
How do Developers Really Feel About Bug
Fixing? Directions for Automatic Program Repair

Emily Winter , David Bowes , Steve Counsell , Tracy Hall , Sæmundur Haraldsson ,

Vesna Nowack , and John Woodward

Abstract—Automatic program repair (APR) is a rapidly advancing field of software engineering that aims to supplement or replace

manual bug fixing with an automated tool. For APR to be successfully adopted in industry, it is vital that APR tools respond to developer

needs and preferences. However, very little research has considered developers’ general attitudes to APR or developers’ current bug

fixing practices (the activity APR aims to replace). This article responds to this gap by reporting on a survey of 386 software developers

about their bug finding and fixing practices and experiences, and their instinctive attitudes towards APR. We find that bug finding and

fixing is not necessarily as onerous for developers as has often been suggested, being rated as more satisfying than developers’

general work. The fact that developers derive satisfaction and benefit from bug fixing indicates that APR adoption is not as simple as

APR replacing an unwanted activity. When it comes to potential APR approaches, we find a strong preference for developers being kept

in the loop (for example, choosing between different fixes or validating fixes) as opposed to a fully automated process. This suggests

that advances in APR should be careful to consider the agency of the developer, as well as what information is presented to developers

alongside fixes. It also indicates that there are key barriers related to trust that would need to be overcome for full scale APR adoption,

supported by the fact that even those developers who stated that they were positive about APR listed several caveats and concerns.

We find very few statistically significant relationships between particular demographic variables (for example, developer experience,

age, education) and key attitudinal variables, suggesting that developers’ instinctive attitudes towards APR are little influenced by

experience level but are held widely across the developer community.

Ç

1 INTRODUCTION

AUTOMATIC program repair (APR) is a growing area of soft-
ware engineering (SE) research that aims to supplement

or replace manual bug fixing. In order for APR to be success-
fully and widely adopted, it is vital that we understand devel-
oper needs and preferences. However, we currently know little
about both software developers’ bug finding and fixing practi-
ces and their general attitudes towards APR. As recently as
2018, Beller et al. argued ‘we have little knowledge on how soft-
ware engineers debug software problems in the real world,
whether they use dedicated debugging tools, and how

knowledgeable they are about debugging’ [1]. Similarly,
B€ohme highlights that ‘how humans actually debug is still not
really well explored’ [2], stating ‘given how much time practi-
tioners spend on debugging, it [. . .] is a scandal how little we
know about debugging’. Whilst the difficulty and frustration
of bug fixing for developers is often asserted, we know even
less about developers’ feelings about the activity of bug fixing.
Understanding developers’ current bug fixing practices, and
how they feel about fixing bugs, is important because the
presentation of APR to developers should be based upon
this understanding. As well as a lack of understanding
within SE of developers’ bug fixing practices (the key
activity APR hopes to aid or replace), Westley Weimer’s
recent keynote address highlighted the lack of consider-
ation of human factors within APR, and the need to take
human factors more seriously in the discipline [3].

In our prior work [4], we conducted a literature review to
assess the extent to which human factors are considered
within the APR literature, as well as evaluating the quality
of existing human studies. We found that there were very
few human studies currently in APR – just 7% of the 260
papers we reviewed. The human studies we evaluated were
of mixed quality, often involving small samples and few
professional developers. In addition, we found that most
APR human studies were tool specific. Fourteen of the sev-
enteen papers with human studies that we evaluated intro-
duced a new tool or technique that the authors had
developed and then conducted a human study to test it. For
example, there were several (quasi-) experimental studies
evaluating how participants performed a task with or with-
out access to the patches generated by the tool. These

� Emily Winter, David Bowes, Tracy Hall, and Vesna Nowack are with the
School of Computing and Communications, Lancaster University, LA1
4YW Lancaster, U.K. E-mail: {e.winter, d.h.bowes, tracy.hall}@lancaster.
ac.uk, v.nowack@qmul.ac.uk.

� Steve Counsell is with the Department of Computer Science, Brunel Univer-
sity of London, UB8 3PHUxbridge, U.K. E-mail: steve.counsell@brunel.ac.uk.

� Sæmundur Haraldsson is with the Department of Computing Science and
Mathematics, University of Stirling, FK9 4LA Stirling, U.K.
E-mail: saemundur.haraldsson@stir.ac.uk.

� John Woodward is with the School of Electronic Engineering and Com-
puter Science, Queen Mary University of London, E1 4NS London, U.K.
E-mail: j.woodward@qmul.ac.uk.

Manuscript received 15 February 2022; revised 4 July 2022; accepted 19 July
2022. Date of publication 27 July 2022; date of current version 18 April 2023.
This work was supported by the Engineering and Physical Sciences Research
Council under Grant EP/S005730/1.
This work involved human subjects or animals in its research. Approval of all
ethical and experimental procedures and protocols was granted by the Faculty of
Science and Technology’s Research Ethics Committee at Lancaster University.
(Corresponding author: Emily Winter.)
Recommended for acceptance by Y. Brun.
Digital Object Identifier no. 10.1109/TSE.2022.3194188

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023 1823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
mailto:e.winter@lancaster.ac.uk
mailto:d.h.bowes@lancaster.ac.uk
mailto:tracy.hall@lancaster.ac.uk
mailto:v.nowack@qmul.ac.uk
mailto:steve.counsell@brunel.ac.uk
mailto:saemundur.haraldsson@stir.ac.uk
mailto:j.woodward@qmul.ac.uk

studies may not reflect participants’ more general attitudes
to APR; rather, they provide insights into the advantages
and disadvantages of a proposed technique. Existing work
therefore yields little insight that can be applied across APR
tools and techniques or can act as guiding principles for
future APR development, particularly how APR and auto-
matically generated fixes should be presented to develop-
ers. This motivated us to perform a large-scale human
study with professional developers that would investigate
developers’ more general, instinctive attitudes and identify
the implications of this for APR development.

We argue that it is important to understand developers’
current bug fixing practices, their feelings about bug fixing
and their general, instinctive feelings towards APR in order
to identify potential barriers to APR adoption. To this end,
we designed a survey to answer the following research
questions:

� RQ1: What are software developers’ current bug
finding and fixing practices?

� RQ2: How do software developers feel about bug
finding and fixing?

� RQ3: What are software developers’ instinctive feel-
ings towards APR?

To our knowledge this is the first paper that surveys, on a
large scale, developers’ general feelings towards APR. We
find developers prefer APR approaches in which they main-
tain a role, either validating fixes or, more popularly, choos-
ing between multiple fixes offered by a tool. This has
important implications for future APR development. We
also find that developers’ instinctive feelings towards APR
can be summarised as ‘cautiously optimistic’; they are inter-
ested in and positive about the idea of APR, but they have a
range of concerns, conditions and caveats.

This paper is structured as follows: Section 2 reports on
related work; Section 3 describes the survey design, our
sampling and recruitment strategies, and analysis process;
Section 4 describes the demographics of our participants.
We then report our findings (Section 5), and provide discus-
sion and threats to validity in Sections 6 and 7. We conclude
in Section 8.

2 RELATED WORK

There is a small body of survey-based literature that consid-
ers how software developers debug. Perscheid et al. [5], for
example, conducted an online survey of 303 software devel-
opers to explore their mental models of debugging and the
extent to which debugging tools developed by researchers
have been adopted by professional software developers.
They found that very few debugging tools were used by
developers. Beller et al. [1] combined an online survey of
176 developers with observations of how developers inter-
acted with and used a debugger in their IDE. They found
that both knowledge and use of advanced debugging fea-
tures was low. Beller et al. report that developers did not
want more debugging features, but for existing ones to be
made easier to use. These papers share a focus on how devel-
opers debug, rather than our own more attitudinal focus on
how developers feel about bug finding and fixing. This is
important because much of the APR literature shares an

assumption that APR is replacing an inherently unsatisfying
task (manual bug fixing) (see, for example, [6], [7]). We con-
sider it important to empirically test this assumption, both
to understand developers’ actual attitudes towards bug fix-
ing (as they could influence how we should present APR to
developers) and to explore whether developers’ feelings
towards bug fixing influences their attitudes towards APR.

There have also been several studies that consider the auto-
mation of parts of the bug finding and fixing process. For
example, Zou et al. [8] surveyed 337 software developers on
the topic of automated bug report management techniques.
Survey respondents were asked how important they consid-
ered different types of bug report management technique
(e.g., bug categorisation, bug assignment). The study found
that experienced developers were more negative than less
experienced developers about the importance of these bug
report management techniques. Similarly, Wan et al.’s survey
[9] of 395 developers about defect prediction found that the
most experienced respondents were the least willing to adopt
defect prediction tools. The main reason for this was a lack of
belief that defect prediction could work. Another similar
study [10], involving a survey of 386 practitioners on the topic
of fault localisation, found that ‘more experienced developers
perceive fault localisation to be less “essential” than less expe-
rienced ones’. This study also found a strong desire among
survey participants for fault localisation techniques to pro-
vide reasoning for why parts of the program are marked as
suspicious. Whilst participants were ‘enthusiastic’ about
fault localisation research, ‘they have high thresholds for
adoption’. Our research similarly finds a degree of scepticism
towards APR; however, we found only very limited evidence
of any relationship between developer experience levels and
their attitudes towardsAPR.

There have also been a small number of studies of how
software developers use and interact with APR tools. Most
existing human studies in APR are either controlled experi-
ments [11], [12], [13], [14], [15], [16] or surveys [17], [18], [19].
One key feature that these APR human studies share in com-
mon is that they are tool-specific, asking participants to test,
validate or give feedback on a specific APR tool or technique.
As a result, they provide little insight into developers’ atti-
tudes towards APR more broadly. However, there are some
exceptions. For example, B€ohme et al.’s experimental study
with 12 software professionals [2] found that ‘practitioners
are wary of debugging automation’, particularly for func-
tional bugs. B€ohme et al.’s study does not paint a positive pic-
ture of software practitioners’ openness toAPR:

The majority of participants did not believe in automation
due to the lack of a complete specification and due to the
difficulty in code comprehension [. . .] for automatic pro-
gram repair, participants think that it is impossible for a
tool to change or add any functionality to a buggy pro-
gram. Moreover, even in the presence of a complete speci-
fication, participants do not believe in automated repair
due to the challenges involved in code comprehension.

Such findings were mirrored in Parnin and Orso’s exper-
imental study with 34 developers [20], which found that
‘developers were quick to disregard the tool if they felt they
could not trust the results or understand how such results
were computed’. Furthermore, ‘the use of an automated

1824 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

tool helped more experienced developers find faults faster
in the case of an easy debugging task, but the same develop-
ers received no benefit from the use of the tool on a harder
task’. These findings are somewhat troubling for the aca-
demic SE community, as they suggest some degree of scep-
ticism towards APR tools and techniques. However, the
samples in both these studies ([2] and [20]) are small; our
survey, in presenting a large sample, considers whether
such perceptions towards APR are indeed commonplace.

Other related work includes a small body of literature
that has considered the introduction of APR tools — at vary-
ing levels of maturity — in industry. Our own work has
described the introduction of a prototype APR tool at
Bloomberg [21], while there have also been studies related
to Facebook’s Getafix tool, for example [22]. Lessons learned
deploying Getafix include that auto-fixes should be inte-
grated into existing development tools and predicted fast
enough so as not to slow down engineers’ work. Our own
work at Bloomberg also demonstrated the importance of
alignment with existing processes, as well as positioning
the APR tool as an ‘assistant’ to the developer, who remains
‘in the driving seat’. In this paper, we receive confirmation
that developer control and involvement remains para-
mount, though there is less support for the idea that speed
of fix generation is important for developers.

The most closely related work to our own is a survey con-
ducted by Noller et al. of 100 software practitioners about trust
in APR [23]. Noller et al.’s survey asked participants about their
willingness to review automatically generated patches, how
quickly they would expect results from an APR tool, partic-
ipants’ willingness to provide additional inputs, and the impact
of providing additional information and explanations. Whilst
our survey has similarities to this, we also include questions
about developers’ current bug finding and fixing practices. We
also provide more in-depth thematic analysis than Noller et al.
of the qualitative answers to open-text response questions.

As far as we aware, our survey is the first to investigate
developers’ current bug finding and fixing practices, their
feelings about bug finding and fixing, and their general atti-
tudes towards APR within the same survey. Our rationale
for doing this is to consider any potential relationship
between attitudes towards APR and feelings about bug
finding and fixing, and to more fully understand the rela-
tionship between APR and the activities (manual bug find-
ing and fixing) that it is designed to aid and, at least
partially, replace. This will enable APR tools and techniques
to be developed with a greater understanding of how they
should be introduced and presented to developers.

To the best of our knowledge, we are also the only
study to consider developers’ instinctive, intuitive attitudes
towards APR based on minimal information about how
APR works. This allows us to consider developers’ levels of
‘dispositional trust’, something that is likely to play a role in
APR adoption. (We discuss the idea of ‘dispositional trust’
in more detail below).

3 METHOD

3.1 Introduction of APR to Participants

We introduced APR to survey participants as follows: ‘In
recent years, there have been advances in automatic

software repair techniques. Automatic software repair tech-
niques automatically generate patches to fix bugs, often
using Machine Learning or other AI techniques’. Whilst
experiments tend to ask participants to respond to a specific
APR tool and may provide quite a lot of information about
how the tool works, we wanted to find out about devel-
opers’ attitudes towards APR as a general concept. As a
result, we did not want to wed ourselves to a particular
APR technique paradigm. Instead, we designed the survey
to introduce the notion of APR to participants as generically
as possible in order to elicit developers’ ‘gut feelings’ or
‘hunches’ towards APR. This corresponds to the idea of
‘dispositional trust’, posited by Marsh and Dibben [24] and
applied, in the context of trust in automation, by Hoff and
Bashir [25]. Whilst we did not explicitly ask our survey
respondents about their levels of trust in APR, a lot of our
survey questions probed into respondents’ attitudes
towards APR, where we expected trust to play a role. Con-
sidering trust in automation, Hoff and Bashir define dispo-
sitional trust as ‘an individual’s overall tendency to trust
automation, independent of context or a specific system’
and explain that ‘individuals exhibit a wide variability in
their tendency to trust automation’ [25]. In presenting APR
in generic terms, it was these kind of attitudes that we were
hoping to elicit, rather than our participants’ response to a
specific APR technique or approach.

This is particularly important in the context of new and
emerging technologies, such as APR. Krafft et al. note that
‘for new technologies to be accepted, awareness of such
technologies must grow and the benefits they offer must be
clear, but this process can take a significant amount of time’
[26]. For this process to be eased and quickened, it is impor-
tant to understand developers’ instinctive responses to
APR, as it can help developers of APR tools consider how
they present their tools to developers and increase accep-
tance of these tools. Given that APR is currently in an early
phase of its development, with low developer awareness
and low industry uptake (companies like Facebook [22] and
Bloomberg [21] excepting), it is important to understand the
current attitudinal baseline, levels of ‘dispositional trust’
[25], and what Krafft et al. term ‘first impressions’ [26]. Our
approach also has similarities with the well-established
Technology Acceptance Model (TAM), which uses con-
structs related to two key measures (‘perceived usefulness’
and ‘perceived ease of use’) to predict acceptance and usage
of a tool [27]. Whilst we don’t go so far as to suggest that
attitudes can predict behaviours, like TAM we study gen-
eral attitudes towards a technology with the view that such
attitudes do have implications for tool adoption and usage.

The notions of ‘dispositional trust’ [25] or ‘first impres-
sions’ [26] suggest more instinctive, intuitive and emotive
responses. This is again appropriate for the study of attitudes
towards an emerging technology, since much research sug-
gests that people’s attitudes towards emerging technologies
are more emotional than cognitive. Loewenstein et al., for
example, highlight the role of emotions in people’s responses
to perceived risks [28] – and emerging technologies can be
included within the framework of risk. Huijts et al., in their
article on public attitudes towards carbon dioxide storage
techniques, suggest that emerging technologies – given their
uncertainties – tend to elicit ‘intuitive feelings’ and activate

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1825

emotions, as people struggle to weigh up risks and benefits
[29]. Whilst developers do represent a more ‘expert public’,
likely to have greater technical knowledge and understand-
ing, Hoff and Bashir suggest that ‘dispositional trust’
always plays a role even when people have more knowl-
edge (developing ‘situational trust’ and ‘learned trust’, the
other two dimensions of trust identified by Marsh and Dib-
ben) [25]. As a result, and in response to a lack of more
generic human studies of APR, it was this dimension that
we aimed to study.

3.2 Survey Design

Designing the survey was a highly iterative process. We
piloted the survey at various stages with three industry-
based software engineers at different companies, each of
whom provided detailed feedback. The pilot process was
used to identify any confusing or leading questions. Partici-
pants in the pilot also helped us populate survey items
where we asked survey participants to choose between mul-
tiple options (such as what made bugs particularly annoy-
ing to fix).

The final version of the survey, following this piloting
process, was structured into the following sections: Part 1-
Time spent bug finding and fixing; Part 2- Feelings about
work in general; Part 3- Bug finding and fixing practices;
Part 4- Feelings about bug finding and fixing; Part 5- Atti-
tudes towards APR; and Part 6- Demographics.

Part 1- Time Spent Bug Finding and Fixing. This section of
the survey was designed to try and capture how much time
respondents spent finding and fixing bugs. We asked partic-
ipants to estimate the time they had spent finding and fixing
bugs the previous day (or their most recent day at work). One
possible weakness of this question is that developers might,
for example, have a particular day of the week dedicated to
bug fixing. To mitigate this, we asked whether this was less
than, similar to, or more than normal. We also asked partici-
pants to estimate how much time they had spent finding
and fixing bugs over the previous month. All questions in
this section were single-answer multiple choice.

Using specific time periods has been found in some time-
use research to result in more accurate responses compared
with asking about typical behaviour (for example, over ‘an
average week’) and to also reduce cognitive loads for
respondents [30], [31]. Whilst there is also some evidence in
favour of asking about ‘an average day’ rather than
‘yesterday’ [30], we opted for specific recent time periods.
Given the varied nature of SE activities at different times in
the software development lifecycle, it might be difficult for
developers to consider an ‘average’ period of time.

We used the phrase ‘finding and fixing bugs’ throughout
the survey rather than ‘debugging’, as ‘finding and fixing
bugs’ is a more open description of the process, whereas
‘debugging’ might be understood as just referring to
employing a debugging tool or applying a particular debug-
ging technique.

Part 2- Feelings About Work Generally. Due to the fact that
we wanted to ask how participants felt about fixing and
finding bugs, we also included a section that asked partic-
ipants’ about their feelings about work generally. This was
done in order to control for the fact that people’s feelings
about bug finding and fixing might simply reflect their

feelings towards their work more generally. Asking about
feelings about work also enables us to consider whether
there are any correlations between feelings about work and
feelings about bug finding and fixing. In this section,
respondents were asked about the extent to which their
work was challenging, meaningful, satisfying and frustrating,
as well as how successful they felt they were at work. Each
question had a 5-point Likert scale response, ranging from
‘never’ to ‘always’.

Part 3- Bug Finding and Fixing Practices. This section of the
survey combined different types of questions to try and
gain understanding into developers’ bug finding and fixing
practices. We used open-text responses to ask developers
how they found bugs, how they fixed bugs, and how they
verified their fixes. We did this partly in order for develop-
ers to express their bug finding and fixing practices and
strategies in their own words and partly because little
research on how developers find and fix bugs exists, mean-
ing there is little to draw from in order to establish an
appropriate set of options from which developers can
choose. We also included a multiple-option, multiple choice
question for how respondents were alerted to the existence
of a bug; a multiple choice question about whether partici-
pants mainly fixed bugs in their own code, other people’s
code, or both; and a grid question about how often partici-
pants fixed bugs on their own, in a pair, or in a group.

Part 4- Feelings About Bug Finding and Fixing. In this part
of the survey, we asked participants how challenging,
meaningful, satisfying and frustrating they found finding
and fixing bugs, as well as how successful they considered
their bug fixing to be. These attitudinal descriptors were
repeated from Part 2, to enable a comparison between feel-
ings about bug finding and fixing and general feelings about
work. Alongside these Likert-scale questions, we also asked
a question about what made a bug specifically difficult to
fix (respondents being asked to pick their top three from a
series of options).

Part 5- Automatic Program Repair. This section intro-
duced the notion of APR to respondents and asked a
series of 5 point Likert scale questions about their general
feelings about the idea of APR; their responses to a series
of statements about APR; and how important they would
find different aspects of a potential APR solution (for
example, readability of fixes). The statements were
derived from attitudinal themes uncovered in existing
APR human studies. Table 1 shows the derivation of
these statements, and the statement shorthand used in
following tables in this paper.

We wanted to ask a question about what types of bugs
would be most helpful for participants for an APR tool to
fix. There is considerable research on fault taxonomies, clas-
sifications and categorisations within SE, but no agreed-
upon model. There are also various different dimensions
upon which a fault classification may be based, such as time
of fault introduction (e.g., specification); effects of fault
activation (e.g., data corruption); location; and type of cor-
rective action [35]. Proposed fault classifications range from
the simple (Munson and Nikora’s categorisation of faults
into code faults, design faults, and specification faults [36])
to far more complex. We used a semantic typology
(designed for Java) from Pan et al. [37]:

1826 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

� If related
� Method call related
� Sequence related
� Loop related
� Assignment related
� Switch related
� Try/catch related
� Method declaration related
� Class field related
There were several taxonomies at this more semantic

level and we chose this one for its relevance and under-
standability to software developers, as well as the fact that
many APR approaches operate at this level. Although Pan
et al. did not use their taxonomy to fix software bugs, the
taxonomy has had a significant impact on APR research.
Several researchers have improved and extended Pan et al.’
s taxonomy and used it in APR tools [38], [39], [40]. Due to
its simplicity, Pan’s taxonomy has also been extended to
other programming languages, e.g., JavaScript [41].

Moreover, the basis of the taxonomy is a set of constructs
that might reasonably be considered the focus of developer

testing for finding and fixing bugs; for example, checking

boundary conditions on loops and if statements, range and

type checks on assignments and appropriate exception han-

dling. The taxonomy is also directed towards the object-ori-

ented paradigm, covering method and field declaration;

while we aim to be as inclusive as possible in terms of which

programming language paradigm APR should be applied

to, languages such as Java are attracting significant and

growing industrial interest[22], [42].
Part 6- Demographics. Following advice that participants

may find demographic questions off-putting if asked first
[43], we included the ‘about you’ section of our survey at
the end.

Several of our demographic questions were taken from
the 2019 and 2020 Stack Overflow surveys.1 These included
the following:

� ‘Including any education, how many years have you
been coding?’ (2020)

� ‘How many years have you coded professionally (as
part of your work)?’ (2020)

� ‘Which of the following best describes your current
employment status?’ (2020, with some of the options
provided in the Stack Overflow survey removed,
such as retired and student, as we wanted to capture
responses only from developers currently working)

� ‘Which of the following best describes the industry
you work in? If you or your employer are involved
in several industries, please choose the one most rel-
evant to the products or services you work on’ (2019)

These questions were taken from Stack Overflow to
enable comparison between our own sample and theirs.

We also gathered the following demographic data: job
title; size of organisation of employment; programming lan-
guages used; gender; age; and country of residence.

3.3 Validation of Responses

The number of written responses we received in the open-
text boxes was one indication of the validity of results
(between 90.4% and 95.6%, depending on the question and
generally decreasing as the survey progressed). We also
checked for validity of responses by checking if, for exam-
ple, there were any instances of someone ticking ‘always’
for all three options for the question ‘how often do you find
and fix bugs: alone; in a pair; in a group?’. We found two
instances (0.5% of responses) where this was the case, and
checked these responses thoroughly. We checked particu-
larly for any signs that the questionnaire had been rushed
through, such as repetitive answers - e.g., always ticking the
same Likert scale options. We did not find any evidence of
this, so did not delete these responses.

3.4 Sampling Strategy

Sampling within SE is complex. Random samples are very
difficult to achieve given a lack of census-style directories of
software developers, from which a random sample could be
drawn [44], [45]. Even estimates of the global population of
software developers vary [46]. To establish a sample size,
we used the Global Developer Population 2019 report pro-
duced by Slashdata.2 This report estimates that there were
18.9 million developers in 2019, with 12.9 million (68.3%) of
them being professional developers. The report estimates
that this would have risen to 23 million by the end of 2019
(or 21.7%). We worked out the 2020 figure, at the same rate
of increase, to be nearly 28 million, with 19.1 of these profes-
sional developers (based on the same breakdown of profes-
sional and hobbyist developers). Inputting this into a
sample size calculator,3 the sample required at a 95% confi-
dence interval is 384, so we selected this as our target sam-
ple size. Wagner et al. [46] argue that a sample size
close to 400 should offer ’strong generalisability’, as long
as checks are made for representativeness. We follow
Wagner’s recommendation to use large, commercial sur-
veys to compare one’s own sample. In Section 4, we discuss

TABLE 1
APR Attitudinal Statements

Derivation Shorthand

‘Automatically generated patches
would help save me time’

[18] Time-saving

‘Automatic software repair would
not be able to fix complex bugs’

[32] Not complex
bugs

‘I would be worried about the
accuracy of automatically
generated patches’

[18] Accuracy

‘I would find an automatic
software repair tool useful’

[11], [12],
[19], [33],

[34]

Useful

‘Human-written patches are more
reliable than automatically
generated patches’

[17] Humans
more reliable

‘Automatic software repair tools
might make software developers
complacent’

[11] Complacency

1. Question guides available from https://insights.stackoverflow.
com/survey

2. https://www.slashdata.co/free-resources/
3. https://www.surveysystem.com/sscalc.htm

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1827

https://insights.stackoverflow.com/survey
https://insights.stackoverflow.com/survey

our survey sample demographics compared to recent Stack
Overflow developer survey results. Baltes and Diehl also
highlight the Stack Overflow survey as the main resource
for insight into software developer demographics [45].

3.5 Recruitment and Dissemination

We used two main forms of recruitment and dissemination.
First, we conducted purposeful convenience sampling, tar-
geting our partner organisations and industry contacts, as
well as using relevant social media channels. We achieved
76 responses in this way. The response rate was quite slow
— possibly due to Covid-related disruption to people’s nor-
mal working patterns — and we realised, upon looking at
the participant demographics, that our sample was skewed
towards highly educated developers.

We then turned to another recruitment channel, using
the online platform Prolific4 to recruit participants. Like
Amazon Mechanical Turk (AMT), Prolific participants are
paid small sums for their time. However, Prolific has certain
advantages over AMT. Prolific is designed specifically for
academic research and allows participants to be carefully
selected and filtered. Peer et al. highlight that Prolific partici-
pants are both more diverse and more honest than AMT
workers [47]. Prolific is increasingly being used by research-
ers as a highly effective recruitment platform [47], [48],
including in SE research [49].

We applied the following two filters: ‘knowledge of soft-
ware development techniques: debugging’ and ‘industry:
software’. Whilst software developers work in all sorts of
different industries, we felt targeting people in the software
industry was the best approach to ensure that our partici-
pants were professional developers.

We found the Prolific data to be of a high standard, spe-
cifically evidenced by the fact that more Prolific participants
answered the open-text questions. For example, when asked
to explain their answer to ‘How would you feel about using
an automatic software repair tool that found and fixed
bugs?’ (an open-text question towards the end of the sur-
vey), 98.1% of respondents wrote an answer, compared to
71.1% of the sample we had recruited through contacts and
snowballing.

3.6 Survey Analysis

3.6.1 Statistical Tests

We used two key forms of statistical test to analyse our data.
First, to correlate ordinal variables, the most appropriate
statistical measure was Kendall’s tau-b correlation coeffi-
cient. Kendall’s tau-b is suitable for data that is at least ordi-
nal. Unlike Pearson’s product-moment correlation, it is non-
parametric and does not assume normal distribution of
data. Owing to comparing Likert-scale (ordinal) variables,
our data involved many tied ranks and, as a result, it was
more suitable to use Kendall’s tau-b than Spearman’s rank-
order correlation coefficient. Another advantage of
Kendall’s tau is that it tests for a monotonic relationship –
that is, a linear relationship, rather than assuming one.5 We

plotted jittered scatterplots to check for the existence of
forms of relationship that might not be linear.

Our second key statistical test was the Chi-Square test for
association, as it enables analysis of variables that are cate-
gorical (both ordinal and nominal).6

3.6.2 Analysis of Qualitative Open-Text Responses

For the analysis of the open-text responses, the qualitative
responses were extracted and then thematically coded. The
approach we took involved open coding and also negotiated
agreement, as recommended by [50], using the approach
detailed in [51]. First, a sample was taken of the qualitative
responses for each open-text question, twenty responses being
chosen from each question at random. Two authors assigned
codes to these responses and then discussed them, in order to
negotiate agreement. This is a process of ‘open coding’, where
codes are developed from looking at the data (an inductive
approach), rather than a codebook being developed first and
then applied to the data (a deductive approach). An open,
inductive approach to coding was more appropriate given the
exploratory nature of our research, and the fact that we were
not working, for example, within an existing theoretical or con-
ceptual framework that suggested clear categories. The codes
developed through this process of negotiated agreement and
open coding established a draft codebook.

We then divided the rest of the qualitative responses
between the two authors to be coded independently. We
applied the codes that had already been defined, but also
continued an open coding approach, adding new codes as
they emerged from the data. Each author flagged any new
code they established for later discussion, as well as any
coding they were uncertain about. The two authors then
reviewed each other’s codes, noting agreement, as well as
coding that required discussion. Finally, we met to discuss
those that required discussion, again negotiating agreement
and reaching consensus on the final codes. Of the indepen-
dently coded responses, there was 72.9% agreement
between authors, leaving 27.1% for discussion. It should be
noted that lots of instances for discussion were repeats – for
example, repeat slightly differing understandings of the
application of a particular code. In addition, those in need
of discussion included ‘partial agreement’ — where, for
example, there was agreement on one code but not another,
or the suggestion of an additional code.

3.7 Replicability

We provide a replicability package at: https://github.com/
winterem/APRsurvey.

4 OUR PARTICIPANTS

4.1 Key Participant Demographics

Our participants were predominantly male (85.4%). This is
less than the proportion of Stack Overflow Developer Survey
professional developer respondents that identified as male in
2020 (91.7%).7 However, Stack Overflow found that their

4. https://www.prolific.co
5. https://statistics.laerd.com/spss-tutorials/kendalls-tau-b-using-

spss-statistics.php

6. https://statistics.laerd.com/spss-tutorials/chi-square-test-for-
association-using-spss-statistics.php

7. All 2020 Stack Overflow statistics can be found here: https://
insights.stackoverflow.com/survey/2020

1828 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

https://github.com/winterem/APRsurvey
https://github.com/winterem/APRsurvey
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

survey was biased towards male respondents, and our own
figure is likely to be nearer to the actual gender breakdown in
many countries. The US Bureau of Labor Statistics, for exam-
ple, estimates that women make up 20% of professional soft-
ware developers. In the UK, research by Women in Tech
suggests that 19% of the techworkforce arewomen.8

In terms of age, just over 90% of our respondentswere 44 or
younger. This is very similar to the 2020 Stack Overflow
respondents, of whom 90.7% of professional developers were
44 or under. The breakdown of ages is largely very similar,
though we had fewer respondents in the 25-34 category
(45.7% compared with 51.4%) and more respondents in the
18-24 category (25.4% compared with 17.8%). Our sample is
skewed slightly younger than the StackOverflow sample.

The three countries of residence that we had the greatest
proportion of respondents from were the UK (24.6%), US
(13.4%) and Portugal (11.5%). We suggest that, being based
at UK institutions, potential respondents from the UK may
have been more likely to recognise the names of our institu-
tions and be inclined to fill out the survey. Like Stack Over-
flow, our respondents were concentrated in Europe (74.6%)
and North America (20.9%), though we lack the representa-
tion from India gained by Stack Overflow.

4.2 Education and Experience

A high proportion of our sample had at least a Bachelor’s
degree in Computer Science or a related discipline (79.3%).
This is similar to the Stack Overflow 2020 sample, with
78.1% of professional developer respondents having at least
a Bachelor’s degree (though the Stack Overflow study did
not specify Computer Science or related, merely asking for
highest formal qualification regardless of subject).

Table 2 shows the years spent coding professionally by
our participants compared with Stack Overflow’s sample.

4.3 Employment

Just over four fifths of our participants were employed full-
time, with a further 11.9% self-employed or freelance. Fig. 1
indicates the size of the companies participants worked for.
Participants were asked to identify their sector of employ-
ment. The top three sectors were ‘software development- oth-
er’ (24.3%); ‘information technology’ (15.7%); and ‘software
as a service (saas) development’ (11.8%). ‘Software develop-
ment- other’ and ‘information technology’ were the top two
sectors in the Stack Overflow 2019 survey,9 though with
lower percentages (12.0% and 10.8% respectively). Finance
and banking was next, and then ‘software as a service (saas)
development’ (7.7%).

We asked participants to rank programming languages
according to which they used most at work. To calculate the
most used language, we awarded three points when a lan-
guage was ranked first, two points when ranked second
and one point when ranked third. The language that
received the highest score was Javascript, followed by Java
and Python respectively, though the languages that were
ranked first the most were Java, C# and Python. The 2020

Stack Overflow survey also found Javascript to be the most
commonly used language among developers.

5 FINDINGS

5.1 RQ1: What are Software Developers’ Current
Bug Finding and Fixing Practices?

Survey respondents were asked how long they had spent
finding and fixing bugs the previous day (or their most
recent day at work). The results are shown in Fig. 3, show-
ing that over half of participants spent less than one hour
finding and fixing bugs, with a further quarter spending
between one and two hours. Fig. 2 shows the time over the
last month that participants estimated they had spent find-
ing and fixing bugs, the modal category being 30%, a signifi-
cant proportion of developer time, though less than has
often been suggested (see [52]).

We also asked developers whether their time spent bug
finding and fixing the previous day was less than normal,
the same, or more than normal. Table 3 shows the results.
For participants who spent less than 30 minutes fixing bugs,
the modal category was ‘less than normal’. For the rest of
the time options, the modal category was ‘the same’, until
the highest option for time spent (over 6 hours), for which
the modal category was ‘more than normal’. Other than at

TABLE 2
Years Spent Coding Professionally

Years Percentage (and
cumulative %) for

our sample

Percentage (and cumulative
%) for 2020 Stack Overflow

sample

4 or less 51.9% 36.6%
5 to 9 19.2% (71.1%) 26.8% (63.4%)
10 to 14 12.7% (83.8%) 14.7% (78.1%)
15 to 19 6.5% (90.3%) 7.6% (85.7%)
20 to 24 4.2% (94.5%) 6.0% (91.7%)
25 to 29 2.3% (96.8%) 2.4% (94.1%)
30 to 34 1.8% (98.8%) 1.6% (95.7%)
35 to 39 0.5% 0.8%
40 to 44 0.5% 0.4%
45 to 49 0.0% 0.1%
50 or over 0.3% 0.1%

Fig. 1. Size of company worked for.

8. https://www.womenintech.co.uk/8-facts-women-tech-industry
9. The 2019 survey results can be found here: https://insights.

stackoverflow.com/survey/2019

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1829

https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

the extremes, the developers’ previous working days seem
to have been mostly typical in terms of time spent finding
and fixing bugs.

Fig. 4 shows in whose code developers are fixing bugs,
indicating that only a small proportion of developers pri-
marily fix bugs in other people’s code. Respondents were
also asked the extent to which they found and fixed bugs
alone, or with others. Respondents fixed bugs alone
‘always’ in 22.5% of cases, and 67.8% fixed bugs alone ‘most
of the time’. Bug finding and fixing seems to be predomi-
nantly a solitary activity.

Over three quarters of our participants (77.6%) stated
that test cases for the code they worked on were designed
manually, rather than automatically. This demonstrates that
automated testing is not being used extensively in industry.
While we do not know why this is, it may indicate a
reluctance to use automated tools in industry or that the
tools do not work according to developers’ needs.

The responses to the open-text question ‘how do you fix
bugs?’ indicated that the majority of participants do not use
specific tools (e.g., debuggers) to approach bug fixing. We
received 355 written responses to this question; of these, 286
(80.6%) indicated no use of any specific tool, compared with
69 responses that mentioned use of a specific tool to aid

fixing bugs. This confirms other research findings [1], [5]
that the use of debugging tools is not widespread among
professional developers, indicating that the take-up of tools
is slow and uneven in industry, as well as research on bar-
riers to adoption of static analysis tools [53]. The qualitative
responses also indicate a fairly manual and haphazard
approach to bug fixing, for example, ‘mostly trial and error’,
‘thinking about how things work in certain scenarios and trying
[a] few modifications on the code until everything works fine’,
and ‘keep changing the code until it works usually’.

In answer to RQ1 (What are software developers’ current bug
finding and fixing practices?), we find that bug finding and
fixing is a predominantly solitary task for developers, with
most developers spending up to 2 hours fixing bugs in a
‘normal day’. For most developers, this task also seems to
be mainly manual, with test cases designed manually in the
majority of cases and very few developers using debugging
tools. We therefore find empirical confirmation for what is
often claimed in the APR literature - that bug fixing is time-
consuming and often manual.

5.2 RQ2: How do Software Developers Feel About
Bug Finding and Fixing?

Table 4 shows the results for how developers feel about bug
finding and fixing. This demonstrates that more developers

Fig. 2. Estimated percentage of time spent finding and fixing bugs over
the last month.

Fig. 3. Time survey respondents spent finding and fixing bugs the previ-
ous day.

TABLE 3
How Normal was the Previous Day for Time Spent Finding and

Fixing Bugs?

Less than
normal

The
same

More than
normal

Total

Less than 30
minutes

53 (53.5%) 43
(43.4%)

3 (3.0%) 99

30 minutes to 1
hour

32 (34%) 49
(52.1%)

13 (13.8%) 94

1-2 hours 13 (13.8%) 51
(54.3%)

30 (31.9%) 94

2-4 hours 3 (4.5%) 32
(48.5%)

31 (47.0%) 66

4-6 hours 2 (11.1%) 6
(33.3%)

10 (55.6%) 18

Over 6 hours 0 2
(40.0%)

3 (60.0%) 5

Fig. 4. Do developers mainly fix bugs in their own code or other
people’s?

1830 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

consider finding and fixing bugs ‘always satisfying’ (33.2%
of respondents) than ‘always frustrating (10.1%).

The variables ‘satisfying’ and ‘frustrating’ were particu-
larly interesting regarding the relationship between work
generally and finding and fixing bugs. This is demonstrated
in Figs. 5 and 6. Bug finding and fixing emerge as both more
satisfying and more frustrating than work generally. It
seems that bug fixing elicits more extreme reactions (both
positive and negative) than work generally.

We performed Chi-Square tests of association to see if
there was an association between feelings about finding and
fixing bugs and the following variables: whose code the
bugs were in; the degree to which respondents found and
fixed bugs alone; and participants’ highest qualification in
Computer Science. The Chi-square test was appropriate for
these variables as they are nominal. We found no evidence
of any statistically significant association, meaning that feel-
ings about bug finding and fixing do not seem to be influ-
enced by fixing bugs alone, CS qualifications, or whose code
the bugs were in.

We also computed Kendall’s tau-b coefficients to check
for coefficients between feelings about finding and fixing
bugs and age, years coding professionally, and years coding
including education, to see whether experience had any
impact. We only found four Kendall’s tau-b coefficients that
were greater than 0.1 and statistically significant; these are
shown in Table 5. The coefficients are not high — none of
them are greater than 0.2 — so they are indicative only of a

weak relationship. The main association shown in Table 5 is
that older developers, and developers with more years cod-
ing experience, are slightly more likely to see themselves as
successful at bug finding and fixing.

We then considered the relationship between feelings
about work and feelings about bug finding and fixing, in
order to see whether feelings about bug fixing are correlated
with general work feelings. We again used Kendall’s tau-b
as both these variables are ordinal. Here we found evidence
of slightly stronger relationships, shown in Table 6. There
were four relationships with a coefficient greater than 0.3.
These were: work-meaningful and finding and fixing bugs-
meaningful; work-satisfying and finding and fixing bugs-
meaningful; work-frustrating and finding and fixing bugs-
frustrating; and work-successful and finding and fixing
bugs-successful. This suggests a relationship between feel-
ings about work and feelings about finding and fixing bugs,
implying that to some moderate degree developers are
likely to have similar feelings about both work and finding
and fixing bugs. This implies that it is not as simple as
developers having certain feelings about finding and fixing
bugs, but that these feelings may be influenced by broader
work environment factors — attitudes towards bug finding
and fixing do not exist in isolation.

We asked developers, using open-text response ques-
tions, what they liked most (see Table 7) and least (see
Table 8) about finding and fixing bugs. We coded 355
responses about what participants liked most about finding
and fixing bugs, having removed from the data set all
blanks and any responses that were too vague or unclear for
us to confidently assign a theme to them. Only 9 respond-
ents (0.01%) said that they liked nothing about finding and

TABLE 4
How Developers Feel About Finding and Fixing Bugs

1-
Never

2 3 4 5
-Always

Finding and fixing bugs is
challenging

0.5% 5.7% 34.7%41.2% 17.9%

Finding and fixing bugs is
meaningful

0.8% 10.1%25.1%36.3% 27.7%

Finding and fixing bugs is
satisfying

1.8% 12.2%19.4%33.4% 33.2%

Finding and fixing bugs is
frustrating

2.3% 10.4%35.5%41.7% 10.1%

My bug finding and fixing is
successful

0.0% 1.8% 24.7%56.9% 16.6%

Fig. 5. Satisfaction levels- work and finding and fixing bugs.

Fig. 6. Frustration levels- work and finding and fixing bugs.

TABLE 5
Kendall’s tau-b Coefficients Greater Than 0.1

Finding and fixing
bugs is frustrating

My bug finding and
fixing is successful

Years coding
professionally

N/A 0.164**

Years coding
including
education

N/A 0.174**

Age -0.109* 0.101*

nb: * = significant at the 0.05 level; ** = significant at the 0.01 level.

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1831

fixing bugs, though a further 25 responses (7.0%) were
coded as ‘finishing it’, meaning that the thing these respond-
ents liked most about finding and fixing bugs was the com-
pletion of the task, suggesting little inherent value in the
task itself.

152 responses (42.8%) were thematically coded as
‘satisfaction’, indicating that these participants found some
element of finding and fixing bugs satisfying. The sense of
challenge was highlighted in 53 responses (14.9%), for exam-
ple, ‘I like the challenge of discovering and fixing bugs’ and ‘I
like the constant challenge that it provides’. In addition, 45
responses (12.7%) were coded as ‘learning’, meaning that
participants felt that they improved their knowledge,
understanding or skills through finding and fixing bugs.
Examples include: ‘I can learn from my own mistakes and gain
valuable experience’; ‘learning why something doesn’t work the
way it is expected to’; ‘it improves my skills as a coder’; and
‘digging through the code and becoming super familiar with how
it works so that it’s less of a black box’.

Several responses were related to the impact of finding
and fixing bugs. 34 responses (9.6%) were coded as ‘having
impact’ – this refers to finding and fixing bugs having a bene-
ficial impact on, for example, clients or customers. 104
responses (29.3%) were coded as ‘contributing to a working or
improved codebase/system/product’. For the theme ‘having
impact’, the following are indicative quotations: ‘I make a bet-
ter product that more users will enjoy’; ‘providing value to end
users’; ‘making customers happy’; and ‘solving an issue that

bothered stakeholders’. For the theme ‘contributing to a work-
ing or improved codebase/system/product’, examples
include:

� ‘Knowing that the product is verifiably better now
than it was before’

� ‘It improves the code quality and it is extremely sat-
isfying to fix bugs and know that the code is better
than it was previously’

� ‘I like the feeling of improving our product and mak-
ing it more robust’

� ‘Satisfaction of fixing products back to the desired
state’

For what respondents liked least about finding and fixing
bugs, we thematically coded 357 responses. The most fre-

quently occurring theme was ‘time’, 113 responses (31.7%)

being assigned this theme. ‘Time’ refers to bug finding and

fixing taking a lot of time, for example ‘it often takes a lot of
time’ and ‘the time involved’. There were several other the-

matic codes related to time, such as ‘takes time away from
other activities’ (14 responses; 3.9%) and ‘time pressures’ (12
responses; 3.4%).

The next most frequently occurring theme was ‘finding’,
with 110 responses (30.8%) being assigned this theme. This
demonstrates that many developers have a particular prob-
lem with finding where a bug is in the code and/or what is
causing the bug. As one participant expressed it, ‘the process
of finding; fixing is alright’. Other responses included:

� ‘The finding process itself is kind of boring’
� ‘I don’t like the frustration of identifying bugs that

are hard to find’

TABLE 6
Kendall’s tau-b Coefficients Greater Than 0.1

Bugs- challenging Bugs- meaningful Bugs- satisfying Bugs- frustrating Bugs- successful

Work- challenging 0.284** 0.138** N/A N/A N/A
Work- meaningful N/A 0.357** 0.126** -0.140** 0.195**
Work- satisfying N/A 0.305** 0.206** N/A 0.236**
Work- frustrating 0.165** -0.126** N/A 0.313** -0.151**
Work - successful N/A 0.130** N/A -0.132** 0.365**

nb: * = significant at the 0.05 level; ** = significant at the 0.01 level.

TABLE 7
Most Frequently Occurring Thematic Codes for the Survey
Question ‘What do you Like Most About Finding and Fixing

Bugs?’ nb: Responses Could be Tagged With Multiple
Thematic Codes

Thematic code Percentage
of

responses

Indicative quotation

‘Satisfaction’ 42.8% ‘It is extremely satisfying
to fix bugs’

‘Contributing to a
working or improved
codebase/system/
product’

29.3% ‘Knowing that the
product is verifiably
better now than it was

before’
‘Challenge’ 14.9% ‘I like the challenge of

discovering and fixing
bugs’

‘Learning’ 12.7% ‘It improves my skills as
a coder’

‘Having impact’ 9.6% ‘Providing value to end
users’

TABLE 8
Most Frequently Occurring Thematic Codes for the Survey
Question ‘What do you Like Least About Finding and Fixing

Bugs?’ nb: Responses Could be Tagged With Multiple
Thematic Codes

Thematic code Percentage
of responses

Indicative quotation

‘Time’ 31.7% ‘It often takes a lot of time’
‘Finding’ 30.8% ‘The process of finding;

fixing is alright’
‘Frustration’ 22.7% ‘It can be quite frustrating

to debug’
‘Difficulty’ 18.5% ‘It can be frustrating and

difficult to debug’
‘Boring, tedious or
unrewarding work’

14.0% ‘They [the bugs] are usually
so small that it’s not even
rewarding to fix them’

1832 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

� ‘The long search for bugs, especially when the edge
case is extremely obscure and only happens on spe-
cific hardware/software configurations on the client’

50 distinct responses (14.0%) were coded with themes
related to the nature of the code base, including other people’s
code (30 responses; 8.4%), poorly written code (16 responses;
4.5%) and poorly documented code (11 responses; 3.1%).
Examples of this category include:

� ‘Working on archaic code that I have little knowledge
of that has beenwritten according to old practices’

� ‘Some people’s code is sloppy and difficult to parse’
� ‘If the code is badly organised or badly documented,

it gets hard and frustrating to find a solution’
There was also a cluster of thematic codes connected to

respondents’ experiences of, and feelings about, bug finding
and fixing. 81 responses (22.7%) were coded as ‘frustration’ –
respondents found some element of bug finding and fixing
frustrating. 66 responses (18.5%) were coded as ‘difficulty’,
meaning that participants found at least some part of bug find-
ing andfixing hard. Difficultywas relatedmost often to finding
bugs (38 responses). Finally, 50 responses (14.0%) stated that
the thing that they liked least about finding and fixing bugs
was that it was boring, tedious or unrewarding work, for example
‘looking at lines of code can get very boring’; ‘they [the bugs] are usu-
ally so small that it’s not even rewarding to fix them; ‘find and fix
very irrelevant bugs that don’t impact the code/project’; and ‘it’s not
delivering direct value and rarely something to be super proud of’.

For the question about what makes a bug particularly
annoying to fix, participants were asked to rank a series of
options in first, second and third place. Most often ranked
first (91 participants) was ‘when it’s in very complex code’,
followed by ‘when it’s in poorly documented code’ (76 par-
ticipants) and ‘when it’s in very old code’ (71 participants).
If all three rankings are taken into account and scored (so
being ranked in first place gains 3 points, etc.), ‘when it’s in
very complex code’ remains the number one factor, fol-
lowed by ‘when it’s in very old code’ and ‘when it’s in
poorly documented code’.

To summarise, in answer to RQ2 (How do software develop-
ers feel about bug finding and fixing?), we find that developers’
attitudes towards finding and fixing bugs are complex.
Developers find bug-finding and -fixing both more satisfy-
ing and more frustrating than they do their work generally.
We found very few statistically significant relationships
with demographic variables, showing that experience has
very little impact on how developers experience bug fixing.
However, we do find some evidence for a connection
between feelings about finding and fixing bugs and feelings
about work generally, suggesting that developers’ feelings
about bug fixing do not exist in isolation from general work
conditions. The qualitative data demonstrates that some
key sources of satisfaction found in bug fixing are a sense of
improving the codebase, system or product being devel-
oped, a sense of challenge, and and gaining understanding,
skills and knowledge.

5.3 RQ3: What are Software Developers’ Instinctive
Feelings Towards APR?

Fig. 7 shows respondents’ general feelings towards APR,
while Table 9 shows the preferences of developers for

different kinds of APR options. Fig. 7 demonstrates that the
modal category of participants considered themselves
‘somewhat positive’ about using an APR tool. Table 9 indi-
cates a strong preference among developers to remain part
of the process, with 88.0% favouring an APR tool that pro-
vides developers with different fixes to choose from over a
tool that provides developers with fixes to approve and a
tool that automatically applies fixes.

We also asked developers to rank when an APR tool
would be most useful to them, shown in Table 10. Unsur-
prisingly, developers have a strong preference for tools
finding bugs as soon as possible (i.e., during development).
We asked a similar question about the usefulness of APR at
different points in the software development process,
shown in Table 11. Testing was seen as the most useful
point for APR to be used, followed by implementation. This
is perhaps surprising, as we might expect APR to be consid-
ered more useful to developers in implementation rather
than testing, as it could enable developers to take advantage
of APR earlier in the process.

We also asked how far respondents agreed with a series
of statements about APR, the results being shown in
Table 14. This table shows that the most agreed with state-
ment was Accuracy- ‘I would be worried about the accuracy
of automatically generated patches’, with 51.9% of respond-
ents strongly agreeing with this statement. The least agree-
ment was with the Complacency statement- ‘Automatic
software repair tools might make software developers
complacent’, with only 12.9% of respondents strongly
agreeing with this statement. Table 15 shows how important

Fig. 7. General attitudes towards APR.

TABLE 9
Percentage of Respondents who Ranked Different APR Options

as Their First, Second and Third Choices

Ranked
first

Ranked
second

Ranked
third

‘An APR tool that automatically
applies fixes’

4.7% 32.1% 63.2%

‘An APR tool that provides
developers with fixes to approve’

7.3% 62.4% 30.3%

‘An APR tool that provides
developers with different fixes to
choose from’

88.0% 5.5% 6.5%

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1833

respondents rated a series of possible features for an APR
tool. Correctness of patches was seen as the most important
feature of an APR tool (66.1% of respondents considered
this ‘extremely’ important), followed by understandability/
readability of patches (54.2%) and human verification of
patches (51.6%). Participants considered speed of patch gen-
eration the least important (11.6% of respondents consid-
ered this ‘extremely’ important), suggesting that developers
may see a trade-off between speed and accuracy. This is in
contrast to Noller et al.’s survey [23], in which developers
stated that they want an APR tool to generate patches
within 30-60 minutes.

We also asked participants how useful theywould find an
APR tool to fix bugs in different types of coding structure.
The results are shown in Table 16, and indicate that develop-
ers would find most use in an APR tool that fixed bugs in
loop-related coding structures and in if-related coding struc-
tures. Both of these types of coding structure are fault-prone
and complex. This demonstrates that developers would find
fixes to complex bugs useful (as they are likely the most
time-consuming for developers to fix manually), but, as seen
above, developers are also sceptical as to APR’s ability to
provide fixes for more complex bugs. It is also worth noting
that we had a high non-response rate (18%) for this question.
This may reflect non-response from software developers that
do not use Java or related languages, but it may also indicate
that developers found it difficult to contemplate APR in less
abstract andmore specific terms due to a lack of understand-
ing of APR’s capabilities.

Again, we carried out statistical tests, testing for an asso-
ciation between highest computer science qualification and
all of the attitudinal variables shown in Tables 1, 9, and 15
using the Chi-Square test (as appropriate for nominal varia-
bles). We did this in order to consider whether there was
any relationship between CS qualifications and attitudes
towards APR. We found no evidence of any statistically sig-
nificant relationships, except for an association between
qualifications and the statement ‘automatic software repair
might make developers complacent’. This was significant

where p is less than 0.05, allowing us to reject the null
hypothesis of no association between these variables. The
cross tabulation, however, demonstrates no straightforward
association between highest Computer Science (CS) qualifi-
cation and agreement with the Complacency statement. The

TABLE 10
When Would an APR Tool be Useful?

Ranked
first

Ranked
second

Ranked
third

‘Bugs found during
development’

162 67 53

‘Bugs found during testing’ 58 186 39
‘Bugs found post-release’ 2 30 191

TABLE 11
How Useful Would you Find an APR Tool During the Following Parts of the Software Development Process?

Extremely useful Very useful Moderately useful Slightly useful Not at all useful Don’t know

Specification 4.5% 7.9% 12.6% 18.2% 50.0% 6.8%
Requirements 4.7% 9.2% 14.2% 19.0% 46.2% 6.6%
Design 6.1% 12.7% 17.5% 24.1% 34.7% 5.0%
Implementation 25.5% 35.5% 24.7% 10.5% 2.4% 1.3%
Testing 38.9% 36.3% 15.3% 6.1% 1.6% 1.6%

TABLE 12
Most Frequently Occurring Thematic Codes for Respondents
who Were ‘Very Positive’ or ‘Somewhat Positive’ About APR

Thematic code Percentage of
responses

Indicative quotation

General positivity Very positive –
73.1%; Somewhat
positive – 25.9%

‘Heaven sent’

APR would make
job easier/reduce
workload

Very positive –
49.5%; Somewhat
positive – 22.3%

‘This would make
my life a lot easier’

APR would free up
time for other
activities

Very positive –
22.9%; Somewhat
positive – 11.5%

‘More time for
development of
new things’

Concern,
uncertainty,
conditionality

Very positive –
26.9%; Somewhat
positive – 74.1%

‘I would be
sceptical of its
efficacy until

proven’

nb: thematic codes are ordered according to ‘very positive’ respondents, but
note the differences for those that were ‘somewhat positive’. responses could be
tagged with multiple thematic codes.

TABLE 13
Most Frequently Occurring Thematic Codes for Respondents

who Picked ‘an APR Tool That Provides Developers With Differ-
ent Fixes to Choose From’ as Their Top Choice

Thematic code Percentage
of responses

Indicative quotation

Need for human
judgement/
review

47.0% ‘Letting the programmer
decide is always the best

option’
Importance of
having choice

24.9% ‘Can imagine many situations
where a bug may have many
different solutions depending
on the desired behaviours.

The developer needs to choose
an appropriate fix, and if the
tool only presents one, it limits

its usefulness’
Distrust 23.0% ‘I don’t trust an AI to choose

the right fix’
Control 18.0% ‘I would like to retain full

control of my code’

nb: responses could be tagged with multiple thematic codes.

1834 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

greatest difference between expected and observed values is
found for respondents with no CS qualification and
respondents with a Bachelor’s degree. Respondents with no
CS qualification at degree level were less likely to agree with
the statement ‘automatic software repair might make devel-
opers complacent’, while respondents with a BSc (or equiv-
alent) in CS were more likely to agree. So, those with no CS
qualification are more likely to think APR will cause devel-
oper complacency.

We also used Kendall’s tau to test whether there was any
relationship between respondents’ age and experience lev-
els (both years coding professionally and years coding
including education) and their general attitude towards
APR; their response to a series of statements about APR;
and what respondents consider important in an APR tool.
For general attitude towards APR, we found no evidence of
any relationship with age and experience levels. The
Kendall’s tau-b for each of these pairs of variables was less
than 0.1, with 0 equalling no relationship. For responses to
attitudinal statements about APR, we found only two

instances of Kendall’s tau-b coefficients that were greater
than 0.1 and indicative of a very weak relationship. These
were both for the statement ‘human-written patches are
more reliable than automatically generated patches’. For
years coding professionally and age, the Kendall’s tau-b
coefficients were -0.110 and -0.147 respectively, indicating a
weak negative relationship between agreeing with this
statement and years of experience coding and age. This
implies that older and more experienced developers are
slightly less likely to see automatically generated patches as
more reliable than human-written ones. Both of these coeffi-
cients are statistically significant at the 0.01 level.

Exploring the relationship between age and experience
and what developers saw as important in an APR tool, we
found seven Kendall’s tau-b coefficients that were greater
than 0.1 and indicative of a very weak relationship. Table 17
highlights these seven values. Years experience and age were
slightly correlated with seeing correctness of patches as more
important and speed of patch generation as less important.

In summary, we found very weak relationships between
the demographic variables relating to age and experience
and attitudes towards APR.

The open-text responses for attitudes towards APR were
particularly illuminating. Whilst almost 70% of respondents
were ‘very positive’ or ‘somewhat positive’ about using an
APR tool, the open-text responses (participants having been
asked to explain their answer) demonstrate a high degree of
concern and scepticism. Of a total of 260 respondents that
said they were ‘very positive’ or ‘somewhat positive’ about
APR, 238 provided a response in the open-text box.

TABLE 14
Levels of Agreement With Different Statements About APR

Strongly
agree

Somewhat
agree

Neither
agree
nor

disagree

Somewhat
disagree

Strongly
disagree

Time-saving 37.0% 39.9% 11.7% 8.8% 2.7%
Not complex
bugs

38.9% 31.5% 17.3% 9.6% 2.7%

Accuracy 51.9% 36.9% 6.4% 4.2% 0.6%
Useful 35.5% 42.8% 14.6% 6.0% 1.1%
Humans
more reliable

23.4% 24.2% 40.0% 11.3% 1.1%

Complacency 12.9% 37.3% 23.2% 16.5% 10.1%

nb: please see Table I for full statements and their derivation.

TABLE 15
The Importance of Different Features in an APR Tool

Extremely Very Moderately Slightly Not at all

Understandability/
readability of
patches

54.2% 31.2% 7.9% 5.6% 1.1%

Human verification
of patches

51.6% 32.3% 11.6% 4.0% 0.5%

Full automation
(i.e., humans out of
the loop)

3.5% 4.6% 15.7% 28.5% 47.7%

Fit of tool within
current workflow

25.9% 42.6% 19.2% 10.8% 1.5%

Correctness of
patches

66.1% 22.7% 7.6% 2.3% 1.3%

Speed of patch
generation

11.6% 19.5% 41.7% 20.8% 6.3%

Test results for the
patches

34.5% 41.1% 17.6% 5.0% 1.8%

Similarity of
generated patches
to human written
patches

18.2% 32.4% 28.4% 12.1% 8.8%

TABLE 16
How Useful Would APR be for Fixing Bugs in Different

Types of Coding Structure

Extremely Very ModeratelySlightly Not at
all

If related 32.4% 29.8% 20.5% 14.1% 3.1%
Method-call related 28.9% 30.2% 24.7% 12.0% 4.2%
Loop related 38.1% 28.8% 22.8% 8.1% 2.2%
Assignment related 23.4% 27.6% 24.0% 19.8% 5.2%
Switch related 19.5% 28.7% 27.4% 19.5% 4.9%
Try-catch related 27.2% 29.1% 23.8% 15.0% 5.0%
Method declaration
related

20.7% 20.7% 23.4% 25.1% 10.0%

Sequence related 22.0% 21.6% 28.2% 22.3% 5.8%
Class field related 16.0% 24.6% 25.3% 26.3% 7.8%

TABLE 17
Kendall’s tau-b Coefficients Greater Than 0.1

Understandability/
readability of

patches

Correctness
of patches

Speed of
patch

generation

Years coding
professionally

N/A -0.110** 0.136**

Years coding
including
education

N/A -0.120** 0.123**

Age -0.101* -0.150** 0.119**

nb: for these variables, extremely important was scored as 1 and not at all impor-
tant as 5. * = significant at the 0.05 level; ** = significant at the 0.01 level.

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1835

We coded 232 written responses from participants
who had stated that they were either ‘very positive’ (93
responses) or ‘somewhat positive’ (139 responses) about
APR (see Table 12). There was a considerable difference in
the qualitative response between those who stated they
were ‘very positive’ and those who were ‘somewhat pos-
itive’. Of those who said they were ‘very positive’ about
APR, 46 responses (49.5%) felt that APR would make their job
easier or reduce their workload, while 21 (22.9%) said APR
would free up their time for other activities. For those who were
‘somewhat positive’ about APR, 31 responses (22.3%) felt
that APR would make their job easier or reduce their work-
load and 16 responses (11.5%) that APR would free up time
for other activities. Examples of ‘making job easier/reduced
workload’ include ‘I think it would make bug fixing faster and
more relaxed’; ‘this would make my life a lot easier’; and ‘it would
save me a lot of time and effort’. Examples of ‘more time for
other activities’ are ‘more time for development of new things’;
‘programmers can spend more time on the design of software to
create more robust software’; and ‘anything which promotes effi-
ciency, reliability and quality is great. If it allows humans to focus
on creativity and user experience so much the better’.

We coded as ‘general positivity’ all responses that were
completely positive: thiswas 73.1% of ‘very positive’ responses
and 25.9% of ‘somewhat positive’ responses. The rest of the
responses (26.9% for ‘very positive’ and 74.1% for ‘somewhat
positive’) had a degree of concern, uncertainty, or conditional-
ity. For those responses that were ‘somewhat positive’, 51
(36.7%) were thematically coded as ‘uncertainty’, 17 (12.2%) as
‘distrust’, 29 (20.9%) as ‘conditionality’ and 61 responses (43.9%)
specified some form of concern. The most common concern
was feasibility – 37 responses (26.6%). Examples of this include
‘I would be sceptical of its efficacy until proven’; ‘I don’t think that we
are at the state where AI is smart enough to find and fix bugs in com-
plex system’; ‘I would be happy if it worked, but I doubt it’; and ‘I
can’t understand how the software will be able to fix the error without
knowing the final goal of the code’. The next most common con-
cernwas ‘unintended consequences’ (16 responses; 11.5%). Exam-
ples are ‘I’ve seen the experiments that were done with auto
generated pull requests on git hub and the results looked really excit-
ing, but I remember it misunderstanding the code occasionally and
reintroducing old bugs back into the codebases’; and ‘I’m not sure
how successful it would be and [it] could introduce other bugs’. These
qualitative responses indicate a more complex picture than the
statistics taken alone, suggesting that, although our respond-
ents stated that they were positive about APR, their attitude
can be summarised more, as one participant expressed it, as
‘cautiously optimistic’.

The open-text responses about their APR preference (auto-
matic application of fixes, verification of fix, or choice between
fixes) are also helpful for understanding what is at stake for
developers with the potential introduction of APR. We coded
217 responses that had listed their number one preference as
choosing between fixes (see Table 13). The most prevalent
themewas ‘need for human judgement/review’, which applied to
102 responses (47.0%). Examples of this include:

� ‘Letting the programmer decide is always the best
option’

� ‘I still think human intervention would be vital to
ensure nothing is missed or done incorrectly’

� ‘I prefer to have the final say as the developer’
� ‘Manual approval of fixes is aMUSTbecause Iwouldn’t

want to risk any of the code gettingmessed up’
54 responses (24.9%) mentioned the importance and desir-

ability of having choice. Answers coded as this include:

� ‘If an automatic tool is only capable of providing one
fix, it is useless. If an automatic tool can provide mul-
tiple fixes to choose from, it at least allows engineers
to debate the merits and drawbacks of each approach
before committing to something’

� ‘I can imagine many stations where a bug may have
many different solutions depending on the desired
behaviours. The developer needs to choose an
appropriate fix, and if the tool only presents one, it
limits its usefulness’

� ‘People may get lazy and just rubber stamp the fixes
so it would be good to provide a variety of fixes so
someone can think about which is best and avoid the
tendency to rubber stamp things’

The need for control was tagged for 39 responses (18.0%),
Examples include ‘I would like to retain full control of my code’;
‘choosing from various fixes helps me to maintain the control of
the code’; ‘developers should always have control’; and ‘I prefer
having control over the code that I’m expected to be accountable
for in terms of quality’. 20 responses (9.2%) were thematically
coded as ‘need to be informed’, such as ‘developers should
always know when code is being modified’.

Distrust was a theme for 50 responses (23.0%), such as ‘I
don’t trust an AI to choose the right fix’; ‘I don’t believe an auto-
matic system could be trusted without oversight’; and ‘I’ve seen
enough automated tools to know they’re not trustable’. There
were also several concerns, the most common being ‘tool
lacks contextual understanding’ (29 responses; 13.4%) and

‘unintended consequences’ (20 responses; 9.2%). Examples of

responses coded as ‘tool lacks contextual understanding’

include ‘the tool cannot fully understand the business logic or
why certain things have been coded in a specific format’; ‘I don’t
think the automated tool could understand the goals priorities and
context to fix complex bugs without developer input’; and ‘the
tool does not know what the intended functionality of the program
is’. Examples of responses coded as ‘unintended con-

sequences’ include:‘it’s important to be able to review bug fixes
in order to predict any other effects they [the fixes] may have on
the wider codebase’ and ‘if [the fix was] complex, I wouldn’t be
confident that the change doesn’t have unintended side effects’.

In answer to RQ3 (What are software developers’ instinc-
tive feelings towards APR?), we find that developers are
mostly positive about APR, but have a strong preference
for a tool that allows them to remain ‘in the loop’. Accu-
racy of automatically generated patches is a key concern
for developers, and they are much less interested in how
quickly patches are generated. Again, we find evidence
of very few statistically significant relationships between
attitudes towards APR and key demographic variables.
The qualitative data demonstrates that, even amongst
developers that are positive about APR, there are many
concerns, and that having control is a significant factor
that informs developers’ preference for a tool that ena-
bles them to stay in the loop.

1836 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

6 DISCUSSION AND RECOMMENDATIONS

6.1 There is a Clear Need for APR

Our survey confirms other studies in demonstrating that
developers spend a significant amount of time finding and
fixing bugs.We also find that bug finding and fixing ismainly
a manual activity, with few developers utilising tooling to
assist them. Though we present several caveats in this paper
regarding how APR should be presented to developers, the
time spent fixing bugs and the lack of tooling currently being
used confirm that there is an important space for APR to fill in
terms of removing workload and providing tooling to devel-
opers. We also find a good degree of positivity and interest
from developers, though there are several concerns that need
to be addressed.

6.2 Bug Fixing is not All Bad

We find no evidence of an overwhelmingly negative atti-
tude to bug fixing among developers. More developers in
fact found bug finding and fixing ‘always satisfying’ than
‘always frustrating’. Far from the ‘universal bad’ of bug fix-
ing presented in the APR literature (as something boring,
tedious and annoying), we in fact find that developers find
significant satisfaction in finding and fixing bugs, as well as
bug fixing being a source of learning and development.

This has important implications for the APR research
community. How, for example, might developers who
experience finding and fixing bugs as satisfying and
rewarding be persuaded to adopt APR tools? What tasks
might we emphasise as APR freeing up developer time to
work on instead? Automatically generated fixes could also
be a source of knowledge for software developers, but this
depends upon what additional information is presented
about a bug and its automatically generated fix.

6.3 Developers are Cautiously Optimistic
About APR

Whilst 69.5% of developers were ‘very positive’ or
‘somewhat positive’ about ‘using an APR tool that found
and fixed bugs’, the qualitative responses indicate that it is
not necessarily as simple as this. Instead the qualitative
responses demonstrate that, despite a generally positive
outlook towards APR, developers still had many concerns
and caveats. Given the uncertainty of developers’
‘dispositional trust’, much work will be needed to develop
‘situational’ and ‘learned’ trust. However, we do not find
opposition towards APR amongst developers, suggesting
there is clear enthusiasm among the developer community
for the introduction of APR tools and techniques.

6.4 What Impacts Upon Developer Attitudes?

Our survey finds very scant evidence of a relationship
between attitudes towards APR and key demographic vari-
ables, such as age, education and experience. This raises sig-
nificant questions regarding what factors may in fact impact
upon developer attitudes towards APR. We suggest that
these factors may be things that are difficult to measure,
such as organisational or team culture. However, future
research is needed to explore what factors may play a role.

The qualitative responses also suggest that developer
values play a significant role in attitudes towards APR, with

‘control’ (linked to human agency and self-direction) a fre-
quently occurring reason for why developers preferred an
APR tool that allowed them to check or choose from fixes
over an APR tool that applied fixes automatically.

6.5 Recommendations for APR Tool Design

APR design should continue to emphasise developer-in-the-loop sys-
tems: Our results demonstrate that developers are currently
reluctant to embrace a fully automated APR system, instead
preferring a system where they would either be offered a fix
to check and apply, or a series of fix options to choose
between. This is in linewithmuchAPR research that assumes
that developers will be involved in reviewing and approving
patches (for example, [54]). However, some recent research,
for example on automating correctness assessment for
patches generated by program repair tools [55] demonstrates
innovation that could contribute to fully automated APR sys-
tems. Our survey results suggests that — at present at least —
such systems are likely to face considerable barriers to adop-
tion by professional developers.

The emphasis that developers in our survey placed upon
having control also means that careful consideration needs to
be given to how we design APR user experiences so that they
feel fully part of the process.

Patches should be readable and/or accompanied by information
to aid understanding: Our results show that understandabil-
ity/readability of fixes is a key concern for developers and
something that should be taken into consideration in APR
research. Whilst readability of fixes has been stressed in
some APR research (for example, research that generates
fixes learnt from human-written fixes [17]), other APR
research has stressed the importance of ‘alien’ fixes that
may be very different to human-written ones and less
understandable to developers (for example, [56]). In the
case of such ‘alien’ fixes, our research suggests that thought
needs to be given to what kind of information accompanies
automatically generated fixes so that developers can gain
understanding of the fix. This should also help with some of
the issues related to trust highlighted above.

APR research should consider the benefits of providing multi-
ple fixes to a single bug: Our survey respondents had a strong
preference for choosing between multiple fixes. There is
some APR research that takes this approach (for example,
[57], [58], [59]) – our results suggest that this may be a prom-
ising future direction, although more work is needed to
identify what the ideal number of fixes for developers to
choose from is.

7 THREATS TO VALIDITY

7.1 External Validity

Our sample size of 386 is large enough to be considered
broadly representative of the software developer population.
We have also compared the demographics of our sample
with Stack Overflow’s survey demographics, demonstrat-
ing reasonable similarity. There were, however, some dif-
ferences between our sample and Stack Overflow’s,
particularly the more European geographic basis of our
sample and the lack of input from developers in India. We
do not consider it likely that geographic location has a sig-
nificant impact on attitudes towards bug fixing and APR.

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1837

However, it may be that cultural workplace factors do play
some role, so future research would be welcome to explore
whether the findings from our predominantly European
and North American sample hold up in other cultural set-
tings. We hope our replication package will enable this sur-
vey to be repeated in diverse contexts. Like all research
samples that rely upon participant consent, ours is a volun-
teer sample. Volunteer samples raise questions as to the
potential characteristics of people who are likely to volun-
teer to participate in a research study. However, little
research has explored the potential impact of volunteer
samples on the validity of results.

One other threat pertaining to generalisability is the fact
that the most straightforward way to recruit practising soft-
ware developers from Prolific was to specify ‘software
industry’ as place of work. This may have excluded from
our participation pool software developers working in
industries whose main focus is something different, and
may explain, for example, the low amount of participants in
our survey from ‘finance and banking’ compared to Stack
Overflow’s sample. Whilst our sample is large, it may be
that it doesn’t generalise to specific domains in which soft-
ware developers work. One possible direction for future
work is to consider specific domains, especially those that
are safety- or security-critical.

Survey research, like any method, has inherent limita-
tions. Whilst our survey was predominantly attitudinal, we
did ask some questions more related to behaviours, such as
time spent finding and fixing bugs. It is likely that these
self-reported measures may be different to the actual time
that could, for example, be identified through observations
or screen-recording techniques. To avoid too much bias
from self-reporting, we used the proxies of education and
years spent coding professionally to stand in for experience,
rather than using self-reported experience levels. It is also
important to note that developers’ stated attitudes do not
necessarily map onto behaviours, as there is a complex rela-
tionship between values and actions.

7.2 Internal Validity

Whilst we find evidence in our results of some (weak) associa-
tions between variables, we do not test for relationships of cau-
sation, as this is an exploratory study of an under-studied area.

In terms of the analysis of results, we chose appropriate
statistical tests for our data, based on the nature of our data
(unlikely to be normally distributed, and involvingmany tied
ranks due to Likert-scale variables). Statistical tests were per-
formed using dedicated statistics software (SPSS), to limit the
possibility of error. There are some possible threats to statisti-
cal validity, such as the difficulty of establishing non-linear
relationships. Thoughwe plotted jittered scatterplots to check
for this, the amount of tied ranksmade this challenging.Using
7-point, rather than 5-point, Likert scales might have allowed
more granularity of results, but could also have been more
challenging for participants to answer.

The qualitative analysis was conducted by two authors in
order to mitigate the effects of interpretive subjectivity. We
also used a combination of independent coding and discus-
sion to reach negotiated agreement. The independent cod-
ing of each qualitative response was reviewed by the other
author, meaning that each response was dual-coded.

7.3 Construct Validity

We piloted our survey with software developers before dis-
seminating it more broadly to check that our questions could
be understood by developers and used vocabulary that was
clear and relatable. Despite this piloting process, we found
some evidence that certain questionswere perhaps not clearly
understood by developers, demonstrated by blank responses.
Specifically, 8.5% and 8.0% of respondents respectively did
not state their agreement with the statements ‘human-written
patches are more reliable than automatically generated
patches’ and ‘automatic software repair tools might make
software developers complacent’. We had a particularly high
non-response rate for the question about different kinds of
bug (e.g., if-related). Approximately 18% of respondents did
not respond to this question, probably because the constructs
were Java-biased and not so understandable for developers
coding in other languages.

One threat to construct validity is the combination of bug
finding and fixing in some of our questions, such as the Likert
scale attitudinal questions. Whilst this was not raised as an
issue in our pilot study with developers, the qualitative
responses to ‘what do you like most/least about finding and
fixing bugs?’ demonstrate that at least some developers draw a
distinction between the two activities. This may mean that it
was challenging for some developers to answer the Likert scale
questions, if their feelings towards bug finding and bug fixing
are different. However, there were high response rates for the
Likert scale items, which we might not have expected if these
questions had been too confusing for developers to answer.

8 CONCLUSIONS AND FURTHER WORK

To our knowledge, this is the first survey that asks developers
about their feelings about both finding and fixing bugs and
automatic program repair, considering attitudes to both APR
and the activity (manual bug finding and fixing) APR is
designed to minimise or replace. We find that bug finding
and fixing is both a satisfying and frustrating activity for devel-
opers, rather than something solely frustrating. This is signifi-
cant because it means that APR desires to replace an activity
(manual bug finding and fixing) that developers in fact do
derive some value from, including skill and knowledge devel-
opment. Understanding the human (developer) aspects of
coding practices and using that understanding to inform
practice has often been overlooked in the past; the study pre-
sented provides insights into how developers perceive the
bug fixing and repair process.

When it comes to developers’ attitudes towards APR, our
findings present both challenges and opportunities for the
further development of APR tools and techniques. Develop-
ers are largely positive about the idea of APR, demonstrating
an enthusiasmand appetite forAPR tools, but also ‘cautiously
optimistic’, with the existence of several concerns and caveats.
Our data suggests that attention should be given to develop-
ing APR user interfaces in which developers remain in the
loop and in which presented fixes are understandable to
developers. Developers have often criticised the lack of (and
quality of) tools that they use in their day to day codingwork.
In fact, providing usable tools for developers is a problem that
both industry and academia (and collaboration efforts) have
struggled to tackle in the past [60]. Results from our survey

1838 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

support the call for proper developer involvement and sup-
port, especially in anAPR context.

Our data also demonstrates very few statistically signifi-
cant relationships between developer attitudes towards
APR and key demographic variables, such as age, experi-
ence and education. This raises significant questions as to
what factors may in fact influence attitudes towards APR,
and future work exploring the potential impact of, for exam-
ple, workplace culture would be valuable. The socio-techni-
cal aspects of coding and development in general has been
a popular research topic since the 1970s. Yet, a body of
knowledge about developer demographics and the impact
they can have in the field does not seem to have materialised.
Perhaps empirical studies of developers have too often
focused on students or small numbers of industry partici-
pants and key factors such as developer experience have
been largely overlooked in those studies.

Given that APR is an emergent and quickly growing
field, the results from our survey are important in informing
the future of APR tool design and development that meets
developer needs. Our survey findings suggest that APR
tools that keep the developer in the loop and prioritise
understandability of patches are likely to have stronger
industry uptake. The advent of technologies such as APR
has made addressing the issue of what developers really feel
and want more important, not less.

ACKNOWLEDGMENTS

We are very grateful to our anonymous survey participants
for taking part in this research.

REFERENCES

[1] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the dichot-
omy of debugging behavior among programmers,” in Proc. 40th
Int. Conf. Softw. Eng., 2018, pp. 572–583.

[2] M. B€ohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe,
and A. Zeller, “Where is the bug and how is it fixed? An experi-
ment with practitioners,” in Proc. 11th Joint Meeting Found. Softw.
Eng., 2017, pp. 117–128.

[3] W. Weimer, “Program repair, patch quality, and human factors,”
May 2021, keynote at 2nd International Workshop on Automated
Program Repair (APR 2021), in Proc. 43rd Int. Conf. Softw. Eng.,
2021.

[4] E. R.Winter et al., “Let’s talk with developers, not about developers:
A review of automatic program repair research,” IEEE Trans. Softw.
Eng., early access, Feb. 16, 2022, doi: 10.1109/TSE.2022.3152089.

[5] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld,
“Studying the advancement in debugging practice of professional
software developers,” Softw. Qual. J., vol. 25, pp. 83–110, 2017.

[6] X. Kong, L. Zhang, W. E. Wong, and B. Li, “The impacts of techni-
ques, programs and tests on automated program repair: An
empirical study,” J. Syst. Softw., vol. 137, pp. 480–496, 2018.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121217301279

[7] Y. Lou et al., “Can automated program repair refine fault localiza-
tion? A unified debugging approach,” in Proc. 29th ACM SIGSOFT
Int. Symp. Softw. Testing Anal., 2020, pp. 75–87.

[8] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How practi-
tioners perceive automated bug report management techniques,”
IEEE Trans. Softw. Eng., vol. 46, no. 8, pp. 836–862, Aug. 2020.

[9] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang,
“Perceptions, expectations, and challenges in defect pre-
diction,” IEEE Trans. Softw. Eng., vol. 46, no. 11, pp. 1241–
1266, Nov. 2020.

[10] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proc. 25th Int. Symp. Softw.
Testing Anal., 2016, pp. 165–176.

[11] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert: Sug-
gesting repairs for broken unit tests,” in Proc. IEEE/ACM 24th Int.
Conf. Automated Softw. Eng., 2009, pp. 433–444.

[12] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “MintHint:
Automated synthesis of repair hints,” in Proc. Int. Conf. Softw.
Eng., 2014, pp. 266–276.

[13] Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated
patches as debugging aids: A human study,” in Proc. 22nd ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 64–74.

[14] A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau, “Repairing
unsatisfiable concepts in OWL ontologies,” in Proc. Eur. Semantic
Web Conf., 2006, pp. 170–184.

[15] J. Yi, U. Ahmed, A. Karkare, S. Tan, and A. Roychoudhury, “A
feasibility study of using automated program repair for introduc-
tory programming assignments,” in Proc. 11th Joint Meeting Found.
Softw. Eng., 2017, pp. 740–751.

[16] J. P. Cambronero, J. Shen, J. Cito, E. Glassman, and M. Rinard,
“Characterizing developer use of automatically generated
patches,” in Proc. IEEE Symp. Vis. Lang. Hum.-Centric Comput.,
2019, pp. 181–185.

[17] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proc. 35th Int. Conf.
Softw. Eng., 2013, pp. 802–811.

[18] C. Liu, J. Yang, L. Tan, andM. Hafiz, “R2Fix: Automatically gener-
ating bug fixes from bug reports,” in Proc. Int. Conf. Softw. Testing
Verification Validation, 2013, pp. 282–291.

[19] H. Hata, E. Shihab, and G. Neubig, “Learning to generate correc-
tive patches using neural machine translation,” 2018, arXiv:
1812.07170.

[20] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?,” in Proc. Int. Symp. Softw. Testing
Anal., 2011, pp. 199–209.

[21] S. Kirbas et al., “On the introduction of automatic program repair
in Bloomberg,” IEEE Softw., vol. 38, no. 4, pp. 43–51, Jul./Aug.
2021.

[22] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning to
fix bugs automatically,” Proc. ACM Program. Lang., vol. 3, no.
OOPSLA, Oct. 2019, Art. no. 159.

[23] Y. Noller, R. Shariffdeen, X. Gao, and A. Roychoudhury, “Trust
enhancement issues in program repair,” in Proc. 44th Int. Conf. Softw.
Eng., 2022, pp. 2228–2240.

[24] S. Marsh and M. R. Dibben, “The role of trust in information sci-
ence and technology,” Annu. Rev. Inf. Sci. Technol., vol. 37, no. 1,
pp. 465–498, 2003.

[25] K. A. Hoff and M. Bashir, “Trust in automation: Integrating
empirical evidence on factors that influence trust,” Hum. Factors,
vol. 57, no. 3, pp. 407–434, 2015.

[26] M. F. Krafft, K.-J. Stol, and B. Fitzgerald, “How do free/open
source developers pick their tools? A Delphi study of the Debian
project,” in Proc. 38th Int. Conf. Softw. Eng. Companion, 2016,
pp. 232–241.

[27] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS Quart., vol. 13, no. 3,
pp. 319–340, 1989. [Online]. Available: http://www.jstor.org/
stable/249008

[28] G. F. Loewenstein, E. U. Weber, C. K. Hsee, and N. Welch,
“Risk as feelings,” Psychol. Bull., vol. 127, no. 2, pp. 267–286,
2001.

[29] N. M. A. Huijts, C. J. H. Midden, and A. L. Meijnders, “Social
acceptance of carbon dioxide storage,” Energy Policy, vol. 35, no. 5,
pp. 2780–2789, 2007.

[30] T. Araujo, A. Wonneberger, P. Neijens, and C. de Vreese, “How
much time do you spend online? Understanding and improving
the accuracy of self-reported measures of internet use,” Commun.
Methods Measures, vol. 11, no. 3, pp. 173–190, 2017.

[31] L. Chang and J. A. Krosnick, “Measuring the frequency of regular
behaviors: Comparing the “typical week” to the “past week”,”
Sociol. Methodol., vol. 33, no. 1, pp. 55–80, 2003.

[32] V. Balachandran, “Fix-it: An extensible code auto-fix component
in Review Bot,” in Proc. IEEE 13th Int. Work. Conf. Source Code
Anal. Manipulation, 2013, pp. 167–172.

[33] S. Gulwani, I. Radi�cek, and F. Zuleger, “Automated clustering and
program repair for introductory programming assignments,” in
Proc. 39th ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
2018, pp. 465–480.

[34] J. Lee, D. Song, S. So, and H. Oh, “Automatic diagnosis and cor-
rection of logical errors for functional programming assign-
ments,” Proc. ACM Program. Lang., vol. 2, 2018, Art. no. 158.

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1839

http://dx.doi.org/10.1109/TSE.2022.3152089
https://www.sciencedirect.com/science/article/pii/S0164121217301279
https://www.sciencedirect.com/science/article/pii/S0164121217301279
http://www.jstor.org/stable/249008
http://www.jstor.org/stable/249008

[35] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring,
“Research issues in software fault categorization,” ACM SIGSOFT
Softw. Eng. Notes, vol. 32, no. 6, pp. 6–es, Nov. 2007.

[36] C. Masuck, “Categorizing faults in the software build cycle
decreases the total number of faults,” J. Comput. Sci. Colleges,
vol. 21, no. 2, pp. 19–26, Dec. 2005.

[37] K. Pan, S. Kim, and E. J. Whitehead, “Toward an understanding of
bug fix patterns,” Empir. Softw. Eng., vol. 14, no. 3, pp. 286–315,
Jun. 2009.

[38] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyand�e, “TBar: Revisiting
template-based automated program repair,” in Proc. 28th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2019, pp. 31–42.

[39] M. Martinez, L. Duchien, andM. Monperrus, “Accurate extraction
of bug fix pattern occurrences using abstract syntax tree analysis,”
Inria, Tech. Rep. hal-01075938, 2014. [Online]. Available: https://
hal.archives-ouvertes.fr/hal-01075938

[40] S. K. Nath, R. Merkel, andM. F. Lau, “On the improvement of a fault
classification scheme with implications for white-box testing,” in
Proc. 27th Annu. ACM Symp. Appl. Comput., 2012, pp. 1123–1130.

[41] P. Gyimesi et al., “BUGSJS: A benchmark and taxonomy of Java-
Script bugs,” Softw. Testing Verification Rel., vol. 31, no. 4, 2020,
Art. no. e1751. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/stvr.1751

[42] A. Marginean et al., “SaFix: Automated end-to-end repair at
scale,” in Proc. Int. Conf. Softw. Eng., 2019, pp. 269–278.

[43] L. B. Bourque, How to Conduct Self-Administered and Mail Surveys.
Thousand Oaks, CA, USA: Sage, 1995.

[44] R. M. de Mello and G. H. Travassos, “Surveys in software engi-
neering: Identifying representative samples,” in Proc. 10th ACM/
IEEE Int. Symp. Empir. Softw. Eng. Meas., 2016, Art. no. 55.

[45] S. Baltes and S. Diehl, “Worse than spam: Issues in sampling soft-
ware developers,” in Proc. IEEE/ACM 10th Int. Symp. Empir. Softw.
Eng. Meas., 2016, Art. no. 52.

[46] S. Wagner, D. M. Fern�andez, M. Felderer, D. Graziotin, and
M. Kalinowski, “Challenges in survey research,” in Contemporary
Empirical Methods in Software Engineering, M. Felderer and G. H.
Travassos Eds., New York, NY, USA: Springer 2020, pp. 93–125.

[47] E. Peer, L. Brandimarte, S. Samat, and A. Acquisti, “Beyond the turk:
Alternative platforms for crowdsourcing behavioral research,” J. Exp.
Social Psychol., vol. 70, pp. 153–163, 2017. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0022103116303201

[48] S. Palan and C. Schitter, “Prolific.ac—A subject pool for online
experiments,” J. Behav. Exp. Finance, vol. 17, pp. 22–27, 2018. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S2214635017300989

[49] D. Russo and K.-J. Stol, “Gender differences in personality traits
of software engineers,” IEEE Trans. Softw. Eng., vol. 48, no. 3,
pp. 819–834, Mar. 2022.

[50] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in continuous integration: Assurance, security, and flexibility,”
in Proc. 11th JointMeeting Found. Softw. Eng., 2017, pp. 197–207.

[51] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen,
“Coding in-depth semistructured interviews: Problems of unitiza-
tion and intercoder reliability and agreement,” Sociol. Methods
Res., vol. 42, no. 3, pp. 294–320, 2013.

[52] S. Akbarinasaji, B. Caglayan, and A. Bener, “Predicting bug-fixing
time: A replication study using an open source software project,” J.
Syst. Softw., vol. 136, pp. 173–186, 2018. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0164121217300365

[53] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?,”
in Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 672–681.

[54] C. LeGoues,M.Dewey-Vogt, S. Forrest, andW.Weimer, “A system-
atic study of automated program repair: Fixing 55 out of 105 bugs for
$8 each,” inProc. 34th Int. Conf. Softw. Eng., 2012, pp. 3–13.

[55] H. Ye, M. Martinez, and M. Monperrus, “Automated patch assess-
ment for program repair at scale,” Empir. Softw. Eng., vol. 26,
no. 20, pp. 1–38, 2021.

[56] M. Monperrus, “A critical review of ”automatic patch generation
learned from human-written patches”: Essay on the problem
statement and the evaluation of automatic software repair,” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 234–242.

[57] A. Ghanbari and L. Zhang, “PraPR: Practical program repair via
bytecode mutation,” in Proc. IEEE/ACM 34th Int. Conf. Automated
Softw. Eng.), 2019, pp. 1118–1121.

[58] C.-P. Wong, P. Santiesteban, C. K€astner, and C. Le Goues, “VarFix:
Balancing edit expressiveness and search effectiveness in auto-
mated program repair,” in Proc. 29th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2021, pp. 354–366

[59] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
without the contracts: An extended study,” IEEE Trans. Softw.
Eng., vol. 47, no. 12, pp. 2841–2857, Dec. 2021.

[60] D. Spinellis, “Version control systems,” IEEE Softw., vol. 22, no. 5,
pp. 108–109, Sep./Oct. 2005.

Emily Winter received the PhD degree in sociol-
ogy from Lancaster University, in 2017. She is a
lecturer with the School of Computing and Com-
munications, Lancaster University, specialising in
the socio-technical aspects of software engineer-
ing. Her interests are centered around the per-
ceptions and attitudes of software developers
about the technologies that they build and the
tools that they use.

David Bowes is a senior lecturer in computer
science with the Lancaster University. He has
developed significant expertise in analysing
defects in software over a period of more than
ten years and published widely in the area of
defect prediction. He is an expert in software
development and brings a focus on the pro-
duction of successful tools. He has previously
developed tools to collect data, analyse defec-
tive code, and assess the performance of
defect prediction models. He has a deep

knowledge of analysis methods, having built many defect prediction
models.

Steve Counsell received the PhD degree from
the University of London, in 2002. He is a pro-
fessor of software engineering with the Depart-
ment of Computer Science at Brunel and head
of the Brunel Software Engineering Laboratory
(BSEL). He has published more than 190
research papers on topics including data min-
ing, software refactoring, software evolution,
and defect analysis. He is a fellow of the Brit-
ish Computer Society and was a software
developer in industry prior to academia. He

has worked extensively on large research projects with industry in
the past.

Tracy Hall is a professor with Lancaster Univer-
sity. Her research interests include software engi-
neering, code analysis, and defect prediction.
Contact her at https://www.lancaster.ac.uk/scc/
about-us/people/tracy-hall

1840 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

https://hal.archives-ouvertes.fr/hal-01075938
https://hal.archives-ouvertes.fr/hal-01075938
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1751
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1751
http://www.sciencedirect.com/science/article/pii/S0022103116303201
http://www.sciencedirect.com/science/article/pii/S0022103116303201
http://www.sciencedirect.com/science/article/pii/S2214635017300989
http://www.sciencedirect.com/science/article/pii/S2214635017300989
https://www.sciencedirect.com/science/article/pii/S0164121217300365
https://www.sciencedirect.com/science/article/pii/S0164121217300365
https://www.lancaster.ac.uk/scc/about-us/people/tracy-hall
https://www.lancaster.ac.uk/scc/about-us/people/tracy-hall

Sæmundur Haraldsson is a lecturer with the
University of Stirling. He has co-organised every
tutorial on Genetic Improvement at GECCO,
PPSN, and CEC. He has co-authored multiple
publications on the subject, including two that
have received best paper awards the first com-
prehensive survey on GI which was published in
2017. He has been invited to give talks on the
subject in multiple venues for academical,
industrial, and general public audiences world-
wide. His PhD thesis (submitted in May 2017)

details his work on the world’s first live GI integration in an industrial
application.

Vesna Nowack received the PhD degree in com-
puter architecture from the Universitat Polit�ecnica
de Catalunya, Spain, in 2016. She became a
teaching assistant with Technische Universit€at
Dresden, Germany, in 2017. Since June 2019,
she has been a postdoctoral researcher with the
Queen Mary University of London, U.K. Her cur-
rent research focuses on automated program
repair, in particular genetic improvement, genera-
tion of fix patterns and application of repair tools
in industry.

John Woodward received the BSc degree in
theoretical physics, the MSc degree in cognitive
science, and the PhD degree in computer sci-
ence, all from the University of Birmingham, U.K.
He is currently with the School of Electronic Engi-
neering and Computer Science, Queen Mary Uni-
versity of London, U.K., where he is the head of
the Operational Research Group. Previously, he
was with the European Organization for Nuclear
Research (CERN), Switzerland, where he con-
ducted research into particle physics, the Royal

Air Force as an environmental noise scientist, and Electronic Data Sys-
tems as a systems engineer.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WINTER ETAL.: HOW DO DEVELOPERS REALLY FEEL ABOUT BUG FIXING? DIRECTIONS FOR AUTOMATIC PROGRAM... 1841

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

