A; simultaneously to

check mails and then inform person B [73]
Accrue The robot’s objective is to maximize its target classification performance at all the sites [..] [74]
Reliably The robot is connected if it is able to reliably transfer information to the remote station [67]
Confidently In 95% of mission executions, the robot achieves its mission [75]
Equidistance Robots shall be uniformly distributed in an area [..] [70]
Trail If the robot car enters lane 1, it will observe the environment car and follow it to lane 1 [76]
Conservation A tour that visits a set of observation locations with minimum length such that each point of interest is observed by at

least one complementary pair [71]
Preservation The robot’s objective is to maximize its target classification performance at all the sites, under limited onboard energy

constraints (including both communication and motion), with a limited access to a human operator [..] [74]

	 Our interpretation of this requirement is that “the rover shall travel at least a minimum distance”.

TABLE 5
Quantitative Mission Specification Problems and Constructs of the DSL Addressing the Problem

2748 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

in Probabilistic Computation Tree Logic with Rewards
(PRCTL) [52] are reported. The first concerns the case in
which the quantitative measure represents the probability of
achieving a certain mission: the PRCTL specification scopes
the PRCTL formula s encoding the robotic mission with the
PRCTL operator Pmax¼? requiring the probability to be maxi-
mized while ensuring the satisfaction of the formula s. The
second concerns the case in which the quantitative measure
represents the reward collected while performing a certain
mission: the PRCTL specification scopes the PRCTL formula
s encoding the robotic mission with the PRCTL operator
Emax¼? requiring the reward to be maximizedwhile ensuring
the satisfaction of the PRCTL formula s.

A logic that provides constructs capable of expressing the
mission specification of all the QUARTET patterns does not
exist: neither a target logic supporting “generic” quantita-
tive measures nor a comprehensive logic supporting
(explicit) time, space, probability, and rewards is available
in the literature. Therefore, we opted for selecting an inter-
pretation for the quantitative measures and one of the logic
languages proposed in the literature supporting that inter-
pretation. Notice that the proposed patterns can be
extended in the future when more expressive logics become
available and that additional mission specifications target-
ing other languages can be proposed depending on users’
needs.

In this work, we considered probability and rewards as
quantitative measures interpretations. For this reason, we
selected PRCTL [52] (see Section 3.2) as the target logic since
it provides support for the specification of temporal proper-
ties that contain probability and rewards. We used PRCTL
for expressing the mission specifications of all the patterns
of the QUARTET catalog except the patterns belonging to
the Space category and the Proportionality pattern since we
were unable to specify these patterns in PRCTL. For the pat-
terns of the Space category, we use a logic proposed by Wol-
ter and Zakharyaschev [77] that enables reasoning about
numerical distances. For the Proportionality pattern we used
the Hybrid Logic of Signals (HLS) [78], a logic-based lan-
guage that enables the specification of complex CPS time-
related requirements. Specifically, the equidistance pattern
was defined in the logic proposed by Wolter and

Zakharyaschev by exploiting the binary distance operator d
and by forcing the distance between the robot rob and
rob1 and the robot rob and rob2 to be equal to the value v.
We forced this formula to hold during the execution of the
mission miss. The trail pattern was defined by a formula
forcing the distance between the robot rob and the object o
to be equal to the value v and by requiring the formula to
hold during the execution of the mission miss. The propor-
tionality pattern was defined in HLS by using (a) two signal
variables m1 and m2 indicating that the missions miss1 and
miss2 are accomplished, (b) two existential operators that
check for the presence of two timestamps t1 and t2 at which
missions miss1 and miss2 are accomplished, and (c) a con-
straint requiring the proportionality relation between t1 and
t2 by a factor v. All the patterns of the QUARTET catalog
are available online [50].

6 PATTERN-BASED DSL

This section presents QUARTET, a DSL that enables using
and combining the previously introduced 22 robotic mis-
sion specification patterns [35] and the QUARTET catalog.
We present the syntax of our DSL (Section 6.1) and its
semantics (Section 6.2).

6.1 Syntax of the DSL

Fig. 4 presents the grammar of the proposed DSL. Optional
items are enclosed in round brackets labeled with a question
mark; the symbol j separates alternatives.

The terminals of the language are loc, rob, condition,
act, m, and v. The terminal loc represents a location: either
a logical location, e.g., a room of the building, or a physical
location, e.g., position x; y; z. The terminal rob indicates a
robot. The terminal condition represents a Boolean condi-
tion that is true or false. The terminals act, act1, act2, ...,
actn indicate actions. The terminal m represents a quantita-
tive measure. The terminals v, v1,v2 are values.

A robotic mission can be specified as the conjunction of
two missions (miss and miss), disjunction of two missions
(miss or miss), negation of a mission (not miss), a non-
quantitative pattern describing the task to be executed by a
robot (rob shall pat), an elementary quantitative pattern
(e_qpat), or a composite quantitative pattern (c_qpat).

The usage of the non-quantitative robotic mission specifi-
cation patterns that QUARTET builds on (introduced
in Section 3.1) is enabled by the term pat. Each alternative
in the rule of the term pat enables the use of one of the ele-
mentary patterns. The construct associated with each of the
22 non-quantitative robotic mission specification patterns
from Table 1 is reported in the DSL column in the table.

Usage of the elementary and composite patterns of the
QUARTET catalog is enabled by the terms e_qpat and
c_qpat. Each alternative in the rule of the term e_qpat

enables using one of the elementary patterns. Each alterna-
tive in the rule of the term c_qpat enables using one of the
composite patterns. The construct associated to each mis-
sion specification problem is reported in Table 5 (column
DSL).

Example 2. Referring to our running example, let us con-
sider for space economy reasons the following portion of

Fig. 3. Example of quantitative mission specification pattern: Maximize.

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2749

mission requirement (m1): “after closure, the robot r1shall
visit the different parts of the shop to record the items that are
present on the shelves after closure. The robots have to minimize
the time required to perform this mission”. This portion can
be expressed using the DSL in Fig. 4 as follows:

m1: minimizeTime (
(r1shall react instantly tocloseby vis-

itCP, TA, HA)
and

(r1 shall counteract instantly when reach

CP by record) and
(r1 shall counteract instantly when reach

TA by record) and
(r1 shall counteract instantly when reach

HA by record))
where m1: defines the robotic mission, close is an

event indicating that the shop closure time is reached,
record is an action that records the content of the
shelves in a given area of the shop. We made the com-
plete formalization of the requirement of the Example 1
available online [50].

A robotic mission (R), expressed using the DLS specified in
Fig. 4, is automatically translated into a mission specification
using a translation function (t) that compiles a robotic mission
(R) into a mission specification (S) and defines its semantics.

6.2 Semantics of the DSL

This section defines the semantics of our DSL by proposing
a translation that maps the constructs of the DSL that refer
to patterns from the QUARTET catalog into PRCTL formu-
lae. The interested reader can find the semantics of the con-
structs of the DSL that refer to the 22 non-quantitative
robotic mission specification patterns from Table 1 in [35].
We do not report the semantics of the DSL constructs corre-
sponding to the patterns belonging to the Space category
and the Proportionality pattern since we were unable to spec-
ify these patterns in PRCTL (see Section 5.2). The specifica-
tions for these DSL constructs corresponding to these
patterns obtained by using the logic proposed by Wolter
and Zakharyaschev [77], and HLS [78] are available
online [50].

Fig. 5 presents the translation t defining our semantics.
The table is divided into three parts containing respectively
the semantics of the mission, elementary patterns, and com-
posite patterns constructs. The translation t defines the con-
version of each operator from our language into PRCTL.
For example, the PRCTL formula obtained by applying the
mapping function t to the formula miss and miss is the for-
mula tðmissÞ ^ tðmissÞ, i.e., the conjunction of the PRCTL
formulae obtained by applying the translation t to the left
and the right operands of the and operator.

For mission constructs, the definition of the translation t

specifies how to convert the Boolean operators that define
the mission into the corresponding PRCTL operators. For
the construct rob shall pat, the PRCTL formula generated
by the translation (tðpat½r rob�Þ) is obtained by applying
the translation to the term pat and by associating the value
of the term rob to the variable r, that will be later defined,
during the translation.

For elementary patterns, the definition of the translation t

defined in Fig. 5 behaves differently depending on whether
the quantitative measure refers to probability or rewards.
For probability, the translation of the minimum and maxi-
mum constructs relies on the PRCTL operators Pmin¼? and
Pmax¼?, respectively. For the other operators, the translation
of the DSL constructs uses the PRCTL operator PE p by set-
ting the value for the operator E to f< ; > ;�;�g depend-
ing on the operator to be translated. For rewards, for the
minimum and maximum constructs, the translation relies
on the PRCTL operators Emin¼? and Emax¼?. For rewards, the
translation of the DSL constructs uses the PRCTL operator
EJðfÞ by setting the interval J to ½0; v�, ½0; vÞ, ½v;1Þ or ðv;1Þ
depending on the operator to be translated.

For composite patterns, we consider reward and probabili-
ties as metrics to define the patterns that belong to the
resource and performance and dependability categories.
The translation for the Conservation pattern relies on the
operator Emin¼? that calculates the minimum reward. The
translation for the Preservation pattern relies on the operator
EJ and keeps the reward within the interval ½v1; v2�. The
translation for the Pause pattern specifies that the mission is
not executed (i.e., ð:missÞ holds) within the interval ½0; v�
(i.e., G½0;v�tð:missÞ holds) and its execution re-starts at time

Fig. 4. The syntax of the DSL for the quantitative specification patterns for robotic missions.

2750 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

instant ½vþ 1; vþ 1� (i.e., F½vþ1;vþ1�ðtðmissÞÞÞ holds). The
translation for the Timeout pattern specifies that the mission
is not executed (i.e., ð:missÞ holds) within the interval ½v;1�
(i.e., G½v;1�ð:tðmissÞÞ holds). The translation for the Repeat
pattern specifies that the formula tðmissÞ holds initially,
and globally if the mission miss holds (i.e., tðmissÞ holds),
it will not hold for the next v
 1 time instants (i.e.,
G½1;v
1�ð:tðmissÞÞ holds), and it will hold again at time
instant v (i.e., F½v;v�ðtðmissÞÞ holds). The translation for the
End pattern specifies that the mission miss is in execution
until the time instant v (i.e., G½0;vÞðtðmissÞÞ holds), and its
execution stops at time v (i.e.,G½v;1�ð:tðmissÞÞ holds). We do
not provide a translation for the Proportionality pattern since
there is no construct in PRCTL that enables the specification
of proportionality between time instants. The translation for
the Simultaneously pattern specifies that eventually all the
actions are performed at the same time instant. Notice that
the translation proposed for the patterns belonging to the
“Time” category does not follow the PRCTL syntax (i.e., the
temporal formula is not preceded by the PE p operator).
Therefore, to ensure that our translation generates formulae
within the PRCTL syntax, we constrain the patterns belong-
ing to the “Time” category to be used within elementary
patterns translated using the rules proposed for the proba-
bility metric previously presented. The translation for the
Accrue pattern relies on the operator Emax¼? that enables
maximizing reward measure while performing the mission
miss. The translation for the Reliability pattern relies on the
operator EJ where the interval J is set to ðv;1Þ or ½0; vÞ
depending on whether the greater or less than con-
struct is used. The translation for the Confidently pattern
relies on the operator LE p where E is set to “> ” or “< ”
depending on whether the greater or less than con-
struct is used. We do not provide a translation in PRCTL for

the patterns that belong to the Space category since PRCTL
does not explicitly support the specification of space
properties.

7 IMPLEMENTATION

This section presents our proof-of-concept QUARTET tool,
which supports the usage of the quantitative robotic mis-
sion specification patterns introduced in this paper. The
tool is publicly available online [50] as an Eclipse plugin.

QUARTET provides a graphical user interface (GUI) that
allows engineers to define mission requirements using the
DSL presented in Fig. 4. The GUI is developed using
Xtext [79], a software framework for developing DSLs. A
screenshot of QUARTET containing the mission require-
ment m1 from Example 2 is reported in the top part of
Fig. 6, alongside two more missions, m2 and m3. These
quantitative and qualitative formulae, respectively, are
derived from mission requirement m1, and are later trans-
lated into the property specification language of the proba-
bilistic model checker PRISM.

QUARTET automatically translates mission requirements
into PRCTL properties according to the translation reported
in Fig. 5. The translation is implemented in Xtend [80], a gen-
eral-purpose programming language based on Java and com-
monly used with Xtext [79]. We selected the property
specification language of PRISM [81] as a mission specifica-
tion language. Our choice was made for three different rea-
sons. First, the only publicly available tool supporting the
entire PRCTL logic we found is the Markov Reward Model
Checker (MRMC) [82] publicly available online [83]. How-
ever, we decided to not consider MRMC since, differently
than PRISM, MRMC is not currently maintained nor largely
used by the academic/industrial community: the last update

Fig. 5. Semantics of the DSL.

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2751

was made in 2011 [84]. Second, the property specification
language of PRISM provides increased expressiveness com-
pared to other existing logics: it subsumes several probabilis-
tic logics, including PCTL [51], CSL [85], probabilistic
LTL [86], and PCTL* [87]. Therefore, while not being able to
express all the formulae of the PRCTL logic, our conjecture is
that many of our requirements could be expressed using the
property specification language of PRISM. The validity of
our conjecture is assessed by our evaluation (see Section 8.2).
Third, the property specification language of PRISM is used
by many other tools, such as EvoChecker [88], [89], a search-
based approach that employs evolutionary algorithms to
automate model synthesis. Therefore, the mission specifica-
tions generated by QUARTET can be fed into various model
checking and synthesis tools.

To ensure that our tool generates mission specifications
expressed in the property specification language of PRISM,
we constrained the DSL in Fig. 4 to (a) prohibit nested prob-
abilities, (b) accept only LTL properties for the reward and
probability operators, and (c) prohibit the definition of spec-
ifications that lead to the conjunction of quantitative and
non-quantitative PRISM formulae since such formulae can
not be processed by PRISM. The first constraint forbids the
creation of formulae that nest probabilities operators, such

as the formula Pmax¼?ðPmin¼?sÞ that is nesting the operator
Pmin¼? within Pmax¼?. The second constraint forces the for-
mulae used within the reward and probability operators to
be LTL formulae, such as f1Uf2, i.e., it does not enable the
exploitation of the values assumed by J and N within for-
mulae of the form f1UN

J f2. Finally, the third constraint for-
bids the definition of formulae of type f1 ^ f2 where one of
f1 and f2 uses probabilistic operators and the other does
not. For example, the formula f1Uf2 ^ Pmax¼?f3Uf4, which
can be generated by our translation, is not supported by
PRISM.

If these constraints are not satisfied, QUARTET generates
a warning indicating that the mission specification in the
property specification language of PRISM cannot be gener-
ated. If the constraints are satisfied, QUARTET outputs the
mission specification in the property specification language
of PRISM. The mission specification generated by QUAR-
TET for the portion of the mission requirement of Example 2
(m1), and its derived missions (m2, m3) is reported in the
bottom part of Fig. 6. For mission m1, our tool generates a
warning since constraint (c) is violated: the translation leads
to a conjunction of a quantitative and a non-quantitative
PRISM formula. Such formulae can not be processed by
PRISM.

Fig. 6. Screenshot of QUARTETcontaining the portion of the mission requirement of Example 2 (mission m1). The problem specifications show the
necessary locations (goal, CP, TA and HA), robots (r1) and conditions (record and close). Missions m2 and m3 are derived from m1 as quantitative
and qualitative formulae, respectively, translated automatically into Prism (bottom part). Mission m1 cannot be translated directly into Prism as it joins
(by a logical “and”) a number (from m2) and a Boolean (from m3).

2752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

8 EVALUATION

This section assesses our quantitative robotic mission speci-
fication patterns by considering the following research
questions:

� RQ1 (Coverage of the patterns). What is the coverage
of the QUARTET patterns? (Section 8.1)

� RQ2 (Applicability of the translation). In how many
cases can the translation be applied? (Section 8.2)

� RQ3 (Exploitability of the mission specification).
How can the mission specification generated by the
translation be used in practice? (Section 8.3)

RQ1 assesses the coverage of our patterns (see Section 5)
according to our hybrid methodology and as mandated by
the top-down methodology (see Section 4). Our patterns are
designed to cover recurrent robotic mission specification
problems. Therefore, they are not exhaustive. Given a set of
mission requirements, RQ1 verifies whether our patterns
can express these requirements.

RQ2 assesses the applicability of our translation method in
practice (see Section 5.2). Since our translation considered
probability and rewards as quantitative measures interpreta-
tions and PRCTL as target logic, it does not support some of
the DSL constructs (see constructs labeled ‘NA’ in Table 5). In
addition, due to the limitations of the property specification
language of PRISM, we added a set of constraints (see Sec-
tion 7) to ensure that our mission specification is within the
PRISM input language. RQ2 assesses how these factors limit
the applicability of our translation in practical cases.

RQ3 assesses the usefulness of our mission specification
in practical scenarios. The mission specification generated
by our translation (e.g., the PRCTL formula) supports auto-
mated reasoning (e.g., as an input for model checking and
synthesis tools). All relevant material, data, and results of
our evaluation are publicly available [50].

8.1 RQ1— Coverage of the Patterns

To assess the coverage of our mission specification patterns,
we first collected a set of mission requirements from the lit-
erature, and then we assessed whether our patterns enabled
expressing these requirements.

Dataset. We considered a benchmark of 21 requirements
(see the Validation column of Table 2) collected from the
years 2020 and 2021 by following the same methodology
used to define the QUARTET patterns (see Section 4.1). We
followed a train-test split approach, popular in evaluation of
machine learning and data science research, by considering
collection of six years of requirements for the bottom-up
pattern formulation, and subsequently evaluating coverage
against requirements collected the last two years.

Methodology. We considered each of the 21 mission
requirements of the dataset and proceeded as follows. Three
of the authors analyzed each of the mission requirements
and attempted to use the DSL in Fig. 4 to express it. If it was
possible to formulate it using the constructs provided by
the DSL, the patterns were deemed sufficiently expressive
to capture the mission requirement. If it was not possible to
completely express the mission requirement using the con-
structs provided by our DSL, we identified the portion of
the requirement that could not be expressed.

Results. The QUARTET patterns were able to completely
express 20 out of the 21 requirements (\raise.17ex�95%), and
to partially express 1 requirement (\raise.17ex�5%). This
coverage is acceptable for practical applications since the pat-
terns are (by definition) not intended to be exhaustive. There-
fore, these mission requirements were formalised using our
DSL. The requirement we could not express prescribed the
robot to “adapt the velocity profile of the robot, according to
the wireless channel measurements” [90]. This requirement
relates the values of two measures: “velocity” and “wireless
channel measure”. However, each pattern captures amission
specification problem related to one quantitative measure.
Extending our pattern catalog to support mission specifica-
tion problems that relate two quantitative measures is one of
our futurework directions (see Section 10).

Recall that to express one mission requirement, the DSL
allows more than one pattern to be used. The number of
times each of our patterns was used to express a (part of) a
mission requirement from our dataset is reported in Table 6.
The results show that to express these mission require-
ments, we used 14 patterns out of the 22 mission specifica-
tion patterns in our catalog (\raise.17ex�64%). The patterns
Pause, End, Confidently, Equidistance, Trail, Proportionally
were not used to specify any of the requirements of the
benchmark (demonstrating over-coverage of the patterns
catalog). This result is not surprising since we only collected
instances of mission requirements occurring in papers pub-
lished in the two years considered. It is worth noting that
patterns introduced via the bottom-up procedure have been
defined according to mission requirements that have been
found in literature, as shown in Table 4. So, the fact that we
have not found additional instances may imply that these
patterns are less popular than, for instance, Minimize, which
has the highest occurrence.

The patterns defined through the top-down procedure
(depicted with dashed borders in Fig. 1) require special
attention since they are based on a hypothesis and are not
sourced from examples collected from the literature. The
results in Table 6 show that the QUARTET patterns Less
than and Greater than were not used to specify any of the
mission requirements. Therefore, to confirm the usefulness
of these patterns, we performed a dedicated search for mis-
sion requirements that require these patterns for being spec-
ified. The purpose of our ad-hoc search was to confirm
patterns’ usefulness – we were searching for mission
requirements that required specified patterns. To this end,
we used snowballing techniques and queried search

TABLE 6
Number of Times Each of Our Patterns was Used to Express a

(Part of) a Mission Requirement of Our Dataset

Pattern #N Pattern #N Pattern #N

Maximize 5 Strictly Within 1 Reliability 4
Minimize 6 Conservation 5 Proportionality -
At most 3 Preservation 4 Simultaneously 1
Less than - Pause - Accrue 3
At least 3 Repeat 1 Confidently -
Greater than - End - Equidistance -
Exactly 2 Timeout 5 Trail -
Within 2

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2753

engines, such as Google Scholar, with search strings that
were pattern specific. Our procedure is sound: if we found
a mission requirement that required the pattern, then the
pattern was useful to specify at least one mission require-
ment. Table 7 provides a portion of an example mission
requirement from the literature for each of these patterns.
The complete natural language description of the mission
requirements is available online [50].

The answer to RQ1 is that our quantitative patterns were
able to fully express 20 out of the 21 mission requirements
of the benchmark (�95%), while 1 (�5%), partially. To do
so, 14 (�64%) out of 22 patterns of the catalog were
employed. Additionally, for each pattern identified and
defined through a top-down procedure, we were able to
locate examples in the literature, indicating its usefulness
and appropriateness.

8.2 RQ2— Applicability of the Translation

To evaluate the applicability of our translation, we consid-
ered the requirements defined for RQ1 and verified the
number of cases on which our translation (Table 5) could be
applied. Our goal is to evaluate how the applicability of our
translation in practical cases is influenced by the lack of sup-
port for some of the DSL constructs (NA labeled entries in
Table 5) and the constraints added to ensure that our mis-
sion specification is within the PRISM specification lan-
guage (see Section 7).

Dataset. We considered the benchmark of 20 mission
requirements from RQ1 that were expressible in our DSL.
This dataset contains 14 patterns out of the 22 mission speci-
fication patterns of our catalog (see Table 6).

Methodology. We considered each of the 20 mission
requirements of our dataset. We applied our translation by
running the automated support provided by QUARTET.
We recorded whether the translation was applicable or not.
When the translation was applicable, we stored the mission
specification generated by QUARTET.

Results. Our translation was applicable for 15 out of the
20 mission requirements expressible using our DSL (75%).
For the 5 remaining cases, the lack of support for some of
the DSL constructs (which are labeled ‘NA’ in Table 5) pre-
vents the application of the translation. Among the 15 cases
for which our translation was applicable, in seven cases our
translation lead to a warning, since the constraints added to
ensure that our mission specification is within the PRISM
specification language (Section 7) were not respected. In
these cases, the PRISM tool does not support the PRCTL for-
mulae generated by our translation. In the other cases, our

translation produced a mission specification that could be
processed by PRISM.

Our results show that our translation provides reason-
ably large applicability: it was applicable to 75% of our
requirements. When our translation was applicable, in more
than 50% of the cases, the mission requirements could also
be processed by PRISM. Notice that our applicability will
increase over time as (a) more expressive logics are defined
by the research community, and (b) efficient tools that sup-
port more complex logic formulae are proposed.

The answer to RQ2 is that our translation was applicable
for 15 out of the 20 mission requirements expressible
using our DSL (75%). When our translation was applica-
ble, PRISM could process the mission specifications gen-
erated by our translation in a reasonably large number of
cases (more than 50%).

8.3 RQ3 — Exploitability of the Mission
Specification

This question aims to assess the exploitability of the
(PRISM) mission specifications generated by QUARTET,
i.e., to assess how researchers and engineers can use these
specifications. To assess the exploitability of mission specifi-
cations (e.g., for synthesis or model checking) one would
need to assume some type of underlying model, e.g., dis-
crete-time Markov reward models, used as input for synthe-
sis or model checking. However, manually devising models
would introduce significant threats to the validity of our
results. For this reason, we opted for collecting mission
requirements from the literature that were accompanied
with a PRISM specification already proposed by the respec-
tive authors. Then, we analyzed the mission requirements
considered by the authors, and we checked if the mission
requirements could be expressed using our DSL. If the mis-
sion requirement was expressible using our DSL, we used
our DSL to model the mission requirement. We verified
whether QUARTET generated the PRISM mission specifica-
tion defined by the authors. If this was the case, we consid-
ered the results reported in the publication and discuss how
the specification was exploited by the authors for auto-
mated reasoning (e.g., model checking or synthesis).

Dataset. Our dataset consists of 16 requirements. Out of
these 16 requirements, 2 are robotic requirements collected
from the PRISM Case Studies webpage [95], and 14 were
collected by the authors using search engines. Specifically,
we searched for publications containing both the mission
requirements and the corresponding PRISM specifications
that were exploiting them (for any purpose). Requirements

TABLE 7
Evaluation of Applicability of Patterns Identified via the Top-Down Procedure

Pattern Example

Less than [...] while keeping the distance between them lower than 3.6 meters. ([91]-Section 4.1)
Greater than [...] b is changed from less than p=2 to greater than p=2 when the robot passes by an obstacle. ([92]-Section 3.2.5)

The muscle activation is constrained to the range between 0 and 1. ([93]-Section 2.4)
[...] repeat this message every 30 seconds ([94]-pg. 24).

2754 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

from RQ1 could not be reused, since PRISM specifications
were not included in the corresponding publications.

Methodology. We considered each of the 16 mission
requirements of our dataset. First, we checked if we were
able to express the requirement using our DSL. If this was
the case, we modeled the mission requirement using our
DSL. We used QUARTET to automatically generate the mis-
sion specification. We checked whether the mission specifi-
cation matched the one considered by the authors of the
paper. Specifically, we checked whether the specifications
entail the same functional behavior by manually analyzing
and comparing the semantics of the specifications. If this
was the case, we extracted from the publication the objective
for which the mission specification was used (e.g., synthesis
or model checking) and we analyzed the results obtained by
the authors using the automated support provided by
PRISM. We discussed how the specification was exploited
for automated reasoning.

Results. All the requirements of our case studies were
expressible using our DSL. The mission requirements, the
DSL formulations and the mission specifications are pub-
licly available [50]. The mission specifications obtained
using QUARTET matched the ones reported by the authors
within their papers. In 25% of the cases (4 out of 16) the
specifications were used for model checking tools, in 75% of
the cases (12 out of 16) the specifications were used for syn-
thesis. The mean model checking and synthesis times
reported in the publications using these specifications are
222s and 1688s, respectively. This shows that the mission
specifications produced by QUARTET could be exploited
effectively.

The answer to RQ3 is that the specifications generated
from 16 mission requirements can be used for synthesis
and model checking. Based on the publications sur-
veyed, these activities can also be performed in reason-
able time: the average of the maximum times required to
perform model checking and synthesis were respectively
222s and 1688s.

8.4 Discussion and Threats to Validity

The proposed quantitative patterns were able to express
\raise.17ex�95% of the 21 requirements of the benchmark
dataset (Section 8.1). This is an extensive coverage for practi-
cal applications since patterns are (by definition) not meant
to be exhaustive: they target recurrent mission specification
problems. Additionally, new specification problems and
patterns may be defined and the catalog can be extended
over time. Observe that elementary constructs express fun-
damental concerns within quantitative specification, as well
as their encoding in typical languages. Composite patterns
are intended to bring specifications closer to the robotics
domain at hand. The number of mission requirements ana-
lyzed is in line with other approaches in the field [34], [37],
[59], [60]; however, we acknowledge the possible presence
of bias in requirements collection since humans were
involved in this (non-automated) process. We counter this
by making our dataset available to serve as a reproduction
kit [50].

Formal mission specification is a difficult and error-
prone process [27], and facilities that enable mission design-
ers to employ high-level reasoning – instead of low-level
but precise specifications – are highly desired. A recent
study [96] provided empirical evidence that pattern-based
languages, such as the DSL proposed in this work, are easier
to understand than logic-based languages. Such is the ratio-
nale of the composite patterns: a designer can utilize com-
posite patterns for specification, while enjoying the benefits
of their precise and unambiguous formal specification under
the hood. Translation of composite pattern DSL formulations
to low-level specifications in formal languages allows the
use of planners and automated engineering techniques such
as code generation or software synthesis, while avoiding
ambiguities that might exist in informal representations,
since the semantics of composite patterns are precisely
defined. If some application demands it, coverage can be
extended by specifying additional application-specific pat-
terns over the elementary ones.

Our translation was applicable for the 75% of the mission
requirements expressible using the DSL (see Section 8.2).
For the five cases in which the translation was not applica-
ble, the hindrance was the limited expressiveness of PRCTL
that did not enable us to propose a translation for some of
the constructs of our DSL (entries labeled ‘NA’ in Table 5).
When our translation was applicable, PRISM could process
the mission specifications in more than 50% of the cases.
This problem is caused by the current limitations of PRISM,
which does not support the full PRCTL logic, thus forcing
us to introduce syntactic constraints for definition of the
mission requirements. We believe such problems will be
addressed over time: our translation will be extended as
more expressive logics – and tools with more expressive
input languages – become available. Finally, we note that in
the present work we provided translations only in PRCTL.
Other translations that target other logics may be developed
as well. We showed that the mission specifications gener-
ated from 16 mission requirements can be used for synthesis
and model checking (see Section 8.3) and that based on the
publications surveyed, these activities can be performed in
reasonable, practical time. We acknowledge that additional
uses of the mission specifications generated by QUARTET
are possible, and that the list we presented in Section 8.3 is
not exhaustive.

Our patterns do not currently support multi-robots,
robotic arm tasks, and swarms of robots. However, they can
be used as building blocks for DSLs tailored to the specifica-
tion of these types of missions.

An empirical investigation should be performed to assess
in an end-to-end manner whether the approach helps in
practice robotics engineers – as target users of QUARTET–
in specifying and reasoning about their quantitative mission
requirements, and whether the concepts it implements are
captured in language constructs. Such an assessment should
include not only the coverage of the DSL but also auxiliary
aspects such as usability, providing valuable future exten-
sion directions.

QUARTET is integrated with PRISM, an existing model
checker and synthesis tool. PRISM can process the mission
specifications produced by QUARTET. It can use the mis-
sion specifications for model checking, i.e., the mission

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2755

specifications produced by QUARTET are properties that
can be verified on a system model. PRISM can also use the
mission specifications for synthesis via PRISM-games [97].
PRISM-games extends PRISM by supporting the synthesis
of stochastic multi-player games representing competitive
and collaborative behaviors. Specifically, PRISM-games
synthesizes optimal player strategies which ensure that a
property holds. The mission specifications produced by
QUARTET can be considered as properties that the synthe-
sized component has to ensure. Finally, our translation (Sec-
tion 6.2) can be extended to support the languages of other
synthesis tools, such as Uppaal Stratego [98].

In certainmission-critical domains, robotsmay not be able
to accomplish the full-fledged mission. A typical scenario
specifies one or multiple degraded versions of the mission.
In some scenarios, the robot may need to change its configu-
ration to continue a mission or a behavior. These reactive
behaviors can be specified by using the “Trigger patterns”
specified in Table 1. These patterns, which express a robot
reactive behavior based on stimuli, or a robot’s inaction until
a stimulus occurs, are presented in our previouswork [35].

Threats to Validity. The selection of the venues from
which the mission requirements were collected is subject to
a selection bias that may impact the external validity of our
results as it influences their generalizability to applications
not covered in these venues. The selection of the mission
requirements used for answering our research questions is
also a threat to external validity since it influences the extent
to which our results can be generalized. Specifically, in this
work, we considered mission requirements involving move-
ment-related concerns (see Section 4.1) since specifying
robotic movement is a critical aspect for robotic mission
specification. To mitigate this threat, we collected require-
ments by considering both robotic mission requirements co-
designed with robotic application stakeholders (including
researchers, developers, operators, and end-users) and
papers (from diverse authors) from different venues (soft-
ware engineering, robotics, and formal methods). Empirical
studies will consider over time larger and more diverse sets
of requirements as done with property specification pat-
terns for temporal properties [96].

9 RELATED WORK

This section presents related work that supports engineers
in expressing system requirements and generating specifi-
cations by either defining patterns or by proposing Domain
Specific Languages (DSL) for the robotic domain.

Pattern Definition. Specification patterns to support engi-
neers in writing logic-based formulae are present in the
research literature. Dwyer et al. [34] defined specification
patterns for LTL formulae. Konrad and Cheng [59] defined
patterns that consider real-time properties. Grunske et al.
[60] defined patterns that considered probabilistic proper-
ties. Autili et al. [61] combined and extended the previous
catalogs patterns. While these patterns target generic logic-
based formulae they are not tailored for the robotic domain.

Specification patterns were applied in a large variety of
domains, such as security [99] and safety [100], service-
based applications [101], decentralized systems [102], cyber-
physical systems [103], [104], and Machine Learning

(ML) [105]. Specification patterns were also largely applied
in the robotic domain. For example, patterns were proposed
for supporting the development of code for robotic software
components [106], predicting human activities in human–
robot collaborative assembly tasks [107], exploring and pro-
totyping human-robot interactions (e.g., [108], [109], [110]).
However, these patterns do not target generic robotic mis-
sions. In an earlier work [36], [37], three of the authors of
this paper proposed a set of robotic mission specification
patterns. However, these patterns do not enable the specifi-
cation of the quantitative aspects of the robotic mission.

DSLs for the robotic domain. There is a large variety of
DSLs for the robotic domain. The interested reader can refer
to existing surveys from the literature (e.g., [15], [111], [112],
[113], [114], [115]). Most of the existing DSLs are procedural
(or imperative using the terminology in [15]), and therefore
require their users to model explicitly the control flow of the
robot [15]. Instead, a declarative specification of the mission
is more convenient since the control flow is implicit and the
users just need to model the goal of the mission. This is the
case of specification languages that have been built on top
of some temporal logic. In these languages, the specification
of the goal of the mission is then given as input, e.g. to a
logic-based planner, which then computes automatically
the control flow of the robot. The drawback of logic-based
languages is their usability and limited user-friendliness.
Specification patterns contribute to solving this problem.
They typically offer a structured English grammar enabling
the natural-language-like formulation of mission require-
ments. The need for supporting engineers in writing natu-
ral-language-like mission requirements and automatically
generating mission specifications is also highlighted in the
recent survey by Dragule et al. [15]. An interesting DSL that
combines the procedural and declarative style is Prom-
ise [21], [45]. This language builds on top of our previous
mission specification patterns [35], [36], [37]. The patterns
are the main building blocks of the language, and the DSL
introduces operators (fallback, alternatives, sequence, paral-
lel, etc.) that enable the composition of patterns to build
complex missions involving one or more robots. The DSL
we propose in this paper builds on top of the DSL proposed
in [35], [36], [37]. We anticipate that our catalog of patterns
can be exploited to build DSLs that can further contribute to
advancing the area of robotic mission specification. Exam-
ples of such DSLs include DSLs enabling the specification of
mission for multirobots, DSLs conceived to enable verifica-
tion, as will be discussed later, and DSLs focusing on spe-
cific application domains, such as agriculture or healthcare.
Indeed, existing DSLs are specific to the service robotic
domain, but there can be another step of specialization of
the languages, towards application domains, as envisioned
in [116]. Our patterns represent an important step towards
the construction of this envisioned ecosystem of DSLs, by
providing the main building blocks, with clear and well-
defined semantics, on which to build. Moreover, the pat-
terns are built on collected examples from literature, and
therefore their expressiveness is anchored into the actual
needs of users from this domain, as documented in their
papers. Also, unlike existing DSLs, which are usually
obtained starting from a target specification language (e.g.,
some logic language supported by a model checker), our

2756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

patterns are language agnostic. New translations targeting
other specification languages can be added in the future.

Finally, most of the DSLs proposed by the literature do
not support the specification of quantitative aspects such as
probability and rewards.

Patterns Usage. Patterns within robotics have been
employed for communication, production and analysis of
behavior descriptions, verification and synthesis. Efforts to
provide support for mission specification have also focused
on graphical tools that simplify the specification of temporal
logic formulae [12], [13], [14], for which integration of pat-
tern-based tools for robotics have also been proposed [36].
Finally, synthesis – generation of a correct-by-construction
reactive system from a temporal logic specification [117], is
highly relevant to robotics applications, for which patterns
can be readily used – patterns previously devised by the
authors have GR(1) options. GR(1) is a fragment of LTL with
an efficient polynomial time synthesis algorithm. Cho et al.
[118] relies on signal temporal logic to develop a control
strategy synthesis method for dynamical robotic systems.

10 CONCLUSION

This paper presents QUARTET, a novel catalog of 22 specifi-
cation patterns for the specification of quantitative robotic
missions developed using a hybrid methodology that com-
bines the benefits of bottom-up and top-down approaches.
It further defines a pattern-based DSL to support the usage
of both existing mission specification patterns and the
QUARTET quantitative mission specification patterns. We
proposed a translation that maps the constructs of the DSL
into Probabilistic Reward Computation Tree Logic (PRCTL)
formulae, precisely defining the semantics of the language
and enabling the usage of existing model checking and syn-
thesis tools. We developed a tool that supports the usage of
our pattern-based DSL, enabling engineers to express com-
plex behaviors involving quantitative concepts and directly
interface with PRISM. We evaluated the coverage of the pat-
terns of the QUARTET catalog, the applicability of our
translation, and the exploitability of the logic formulae gen-
erated by our translation. Our results show that the cover-
age of our quantitative patterns supports the practical usage
of our catalog, our translation is largely applicable, and that
the mission specifications generated by our translation can
be used for synthesis and model checking in practical appli-
cations. Finally, we make all of our artifacts publicly avail-
able to enable study replication [50].

In future work, we will extend our pattern catalog to fur-
ther increase its coverage by supporting additional specifi-
cation problems, such as relating two different quantitative
measures (see Section 8.1). In addition, a promising avenue
of future work entails proposing alternative specifications
for the QUARTET patterns by considering other logics that
can address the limitations of our translation (see NA fields
of Table 5 and Section 8.2), such as ones with spatio-tempo-
ral features [119]. Finally, as has been done for specification
patterns for temporal properties [96], empirical studies
can assess the applicability of the mission specification pat-
terns over additional case studies and benchmarks (see
Section 8.3).

REFERENCES

[1] E. Gat, “On three-layer architectures,” in Artificial intelligence
and mobile robots. Palo Alto, CA, USA: AAAI Press, 1997,
pp. 195–210.

[2] D. Brugali, Software Engineering for Experimental Robotics, vol. 30.
Berlin, Germany: Springer, 2007.

[3] D. Brugali and E. Prassler, “Software engineering for robotics,”
IEEE Robot. Automat. Mag., vol. 16, no. 1, pp. 9–15, Mar. 2009.

[4] S. Garcia, D. Struber, D. Brugali, T. Berger, and P. Pelliccione,
“An empirical assessment of robotics software engineering,” in
Proc. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2020,
pp. 593–604.

[5] A. Veizaga, M. Alf�erez, D. Torre, M. Sabetzadeh, and L. C.
Briand, “On systematically building a controlled natural lan-
guage for functional requirements,” Empir. Softw. Eng., vol. 26,
no. 4, 2021, Art. no. 79.

[6] A. Veizaga, M. Alf�erez, D. Torre, M. Sabetzadeh, L. C. Briand,
and E. Pitskhelauri, “Leveraging natural-language requirements
for deriving better acceptance criteria from models,” in Proc.
IEEE/ACM 23rd Int. Conf. Model Driven Eng. Lang. Syst., 2020,
pp. 218–228.

[7] J. Ayerdi et al., “Towards a taxonomy for eliciting design-opera-
tion continuum requirements of cyber-physical systems,” in
Proc. Int. Requirements Eng. Conf., 2020, pp. 280–290.

[8] J. F. Kramer and M. Scheutz, “Development environments for
autonomous mobile robots: A survey,” Auton. Robots, vol. 22,
pp. 101–132, 2007.

[9] S. Maniatopoulos, M. Blair, C. Finucane, and H. Kress-Gazit,
“Open-world mission specification for reactive robots,” in Proc.
Int. Conf. Robot. Automat., 2014, pp. 4328–4334.

[10] C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-
Gazit, “Provably correct reactive control from natural language,”
Auton. Robots, vol. 38, no. 1, pp. 89–105, 2015.

[11] D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and M.
Tivoli, “Flyaq: Enabling non-expert users to specify and generate
missions of autonomous multicopters,” in Proc. IEEE/ACM Int.
Conf. Automated Softw. Eng., 2015, pp. 801–806.

[12] I. Lee and O. Sokolsky, “A graphical property specification
language,” in Proc. High-Assurance Syst. Eng. Workshop, 1997,
pp. 42–47.

[13] M. H. Smith, G. J. Holzmann, and K. Etessami, “Events and
constraints: A graphical editor for capturing logic require-
ments of programs,” in Proc. Int. Symp. Requirements Eng.,
2001, pp. 14–22.

[14] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos,
“A graphical language for LTL motion and mission planning,”
in Proc. Int. Conf. Robot. Biomimetics, 2013, pp. 704–709.

[15] S. Dragule, T. Berger, C. Menghi, and P. Pelliccione, “A survey
on the design space of end-user-oriented languages for specify-
ing robotic missions,” Int. J. Softw. Syst. Model., vol. 20, no. 4,
pp. 1123–1158, 2021.

[16] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey
on domain-specific languages in robotics,” in, Simulation, Model-
ing, and Programming for Autonomous Robots. Berlin, Germany:
Springer, 2014.

[17] R. Arkin, “Missionlab v7.0, Mobile Robot Laboratory, College of
Computing Georgia Institute of Technology,” 2006. [Online].
Available: https://www.cc.gatech.edu/ai/robot-lab/research/
MissionLab/

[18] T. Balch, “Teambots,” 2004. [Online]. Available: www.teambots.
org

[19] S. Maoz and Y. Sa’ar, “AspectLTL: An aspect language for LTL
specifications,” in Proc. Int. Conf. Aspect-Oriented Softw. Develop.,
2011, pp. 19–30.

[20] D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli,
“Automatic generation of detailed flight plans from high-level
mission descriptions,” in Proc. Model Driven Eng. Lang. Syst.,
2016, pp. 45–55.

[21] S. Garc�ıa, P. Pelliccione, C. Menghi, T. Berger, and T. Bures,
“PROMISE: High-level mission specification for multiple
robots,” in Proc. Int. Conf. Softw. Eng. Companion, 2020, pp. 5–8.

[22] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Proc. JointMeeting Found. Softw. Eng., 2015, pp. 96–106.

[23] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfigura-
tion under local LTL specifications,” Int. J. Robot. Res., vol. 34,
no. 2, pp. 218–235, 2015.

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2757

https://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/
https://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/
www.teambots.org
www.teambots.org

[24] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experi-
menting with language, temporal logic and robot control,” in
Proc. Int. Conf. Intell. Robots Syst., 2010, pp. 1988–1993.

[25] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot
LTL planning under uncertainty,” in, Formal Methods (FM). Ber-
lin, Germany: Springer, 2018.

[26] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic
deployment of robotic teams,” IEEE Robot. Automat. Mag.,
vol. 18, no. 3, pp. 75–86, Sep. 2011.

[27] Y. Endo, D. C. MacKenzie, and R. C. Arkin, “Usability evaluation
of high-level user assistance for robot mission specification,”
Trans. Syst., Man, Cybern., Part C (Appl. Rev.), vol. 34, no. 2,
pp. 168–180, 2004.

[28] S. Maoz and J. O. Ringert, “On the software engineering chal-
lenges of applying reactive synthesis to robotics,” in Proc. Work-
shop Robot. Softw. Eng., 2018, pp. 17–22.

[29] W. Wei, K. Kim, and G. Fainekos, “Extended LTLvis motion
planning interface,” in Proc. Int. Conf. Syst., Man, Cybern., 2016,
pp. 004194–004199.

[30] E. A. Emerson, “Temporal and modal logic,” in Formal Models
and Semantics. Amsterdam, The Netherlands: Elsevier, 1990,
pp. 995–1072.

[31] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-
logic-based reactive mission and motion planning,” Trans. Robot.,
vol. 25, no. 6, pp. 1370–1381, 2009.

[32] G. J. Holzmann, “The logic of bugs,” in Foundations of Software
Engineering (FSE). New York, NY, USA: ACM, 2002.

[33] M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenar-
ios for specifying temporal properties: An automated
approach,” Automated Softw. Eng., vol. 14, no. 3, pp. 293–340,
2007.

[34] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in prop-
erty specifications for finite-state verification,” in Proc. Int. Conf.
Softw. Eng., 1999, pp. 411–420.

[35] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“Specification patterns for robotic missions,” IEEE Trans. Softw.
Eng., vol. 47, no. 10, pp. 2208–2224, Oct. 2019.

[36] C. Menghi, C. Tsigkanos, T. Berger, and P. Pelliccione, “PsALM:
Specification of dependable robotic missions,” in Proc. Int. Conf.
Softw. Eng., 2019, pp. 99–102.

[37] C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, and C. Ghezzi,
“Property specification patterns for robotic missions,” in Proc.
Int. Conf. Softw. Eng., 2018, pp. 434–435.

[38] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot
LTL planning under uncertainty,” in Proc. Int. Symp. Formal
Methods, 2018, pp. 399–417.

[39] M. Kloetzer and C. Mahulea, “LTL-Based planning in environ-
ments with probabilistic observations,” IEEE Trans. Autom. Sci.
Eng., vol. 12, no. 4, pp. 1407–1420, Oct. 2015.

[40] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-
logic-based reactive mission and motion planning,” Trans. Robot.,
vol. 25, no. 6, pp. 1370–1381, 2009.

[41] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal
multi-robot path planning with temporal logic constraints,” in
Proc. Int. Conf. Intell. Robots Syst., 2011, pp. 3087–3092.

[42] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas,
“Temporal logic motion planning for dynamic robots,” Automa-
tica, vol. 45, no. 2, pp. 343–352, 2009.

[43] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising
motion planning under linear temporal logic specifications in
partially known workspaces,” in Proc. Int. Conf. Robot. Automat.,
2013, pp. 5025–5032.

[44] M. Broy, “Declarative specification and declarative pro-
gramming,” in Proc. Int. Workshop Softw. Specification Des., 1991,
pp. 2–3.

[45] S. Garc�ıa, P. Pelliccione, C. Menghi, T. Berger, and T. Bures,
“High-level mission specification for multiple robots,” in
Proc. 12th ACM SIGPLAN Int. Conf. Softw. Lang. Eng., 2019,
pp. 127–140.

[46] R. A. Brooks et al., “Intelligence without reason,” Artif. Intell.
Crit. Concepts, vol. 3, pp. 107–63, 1991.

[47] D. Brugali and M. Reggiani, “Software stability in the robotics
domain: Issues and challenges,” in Proc. Int. Conf. Inf. Reuse Inte-
gration, 2005, pp. 585–591.

[48] D. Brugali, “Stable analysis patterns for robot mobility,” in Soft-
ware Engineering for Experimental Robotics. Berlin, Germany:
Springer, 2007, pp. 9–30.

[49] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verifi-
cation of probabilistic real-time systems,” in Proc. Int. Conf. Com-
put. Aided Verification, 2011, pp. 585–591.

[50] Tool and replication package, 2022. [Online]. Available:
roboticpatterns.com/quantitative

[51] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects Comput., vol. 6, no. 5, pp. 512–535, 1994.

[52] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-time
rewards model-checked,” in Proc. Int. Conf. Formal Model. Anal.
Timed Syst., 2003, pp. 88–104.

[53] M. L. Puterman, “Markov decision processes,” Handbooks Opera-
tions Res. Manage. Sci., vol. 2, pp. 331–434, 1990.

[54] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic QoS management and optimization in
service-based systems,” IEEE Trans. Softw. Eng., vol. 37, no. 3,
pp. 387–409, May/Jun. 2011.

[55] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifi-
cation of probabilistic real-time systems,” in, Computer Aided Ver-
ification (CAV). Berlin, Germany: Springer, 2011.

[56] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezz�e, Y. Rafiq, and G.
Tamburrelli, “Formal verification with confidence intervals to
establish quality of service properties of software systems,” IEEE
Trans. Rel., vol. 65, no. 1, pp. 107–125, Mar. 2016.

[57] STORM, 2022. [Online]. Available: https://www.stormchecker.
org/documentation/background/properties.html

[58] PRISM, 2022. [Online]. Available: https://www.prismmodelchecker.
org/manual/PropertySpecification/Introduction

[59] S. Konrad and B. H. Cheng, “Real-time specification patterns,” in
Proc. Int. Conf. Softw. Eng., 2005, pp. 372–381.

[60] L. Grunske, “Specification patterns for probabilistic quality prop-
erties,” in Proc. Int. Conf. Softw. Eng., 2008, pp. 31–40.

[61] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang,
“Aligning qualitative, real-time, and probabilistic property speci-
fication patterns using a structured english grammar,” Trans.
Softw. Eng., vol. 41, no. 7, pp. 620–638, 2015.

[62] C. K. Verginis, C. Vrohidis, C. P. Bechlioulis, K. J. Kyriakopoulos,
and D. V. Dimarogonas, “Reconfigurable motion planning and
control in obstacle cluttered environments under timed temporal
tasks,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 951–957.

[63] D. Aksaray, C. I. Vasile, and C. Belta, “Dynamic routing of
energy-aware vehicles with temporal logic constraints,” in Proc.
Int. Conf. Robot. Automat., 2016, pp. 3141–3146.

[64] B. Tang, C. Jiang, H. He, and Y. Guo, “Human mobility modeling
for robot-assisted evacuation in complex indoor environments,”
IEEE Trans. Human-Mach. Syst., vol. 46, no. 5, pp. 694–707, Oct. 2016.

[65] F. Bourbonnais, P. Bigras, and I. A. Bonev, “Minimum-time trajectory
planning and control of a pick-and-place five-bar parallel robot,”
IEEE/ASME Trans. Mechatronics, vol. 20, no. 2, pp. 740–749, Apr. 2015.

[66] M. d. S. Arantes, C. F. M. Toledo, B. C. Williams, and M. Ono,
“Collision-free encoding for chance-constrained nonconvex path
planning,” IEEE Trans. Robot., vol. 35, no. 2, pp. 433–448, Apr. 2019.

[67] A. Muralidharan and Y. Mostofi, “Path planning for minimizing
the expected cost until success,” IEEE Trans. Robot., vol. 35, no. 2,
pp. 466–481, Apr. 2019.

[68] S. D. Bopardikar, S. L. Smith, and F. Bullo, “On dynamic vehicle
routing with time constraints,” IEEE Trans. Robot., vol. 30, no. 6,
pp. 1524–1532, Dec. 2014.

[69] E. Nunes, M. McIntire, and M. Gini, “Decentralized allocation of
tasks with temporal and precedence constraints to a team of
robots,” in Proc. Int. Conf. Simul., Model., Program. Auton. Robots,
2016, pp. 197–202.

[70] C. Nam and D. A. Shell, “When to do your own thing: Analysis
of cost uncertainties in multi-robot task allocation at run-time,”
in Int. Conf. on Robot. and Automat. (ICRA), 2015, pp. 1249–1254.

[71] F. Imeson and S. L. Smith, “An SMT-based approach to motion
planning for multiple robots with complex constraints,” IEEE
Trans. Robot., vol. 35, no. 3, pp. 669–684, Jun. 2019.

[72] P. Schillinger, M. B€urger, and D. V. Dimarogonas, “Auctioning
over probabilistic options for temporal logic-based multi-robot
cooperation under uncertainty,” in Proc. Int. Conf. Robot. Auto-
mat., 2018, pp. 7330–7337.

[73] R. Kala, “Dynamic programming accelerated evolutionary plan-
ning for constrained robotic missions,” in Proc. Int. Conf. Simul.,
Model., Program. Auton. Robots, 2018, pp. 81–86.

[74] H. Cai and Y. Mostofi, “Human–robot collaborative site inspec-
tion under resource constraints,” IEEE Trans. Robot., vol. 35,
no. 1, pp. 200–215, Feb. 2019.

2758 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

roboticpatterns.com/quantitative
https://www.stormchecker.org/documentation/background/properties.html
https://www.stormchecker.org/documentation/background/properties.html
https://www.prismmodelchecker.org/manual/PropertySpecification/Introduction
https://www.prismmodelchecker.org/manual/PropertySpecification/Introduction

[75] N. Li, C. Tsigkanos, Z. Jin, Z. Hu, and C. Ghezzi, “Early valida-
tion of cyber-physical space systems via multi-concerns integra-
tion,” J. Syst. Softw., vol. 170, 2020, Art. no. 110742.

[76] S. P. Chinchali, S. C. Livingston, M. Pavone, and J. W. Burdick,
“Simultaneous model identification and task satisfaction in the
presence of temporal logic constraints,” in Proc. Int. Conf. Robot.
Automat., 2016, pp. 3682–3689.

[77] F. Wolter and M. Zakharyaschev, “Reasoning about distances,”
in Proc. Int. Joint Conf. Artif. Intell., 2003, pp. 1275–1282.

[78] C. Menghi, E. Vigan�o, D. Bianculli, and L. C. Briand, “Trace-
checking CPS properties: Bridging the cyber-physical gap,” in
Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng., 2021, pp. 847–859.

[79] Xtext, 2022. [Online]. Available: http://www.eclipse.org/Xtext/
[80] Xtend, 2022. [Online]. Available: https://www.eclipse.org/xtend/
[81] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabi-

listic symbolic model checker,” in Proc. Int. Conf. Modelling Techn.
Tools Comput. Perform. Eval., 2002, pp. 200–204.

[82] J.-P. Katoen, M. Khattri, and I. Zapreevt, “A Markov reward
model checker,” in Proc. Int. Conf. Quantitative Eval. Syst., 2005,
pp. 243–244.

[83] Markov Reward Model Checker (MRMC), 2022. [Online]. Avail-
able: http://www.mrmc-tool.org/

[84] Markov Reward Model Checker (MRMC) Updates, 2022.
[Online]. Available: http://www.mrmc-tool.org/downloads/
MRMC/Distrib/?C¼M;O¼D

[85] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying con-
tinuous time Markov chains,” in Proc. Int. Conf. Comput. Aided
Verification, 1996, pp. 269–276.

[86] A. Pnueli, “The temporal logic of programs,” in Proc. Annu.
Symp. Found. Comput. Sci., 1977, pp. 46–57.

[87] C. Baier, “On algorithmic verification methods for probabilistic
systems,” Ph.D. dissertation, habilitation thesis, University of
Mannheim, Mannheim, Germany, 1998.

[88] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based
synthesis of probabilistic models for quality-of-service software
engineering (t),” in Proc. IEEE/ACM 30th Int. Conf. Automated
Softw. Eng., 2015, pp. 319–330.

[89] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of
probabilistic models for quality-of-service software engineer-
ing,” Automated Softw. Eng., vol. 25, no. 4, pp. 785–831, 2018.

[90] D. B. Licea, M. Bonilla, M. Ghogho, S. Lasaulce, and V. S. Varma,
“Communication-aware energy efficient trajectory planning
with limited channel knowledge,” IEEE Trans. Robot., vol. 36,
no. 2, pp. 431–442, Apr. 2020.

[91] N. Imamoglu et al., “Development of robust behaviour recogni-
tion for an at-home biomonitoring robot with assistance of sub-
ject localization and enhanced visual tracking,” Sci. World J.,
2014, pp. 280207–280207.

[92] R. L. Williams and J. Wu, “Dynamic obstacle avoidance for an
omnidirectional mobile robot,” J. Robot., vol. 2010, pp. 1–14,
2010.

[93] K. Yin, Y. Xue, Y. Yu, and S. Xie, “Variable impedance control for
bipedal robot standing balance based on artificial muscle activa-
tion model,” J. Robot., vol. 2021, pp. 1–9, 2021.

[94] Use Guide of the Mobile Autonomous Robotic Cart 3 Series
Model 3470 and Model 3475, 2022. [Online]. Available: https://
www.multechnologies.com/hubfs/manuals/
MuL_MARC_3470_and_3475_Users_Guide_210805b.pdf

[95] PRISM Case Studies, 2022. [Online]. Available: https://www.
prismmodelchecker.org/casestudies/index.php

[96] C. Czepa and U. Zdun, “On the understandability of temporal
properties formalized in linear temporal logic, property speci-
fication patterns and event processing language,” IEEE Trans.
Softw. Eng., vol. 46, no. 1, pp. 100–112, Jan. 2020.

[97] PRISM-games, 2022. [Online]. Available: https://www.stormchecker.
org/documentation/background/properties.html

[98] A. David, P. G. Jensen, K. G. Larsen, M. Miku�cionis, and J. H.
Taankvist, “Uppaal stratego,” in Proc. Int. Conf. Tools Algorithms
Construction Anal. Syst., 2015, pp. 206–211.

[99] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos,
“Towards security monitoring patterns,” in Proc. Symp. Appl.
Comput., 2007, pp. 1518–1525.

[100] F. Bitsch, “Safety patterns - the key to formal specification of
safety requirements,” in Proc. Int. Conf. Comput. Saf., Rel. Secur.,
2001, pp. 176–189.

[101] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti, “Specification
patterns from research to industry: A case study in service-
based applications,” in Proc. Int. Conf. Softw. Eng., 2012,
pp. 968–976.

[102] P. Arcaini, R. Mirandola, E. Riccobene, and P. Scandurra, “MSL:
A pattern language for engineering self-adaptive systems,” J.
Syst. Softw., vol. 164, 2020, Art. no. 110558.

[103] C. Boufaied, M. Jukss, D. Bianculli, L. C. Briand, and Y. Isasi
Parache, “Signal-based properties of cyber-physical systems:
Taxonomy and logic-based characterization,” J. Syst. Softw.,
vol. 174, 2021, Art. no. 110881.

[104] C. Boufaied, C. Menghi, D. Bianculli, L. C. Briand, and Y. I.
Parache, “Trace-checking signal-based temporal properties: A
model-driven approach,” in Proc. Int. Conf. Automated Softw.
Eng., 2020, pp. 1004–1015.

[105] N. M. Nasrabadi, “Pattern recognition and machine learning,” J.
Electron. Imag., vol. 16, no. 4, 2007, Art. no. 049901.

[106] C. Côt�e, D. L�etourneau, F. Michaud, and Y. Brosseau, “Software
design patterns for robotics: Solving integration problems with
MARIE,” in Proc. Workshop Robotic Softw. Environ., Int. Conf.
Robot. Automat., 2005, pp. 1820–1825.

[107] A. M. Zanchettin, A. Casalino, L. Piroddi, and P. Rocco,
“Prediction of human activity patterns for human–robot collabo-
rative assembly tasks,” IEEE Trans. Ind. Informat., vol. 15, no. 7,
pp. 3934–3942, Jul. 2019.

[108] M. Johansson, G. Skantze, and J. Gustafson, “Head pose patterns
in multiparty human-robot team-building interactions,” in Proc.
Int. Conf. Social Robot., 2013, pp. 351–360.

[109] A. Saupp�e and B. Mutlu, “Design patterns for exploring and pro-
totyping human-robot interactions,” in Proc. SIGCHI Conf. Hum.
Factors Comput. Syst., 2014, pp. 1439–1448.

[110] M. Makatchev et al., “Dialogue patterns of an arabic robot
receptionist,” in Proc. IEEE/ACM 5th Int. Conf. Hum.-Robot Inter-
action, 2010, pp. 167–168.

[111] M. Luckcuck, M. Farrell, L. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic
systems: A survey,” 2018, arXiv: 1807.00048.

[112] F. A. Bravo, A. M. Gonz�alez, and E. Gonz�alez, “A review of intui-
tive robot programming environments for educational
purposes,” in Proc. IEEE 3rd Colombian Conf. Autom. Control,
2017, pp. 1–6.

[113] G. Biggs and B. MacDonald, “A survey of robot programming
systems,” in Proc. Australas. Conf. Robot. Automat., 2003,
pp. 1–3.

[114] A. Hentout, A. Maoudj, and B. Bouzouia, “A survey of develop-
ment frameworks for robotics,” in Proc. 8th Int. Conf. Modelling,
Identification Control, 2016, pp. 67–72.

[115] B. Jost, M. Ketterl, R. Budde, and T. Leimbach, “Graphical pro-
gramming environments for educational robots: Open Roberta-
yet another one?,” in Proc. IEEE Int. Symp. Multimedia, 2014,
pp. 381–386.

[116] S. Dragule, S. G. Gonzalo, T. Berger, and P. Pelliccione,
“Languages for specifying missions of robotic applications,” in
Software Engineering for Robotics. Berlin, Germany: Springer, 2021,
pp. 377–411.

[117] S. Maoz and J. O. Ringert, “Gr (1) synthesis for LTL specification
patterns,” in Proc. 10th Joint Meeting Found. Softw. Eng., 2015,
pp. 96–106.

[118] K. Cho and S. Oh, “Learning-based model predictive control
under signal temporal logic specifications,” in Proc. Int. Conf.
Robot. Automat., 2018, pp. 7322–7329.

[119] C. Tsigkanos, T. Kehrer, and C. Ghezzi, “Modeling and verifica-
tion of evolving cyber-physical spaces,” in Proc. 11th Joint Meet-
ing Found. Softw. Eng., 2017, pp. 38–48.

Claudio Menghi received the PhD degree from
Politecnico di Milano. He is an assistant professor
with the Department of Computing and Software,
McMaster University (Canada). He was postdoc-
toral researcher with Chalmers jUniversity ofGoth-
enburg (Sweden), and an associate researcher
with the University of Luxembourg (Luxembourg).
His current research interests lie in software engi-
neering, with a special interest in cyber physical
systems (CPS), and formal verification.

MENGHI ETAL.: MISSION SPECIFICATION PATTERNS FOR MOBILE ROBOTS: PROVIDING SUPPORT FOR QUANTITATIVE PROPERTIES 2759

http://www.eclipse.org/Xtext/
https://www.eclipse.org/xtend/
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/downloads/MRMC/Distrib/?C=M;O=D
http://www.mrmc-tool.org/downloads/MRMC/Distrib/?C=M;O=D
http://www.mrmc-tool.org/downloads/MRMC/Distrib/?C=M;O=D
http://www.mrmc-tool.org/downloads/MRMC/Distrib/?C=M;O=D
https://www.multechnologies.com/hubfs/manuals/MuL_MARC_3470_and_3475_Users_Guide_210805b.pdf
https://www.multechnologies.com/hubfs/manuals/MuL_MARC_3470_and_3475_Users_Guide_210805b.pdf
https://www.multechnologies.com/hubfs/manuals/MuL_MARC_3470_and_3475_Users_Guide_210805b.pdf
https://www.prismmodelchecker.org/casestudies/index.php
https://www.prismmodelchecker.org/casestudies/index.php
https://www.stormchecker.org/documentation/background/properties.html
https://www.stormchecker.org/documentation/background/properties.html

Christos Tsigkanos received the PhD degree
from Politecnico di Milano (Italy), in 2017 and the
Habilitation degree in 2022. He is senior
researcher with the University of Bern and the
Software Engineering Group. He is joining the
University of Athens, Department of Aerospace
as assistant professor. He was Lise Meitner fellow
and previously postdoctoral researcher with TU
Vienna (Austria) and with Politecnico di Milano.
His research interests lie in the intersection of
software and (software) systems engineering,

and include aspects of dependable systems as well as applied formal
methods.

Mehrnoosh Askarpour is an adjunct assistant
professor with the Department of Computing and
Software, McMaster University (Canada). Her
current research interests include verification of
safety-critical system properties and application
of formal methods for safe robotics and autono-
mous vehicles.

Patrizio Pelliccione received the PhD degree in
computer science from the University of L’Aquila
(Italy). He is director of the Computer Science
area and Professor in Software Engineering with
Gran Sasso Science Institute (GSSI, Italy). His
research topics are software engineering, soft-
ware architecture modeling and verification, and
autonomous systems. Thereafter, he worked as a
senior researcher with the University of Luxem-
bourg in Luxembourg, then assistant professor
with the University of L’Aquila in Italy, and then

associate professor with both Chalmers j University of Gothenburg in
Sweden and University of L’Aquila. He has been on the organization and
program committees for several top conferences and he is a reviewer for
top journals in the software engineering domain. He is very active in
European and National projects. In his research activity, he has collabo-
rated with several companies. More information is available at http://
www.patriziopelliccione.com.

Gricel V�azquez received the MSc degree in
computational intelligence and robotics from the
University of Sheffield with distinction. She is cur-
rently working toward the PhD degree in com-
puter science with the University of York (UK).
Her research interests include formal methods,
multi-robot systems (MRS), task allocation and
planning, domain-specific languages for MRS,
autonomous systems ethical concerns, self-
adaptive and critical systems.

Radu Calinescu is Professor of Computer Sci-
ence with the University of York (UK). His main
research interests are in formal methods for self-
adaptive, autonomous, secure and dependable
software, cyber-physical and AI systems, and in
performance and reliability software engineering.
He is an active promoter of formal methods at
runtime as a way to improve the integrity and
predictability of self-adaptive and autonomous
systems and processes.

Sergio Garcı́a received the PhD degree in soft-
ware engineering from the University of Gothen-
burg (Sweden). He works as a software architect
and function designer with Volvo Cars Corpora-
tion (Sweden). His research lies in the intersec-
tion between software engineering and service
robotics with a special emphasis on empirical
studies, software architecture, and domain-spe-
cific languages development.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

http://www.patriziopelliccione.com
http://www.patriziopelliccione.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

