
Revisiting Binary Code Similarity Analysis
Using Interpretable Feature Engineering

and Lessons Learned
Dongkwan Kim , Eunsoo Kim, Sang Kil Cha , Sooel Son , and Yongdae Kim

Abstract—Binary code similarity analysis (BCSA) is widely used for diverse security applications, including plagiarism detection,

software license violation detection, and vulnerability discovery. Despite the surging research interest in BCSA, it is significantly

challenging to perform new research in this field for several reasons. First, most existing approaches focus only on the end results,

namely, increasing the success rate of BCSA, by adopting uninterpretable machine learning. Moreover, they utilize their own

benchmark, sharing neither the source code nor the entire dataset. Finally, researchers often use different terminologies or even use

the same technique without citing the previous literature properly, which makes it difficult to reproduce or extend previous work. To

address these problems, we take a step back from the mainstream and contemplate fundamental research questions for BCSA. Why

does a certain technique or a certain feature show better results than the others? Specifically, we conduct the first systematic study on

the basic features used in BCSA by leveraging interpretable feature engineering on a large-scale benchmark. Our study reveals various

useful insights on BCSA. For example, we show that a simple interpretable model with a few basic features can achieve a comparable

result to that of recent deep learning-based approaches. Furthermore, we show that the way we compile binaries or the correctness of

underlying binary analysis tools can significantly affect the performance of BCSA. Lastly, we make all our source code and benchmark

public and suggest future directions in this field to help further research.

Index Terms—Binary code similarity analysis, similarity measures, feature evaluation and selection, benchmark

Ç

1 INTRODUCTION

PROGRAMMERS reuse existing code to build new software. It
is common practice for them to find the source code from

another project and repurpose that code for their ownneeds [1].
Inexperienced developers even copy and paste code samples
from the Internet to ease the development process.

This trend has deep implications for software security
and privacy. When a programmer takes a copy of a buggy
function from an existing project, the bug will remain intact
even after the original developer has fixed it. Furthermore,
if a developer in a commercial software company inadver-
tently uses library code from an open-source project, the
company can be accused of violating an open-source license
such as the GNU General Public License (GPL) [2].

Unfortunately, detecting such problems from binary
code using a similarity analysis is not straightforward, par-
ticularly when the source code is not available. This is
because binary code lacks high-level abstractions, such as

data types and functions. For example, it is not obvious
from binary code to determine whether a memory cell rep-
resents an integer, a string, or another data type. Moreover,
identifying precise function boundaries is radically chal-
lenging in the first place [3], [4].

Therefore, measuring the similarity between binaries has
been an essential research topic in many areas, such as mal-
ware detection [5], [6], plagiarism detection [7], [8], author-
ship identification [9], and vulnerability discovery [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

However, despite the surging research interest in binary
code similarity analysis (BCSA), we found that it is still sig-
nificantly challenging to conduct new research on this field
for several reasons.

First, most of the methods focus only on the end results
without considering the precise reasoning behind their
approaches. For instance, during our literature study in the
field, we observed that there is a prominent research trend in
applying BCSA techniques to cross-architecture and cross-
compiler binaries of the same program [11], [12], [13], [15],
[16], [19], [22]. Those approaches aim to measure the similar-
ity between two or more seemingly distinct binaries gener-
ated from different compilers targeting different instruction
sets. To achieve this, multiple approaches have devised com-
plex analyses based on machine learning to extract the
semantics of the binaries, assuming that their semantics
should not change across compilers nor target architectures.
However, none of the existing approaches clearly justifies
the necessity of such complex semantics-based analyses.
One may imagine that a compiler may generate structurally
similar binaries for different architectures, even though they

� The authors are with KAIST, Daejeon 34141, South Korea.
E-mail: {dkay, hahah, sangkilc, sl.son, yongdaek}@kaist.ac.kr.

Manuscript received 21 November 2020; revised 22 February 2022; accepted
26 June 2022. Date of publication 1 July 2022; date of current version 18 April
2023.
This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) Grant, Korea Government (MSIT)
under Grant 2021-0-01332, Developing Next-Generation Binary Decompiler.
(Corresponding author: Sang Kil Cha.)
Recommended for acceptance by X. Zhang.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TSE.2022.3187689, provided by the authors.
Digital Object Identifier no. 10.1109/TSE.2022.3187689

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023 1661

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3642-0253
https://orcid.org/0000-0003-3642-0253
https://orcid.org/0000-0003-3642-0253
https://orcid.org/0000-0003-3642-0253
https://orcid.org/0000-0003-3642-0253
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0003-0904-2875
https://orcid.org/0000-0003-0904-2875
https://orcid.org/0000-0003-0904-2875
https://orcid.org/0000-0003-0904-2875
https://orcid.org/0000-0003-0904-2875
https://orcid.org/0000-0003-4879-1262
https://orcid.org/0000-0003-4879-1262
https://orcid.org/0000-0003-4879-1262
https://orcid.org/0000-0003-4879-1262
https://orcid.org/0000-0003-4879-1262
mailto:dkay@kaist.ac.kr
mailto:hahah@kaist.ac.kr
mailto:sangkilc@kaist.ac.kr
mailto:sl.son@kaist.ac.kr
mailto:yongdaek@kaist.ac.kr
https://doi.org/10.1109/TSE.2022.3187689
https://doi.org/10.1109/TSE.2022.3187689

are syntactically different. Do compilers and architectures
reallymatter for BCSA in this regard?Unfortunately, it is dif-
ficult to answer this question because most of the existing
approaches leverage uninterpretablemachine learning techni-
ques [12], [13], [19], [20], [21], [23], [24], [25], [26], [27], [28],
[29]. Further, it is not even clear why a BCSA algorithm
works only on some benchmarks and not on others.

Second, every existing paper on BCSA that we studied
utilizes its own benchmark to evaluate the proposed tech-
nique, which makes it difficult to compare the approaches
with one another. Moreover, reproducing the previous
results is often infeasible because most researchers reveal
neither their source code nor their dataset. Only 10 of the
43 papers that we studied fully released their source code,
and only two of them opened their entire dataset.

Finally, researchers in this field do not use unified termi-
nologies and often miss out on critical citations that have
appeared in top-tier venues of other fields. Some of them
even mistakenly use the same technique without citing the
previous literature properly. These observations motivate
one of our research goals, which is to summarize and
review widely adopted techniques in this field, particularly
in terms of generating features.

To address these problems, we take a step back from the
mainstream and contemplate fundamental research ques-
tions for BCSA. As the first step, we precisely define the ter-
minologies and categorize the features used in the previous
literature to unify terminologies and build knowledge bases
for BCSA. We then construct a comprehensive and repro-
ducible benchmark for BCSA to help researchers extend
and evaluate their approaches easily. Lastly, we design an
interpretable feature engineering model and conduct a
series of experiments to investigate the influence of com-
pilers, their options, and their target architectures on the
syntactic and structural features of the resulting binaries.

Our benchmark, whichwe refer to as BINKIT, encompasses
various existing benchmarks. It is generated by using major
compiler options and targets, which include 8 architectures, 9
different compilers, 5 optimization levels, as well as various
other compiler flags. BINKIT contains 243,128 distinct binaries
and 36,256,322 functions built for 1,352 different combina-
tions of compiler options, on 51 real-world software pack-
ages. We also provide an automated script that helps extend
BINKIT to handle different architectures or compiler versions.
We believe this is critical because it is not easy to modify or
extend previous benchmarks, despite us having their source
codes. Cross-compiling software packages using various
compiler options is challenging because of numerous envi-
ronmental issues. To the best of our knowledge, BINKIT is the
first reproducible and extensible benchmark for BCSA.

With our benchmark, we perform a series of rigorous
studies on how the way of compilation can affect the result-
ing binaries in terms of their syntactic and structural shapes.
To this end, we design a simple interpretable BCSA model,
which essentially computes relative differences between
BCSA feature values. We then build a BCSA tool that we call
TIKNIB, which employs our interpretablemodel.With TIKNIB,
we found several misconceptions in the field of BCSA aswell
as novel insights for future research as follows.

First, the current research trend in BCSA is founded on a
rather exaggerated assumption: binaries are radically

different across architectures, compiler types, or compiler ver-
sions. However, our study shows that this is not necessarily
the case. For example, we demonstrate that simple numeric
features, such as the number of incoming/outgoing calls in a
function, are largely similar across binaries compiled for dif-
ferent architectures. We also present other elementary fea-
tures that are robust across compiler types, compiler versions,
and even intra-procedural obfuscation. With these findings,
we show that TIKNIB with those simple features can achieve
comparable accuracy to that of the state-of-the-art BCSA tools,
such as VulSeeker, which relies on a complex deep learning-
basedmodel.

Second, most researchers focus on vectorizing features
from binaries, but not on recovering lost information during
the compilation, such as variable types. However, our
experimental results suggest that focusing on the latter can
be highly effective for BCSA. Specifically, we show that
TIKNIB with recovered type information achieves an accu-
racy of over 99% on all our benchmarks, which was indeed
the best result compared to all the existing tools we studied.
This result highlights that recovering type information from
binaries can be as critical as developing a novel machine
learning algorithm for BCSA.

Finally, the interpretability of the model helps advance the
field by deeply understanding BCSA results. For example, we
present several practical issues in the underlying binary anal-
ysis tool, i.e., IDA Pro, which is used by TIKNIB, and discuss
how such errors can affect the performance of BCSA. Since
our benchmark has the ground truth and our tool employs an
interpretable model, we were able to easily pinpoint those
fundamental issues, which will eventually benefit binary
analysis tools and the entire field of binary analysis.

Contribution.In summary, our contributions are as follows:

� We study the features and benchmarks used in the
past literature regarding BCSA and clarify less-
explored research questions in this field.

� We propose BINKIT,1 the first reproducible and
expandable BCSA benchmark. It contains 243,128
binaries and 36,256,322 functions compiled for 1,352
distinct combinations of compilers, compiler options,
and target architectures.

� We develop a BCSA tool, TIKNIB,2 which employs a
simple interpretable model. We demonstrate that
TIKNIB can achieve an accuracy comparable to that of
a state-of-the-art deep learning-based tool. We
believe this will serve as a baseline to evaluate future
research in this field.

� We investigate the efficacy of basic BCSA features
with TIKNIB on our benchmark and unveil several
misconceptions and novel insights.

� Wemake our source code, benchmark, and experimen-
tal data publicly available to support open science.

2 BINARY CODE SIMILARITY ANALYSIS

Binary Code Similarity Analysis (BCSA) is the process of
identifying whether two given code snippets have similar

1. https://github.com/SoftSec-KAIST/binkit
2. https://github.com/SoftSec-KAIST/tiknib

1662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

https://github.com/SoftSec-KAIST/binkit
https://github.com/SoftSec-KAIST/tiknib

semantics. Typically, it takes in two code snippets as input
and returns a similarity score ranging from 0 to 1, where 0
indicates the two snippets are completely different, and 1
means that they are equivalent. The input code snippet
can be a function [11], [16], [19], [21], [24], [30], [31], [32],
or even an entire binary image [7], [8]. Additionally, the
actual comparison can be based on functions, even if the
inputs are entire binary images [12], [13], [15], [23], [33],
[34], [35].

At a high level, BCSA performs four major steps as
described below:

(S1) Syntactic Analysis.Given a binary code snippet, one
parses the code to obtain a disassembly or an Abstract Syn-
tax Tree (AST) of the code, which is often referred to as an
Intermediate Representation (IR) [36]. This step corresponds
to the syntax analysis in traditional compiler theory, where
source code is parsed down to an AST. If the input code is
an entire binary file, we first parse it based on its file format
and split it into sections.

(S2) Structural Analysis. This step analyzes and recovers
the control structures inherent in the given binary code,
which are not readily available from the syntactic analysis
phase (S1). In particular, this step involves recovering the
control-flow graphs (CFGs) and call graphs (CGs) in the
binary code [37], [38]. Once the control-structural informa-
tion is obtained, one can use any attribute of these control
structures as a feature. We distinguish this step from seman-
tic analysis (S3) because binary analysis frameworks typi-
cally provide CFGs and CGs for free; the analysts do not
have to write a complex semantic analyzer.

(S3) Semantic Analysis. Using the control-structural infor-
mation obtained from S2, one can perform traditional pro-
gram analyses, such as data-flow analysis and symbolic
analysis, on the binary to figure out the underlying seman-
tics. In this step, one can generate features that represent
sophisticated program semantics, such as how register val-
ues flow into various program points. One can also enhance
the features gathered from S1–S2 along with the semantic
information.

(S4) Vectorization and Comparison. The final step is to vec-
torize all the information gathered from S1–S3 to compute
the similarity between the binaries. This step essentially
results in a similarity score between 0 and 1.

Fig. 1 depicts the four-step process. The first three steps
determine the inputs to the comparison step (S4), which are
often referred to as features. Some of the first three steps can
be skipped depending on the underlying features being
used. The actual comparison methodology in S4 can also
vary depending on the BCSA technique. For example, one
may compute the Jaccard distance [39] between feature sets,
calculate the graph edit distance [40] between CFGs, or
even leverage deep learning algorithms [41], [42]. However,
as the success of any comparison algorithm significantly depends
on the chosen features, this paper focuses on features used in previ-
ous studies rather than the comparison methodologies.

In this section, we first describe the features used in the
previous papers and their underlying assumptions (Sec-
tion 2.1). We then discuss the benchmarks used in those
papers and point out their problems (Section 2.2). Lastly,
we present several research questions identified during our
study (Section 2.3).

Scope. Our study focuses on 43 recent BCSA papers (from
2014 to 2020) that appeared in 27 top-tier venues of different
computer science areas, such as computer security, software
engineering, programming languages, and machine learn-
ing. There are, of course, plentiful research papers in this
field, all of which are invaluable. Nevertheless, our focus here
is not to conduct a complete survey on them but to introduce a
prominent trend and the underlying research questions in this
field, as well as to answer those questions.We particularly focus
on features and datasets used in those studies, which lead
us to four underexplored research questions that we will
discuss in Section 2.3; our goal is to investigating these
research questions by conducting a series of rigorous
experiments. Because of the space limit, we excluded
papers [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53]
that were published before 2014 and those not regarding
top-tier venues, or binary diffing tools [54], [55], [56] used in
the industry. Additionally, we excluded papers that aimed
to address a specific research problem such as malware
detection, library function identification, or patch identifica-
tion. Although our study focuses only on recent papers, we
found that the features we studied in this paper are indeed
general enough; they cover most of the features used in the
older papers.

2.1 Features Used in Prior Works

We categorize features into two groups based on when they
are generated during BCSA. Particularly, we refer to fea-
tures obtained before and after the semantic analysis step
(S3) as presemantic features and semantic features, respectively.
Presemantic features can be derived from either S1 or S2,
and semantic features can be derived from S3. We summa-
rize both features used in the recent literature in Table 1.

2.1.1 Presemantic Features

Presemantic features denote direct or indirect outcomes of
the syntactic (S1) and structural (S2) analyses. Therefore, we
refer to any attribute of binary code, which can be derived
without a semantic analysis, as a presemantic feature. We
can further categorize presemantic features used in previous
literature based on whether the feature represents a number
or not. We refer to features representing a number as numeric

Fig. 1. Typical workflow of binary analysis (upper) and similarity compari-
son (lower) in binary code similarity analysis. Tools may skip some of the
steps.

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1663

presemantic features, and others as non-numeric presemantic fea-
tures. The first half of Table 1 summarizes them.

Numeric Presemantic Features. Counting the occurrences of
a particular property of a program is common in BCSA as
such numbers can be directly used as a numeric vector in
the similarity comparison step (S4). We categorize numeric
presemantic features into three groups based on the granu-
larity of the information required for extracting them.

First, many researchers extract numeric features from
each basic block of a target code snippet [11], [12], [13], [17],
[23], [28], [28], [71]. One may measure the frequency of raw
opcodes (mnemonics) [17], [71] or grouped instructions
based on their functionalities (e.g., arithmetic, logical, or
control transfer) [11], [28]. This numeric form can also be
post-processed through machine learning [12], [13], [23],
[28], as we further discuss in Section 2.1.2.

Similarly, numeric features can be extracted from a CFG
as well. CFG-level numeric features can also reflect struc-
tural information that underlies a CFG. For example, a func-
tion can be encoded into a numeric vector, which consists of
the number of nodes (i.e., basic blocks) and edges (i.e., con-
trol flow), as well as grouped instructions in its CFG [11],
[28], [61]. One may extend such numeric vectors by adding
extra features such as the number of successive nodes or the
betweenness centrality of a CFG [12], [23], [28]. The concept
of 3D-CFG [72], which places each node in a CFG onto a 3D
space, can be utilized as well. Here, the distances among the
centroids of two 3D-CFGs can represent their similarity
score [18]. Other numeric features can be the graph energy,
skewness, or cyclomatic complexity of a CFG [17], [28], [71].
Even loops in a CFG can be converted into numeric features
by counting the number of loop headers and tails, as well as
the number of forward and backward edges [65].

Finally, previous approaches utilize numeric features
obtained from CGs. We refer to them as CG-level numeric
features. Most of these approaches measure the number of
callers and callees in a CG [11], [17], [19], [23], [28], [65],
[71], [73]. When extracting these features, one can selec-
tively apply an inter-procedural analysis using the ratio of
the in-/out- degrees of the internal callees in the same
binary and the external callees of imported libraries [15],
[18], [20], [28]. This is similar to the coupling concept [74],

which analyzes the inter-dependence between software
modules. The extracted features can also be post-processed
using machine learning [19].

Non-Numeric Presemantic Features. Program properties can
also be directly used as a feature. The most straightforward
approach involves directly comparing the raw bytes of bina-
ries [6], [53], [75]. However, people tend to not consider this
approach because byte-level matching is not as robust com-
pared to simple code modifications. For example, anti-mal-
ware applications typically make use of manually written
signatures using regular expressions to capture similar, but
syntactically different malware instances [76]. Recent
approaches have attempted to extract semantic meanings
from raw binary code by utilizing a deep neural network
(DNN) to build a feature vector representation [19], [25].

Another straightforward approach involves considering
the opcodes and operands of assembly instructions or their
intermediate representations [18], [77]. Researchers often
normalize operands [32], [34], [57] because their actual val-
ues can significantly vary across different compiler options.
Recent approaches [62], [70] have also applied re-optimiza-
tion techniques [78] for the same reason. To compute a simi-
larity score, one can measure the number of matched
elements or the Jaccard distance [15] between matched
groups, within a comparison unit such as a sliding win-
dow [58], basic block [34], or tracelet [57]. Here, a tracelet
denotes a series of basic blocks. Although these approaches
take different comparison units, one may adjust their results
to compare two procedures, or to find the longest common
subsequence [32], [34] within procedures. If one converts
assembly instructions to a static single assignment (SSA)
form, s/he can compute the tree edit distance between the
SSA expression trees as a similarity score [10]. Recent
approaches have proposed applying popular techniques in
natural language processing (NLP) to represent an assembly
instruction or a basic block as an embedded vector, reflect-
ing their underlying semantics [20], [21], [24], [26], [27], [29].

Finally, some features can be directly extracted from
functions. These features may include the names of
imported functions, and the intersection of two inputs can
show their similarity [19], [61]. Note that these features can
collaborate with other features as well.

TABLE 1
Summary of the Features Used in Previous Studies

This mark denotes a feature that is not directly used for similarity comparison but is required for extracting other features used in post-processing.

1664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

2.1.2 Semantic Features

We call the features that we can obtain from the semantic
analysis phase (S3) semantic features. To obtain semantic fea-
tures, a complex analysis, such as symbolic execution [7],
[8], [15], [18], [63], dynamic evaluation of code snippets [8],
[30], [31], [33], [35], [63], [64], [66], [67], or machine learning-
based embedding [12], [13], [19], [20], [21], [23], [24], [25],
[26], [27], [28], [29] is necessary. There are mainly seven dis-
tinct semantic features used in the previous literature, as
listed in Table 1. It is common to use multiple semantic fea-
tures together or combine them with presemantic features.

First, one straightforwardmethod to represent the seman-
tics of a given code snippet is to use symbolic constraints.
The symbolic constraints could express the output variables
or states of a basic block [7], a program slice [16], [59], [63], or
a path [8], [79], [80]. Therefore, after extracting the symbolic
constraints from a target comparison unit, one can compare
them using an SMT solver.

Second, one may represent code semantics using I/O
samples [8], [15], [18], [22]. The key intuition here is that
two identical code snippets produce consistent I/O sam-
ples, and directly comparing them would be time-efficient.
One can generate I/O samples by providing random
inputs [8], [22] to a code snippet, or by applying an SMT
solver to the symbolic constraints of the code snippet [15],
[18]. One can also use inter-procedural analysis to precisely
model I/O samples if the target code includes a function
call [15], [18].

Third, the runtime behavior of a code snippet can
directly express its semantics, as presented by traditional
malware analysis [81]. By executing two target functions
with the same execution environment, one can directly com-
pare the executed instruction sequences [64] or visited CFG
edges of the target functions [66]. For comparison, one may
focus on specific behaviors observed during the execu-
tion [18], [28], [30], [31], [35], [67], [82]: the read/write val-
ues of stack and heap memory, return values from function
calls, and invoked system/library function calls during the
executions. To extract such features, one may adopt fuzz-
ing [31], [83], or an emulation-based approach [67]. More-
over, one can further check the call names, parameters, or
call sequences for system calls [18], [33], [35], [63], [67].

The next category is to manually annotate the high-level
semantics of a program or function. One may categorize
library functions by their high-level functionality, such as
whether the function manipulates strings or whether it han-
dles heap memory [15], [18], [61]. Annotating cryptographic
functions in a target code snippet [84] is also helpful
because its complex operations hinder analyzing the sym-
bolic constraints or behavior of the code [63].

The fifth category is extracting features from a program
slice [85], because they can represent its data-flow semantics
in an abstract form. Specifically, one can slice a program into
a set of strands [14], [62]. Here, a strand is a series of instruc-
tions within the same data flow, which can be obtained from
backward slicing. Next, these strands can be canonicalized,
normalized, or re-optimized for precise comparison [14],
[62]. Additionally, one may hash strands for quick compari-
son [68] or extract symbolic constraints from the strands [59].
One may also extract features from a program dependence

graph (PDG) [86], which is essentially a combination of a
data-flow graph and CFG, to represent the convoluted
semantics of the target code, including its structural
information [13].

Recovered program variables can also be semantic fea-
tures. For example, one can compare the similarity of string
literals referenced in code snippets [11], [12], [17], [23], [28],
[61], [65], [71]. One can also utilize the size of local variables,
function parameters, or the return type of functions [11],
[28], [61], [69]. One can further check registers or local varia-
bles that store the return values of functions [18].

Recently, several approaches have been utilizing embed-
ding vectors, adopting various machine learning techni-
ques. After building an attributed control-flow graph
(ACFG) [23], which is a CFG containing numeric preseman-
tic features in its basic blocks, one can apply spectral cluster-
ing [87] to group multiple ACFGs or popular encoding
methods [88], [89], [90] to embed them into a vector [12].
The same technique can also be applied to PDGs [13]. Mean-
while, recent NLP techniques, such as Word2Vec [91] or
convolutional neural network models [92], can be utilized
for embedding raw bytes or assembly instructions into
numeric vectors [19], [20], [21], [24], [25], [26], [27], [29]. For
this embedding, one can also consider a higher-level granu-
larity [20], [24] by applying other NLP techniques, such as
sentence embedding [93] or paragraph embedding [94].
Note that one may apply machine learning to compare
embedding vectors rather than generating them [60], [68],
and Table 1 does notmark them to use embedded vectors.

2.1.3 Key Assumptions From Past Research

During our literature study, we found that most of the
approaches highly rely on semantic features extracted in
(S3), assuming that they should not change across compilers
nor target architectures. However, none of them clearly jus-
tifies the necessity of such complex semantics-based analy-
ses. They focus only on the end results without considering
the precise reasoning behind their approaches.

This is indeed the key motivation for our research.
Although most existing approaches focus on complex anal-
yses, there may exist elementary features that we have over-
looked. For example, there may exist effective presemantic
features, which can beat semantic features regardless of tar-
get architectures and compilers. It can be the case that those
known features have not been thoroughly evaluated on the
right benchmark as there has been no comprehensive study
on them.

Furthermore, existing research assumes the correctness
of the underlying binary analysis framework, such as IDA
Pro [95], which is indeed the most popular tool used, as
shown in the rightmost column of Table 2. However, CFGs
derived from those tools may be inherently wrong. They
may miss some important basic blocks, for instance, which
can directly affect the precision of BCSA features.

Indeed, both (S1) and (S2) are challenging research prob-
lems by themselves: there are abundant research efforts to
improve the precision of both analyses. For example, disas-
sembling binary code itself is an undecidable problem [96],
and writing an efficient and accurate binary lifter is signifi-
cantly challenging in practice [36], [97]. Identifying functions

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1665

from binaries [3], [4], [96], [98], [99], [100], [101] and recover-
ing control-flow edges [102] for indirect branches are still
active research fields. All these observations lead us to
research questions in Section 2.3.

2.2 Benchmarks Used in Prior Works

It is imperative to use the right benchmark to evaluate a
BCSA technique. Therefore, we studied the benchmarks
used in the past literature, as shown in Table 2. However,
during the study, we found that it is radically difficult to
properly evaluate a new BCSA technique using the previous
benchmarks.

First, we were not able to find a single pair of papers that
use the same benchmark. Some of them share packages
such as GNU coreutils [15], [30], [31], but the exact bina-
ries, versions, and compiler options are not the same.
Although there is no known standard for evaluating BCSA,
it is surprising to observe that none of the papers use the

same dataset. We believe this is partly because of the diffi-
culty in preparing the same benchmark. For example, even
if we can download the same version of the source code
used in a paper, it is extraordinarily difficult to cross-com-
pile the program for various target architectures with vary-
ing compiler options; it requires significant effort to set up
the environment. However, only two out of 43 papers we stud-
ied fully open their dataset. Even in that case, it is hard to
rebuild or extend the benchmark because of the absence of a
public compilation script for the benchmark.

Second, the number of binaries used in each paper is lim-
ited and may not be enough for analytics. The #Binaries col-
umn of Table 2 summarizes the number of program
binaries obtained from two different sources: application
packages and firmware images. Since a single package can
contain multiple binaries, we manually extracted the pack-
ages used in each paper and counted the number of binaries
in each package. We counted only the binaries after a

TABLE 2
Summary of the Datasets Used in Previous Studies

[�] We only mark items that are stated explicitly in the paper. Due to the lack of details about firmware images, we were not able to mark optimization
options or compilers used to create them. For papers that do not explicitly state the number of binaries in their dataset, we estimated the number and
marked it with parentheses.
y This table focuses on two major compilers: GCC and Clang, as other compilers only support a limited number of architectures.
~We infer the target architectures of the dataset as they are not stated explicitly in the paper.
This indicates that only a portion of the code and dataset is available. For example, discovRE [11] makes available only their firmware images, and

aDiff [19] opens transformed function images but not the actual dataset.

1666 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

successful compilation, such that the object files that were
generated during the compilation process were not
counted. If a paper does not explicitly mention package
versions, we used the most recent package versions at the
time of writing and marked them with parentheses. Note
that only 6 out of 43 papers have more than 10,000 bina-
ries, and none reaches 100,000 binaries. Firmware may
include numerous binaries, but it cannot be directly used
for BCSA because one cannot generate the ground truth
without having the source code.

Finally, previous benchmarks only cover a few com-
pilers, compiler options, and target architectures. Some
papers do not even describe their tested compiler options or
package versions. The Compiler column of the table presents
the number of minor versions used for each major version
of the compilers. Notably, all the benchmarks except one
consider less than five different major compiler versions.
The Extra column of the table shows the use of extra com-
piler options for each benchmark. Only a few consider func-
tion inlining and Link-Time Optimization (LTO). None of
them deal with the Position Independent Executable (PIE)
option, although, currently, it is widely used [103].

All these observations lead us to the research questions
outlined in the next subsection (Section 2.3) and eventually
motivate us to create our own benchmark that we call BIN-

KIT, which is shown in the last row of Table 2.

2.3 Research Problems and Questions

We now summarize several key problems observed from the
previous literature and introduce research questions derived
from these problems. First, none of the papers uses the same
benchmark for their evaluation, and the way they evaluate
their techniques significantly differs. Second, only a few of
the studies release their source code and data, which makes
it radically difficult to reproduce or improve upon existing
works. Furthermore, most papers use manually chosen
ground truth data for their evaluation, which are easily
error-prone. Finally, current state-of-the-art approaches in
BCSA focus on extracting semantic features with complex
analysis techniques (from Sections 2.1.1 and 2.1.2). These
observations naturally lead us to the below research ques-
tions. Note that some of the questions are indeed open-
ended, andwe only address them in part.

RQ1. How should we establish a large-scale benchmark
and ground truth data?

One may build benchmarks by manually compiling
application source code. However, there are so many differ-
ent compiler versions, optimization levels, and options to
consider when building binaries. Therefore, it is desirable to
automate this process to build a large-scale benchmark for
BCSA. It should be noted that many of the existing studies
have also attempted to build ground truth from source
code. However, the number of binaries and compiler
options used in those studies is limited and is not enough
for data-driven research. Furthermore, those studies release
neither their source code nor dataset (Section 2.2). On the
contrary, we present a script that can automatically build
large-scale ground truth data from a given set of source
packages with clear descriptions (Section 3).

RQ2. Is the effectiveness of presemantic features limited
to the target architectures and compiler options used?

We note that most previous studies assume that prese-
mantic features are significantly less effective than semantic
features, as they can largely vary depending on the underly-
ing architectures and compiler optimizations used. For
example, compilers may perform target-specific optimiza-
tion techniques for a specific architecture. Indeed, 36 out of
the 43 papers (� 84%) we studied focus on new semantic
features in their analysis, as shown in Table 1. To determine
whether this assumption is valid, we investigate it through
a series of rigorous experimental studies. Although byte-
level information significantly varies depending on the tar-
get and the optimization techniques, we found that some
presemantic features, such as structural information
obtained from CFGs, are broadly similar across different
binaries of the same program. Additionally, we demon-
strated that utilizing such presemantic features without a
complex semantic analysis can achieve an accuracy that is
comparable to that of a recent deep learning-based approach
with a semantic analysis (Section 5).

RQ3. Can debugging information help BCSA achieve a
high accuracy rate?

We are not aware of any quantitative study on howmuch
debugging information affects the accuracy of BCSA. Most
prior works simply assume that debugging information is
not available, but how much does it help? How would
decompilation techniques affect the accuracy of BCSA? To
answer this question, we extracted a list of function types
from our benchmark and used them to perform BCSA on
our dataset. Surprisingly, we were able to achieve a higher
accuracy rate than any other existing works on BCSA with-
out using any sophisticated method (Section 6).

RQ4. Can we benefit from analyzing failure cases of
BCSA?

Most existing works do not analyze their failure cases as
they rely on uninterpretable machine learning techniques.
However, our goal is to use a simple and interpretablemodel
to learn from failure and gain insights for future research.
Therefore, we manually examined failure cases using our
interpretablemethod and observed three common causes for
failure, which have been mostly overlooked by the previous
literature. First, COTS binary analysis tools indeed return
false results. Second, different compiler back-ends for the
same architecture can be substantially different from each
other. Third, there are architecture-specific code snippets for
the same function. We believe that all these observations
help in setting directions for future studies (Section 7).

Analysis Scope. In this paper, we focus on function-level
similarity analyses because functions are a fundamental
unit of binary analysis, and function-level BCSA is widely
used in previous literature [11], [16], [19], [21], [24], [30],
[31], [32]. We believe one can easily extend our work to sup-
port whole-binary-level similarity analyses as in the previ-
ous papers [7], [8].

3 ESTABLISHING LARGE-SCALE BENCHMARK AND

GROUND TRUTH FOR BCSA (RQ1)

Building a large-scale benchmark for BCSA and establishing
its ground truth is challenging. One potential approach for
generating the ground truth data is to manually identify sim-
ilar functions from existing binaries or firmware images [10],

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1667

[57], [59]. However, this requires domain expertise and is
often error-prone and time-consuming.

Another approach for obtaining the ground truth is to
compile binaries from existing source code with varying
compiler options and target architectures [13], [15], [16],
[23]. If we compile multiple binaries (with different com-
piler options) from the same source code, one can determine
which function corresponds to which source lines. Unfortu-
nately, most existing approaches do not open their bench-
marks nor the compilation scripts used to produce them
(Table 2).

Therefore, we present BINKIT, which is a comprehensive
benchmark for BCSA, along with automated compilation
scripts that help reproduce and extend it for various
research purposes. The rest of this section details BINKIT

and discusses how we establish the ground truth (RQ1).

3.1 BINKIT: Large-Scale BCSA Benchmark

BINKIT is a comprehensive BCSA benchmark that comprises
243,128 binaries compiled from 51 packages of source code
with 1,352 distinct combinations of compilers, compilation
options, and target architectures. Therefore, BINKIT covers
most of the benchmarks used in existing approaches, as
shown in Table 2. BINKIT includes binaries compiled for 8
different architectures. For example, we use both little- and
big-endian binaries for MIPS to investigate the effect of
endianness. It uses 9 different versions of compilers: GCC v
{4.9.4, 5.5.0, 6.4.0, 7.3.0, 8.2.0} and Clang v{4.0, 5.0, 6.0, 7.0}.
We also consider 5 optimization levels from O0 to O3 as
well as Os, which is the code size optimization. Finally, we
take PIE, LTO, and obfuscation options into account, which
are less explored in BCSA.

We select GNU software packages [104] as our compila-
tion target because of their popularity and accessibility:
they are real applications that are widely used on Linux sys-
tems, and their source code is publicly available. We suc-
cessfully compiled 51 GNU packages for all our target
architectures and compiler options.

To better support targeted comparisons, we divide BIN-

KIT into six datasets: NORMAL, SIZEOPT, NOINLINE, PIE, LTO,
and OBFUSCATION. The summary of each dataset is shown
in Table 3. Each dataset contains binaries obtained by com-
piling the GNU packages with different combinations of
compiler options and targets. There is no intersection among
the datasets.

NORMAL includes binaries compiled for 8 different archi-
tectures with different compilers and optimization levels.
We did not use other extra options such as PIE, LTO, and
no-inline for this dataset.

SIZEOPT is the same as NORMAL except that it uses only the
Os optimization option instead of O0–O3.

Similarly, PIE, NOINLINE, LTO, and OBFUSCATION are no dif-
ferent from NORMAL except that they are generated by using
an additional flag to enable PIE, to disable inline optimiza-
tion, to enable LTO, and to enable compile-time obfuscation,
respectively.

PIE makes memory references in binary relative to sup-
port ASLR. On some architectures, e.g., x86, compilers inject
additional code snippets to achieve relative addressing. As
a result, the compiled output can differ severely. Although
PIE became the default on most Linux systems [103], it has
not been well studied for BCSA. Note we were not able to
compile all 51 packages with the PIE option enabled. There-
fore, we have fewer binaries in PIE than NORMAL.

Function inlining embeds callee functions into the body
of the caller. This can make presemantic features largely
vary. Therefore, we investigate the effect of function inlin-
ing on BCSA by explicitly turning off the inline optimization
with the fno-inline option.

LTO is an optimization technique that operates at link
time. It removes unnecessary code blocks, thereby reducing
the number of presemantic features. However, it has also
been less studied in BCSA. We were only able to success-
fully compile 29 packages when the LTO option was
enabled.

Finally, the OBFUSCATION dataset uses Obfuscator-
LLVM [105] to obfuscate the target binaries. We chose
Obfuscator-LLVM among various other tools previously
used [105], [106], [107], [108], [109], [110] because it is the
most commonly used [20], [31], [61], [67], [70], and we can
directly compare the effect of obfuscation using the vanilla
LLVM compiler. We use Obfuscator-LLVM’s latest version
with four obfuscation options: instruction substitution
(SUB), bogus control flow (BCF), control flow flattening
(FLA), and a combination of all the options. We regard each
option as a distinct compiler, as shown in the Comp column
of Table 3. One can obfuscate a single binary multiple times.
However, we only applied it once. This is because obfuscat-
ing a binary multiple times could emit a significantly large
binary, which becomes time-consuming for IDA Pro to pre-
process. For example, when we obfuscate a2ps twice with
all three options, the compiled binary reaches over 30 MB,
which is 30 times larger than the normal one.

The number of packages and that of compiler options
used in compiling each dataset differ because some pack-
ages can be compiled only with a specific set of compile
options and targets. Some packages fail to compile because
they have architecture-specific code, such as inline assem-
blies, or because they use compiler-specific grammars. For
example, Clang does not support both the LTO option and
the Os option to be turned on. There are also cases where
packages have conflicting dependencies. We also excluded
the ones that did not compile within 30 min because some
packages require a considerable amount of time to compile.
For instance, smalltalk took more than 10 h to compile
with the obfuscation option enabled.

TABLE 3
Summary of BINKIT

[�] The target functions are selected in the manner described in Section 3.2.
y The number of packages and compiler options varies because some packages
can be compiled only with a specific set of compile options.
z We count each of the four obfuscation options as a distinct compiler
(Section 3.1).

1668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

To summarize, BINKIT contains 243,128 binaries and
36,256,322 functions in total, which is indeed many orders
of magnitude larger than the other benchmarks that appear
in the previous literature. The Source column of Table 2
shows the difference clearly. BINKIT does not include firm-
ware images because our goal is to automatically build a
benchmark with clear ground truth. One may extend our
benchmark with firmware images. However, it would take
significant manual effort to identify their ground truth. For
additional details regarding each package, please refer
to Table 12 in the Appendix, available online.

Our benchmark and compilation scripts are available on
GitHub. Our compilation environment is based on Cross-
tool-NG [111], GNU Autoconf [112], and Linux Paral-
lels [113]. Through this environment, we compiled the
entire datasets of BINKIT in approximately 30 h on our server
machine with 144 Intel Xeon E7-8867v4 cores.

3.2 Building Ground Truth

Next, we establish the ground truth for our dataset. We first
define the criteria for determining the equivalence of two
functions. In particular, we check whether two functions
with the same name originated from the same source files
and have the same line numbers. Additionally, we verify
that both functions come from the same package and have
the same name in their binaries to ensure their equivalence.

Based on these criteria, we constructed the ground truth
by performing the following steps. First, we compiled all
the binaries with debugging information using the -g

option. We then leveraged IDA Pro [95] to identify functions
in the compiled binaries. Next, we labeled each identified
function with its name, package name, binary name, as well
as the name of the corresponding source file and line num-
bers. To achieve this, we wrote a script that parses the
debugging information from each binary.

Using this information, we then sanitize our dataset to
avoid having incorrect or biased results. Among the identi-
fied functions, we selected only the ones in the code (.
text) segments, as functions in other segments may not
include valid binary code. For example, we disregarded
functions in the Procedure Linkage Table (.plt) sections
because these functions are wrappers to call external func-
tions and do not include actual function bodies. In our data-
set, we filtered out 40% of the identified functions in this
step.

We also disregarded approximately 4% of the functions
that are generated by the compiler, but not by the applica-
tion developers. We can easily identify such compiler intrin-
sic functions by checking the corresponding source files and
line numbers. For example, GCC utilizes intrinsic functions
such as __udivdi3 in libgcc2.c or __aeabi_uldiv-

mod in bpabi.S to produce highly optimized code.
Additionally, we removed duplicate functions within the

same project/package. Two different binaries often share
the same source code, especially when they are in the same
project/package. For example, the GNU coreutils pack-
age contains 105 different executables that share 80% of the
functions in common. We removed duplicate functions
within each package by checking the source file names and
their line numbers. Moreover, compilers can also generate
multiple copies of the same function within a single binary

due to optimization. These functions share the same source
code but have a difference in their binary forms. For exam-
ple, some parts of the binary code are removed or reordered
for optimization purposes. As these functions share a large
portion of the code, considering all of them would produce
a biased result. To avoid this, we selected only one copy for
each of the functions in our experiments. This step filtered
out approximately 54% of the remaining functions. The last
column of Table 3 reports the final counting results, which
is the number of unique functions.

By performing all the above steps, we can automatically
build large-scale ground truth data. The total time spent
building the ground truth of all our datasets was 13,300 sec-
onds. By leveraging this ground truth data, we further inves-
tigate the remaining research questions (i.e., RQ2–RQ4) in
the following sections. To encourage further research, we
have released all our datasets and source code.

4 BUILDING AN INTERPRETABLE MODEL

Previous BCSA techniques focused on achieving a higher
accuracy by leveraging recent advances in deep learning
techniques [12], [13], [19], [25]. This often requires build-
ing a complicated model, which is not straightforward to
understand and hinders researchers from reasoning
about the BCSA results and further answering the funda-
mental questions regarding BCSA. Therefore, we design
an interpretable model for BCSA to answer the research
questions and implement TIKNIB, which is a BCSA tool
that employs the model. This section illustrates how we
obtain such a model and how we set up our experimen-
tal environment.

4.1 TIKNIB Overview

At a high level, TIKNIB leverages a set of presemantic fea-
tures widely used in the previous literature to reassess the
effectiveness of presemantic features (RQ2). It evaluates
each feature in two input functions, based on our similarity
scoring metric (Section 4.3), which directly measures the dif-
ference between each feature value. In other words, it cap-
tures how much each feature differs across different
compile options.

Note TIKNIB is intentionally designed to be simple so that
we can answer the research questions presented in Sec-
tion 2.3. Despite the simplicity of our approach, TIKNIB still
produces a high accuracy rate that is comparable to state-of-
the-art tools (Section 5.2). We are not arguing here that
TIKNIB is the best BCSA algorithm.

4.2 Features Used in TIKNIB

Recall from RQ2, one of our goals is to reconsider the capa-
bility of presemantic features. Therefore, we focus on choos-
ing various presemantic features used in the previous
BCSA literature instead of inventing novel ones.

However, creating a comprehensive feature set is not
straightforward because of the following two reasons. First,
there are numerous existing features that are similar to one
another, as discussed in Section 2. Second, some features
require domain-specific knowledge, which is not publicly
available. For example, several existing papers [11], [12],
[13], [17], [18], [23], [61], [65] categorize instructions into

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1669

semantic groups. However, grouping instructions is largely
a subjective task, and there is no known standard for it. Fur-
thermore, most existing works do not make their grouping
algorithms public.

We address these challenges by (1) manually extracting
representative presemantic features and (2) open-sourcing
our feature extraction implementation. Specifically, we focus
on numeric presemantic features. Because these features are
represented as numbers, the relationship among their values
across different compile options can be easily observed.

Table 4 summarizes the selected features. Our feature set
consists of CFG- and CG-level numeric features as they can
effectively reveal structural changes in the target code. In
particular, we utilize features related to basic blocks, CFG
edges, natural loops, and strongly connected components
(SCCs) from CFGs, by leveraging NetworkX [114]. We also
categorize instructions into several semantic groups based
on our careful judgment by referring to the reference man-
uals [115], [116], [117] and leveraging Capstone [118]’s inter-
nal grouping. Next, we count the number of instructions in
each semantic group per each function (i.e., CFG). Addition-
ally, we take six features from CGs. The number of callers
and callees represents a unique number of outgoing and
incoming edges from CGs, respectively.

To extract these features, we conducted the following
steps. First, we pre-processed the binaries in BINKIT with
IDA Pro [95]. We then generated the ground truth of these
binaries as we described in Section 3.2. For those functions of
which we have the ground truth, we extracted the aforemen-
tioned features. Table 5 shows the time spent for each of
these steps. The IDA pre-processing took most of the time as
IDA performs various internal analyses. Meanwhile, the fea-
ture extraction took much less time as it merely operates on
the precomputed results from the pre-processing step.

4.3 Scoring Metric

Our scoring metric is based on the computation of the rela-
tive difference [119] between feature values. Given two
functions A and B, let us denote a value of feature f for
each function as Af and Bf , respectively. Recall that any fea-
ture in TIKNIB can be represented as a number. We can com-
pute the relative difference d between the two feature values
as follows:

dðAf;BfÞ ¼ jAf �Bf j
jmaxðAf;BfÞj : (1)

Let us suppose we have N distinct features ðf1; f2; . . . ;
fNÞ in our feature set. We can then define our similarity
score s between two functions A and B by taking the aver-
age of relative differences for all the features as follows:

sðA;BÞ ¼ 1� dðAf1 ; Bf1Þ þ � � � þ dðAfN ;BfN Þ
� �

N
: (2)

Although each numeric feature can have a different
range of values, TIKNIB can effectively handle them using
relative differences by representing the difference of each
feature with a value between 0 and 1. Therefore, the score s
is always within the range of 0 to 1.

Furthermore, we can intuitively understand and inter-
pret the BCSA results using our scoring metric. For exam-
ple, suppose there are two functions A and B derived from
the same source code with and without compiler option X,
respectively. If the relative difference of the feature value f
between the two functions is small, it implies that f is a
robust feature against compiler optionX.

In this paper, we focus only on simple relative differen-
ces, rather than exploring complex relationships among the
features for interpretability. However, we believe that our
approach could be a stepping-stone toward fabricating
more improved interpretable models to understand such
complex relationships.

4.4 Feature Selection

Based on our scoring metric, we perform lightweight pre-
processing to select useful features for BCSA as some fea-
tures may not help in making a distinction between
functions. To measure the quality of a given feature set, we
compute the area under the receiver operating characteristic
(ROC) curve (i.e., the ROC AUC) of generated models.

Suppose we are given a dataset in BINKIT, which is gener-
ated from source code containing N unique functions. In
total, we have a maximum ofN �M functions in our dataset,
whereM is the number of combinations of compiler options
used to generate the dataset. The actual number of functions
can be less than N �M due to function inlining. For each
unique function �, we randomly select two other functions
with the following conditions. (1) A true positive (TP) func-
tion, �TP, is generated from the same source code as in �,
with different compiler options, and (2) a true negative
(TN) function, �TN, is generated from source code that is dif-
ferent from the one used to generate �, with the same com-
piler options as for �TP. We generate such pairs for each
unique function, thereby acquiring around 2 �N function

TABLE 4
Summary of Numeric Presemantic Features Used in TIKNIB

TABLE 5
Breakdown of the Feature Extracting Time for BINKIT

[y] The average time spent for extracting features from a function, which is
computed by dividing the total time (the fourth column of this table) by the
number of functions (the last column of Table 3).

1670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

pairs. We then compute the similarity scores for the func-
tions in each pair and their AUC.

We note that the same methodology has been used in
prior works [12], [13]. We chose the method as it allows us
to efficiently analyze the tendency over a large-scale dataset.
One may also consider top-k [12], [13], [14], [20] or preci-
sion@k [12], [20] as an evaluation metric, but this
approach has too much computational overhead: OððN �
MÞ2Þ operations.

Unfortunately, there is no efficient algorithm for selecting
an optimal feature subset to use; it is indeed a well-known
NP-hard problem [120]. Therefore, we leverage a greedy
feature selection algorithm [121]. Starting from an empty set
F, we determine whether we can add a feature to F to
increase its AUC. For every possible feature, we make a
union with F and compute the corresponding AUC. We
then select one that maximizes the AUC and update F to
include the selected feature. We repeat this process until the
AUC does not increase further by adding a new feature.
Although our approach does not guarantee finding an opti-
mal solution, it still provides empirically meaningful
results, as we describe in the following sections.

4.5 Experimental Setup

For all experiments in this study, we perform 10-fold cross-
validation on each test. When we split a test dataset, we
ensure functions that share the same source code (i.e.,
source file name and line number) are either in a training or
testing set, but not in both. For each fold, during the learn-
ing phase, i.e., the feature selection phase, we select up to
200K functions from a training set and conduct feature
selection, as training millions of functions would take a sig-
nificant amount of time. Limiting the number of functions
for training may degrade the final results. However, when
we tested the number of functions from 100K to 1000K, the
results remained almost consistent. In the validation phase,
we test all the functions in the testing set without any sam-
pling. Thus, after 10-fold validation, all the functions in the
target dataset are tested at least once.

We ran all our experiments on a server equipped with
four Intel Xeon E7-8867v4 2.40 GHz CPUs (total 144 cores),
896 GB DDR4 RAM, and 8 TB SSD. We set up Ubuntu
18.04.5 LTS with IDA Pro v6.95 [95] on the server. For fea-
ture selection and similarity comparison, we utilized
Python scikit-learn [122], SciPy [123], and NumPy [124].

5 PRESEMANTIC FEATURE ANALYSIS (RQ2)

We now present our experimental results using TIKNIB on
the presemantic features (Section 4.2) to answer RQ2 (Sec-
tion 2.3). With our comprehensive analysis of these features,
we obtained several useful insights for future research. In
this section, we discuss our findings and lessons learned.

5.1 Analysis Result

To analyze the impact of various compiler options and tar-
get architectures on BCSA, we conducted a total of 72 tests
using TIKNIB. We conducted the tests on our benchmark,
BINKIT, with the ground truth that we built in Section 3.
Table 6 describes the experimental results where each col-
umn corresponds to a test we performed. Note that we

present only 26 out of 72 tests because of the space limit.
Unless otherwise specified, all the tests were performed on
the NORMAL dataset. As described in Section 4.4, we pre-
pared 10-fold sets for each test. We divided the tests into
seven groups according to their purposes, as shown in the
top row of the table. For example, the Arch group contains a
set of tests to evaluate each feature against varying target
architectures.

For each test, we select function pairs for training and
testing as described in Section 4.4. That is, for a function �,
we select its corresponding functions (i.e., �TP and �TN).
Therefore, N functions produce 2 �N functions pairs. The
first row (�1) of Table 6 shows the number of function pairs
for each test. When selecting these pairs, we deliberately
choose the target options based on the goal of each test. For
instance, we test the influence of varying the target architec-
ture from x86 to ARM (x86 versus ARM column of Table 6).
For each function � in the x86 binaries of our dataset, we
select both �TP and �TN from the ARM binaries compiled
with the same compiler option as in �. In other words, we
fix all the other options, except for the target architecture for
choosing �TP and �TN so we can focus on our testing goal.
The same rule applies to other columns. For the Rand. col-
umns, we alter all the compiler options in the group ran-
domly to generate function pairs.

The second row (�2) of Table 6 presents the time spent for
training and testing in each test, which excludes the time for
loading the function data on the memory. The average time
spent for a single function was less than 1 ms.

Each cell in the third row (�3) of Table 6 represents the
average of dð�f; �

TN
f Þ � dð�f; �

TP
f Þ for feature f , which we

call the TP-TN gap of f . This TP-TN gap measures the simi-
larity between �TP and �, as well as the difference between
�TN and �, in terms of the target feature. Thus, when the
gap of a feature is larger, its discriminative capability for
BCSA is higher. As we conduct 10-fold validation for each
test, we highlight the cells with gray when the correspond-
ing feature is chosen in all ten trials. Such features show rel-
atively higher TP-TN gaps than the others do in each test.
We also present the average TP-TN gaps in the fourth row
(�4) of the table.

The average number of the selected features in each test
is shown in the fifth row (�5) of Table 6. A few presemantic
features could achieve high AUCs and average precisions
(APs), as shown in the sixth row (�6) and seventh row (�7) of
the same table, respectively. We now summarize our obser-
vations as follows.

5.1.1 Optimization is Largely Influential

Many researchers have focused on designing a model for
cross-architecture BCSA [11], [15], [18], [22], [33]. However,
our experimental results show that architecture may not be
the most critical factor for BCSA. Instead, optimization level
was the most influential factor in terms of the relative differ-
ence between presemantic features. In particular, we mea-
sured the average TP-TN gap of all the presemantic features
for each test (Avg. of TP-TN Gap row of the table) and found
that the average gap of the O0 versus O3 test (0.41) is less
than that of the x86 versus ARM test (0.46) and the x86 ver-
sus MIPS test (0.42). Furthermore, the optimization level

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1671

random test (Rand. column of the Opt Level group) shows
the lowest AUC (0.96) compared to that of the architecture
and compiler group (0.98). These results confirm that com-
pilers can produce largely distinct binaries depending on
the optimization techniques used; hence, the variation
among the binaries due to the optimization is considerably
greater than that due to the target architecture on our
dataset.

5.1.2 Compiler Version Has a Small Impact

Approximately one-third of the previous benchmarks
shown in Table 2 employ multiple versions of the same
compiler. However, we found that even the major versions
of the same compiler produce similar binaries. In other
words, compiler versions do not heavily affect presemantic
features. Although Table 6 does not include all the tests we
performed because of the space constraints, it is apparent
from the Compiler column that the two tests between two
different versions of the same compiler, i.e., GCC v4 versus
GCC v8 and Clang v4 versus Clang v7, have much higher
TP-TN gaps (0.52) than other tests, and their AUCs are close
to 1.0.

5.1.3 GCC and Clang Have Diverse Characteristics

Conversely, the GCC versus Clang test resulted in the low-
est TP-TN gap (0.44) and AUC (0.97) among the tests in the
Compiler group. This can be because each compiler employs
a different back-end, thereby producing different binaries.
Another potential problem is that the techniques inside
each optimization level can vary depending on the com-
piler. We detail this in Section 7.2.

5.1.4 ARM Binaries are Closer to x86 Binaries Than

MIPS

The tests in the Arch group measure the influence of target
architectures with the NORMAL dataset. Overall, the target
architecture did not have much of an effect on the accuracy
rate. The AUCs were over 0.98 in all the cases. Surprisingly,
the x86 versus ARM test had the highest TP-TN gap (0.46)
and AUC (1.0), indicating that the presemantic features of
the x86 and ARM binaries are similar to each other, despite
being distinct architectures. The ARM versus MIPS test
showed a lower TP-TN gap (0.43) and AUC (0.98) although
both of them are RISC architectures. Additionally, the effect
of the word size (i.e., bits) and endianness was relatively

TABLE 6
In-Depth Analysis Results of Presemantic Features Obtained by Running TIKNIB on BINKIT

All values in the table are 10-fold cross validation averages. We color a cell gray if a feature was consistently selected (i.e., 10 times) during the 10-fold valida-
tion. Due to the space constraints, we only display features that have been selected at least once during the 10-fold validation.
yWe compare a function from the NORMAL to the corresponding function in each target dataset.
zWe match functions whose compiler options are largely distant to test for bad cases. Please refer to Section 5.1.8 for additional information.
" These in the first rows (�1) are divided by 104 instead of 106.
� The train and test times in the seconds rows (�2) do not include the time for data loading.

1672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

small. Nevertheless, we cannot rule out the possibility that
our feature extraction for MIPS binaries is erroneous. We
further discuss this issue in Section 7.1.

5.1.5 Closer Optimization Levels Show Similar Results

We also measured the effect of size optimization (Os) by
matching function � in the NORMAL dataset with a function
(�TP and �TN) in the SIZEOPT dataset. Subsequently, the bina-
ries compiled with the Os option were similar to the ones
compiled with the O1 and O2 options. This is not surprising
because Os enables most of the O2 techniques in both GCC
and Clang [125], [126]. Furthermore, we observe that the O1
and O2 options produce similar binaries, although this is
not shown in Table 6 due to the space limit.

5.1.6 Extra Options Have Less Impact

To assess the influence of the PIE, no-inline, and LTO
options, we compared functions in the NORMAL dataset with
those in the PIE, NOINLINE, and LTO datasets, respectively.
For the no-inline test, we limit the optimization level from
O1 to O3 as function inlining is applied from O1. It was
observed that the influence of such extra options is not sig-
nificant. Binaries with and without the PIE option were sim-
ilar to each other because it only changes the instructions to
use relative addresses; hence, it does not affect our prese-
mantic features. Function inlining also does not affect sev-
eral features, such as the number of incoming calls, which
results in a high AUC (0.97). LTO does not exhibit any nota-
ble effects either.

However, by analyzing each test case, we found that
some options affect the AUCmore than others. For example,
in the no-inline test, the AUC largely decreases as the opti-
mization level increases: O1 (0.995), O2 (0.981), and O3

(0.967). This is because as more optimization techniques are
applied, more functions are inlined and transformed in the
NORMAL, while their corresponding functions in the NOIN-

LINE are not inlined. On the other hand, in the LTO test, the
AUC increases as the version of Clang increases: v4 (0.956),
v5 (0.968), v6 (0.986), and v7 (0.986). In contrast, GCC shows
stable AUCs (0.987–0.988) across all versions, and all the
AUCs are higher than those of Clang. This result indicates
that varying multiple options would significantly affect the
success rate, which we describe below.

5.1.7 Obfuscator-LLVM Does not Affect CG Features

Many previous studies [20], [31], [61], [67], [70] chose Obfus-
cator-LLVM [105] for their obfuscation tests as it signifi-
cantly varies the binary code [20]. However, applying all of
its three obfuscation options shows an AUC of 0.95 on our
dataset, which is relatively higher than that of the optimiza-
tion level tests. Obfuscation severely decreases the average
TP-TN gaps except for CG features. This is because Obfus-
cator-LLVM applies intra-procedural obfuscation. The SUB

obfuscation substitutes arithmetic instructions while pre-
serving the semantics; the BCF obfuscation notably affects
CFG features by adding bogus control flows; the FLA obfus-
cation changes the predicates of control structures [127].
However, none of them conducts inter-procedural obfusca-
tion, which modifies the function call relationship. Thus, we

encourage future studies to use other obfuscators, such as
Themida [128] or VMProtect [107], for evaluating their tech-
niques against inter-procedural obfuscation.

5.1.8 Comparison Target Option Does Matter

Based on the experimental results thus far, we perform extra
tests to understand the influence of comparing multiple
compiler options by intentionally selecting �TP and �TN

from binaries that could provide the lowest TP-TN gap. In
this study, we present two of them because of the space
limit. Specifically, for the first test, we selected functions
from 32-bit ARM binaries compiled using GCC v4 with the
O0 option, and the corresponding �TP and �TN functions
from 64-bit MIPS big-endian binaries compiled using Clang
v7 with the O3 option. For the second test, we changed the
Clang compiler to the Obfuscator-LLVM with all three
obfuscation options turned on. The Bad column of the table
summarizes the results. The AUC in both cases was approx-
imately 0.93 and 0.91, respectively. Their average TP-TN
gaps were also significantly lower (0.42 and 0.27) than those
in the other tests. This signifies the importance of choosing
the comparison targets for evaluating BCSA techniques.
Existing BCSA research compares functions for all possible
targets in a dataset, as shown in the Rand. tests in this study.
However, our results suggest that researchers should care-
fully choose evaluation targets to avoid overlooking the
influence of bad cases.

5.2 Comparison Against State-of-the-Art
Techniques

From our experiments in Section 5.1, we show that using
only presemantic features with a simple linear model (i.e.,
TIKNIB) is enough to obtain high AUC values. Next, we com-
pare TIKNIB with state-of-the-art techniques.

To accomplish this, we chose one of the latest approaches,
VulSeeker [13], as our target because it utilizes both prese-
mantic and semantic features in a numeric form by leverag-
ing neural network-based post-processing. Thus, we can
directly evaluate our simple model using numeric prese-
mantic features. Note that our goal is not to claim that our
approach is better, but to demonstrate that the proper engineering
of presemantic features can achieve results that are comparable to
those of state-of-the-art techniques.

For this experiment, we prepared the datasets of Vul-
Seeker, along with the additional ones as listed in Table 7.
We refer to these datasets as ASE1 through ASE4. ASE1 and
ASE3 are the ones used in VulSeeker, and ASE2 and ASE4
are extra ones with more packages, target architectures, and
compilers. Note that the number of packages, architectures,
and compiler options increases as the index of the dataset
increases. The optimization levels for all datasets are O0–
O3. We intentionally omitted firmware images used in the
original paper, as they do not provide solid ground truth.
For each dataset, we established the ground truth in the
same way described in Section 3.2. The time spent for IDA
pre-processing, ground truth building, and feature extract-
ing was 2197 s, 889 s, and 239 s, respectively. We then con-
ducted experiments with the methodology explained
in Section 4; note that the same methodology was used in
the original paper.

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1673

Fig. 2 depicts the results. Fig. 2a shows that the AUCs of
TIKNIB on ASE1 and ASE3 are 0.9724 and 0.9783, respec-
tively. However, those of VulSeeker were 0.99 and 0.8849 as
reported by the authors [13]. Fig. 2b illustrates that the AUC
of each fold in ASE3 ranged from 0.9777 to 0.9793, which is
higher than that of VulSeeker (0.8849). Therefore, TIKNIB

was more robust than VulSeeker in terms of the size and
compile options in the dataset. TIKNIB also exhibits stable
results, even for ASE2 and ASE4.

From these results, we conclude that presemantic fea-
tures combined with proper feature engineering can achieve
results that are comparable to those of state-of-the-art BCSA
techniques. Although our current focus is on comparing fea-
ture values, it is possible to extend our work to analyze the
complex relationships among the features by utilizing
advanced machine learning techniques [12], [13], [19], [20],
[21], [23], [24], [25], [26], [27], [28], [29].

5.3 Analysis Case Study: Heartbleed
(CVE-2014-0160)

To further assess the effectiveness of presemantic features,
we apply TIKNIB to vulnerability discovery, which is a com-
mon practical application of BCSA [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21]. We investigate whether
TIKNIB can effectively identify a vulnerable function across
various compiler options and architectures.

We chose the tls1_process_heartbeat function in
the OpenSSL package as our target function because it con-
tains the infamous Heartbleed vulnerability (i.e., CVE-2014-
0160), which has been widely used in prior studies for eval-
uation [11], [12], [20], [23]. We utilized two versions of
OpenSSL in the ASE4 dataset shown in Table 7: v1.0.1f con-
tains the vulnerable function, while v1.0.1u contains the
patched version. As the dataset was compiled with 288 dis-
tinct combinations of compiler options and architectures,
each function has 576 samples: 288 (the number of possible
combinations) � 2 (the number of available OpenSSL ver-
sions) � 576.

Notably, testing all possible combinations of options
entails a significant computational overhead; it requires 288
(the number of options for our target function) � 287 (the
number of options for a function in OpenSSL) � 2 (the num-
ber of OpenSSL versions) � 5K (the number of functions in
OpenSSL) � 826M operations. Therefore, we focused on
architectures and compiler options that are widely used
in software packages. Specifically, we chose three 64-bit

architectures (aarch64, x86-64, and mips64el) and two levels
of optimization (O2–O3). This setup reflects real-world scenar-
ios, as many software packages use O2–O3 by default: cor-
eutils uses O2, while OpenSSL uses O3. Previous
studies [20], [59] also used the same setup (O2–O3) except that
they only tested x86 binaries. Additionally, we selected four
compilers (Clang v4.0, Clang, v7.0, GCC v4.9.4, and GCC
v8.2.0) to consider extreme cases. Consequently, there were
24 possible combinations of these architectures and compiler
options.

We conducted a total of 552 tests on these 24 option com-
binations: 24 (the number of options for our target function)
� 23 (the number of options for a function in OpenSSL). For
each test, we simply computed the similarity scores for all
function pairs using TIKNIB and checked the rank of the vul-
nerable function. To reflect real-world scenarios, we
assumed in all tests that we were not aware of the precise
optimization level, compiler type, or compiler version of the
testing binary. On the other hand, we assumed that we
could recognize the architecture of the testing binary as it is
straightforward. Therefore, when we train TIKNIB, we chose
a feature set that achieved the best performance across all
possible combinations of optimization levels, compiler
types, and compiler versions, while setting the source and
target architectures fixed. For training, we used the NORMAL

dataset (Table 3) as it does not include OpenSSL; thus, the
training and testing datasets are completely distinct.

Table 8 summarizes the results, with each column corre-
sponding to the tests for the specified options. We orga-
nized the results by the option group specified in each
column after running all 522 tests. The first row of the table
(# of Option Pairs) indicates the total number of option pairs,
which is the same as that of true positive pairs. The remain-
ing rows of the table show the averaged values obtained by
the option pair tests. For example, the All to All column rep-
resents the averaged results of all possible combinations
(24� 23). The ARM to MIPS column, on the other hand, rep-
resents the averaged results of all combinations with the
source and target architectures set to ARM and MIPS,
respectively. That is, we queried the vulnerable functions
compiled with ARM and searched for their true positives
compiled with MIPS while varying the other options.

In the majority of the tests, TIKNIB successfully identified
the vulnerable function with a rank close to 1.0 and a preci-
sion@1 close to 1.0, demonstrating its effectiveness in vulner-
ability discovery. Meanwhile, it performed marginally
worse in the tests for MIPS. This result corroborates our
observation in Section 5.1 that feature extraction for MIPS
binaries can be erroneous. We further discuss this issue

TABLE 7
Summary of Datasets for Comparing TIKNIB

to VulSeeker (i.e., ASE Datasets)

As the index of the dataset grows, the number of packages, architectures, and
compiler options increases ASE1 and ASE3 are the datasets used in Vul-
Seeker [13]. For all datasets, the optimization levels are O0–O3.

Fig. 2. Results obtained by running TIKNIB on ASE datasets.

1674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

in Section 7.1. Additionally, the last three rows of Table 8 dis-
play the ranks of additional functions worth noting. The
dtls represents the DTLS implementation of our target
function (i.e., dtls1_process_heartbeat), which also
contains the same vulnerability. Due to its similarity to our
target function, it was ranked highly in all tests. The last two
rows of the table present the ranks of the patched versions of
these two functions in OpenSSL v1.0.1u. Notably, the patch
of the vulnerability affects the presemantic features of these
functions, particularly the number of control transfer and
arithmetic instructions. Consequently, the patched functions
had a low rank.

5.4 Analyzing Real-World Vulnerabilities on
Firmware Images of IoT Devices

We further evaluate the efficacy of presemantic features by
identifying vulnerable functions in real-world firmware
images of IoT devices using TIKNIB. For the firmware
images, we utilized the firmware dataset of FirmAE [129],
which is one of the industry-leading large-scale firmware
emulation frameworks. The dataset consists of 1,124 firm-
ware images of wireless routers and IP cameras from the
top eight vendors.

Particularly, we search for another infamous vulnerabil-
ity (CVE-2015-1791) from OpenSSL, which has a race condi-
tion error in the ssl3_get_new_session_ticket()

function. This vulnerability has also been extensively used
in previous studies [12], [13], [23]. Since there exist numer-
ous functions (�52M) in the firmware images, identifying
the vulnerable function among them is sufficient to evaluate
the impact of presemantic features.

We evaluate our system, TIKNIB, against state-of-the-art
techniques that support both ARM and MIPS architec-
tures [12], [13]. Notably, these two architectures are preva-
lent in IoT devices [129]. However, while analyzing the
repositories of these tools, we found that they did not
include their complete source code nor datasets. As a result,
we were unable to directly compare our system to theirs.
Instead, we compared the results to the ones stated in the
paper [13]. Specifically, we compiled the vulnerable version
of OpenSSL (i.e., v1.0.1f) using a variety of compiler options
and architectures, including six architectures (x86, ARM,
and MIPS, each with 32 and 64 bits), two compilers (GCC
v4.9.4 and v5.5.0), and two optimization levels (O2–O3).
Here, we used two optimization levels (O2–O3) because

many real-world software packages use them by default, as
described in Section 5.3. Consequently, we obtained 24 sam-
ples of the vulnerable function. Notably, this dataset is
essentially a subset of the ASE3 dataset, which is introduced
in Table 7. Then, we queried each sample vulnerable func-
tion against all 52M functions in the 1,124 firmware images.
This resulted in 24 similarity scores for each of the 52M
functions. We then calculated the top-k result by averaging
the similarity scores for each function. Finally, we manually
counted the number of functions that were actually vulnera-
ble in the top-100 results.

Table 9 summarizes the top-k results for the average simi-
larity score for all 52M firmware functions.While our dataset
is distinct from those used in the previous studies [12], [13],
TIKNIB equipped with presemantic features achieved a level
of performance comparable to that of the state-of-the-art
tools. It should be noted that our objective is not to assert that
our approach is superior to the state-of-the-art tools, but rather to
demonstrate the efficacy of appropriately utilizing presemantic fea-
tures.Additionally, our experimental results indicate that the
real-world IoT firmware images (at least those that we
tested) are highly likely to be compiledwith O2 or O3.

6 BENEFIT OF TYPE INFORMATION (RQ3)

To assess the implication of debugging information on
BCSA, we use type information as a case study on the pre-
sumption that they do not vary unless the source code is
changed. Specifically, we extract three types of features per

TABLE 8
Real-World Vulnerability (Heartbleed, CVE-2014-0160) Analysis Result Using TIKNIB (Top-k and Precision@1)

We tested three 64-bit architectures (aarch64, x86-64, and mips64el) that are widely used in software packages.
All rank and precision@1 values are averaged; because each test involves multiple combinations of options (the first row), their results are averaged.
� These are the results of the vulnerable tls1_process_heartbeat function in OpenSSL v1.0.1f.
y This is the result of the vulnerable dtls1_process_heartbeatfunction in OpenSSL v1.0.1f, which is similar to but distinct from the tls1_pro-
cess_heartbeat function.
z These are the results of their patched versions in OpenSSL v1.0.1u.

TABLE 9
Top-k Results of Identifying CVE-2015-1791 for 52M Functions

in 1,124 IoT Firmware Images Using TIKNIB

Top-k Geminiy VulSeekery TIKNIB (Ours)

1 1 (100%) 1 (100%) 1 (100%)
5 2 (40%) 3 (60%) 5 (100%)
10 4 (40%) 6 (60%) 10 (100%)
50 36 (72%) 41 (82%) 46 (92%)
100 75 (75%) 83 (83%) 82 (82%)

[y] Among 43 BCSA papers that we studied in Section 2, 10 released their
source code, and two of these 10 support both ARM and MIPS architectures
(Gemini [12] and VulSeeker [13]). However, we were not able to compare the
results directly because these tools released neither their firmware datasets nor
complete source code. Here, we present the results stated in the latest one [13];
note that their firmware dataset is different from the one that we used.

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1675

function: the number of arguments, the types of arguments,
and the return type of a function. Note that inferring the
correct type information is challenging and is actively
researched [130], [131]. In this context, we only consider
basic types: char, short, int, float, enum, struct,
void, and void *. To extract type information, we create a
type map to handle custom types defined in each package
by recursively following definitions using Ctags [132]. We
then assign a unique prime number as an identifier to each
type. To represent the argument types as a single number,
we multiply their type identifiers.

To investigate the benefit of these type features, we con-
ducted the same experiments described in Section 5, and
Table 10 presents the results. Here, we explain the results
by comparing them with Table 6, which we obtained with-
out using the type features. The first row of Table 10 shows
that the average number of selected features, including type
features, is smaller than that of selected features (�5)
in Table 6. Note that all three type features were always
selected in all tests. The second row in Table 10 shows that
utilizing the type features could achieve a large TP-TN gap
on average (over 0.50); the corresponding values in �4
of Table 6 are much smaller. Consequently, the AUC and
AP with type features reached over 0.99 in all tests, as
shown in the last two rows of Table 10. Additionally, it
shows a similar result (i.e., an AUC close to 1.0) on the ASE
datasets that we utilized for the state-of-the-art comparison
(Section 5.2).

This result confirms that type information indeed bene-
fits BCSA in terms of the success rate, although recovering
such information is a difficult task. Therefore, we encourage
further research on BCSA to take account of recovering
debugging information, such as type recovery or inference,
from binary code [130], [131], [133], [134], [135], [136].

7 FAILURE CASE INQUIRY (RQ4)

We carefully analyzed the failure cases in our experiments
and found their causes. It was possible because our bench-
mark (i.e., BINKIT) has the ground truth and our tool (i.e.,
TIKNIB) uses an interpretable model. We first checked the
TP-TN gap of each feature for failure cases and further ana-
lyzed them using IDA Pro. We found that optimization
largely affects the BCSA performance, as described
in Section 5.1. In this section, we discuss other failure causes
and summarize the lessons learned; however, many of these
causes are closely related to optimization. We categorized
the causes into three cases: (1) errors in binary analysis tools

(Section 7.1), (2) differences in compiler back-ends (Sec-
tion 7.2), and (3) architecture-specific code (Section 7.3).

7.1 Errors in Binary Analysis Tools

Most BCSA research heavily relies on COTS binary analysis
tools such as IDA Pro [95]. However, we found that IDA Pro
can yield false results. First, IDA Pro fails to analyze indirect
branches, especially when handling MIPS binaries compiled
with Clang using the position-independent code (PIC)
option. The PIC option sets the compiler to generate machine
code that can be placed in any address, and it is mainly used
for compiling shared libraries or PIE binaries. Particularly,
compilers use register-indirect branch instructions, such as
jalr, to invoke functions in a position-independent man-
ner. For example, when calling a function, GCC stores the
base address of the Global Offset Table (GOT) in the gp regis-
ter, and uses it to calculate the function addresses at runtime.
In contrast, Clang uses the s0 or v0 register to store such
base addresses. This subtle difference confuses IDA Pro and
makes it fail to obtain the base address of the GOT, so that it
cannot compute the target addresses of indirect branches.

Moreover, IDA Pro sometimes generates incomplete
CFGs. When there is a switch statement, compilers often
make a table that stores a list of jump target addresses.
However, IDA Pro often failed to correctly identify the
number of elements in the table, especially on the ARM
architecture, where switch tables can be placed in a code
segment. Sometimes, switch tables are located between
basic blocks, and it is more difficult to distinguish them.

The problem worsens when handling MIPS binaries
compiled for Clang with PIC, because switch tables are typi-
cally stored in a read-only data section, which can be refer-
enced through a GOT. Therefore, if IDA Pro cannot fully
analyze the base address of the GOT, it also fails to identify
the jump targets of switch statements.

As we manually analyzed the errors, we may have
missed some. Systematically finding such errors is a diffi-
cult task because the internals of many disassembly tools
are not fully disclosed, and they differ significantly. One
may extend the previous study [96] to further analyze the
errors of disassembly tools and extracted features, and we
leave this for future studies.

During the analysis, we found that IDA Pro also failed to
fetch some function names if they had a prefix pre-defined in
IDAPro, such as off_ or sub_. For example, it failed to fetch
the name of the off_to_chars function in the tar pack-
age. We used IDA Pro v6.95 in our experiments, but we
found that its latest version (v7.5) does not have this issue.

TABLE 10
In-Depth Analysis Results of Presemantic and Type Features Obtained by Running TIKNIB on BINKIT

All values in the table are 10-fold cross validation averages.
yWe compare a function from the NORMAL to the corresponding function in each target dataset.
zWe match functions whose compiler options are largely distant to test for bad cases. Please refer to Section 5.1.8 for additional information.

1676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

7.2 Diversity of Compiler Back-Ends

From Section 5.1, the characteristics of binaries largely vary
depending on the underlying compiler back-end. Our study
reveals that GCC and Clang emit significantly different
binaries from the same source code.

First, the number of basic blocks for the two compilers
significantly differs. To observe how the number changes
depending on different compiler options and target archi-
tectures, we counted the number for the NORMAL dataset.
Fig. 3 illustrates the number of functions and basic blocks in
the dataset for selected compiler options and architectures
(see Appendix for details), available in the online supple-
mental material. As shown in the figure, the number of basic
blocks in binaries compiled with Clang is significantly
larger than that in binaries compiled with GCC for O0. We
figured out that Clang inserts dummy basic blocks for O0

on ARM and MIPS; these dummy blocks have only one
branch instruction to the next block. These dummy blocks
are removed when the optimization level increases (O1) as
optimization techniques in Clang merge such basic blocks
into their predecessors.

In addition, the two compilers apply different internal
techniques for the same optimization level, while they
express the optimization level with the same terms (i.e., O0–
O3 and Os). In particular, by analyzing the number of caller
and callee functions, we discovered that GCC applies func-
tion inlining from O1, whereas Clang applies it from O2.
Consequently, the number of functions for each compiler
significantly differs (see the number of functions in O1 for
Clang and that for GCC in Fig. 3).

Moreover, we discovered that two compilers internally
leverage different function-level code for specific opera-
tions. For example, GCC has functions, such as __umoddl3
in libgcc2.c or __aeabi_dadd in ieee754-df.S, to
optimize certain arithmetic operations. Furthermore, on
x86, GCC generates a special function, such as __x86.

get_pc_thunk.bx, to load the current instruction pointer
to a register, whereas Clang inlines this procedure inside
the target function. These functions can largely affect the
call-related features, such as the number of control transfer
instructions or that of outgoing calls. Although we removed
these compiler-specific functions so as not to include them

in our experiments (Section 3.2), they may have been inlined
in their caller functions in higher optimization levels (O2–
O3). Considering such functions took approximately 4% of
the identified functions by IDA Pro, they may have affected
the resulting features.

Similarly, the two compilers also utilize different instruc-
tion-level codes. For example, in the case of move instruc-
tions for ARM, GCC uses conditional instructions, such as
MOVLE, MOVGT, or MOVNE, unless the optimization level is
zero (O0). In contrast, Clang utilizes regular move instruc-
tions along with branch instructions. This significantly
affects the number of instructions as well as that of basic
blocks in the resulting binaries. Consequently, in such spe-
cial cases, the functions compiled using GCC have a rela-
tively smaller number of basic blocks compared with those
using Clang.

Finally, compilers sometimes generate multiple copies of
the same function for optimization purposes. For example,
they conduct inter-procedural scalar replacement of aggre-
gates, removal of unused parameters, or optimization of
cache/memory usage. Consequently, a compiled binary can
have multiple functions that share the same source code but
have different binary code. We found that GCC and Clang
operate differently on this. Specifically, we discovered three
techniques in GCC that produce function copies with spe-
cial suffixes, such as .part, .cold, or .isra. For instance,
for the get_data function of readelf in binutils (in
O3), GCC yields three copies with the .isra suffix, while
Clang does not produce any such functions. Similarly, for
the tree_eval and expr_eval functions in bool (in O3),
GCC produces two copies with the .cold suffix, but Clang
does not. Although we selected only one such copy in our
experiments to avoid biased results (Section 3.2), the other
copies can still survive in their caller functions by inlining.

In summary, the diversities of compiler back-ends can
largely affect the performance of BCSA, by making the
resulting binaries divergent. Here, we have introduced the
major issues we discovered. We encourage further studies
to investigate the implications of detailed options at each
optimization level across different compilers.

7.3 Architecture-Specific Code

When manually inspecting failures, we found that some
packages have architecture-specific code snippets guarded
with conditional macros such as #if and #ifdef direc-
tives. For example, various functions in OpenSSL, such as
mul_add and BN_UMULT_HIGH, are written in architec-
ture-specific inline assembly code to generate highly opti-
mized binaries. This means that a function may correspond
to two or more distinct source lines depending on the target
architecture.

Therefore, instruction-level presemantic features can be
significantly different across different architectures when
the target programs have architecture-specific code snip-
pets, and one should consider such code when designing
cross-architecture BCSA techniques.

8 DISCUSSION

Our study identifies several future research directions in
BCSA. First, many BCSA papers have focused on building a

Fig. 3. The final number of functions and basic blocks in NORMAL (see
Appendix for the detailed version), available in the online supplemental
material.

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1677

general model that can result in stable outcomes with any
compiler option. However, one could train a model target-
ing a specific set of compiler options, as shown in our exper-
iment, to enhance their BCSA techniques. It is evident from
our experiment’s results that one can easily increase the suc-
cess rate of their technique by inferring the compiler options
used to compile the target binaries. There exists such an
inference technique [137], and combining it with existing
BCSA methods is a promising research direction.

Second, there are only a few studies on utilizing decom-
pilation techniques for BCSA. However, our study reveals
the importance of such techniques, and thus, invites further
research on leveraging them for BCSA. One could also con-
duct a comprehensive analysis on the implication of seman-
tic features along with decompilation techniques.

Additionally, we investigated fundamental presemantic
features in this study. However, the effectiveness of seman-
tic features is not well-studied yet in this field. Therefore,
we encourage further research into investigating the effec-
tiveness of semantic features along with other presemantic
features that are not covered in the study. In particular,
adopting NLP techniques would be another essential study
as in many recent studies.

Our scope is limited to a function-level analysis (Sec-
tion 4.1). However, one may extend the scope to handle
other BCSA scenarios to compare binaries [20], [27], [54] or
a series of instructions [32], [34], [57]. Additionally, one can
extend our approach for various purposes, such as vulnera-
bility discovery [11], [12], [20], [23], [28], [59], [138], malware
detection [5], [6], [139], [140], [141], [142], [143], library func-
tion identification [71], [84], [144], [145], [146], [147], plagia-
rism/authorship detection [8], [82], [148], or patch
identification [149], [150], [151]. However, extending our
work to other BCSA tasks may not be directly applicable.
This is because it requires additional domain knowledge to
design an appropriate model that fits the purpose and care-
ful consideration of the trade-offs. We believe that the
reported insights in this study can help in this process.

Recall from Section 2, we did not intend to completely
survey the existing techniques, but instead, we focused on
systematizing the fundamental features used in previous lit-
erature. Furthermore, our goal was to investigate underex-
plored research questions in the field by conducting a series
of rigorous experiments. For a complete survey, we refer
readers to the recent surveys on BCSA [152], [153].

Finally, because our focus is on comparing binaries with-
out source code, we intentionally exclude similarity com-
parison techniques that require source code. Nevertheless,
it is noteworthy that there has been plentiful literature on
comparing two source code snippets [75], [154], [155], [156],
[157], [158], [159], [160], [161], [162] or comparing source
snippets with binary snippets [163], [164], [165], [166].

9 CONCLUSION

We studied previous BCSA literature in terms of the fea-
tures and benchmarks used. We discovered that none of the
previous BCSA studies used the same benchmark for their
evaluation, and that some of them required manually fabri-
cating the ground truth for their benchmark. This observa-
tion inspired us to design BINKIT, the first large-scale public

benchmark for BCSA, along with a set of automated build
scripts. Additionally, we developed a BCSA tool, TIKNIB,
that employs an interpretable model. Using our benchmark
and tool, we answered less-explored research questions
regarding the syntactic and structural BCSA features. We
discovered that several elementary features can be robust
across different architectures, compiler types, compiler ver-
sions, and even intra-procedural obfuscation. Further, we
proposed potential strategies for enhancing BCSA. We con-
clude by inviting further research on BCSA using our find-
ings and benchmark.

ACKNOWLEDGMENTS

The authors appreciate the anonymous reviewers for their
thoughtful comments.

REFERENCES

[1] S. P. Reiss, “Semantics-based code search,” in Proc. Int. Conf.
Softw. Eng., 2009, pp. 243–253.

[2] gpl-violations.org project prevails in court case on GPL violation by
d-link, 2006. [Online]. Available: https://web.archive.org/web/
20141007073104/http://gpl-violations.org/news/20060922-dlink-
judgement_frankfurt.html

[3] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions
in binaries with neural networks,” in Proc. USENIX Secur. Symp.,
2015, pp. 611–626.

[4] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“ByteWeight: Learning to recognize functions in binary code,” in
Proc. USENIX Secur. Symp., 2014, pp. 845–860.

[5] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch,
C. Kruegel, and S. Zanero, “Identifying dormant functionality
in malware programs,” in Proc. IEEE Symp. Secur. Privacy,
2010, pp. 61–76.

[6] J. Jang, D. Brumley, and S. Venkataraman, “BitShred: Feature
hashing malware for scalable triage and semantic analysis,” in
Proc. ACM Conf. Comput. Commun. Secur., 2011, pp. 309–320.

[7] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection,” in Proc. Int. Symp.
Found. Softw. Eng., 2014, pp. 389–400.

[8] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based soft-
ware plagiarism detection,” in Proc. IEEE Int. Symp. Softw. Rel.
Eng., 2014, pp. 66–77.

[9] X. Meng, B. P. Miller, and K.-S. Jun, “Identifying multiple
authors in a binary program,” in Proc. Eur. Symp. Res. Comput.
Secur., 2017, pp. 286–304.

[10] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow,
“Leveraging semantic signatures for bug search in binary pro-
grams,” inProc. Annu. Comput. Secur. Appl. Conf., 2014, pp. 406–415.

[11] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE:
Efficient cross-architecture identification of bugs in binary code,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2016.

[12] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural net-
work-based graph embedding for cross-platform binary code
similarity detection,” in Proc. ACM Conf. Comput. Commun.
Secur., 2017, pp. 363–376.

[13] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “VulSeeker: A seman-
tic learning based vulnerability seeker for cross-platform bina-
ry,” in Proc. ACM/IEEE Int. Conf. Autom. Softw. Eng., 2018,
pp. 896–899.

[14] Y. David, N. Partush, and E. Yahav, “FirmUp: Precise static detec-
tion of common vulnerabilities in firmware,” in Proc. Int. Conf.
Archit. Support Program. Lang. Oper. Syst., 2018, pp. 392–404.

[15] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.
Tan, “BinGo: Cross-architecture cross-os binary search,” in Proc.
Int. Symp. Found. Softw. Eng., 2016, pp. 678–689.

[16] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Henderson, and H.
Yin, “Extracting conditional formulas for cross-platform bug
search,” in Proc. ACM Symp. Inf. Comput. Commun. Secur.,
2017, pp. 346–359.

1678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

https://web.archive.org/web/20141007073104/http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html
https://web.archive.org/web/20141007073104/http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html
https://web.archive.org/web/20141007073104/http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html

[17] P. Shirani et al., “BinArm: Scalable and efficient detection of vul-
nerabilities in firmware images of intelligent electronic devices,”
in Proc. Int. Conf. Detection Intrusions Malware Vulnerability Assess-
ment, 2018, pp. 114–138.

[18] Y. Xue, Z. Xu, M. Chandramohan, and Y. Liu, “Accurate and
scalable cross-architecture cross-os binary code search with emu-
lation,” IEEE Trans. Softw. Eng., vol. 45, no. 11, pp. 1125–1149,
Nov. 2019.

[19] B. Liu et al., “adiff: Cross-version binary code similarity detection
with DNN,” in Proc. ACM/IEEE Int. Conf. Autom. Softw. Eng.,
2018, pp. 667–678.

[20] S. H. Ding, B. C. Fung, and P. Charland, “Asm2Vec: Boosting
static representation robustness for binary clone search against
code obfuscation and compiler optimization,” in Proc. IEEE
Symp. Secur. Privacy, 2019, pp. 472–489.

[21] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Quer-
zoni, “SAFE: Self-attentive function embeddings for binary sim-
ilarity,” in Int. Conf. Detection Intrusions Malware Vulnerability
Assessment, 2019, pp. 309–329.

[22] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,
“Cross-architecture bug search in binary executables,” in Proc.
IEEE Symp. Secur. Privacy, 2015, pp. 709–724.

[23] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proc. ACM
Conf. Comput. Commun. Secur., 2016, pp. 480–491.

[24] F. Zuo, X. Li, Z. Zhang, P. Young, L. Luo, and Q. Zeng, “Neural
machine translation inspired binary code similarity comparison
beyond function pairs,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2019.

[25] N. Marastoni, R. Giacobazzi, and M. Dalla Preda, “A deep learn-
ing approach to program similarity,” in Proc. 1st Int. Workshop
Mach. Learn. Softw. Eng. Symbiosis, 2018, pp. 26–35.

[26] K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruc-
tion embedding model for natural language processing-inspired
binary code analysis,” in Proc. NDSS Workshop Binary Anal. Res.,
2019.

[27] Y. Duan, X. Li, J. Wang, and H. Yin, “DeepBinDiff: Learning pro-
gram-wide code representations for binary diffing,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2020.

[28] P. Sun, L. Garcia, G. Salles-Loustau, and S. Zonouz, “Hybrid
firmware analysis for known mobile and IoT security
vulnerabilities,” in Proc. 50th Annu. IEEE/IFIP Int. Conf. Depend-
able Syst. Netw., 2020, pp. 373–384.

[29] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Bal-
doni, “Investigating graph embedding neural networks with
unsupervised features extraction for binary analysis,” in Proc.
NDSS Workshop Binary Anal. Res., 2019.

[30] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execu-
tion: Dynamic similarity testing for program binaries and
components,” in Proc. USENIX Secur. Symp., 2014, pp. 303–317.

[31] S. Wang and D. Wu, “In-memory fuzzing for binary code simi-
larity analysis,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng.,
2017, pp. 319–330.

[32] S. H. Ding, B. Fung, and P. Charland, “Kam1n0: MapReduce-
based assembly clone search for reverse engineering,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 461–470.

[33] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Cross-architecture binary
semantics understanding via similar code comparison,” in Proc.
IEEE Int. Conf. Softw. Anal. Evol. Reengineering, 2016, pp. 57–67.

[34] H. Huang, A. M. Youssef, and M. Debbabi, “BinSequence: Fast,
accurate and scalable binary code reuse detection,” in Proc. ACM
Symp. Inf. Comput. Commun. Secur., 2017, pp. 155–166.

[35] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection
across architectures and compiling configurations,” in Proc. Int.
Conf. Progr. Comprehension, 2017, pp. 88–98.

[36] S. Kim et al., “Testing intermediate representations for binary
analysis,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2017,
pp. 353–364.

[37] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86
decompilation using semantics-preserving structural analysis
and iterative control-flow structuring,” in Proc. USENIX Secur.
Symp., 2013, pp. 353–368.

[38] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith,
“No more gotos: Decompilation using pattern-independent con-
trol-flow structuring and semantics-preserving transformations,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2015.

[39] R. Real and J. M. Vargas, “The probabilistic basis of jaccard’s index
of similarity,” Systematic Biol., vol. 45, no. 3, pp. 380–385, 1996.

[40] H. Bunke, “On a relation between graph edit distance and maxi-
mum common subgraph,” Pattern Recognit. Lett., vol. 18, no. 8,
pp. 689–694, 1997.

[41] J. Bromley, I. Guyon, Y. LeCun, E. S€ackinger, and R. Shah,
“Signature verification using a “siamese” time delay neural
network,” in Proc. Adv. Neural Inf. Process. Syst., 1994, pp. 737–744.

[42] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,”Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[43] D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatically find-
ing semantic differences in binary programs,” in Proc. Int. Conf.
Inf. Commun. Secur., 2008, pp. 238–255.

[44] T. Dullien and R. Rolles, “Graph-based comparison of executable
objects (english version),” SSTIC, vol. 5, no. 1, 2005, Art. no. 3.

[45] H. Flake, “Structural comparison of executable objects,” in Proc.
Int. Conf. Detection Intrusions Malware Vulnerability Assessment,
2004, pp. 161–174.

[46] M. Bourquin, A. King, and E. Robbins, “BinSlayer: Accurate
comparison of binary executables,” in Proc. 2nd ACM SIGPLAN
Progr. Protection Reverse Eng. Workshop, 2013, Art. no. 4.

[47] J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with
inter-procedural control flow,” in Proc. Int. Conf. Inf. Secur. Cryp-
tol., 2012, pp. 92–109.

[48] W. Jin et al., “Binary function clustering using semantic hashes,”
in Proc. 11th Int. Conf. Mach. Learn. Appl., 2012, pp. 386–391.

[49] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of
similar code fragments using semantic’juice’,” in Proc. 2nd ACM
SIGPLAN Progr. Protection Reverse Eng. Workshop, 2013, Art. no. 5.

[50] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “SIGMA: A
semantic integrated graph matching approach for identifying
reused functions in binary code,” Digit. Investigation, vol. 12,
pp. S61–S71, 2015.

[51] S. Alrabaee, L. Wang, and M. Debbabi, “BinGold: Towards
robust binary analysis by extracting the semantics of binary code
as semantic flow graphs (SFGS),” Digit. Investigation, vol. 18,
pp. S11–S22, 2016.

[52] T. Kim, Y. R. Lee, B. Kang, and E. G. Im, “Binary executable file
similarity calculation using function matching,” J. Supercomput-
ing, vol. 75, no. 2, pp. 607–622, 2019.

[53] H. Guo et al., “A lightweight cross-version binary code similarity
detection based on similarity and correlation coefficient
features,” IEEE Access, vol. 8, pp. 120 501–120 512, 2020.

[54] Bindiff. [Online]. Available: https://www.zynamics.com/
bindiff.html

[55] Diaphora, a Free and Open Source program diffing tool.
[Online]. Available: http://diaphora.re/

[56] J. W. Oh, “DarunGrim: A patch analysis and binary diffing too,”
2015.

[57] Y. David and E. Yahav, “Tracelet-based code search in exe-
cutables,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2014, pp. 349–360.

[58] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi,
“BinClone: Detecting code clones in malware,” in Proc. Int. Conf.
Softw. Secur. Rel., 2014, pp. 78–87.

[59] Y. David, N. Partush, and E. Yahav, “Statistical similarity of bina-
ries,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Implemen-
tation, 2016, pp. 266–280.

[60] N. Lageman, E. D. Kilmer, R. J. Walls, and P. D. McDaniel,
“BinDNN: Resilient function matching using deep learning,” in
Proc. Int. Conf. Secur. Privacy Commun. Syst., 2016, pp. 517–537.

[61] L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi, and A. Hanna,
“BinSign: Fingerprinting binary functions to support automated
analysis of code executables,” in Proc. IFIP Int. Conf. ICT Syst.
Secur. Privacy Protection, 2017, pp. 341–355.

[62] Y. David, N. Partush, and E. Yahav, “Similarity of binaries
through re-optimization,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2017, pp. 79–94.

[63] J. Ming, D. Xu, Y. Jiang, and D. Wu, “BinSim: Trace-based
semantic binary diffing via system call sliced segment equiva-
lence checking,” in Proc. USENIX Secur. Symp., 2017, pp. 253–270.

[64] U. Karg�en and N. Shahmehri, “Towards robust instruction-level
trace alignment of binary code,” in Proc. IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2017, pp. 342–352.

[65] C. Karamitas and A. Kehagias, “Efficient features for function
matching between binary executables,” in Proc. IEEE Int. Conf.
Softw. Anal. Evol. Reengineering, 2018, pp. 335–345.

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1679

https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
http://diaphora.re/

[66] B. Yuan, J. Wang, Z. Fang, and L. Qi, “A new software birthmark
based on weight sequences of dynamic control flow graph for
plagiarism detection,” Comput. J., vol. 61, pp. 1202–1215, 2018.

[67] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu, “BinMatch: A
semantics-based hybrid approach on binary code clone analy-
sis,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2018,
pp. 104–114.

[68] N. Shalev and N. Partush, “Binary similarity detection using
machine learning,” in Proc. 13th Workshop Program. Lang. Anal.
Secur., 2018, pp. 42–47.

[69] M. Luo, C. Yang, X. Gong, and L. Yu, “FuncNet: A euclidean
embedding approach for lightweight cross-platform binary rec-
ognition,” in Proc. Int. Conf. Secur. Privacy Commun. Syst., 2016,
pp. 517–537.

[70] J. Jiang et al., “Similarity of binaries across optimization levels
and obfuscation,” in Proc. Eur. Symp. Res. Comput. Secur., 2020,
pp. 295–315.

[71] P. Shirani, L. Wang, and M. Debbabi, “BinShape: Scalable and
robust binary library function identification using function
shape,” in Proc. Int. Conf. Detection Intrusions Malware Vulnerabil-
ity Assessment, 2017, pp. 301–324.

[72] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalabil-
ity simultaneously in detecting application clones on android
markets,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 175–186.

[73] X. Hu, T.-C. Chiueh, and K. G. Shin, “Large-scale malware index-
ing using function-call graphs,” in Proc. ACM Conf. Comput. Com-
mun. Secur., 2009, pp. 611–620.

[74] S. Henry and D. Kafura, “Software structure metrics based on
information flow,” IEEE Trans. Softw. Eng., vol. SE-7, no. 5,
pp. 510–518, Sep. 1981.

[75] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding
unpatched code clones in entire os distributions,” in Proc. IEEE
Symp. Secur. Privacy, 2012, pp. 48–62.

[76] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G.
Andersen, “SplitScreen: Enabling efficient, distributed malware
detection,” in Proc. USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2010, pp. 377–390.

[77] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A
search engine for binary code,” in Proc. 10th Work. Conf. Mining
Softw. Repositories, 2013, pp. 329–338.

[78] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic super-
optimization,” in Proc. Int. Conf. Archit. Support Program. Lang.
Oper. Syst., 2013, pp. 305–316.

[79] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-based
obfuscation-resilient program equivalence checking with appli-
cation to software plagiarism detection,” IEEE Trans. Rel., vol. 65,
no. 4, pp. 1647–1664, Dec. 2016.

[80] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with
applications to software and algorithm plagiarism detection,”
IEEE Trans. Softw. Eng., vol. 43, no. 12, pp. 1157–1177, Dec. 2017.

[81] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A
sense of self for Unix processes,” in Proc. IEEE Symp. Secur. Pri-
vacy, 1996, pp. 120–128.

[82] Z. Tian, Q. Wang, C. Gao, L. Chen, and D. Wu, “Plagiarism
detection of multi-threaded programs via siamese neural
networks,” IEEE Access, vol. 8, pp. 160802–160814, 2020.

[83] V. J. M. Man�es et al., “The art, science, and engineering of fuzzing:
A survey,” IEEE Trans. Softw. Eng., vol. 47, no. 11, pp. 2312–2331,
Nov. 2021.

[84] F. Gr€obert, C. Willems, and T. Holz, “Automated identification of
cryptographic primitives in binary programs,” in Proc. Int. Work-
shop Recent Adv. Intrusion Detection, 2011, pp. 41–60.

[85] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” in Proc. ACM SIGPLAN Conf. Pro-
gram. Lang. Des. Implementation, 1988, pp. 35–46.

[86] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. Pro-
gram. Lang. Syst., vol. 9, no. 3, pp. 319–349, 1987.

[87] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Proc. Adv. Neural Inf. Process.
Syst., 2002, pp. 849–856.

[88] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo,
“Evaluating bag-of-visual-words representations in scene classi-
fication,” in Proc. Int. Workshop Multimedia Inf. Retrieval, 2007,
pp. 197–206.

[89] R. Arandjelovic and A. Zisserman, “All about VLAD,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 1578–1585.

[90] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of
latent variable models for structured data,” in Proc. Int. Conf.
Mach. Learn., 2016, pp. 2702–2711.

[91] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
ofword representations in vector space,” 2013, arXiv:1301.3781.

[92] Y. Kim, “Convolutional neural networks for sentence classi-
fication,” 2014, arXiv:1408.5882.

[93] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[94] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” inProc. Int. Conf.Mach. Learn., 2014, pp. 1188–1196.

[95] Hex-Rays, “IDA Pro,” [Online]. Available: https://www.hex-
rays.com/products/ida/

[96] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H.
Bos, “An in-depth analysis of disassembly on full-scale x86/x64
binaries,” in Proc. USENIX Secur. Symp., 2016, pp. 583–600.

[97] M. Jung, S. Kim, H. Han, J. Choi, and S. K. Cha, “B2R2: Building
an efficient front-end for binary analysis,” in Proc. NDSS Work-
shop Binary Anal. Res., 2019.

[98] H. Kim, J. Lee, S. Kim, S. Jung, and S. K. Cha, “How’d security
benefit reverse engineers? The implication of Intel CET on func-
tion identification,” in Proc. Int. Conf. Dependable Syst. Netw.,
2022, pp. 559–566.

[99] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic
function detection in binaries,” in Proc. IEEE Eur. Symp. Secur.
Privacy, 2017, pp. 177–189.

[100] S. Wang, P. Wang, and D. Wu, “Semantics-aware machine learn-
ing for function recognition in binary code,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2017, pp. 388–398.

[101] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in COTS binaries,” in Proc.
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2017, pp. 201–212.

[102] J. Kinder and H. Veith, “Jakstab: A static analysis platform for
binaries,” in Proc. Int. Conf. Comput. Aided Verification, 2008,
pp. 423–427.

[103] SecurityTeam, “Pie,” 2016. [Online]. Available: https://wiki.
ubuntu.com/SecurityTeam/PIE

[104] GNU packages. [Online]. Available: https://ftp.gnu.org/gnu/
[105] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-

LLVM–software protection for the masses,” in Proc. IEEE/ACM
1st Int. Workshop Soft. Protection, 2015, pp. 3–9.

[106] M. Madou, L. Van Put, and K. De Bosschere, “LOCO: An interac-
tive code (de) obfuscation tool,” in Proc. ACM SIGPLAN Symp. Par-
tial Eval. Semantics-Based Progr.Manipulation, 2006, pp. 140–144.

[107] VMProtect. [Online]. Available: http://vmpsoft.com
[108] Stunnix C/C++ Obfuscator. [Online]. Available: http://stunnix.

com/prod/cxxo/
[109] Semantic Designs: Source Code Obfuscators. [Online]. Available:

http://www.semdesigns.com/Products/Obfuscators/
[110] C. Collberg, “The tigress C diversifier/obfuscator,” Retrieved

August, vol. 14, 2015, Art. no. 2015.
[111] Crosstool-NG. [Online]. Available: https://github.com/

crosstool-ng/crosstool-ng
[112] D. MacKenzie, B. Elliston, and A. Demaille, “Autoconf — Creat-

ing automatic configuration scripts,” 1996. [Online]. Available:
https://www.gnu.org/software/autoconf/manual/

[113] O. Tange, “GNU parallel - The command-line power tool,” ;login:
The USENIX Mag., vol. 36, no. 1, pp. 42–47, Feb. 2011. [Online].
Available: http://www.gnu.org/s/parallel

[114] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proc.
Python Sci. Conf., 2008, pp. 11–15.

[115] Intel Corporation, “Intel 64 and ia-32 architectures software devel-
oper’smanual,” https://software.intel.com/en-us/articles/intel-sdm

[116] D. Seal, ARM Architecture Reference Manual, London, U.K.: Pear-
son Education, 2001.

[117] MIPS Technologies, Inc., “Mips32 architecture for programmers
volume II: The mips32 instruction set,” 2001.

[118] Capstone, “The ultimate disassembler,” [Online]. Available:
https://www.capstone-engine.org/

[119] Wikipedia, “Relative change and difference — Wikipedia,
The free encyclopedia,” 2018. [Online]. Available: https://en.
wikipedia.org/w/index.php?title¼Relative_change_and_
differe%nce&oldid¼872867886

1680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://wiki.ubuntu.com/SecurityTeam/PIE
https://wiki.ubuntu.com/SecurityTeam/PIE
https://ftp.gnu.org/gnu/
http://vmpsoft.com
http://stunnix.com/prod/cxxo/
http://stunnix.com/prod/cxxo/
http://www.semdesigns.com/Products/Obfuscators/
https://github.com/crosstool-ng/crosstool-ng
https://github.com/crosstool-ng/crosstool-ng
https://www.gnu.org/software/autoconf/manual/
http://www.gnu.org/s/parallel
https://software.intel.com/en-us/articles/intel-sdm
https://www.capstone-engine.org/
https://en.wikipedia.org/w/index.php?title=Relative_change_and_differe%nce&oldid=872867886
https://en.wikipedia.org/w/index.php?title=Relative_change_and_differe%nce&oldid=872867886
https://en.wikipedia.org/w/index.php?title=Relative_change_and_differe%nce&oldid=872867886
https://en.wikipedia.org/w/index.php?title=Relative_change_and_differe%nce&oldid=872867886
https://en.wikipedia.org/w/index.php?title=Relative_change_and_differe%nce&oldid=872867886
https://en.wikipedia.org/w/index.php?title=Relative_change_and_differe%nce&oldid=872867886

[120] I. Guyon and A. Elisseeff, “An introduction to variable and fea-
ture selection,” vol. 3, no. Mar, pp. 1157–1182, 2003.

[121] R. Caruana and D. Freitag, “Greedy attribute selection,” in Proc.
11th Int. Conf. Mach. Learn., 1994, pp. 28–36.

[122] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J.
Mach. Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011.

[123] E. Jones et al., “SciPy: Open source scientific tools for Python,”
2001. [Online]. Available: http://www.scipy.org/

[124] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy
array: A structure for efficient numerical computation,” Comput.
Sci. Eng., vol. 13, no. 2, pp. 22–30, 2011.

[125] Using the GNU compiler collection (GCC): Optimize options.
[Online]. Available: https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html

[126] Clang - The clang C, C++, and objective-C compiler. [Online]. Avail-
able: https://clang.llvm.org/docs/CommandGuide/clang.html

[127] T. L�aszl�o and �A. Kiss, “Obfuscating C++ programs via control flow
flattening,”Annales Universitatis ScientarumBudapestinensis de Rolando
E€otv€os Nominatae, Sectio Computatorica, vol. 30, pp. 3–19, 2009.

[128] Themida: Advanced windows software protection system.
[Online]. Available: https://www.oreans.com/themida.php

[129] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “FirmAE:
Towards large-scale emulation of IoT firmware for dynamic analy-
sis,” in Proc. Annu. Comput. Secur. Appl. Conf., 2020, pp. 733–745.

[130] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can
learn function type signatures from binaries,” in Proc. USENIX
Secur. Symp., 2017, pp. 99–116.

[131] V. van der Veen et al., “A tough call: Mitigating advanced code-
reuse attacks at the binary level,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2016, pp. 934–953.

[132] D. Hiebert, “Exuberant Ctags,” 1999.
[133] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse

engineering of types in binary programs,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2011.

[134] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua,
“Scalable variable and data type detection in a binary rewriter,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 51–60, 2013.

[135] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 1667–1680.

[136] F. Artuso, G. A. Di Luna, L. Massarelli, and L. Querzoni, “In
nomine function: Naming functions in stripped binaries with
neural networks,” 2019, arXiv:1912.07946.

[137] N. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the tool-
chain provenance of binary code,” in Proc. Int. Symp. Softw. Test-
ing Anal., 2011, pp. 100–110.

[138] M. C. Tol, K. Yurtseven, B. Gulmezoglu, and B. Sunar, “FastSpec:
Scalable generation and detection of spectre gadgets using neural
embeddings,” 2020, arXiv:2006.14147.

[139] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu,
and E. Kirda, “A quantitative study of accuracy in system call-
based malware detection,” in Proc. Int. Symp. Softw. Testing Anal.,
2012, pp. 122–132.

[140] D. Babi�c, D. Reynaud, and D. Song, “Malware analysis with tree
automata inference,” in Proc. Int. Conf. Comput. Aided Verification,
2011, pp. 116–131.

[141] Y. Xiao et al., “Matching similar functions in different versions of
a malware,” in Proc. IEEE Trustcom/BigDataSE/ISPA, 2016,
pp. 252–259.

[142] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary
diffing with application to malware lineage inference,” in Proc.
IFIP Int. Inf. Secur. Privacy Conf., 2015, pp. 416–430.

[143] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “FOSSIL: A
resilient and efficient system for identifying foss functions in
malware binaries,” ACM Trans. Privacy Secur., vol. 21, no. 2,
pp. 1–34, 2018.

[144] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: Crypto-
graphic function identification in obfuscated binary programs,”
in Proc. ACM Conf. Comput. Commun. Secur., 2012, pp. 169–182.

[145] D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in
obfuscated binaries via bit-precise symbolic loop mapping,” in
Proc. IEEE Symp. Secur. Privacy, 2017, pp. 921–937.

[146] J. Qiu, X. Su, and P. Ma, “Library functions identification in
binary code by using graph isomorphism testings,” in Proc. IEEE
Int. Conf. Softw. Anal. Evol. Reengineering, 2015, pp. 261–270.

[147] L. Jia, A. Zhou, P. Jia, L. Liu, Y. Wang, and L. Liu, “A neural net-
work-based approach for cryptographic function detection in
malware,” IEEE Access, vol. 8, pp. 23 506–23 521, 2020.

[148] S. Alrabaee, M. Debbabi, and L. Wang, “CPA: Accurate cross-
platform binary authorship characterization using LDA,” IEEE
Trans. Inf. Forensics Secur., vol. 15, pp. 3051–3066, Mar. 2020.

[149] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song,
“SPAIN: Security patch analysis for binaries towards under-
standing the pain and pills,” in Proc. 39th Int. Conf. Softw. Eng.,
2017, pp. 462–472.

[150] Y. Hu, Y. Zhang, and D. Gu, “Automatically patching vulnerabil-
ities of binary programs via code transfer from correct versions,”
IEEE Access, vol. 7, pp. 28 170–28 184, 2019.

[151] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, and H. Yin,
“PatchScope: Memory object centric patch diffing,” in Proc. ACM
Conf. Comput. Commun. Secur., 2020, pp. 149–165.

[152] I. U. Haq and J. Caballero, “A survey of binary code similarity,”
2019, arXiv:1909.11424.

[153] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L.
Agba, “Automatic vulnerability detection in embedded devices
and firmware: Survey and layered taxonomies,” ACM Comput.
Surv., vol. 54, no. 2, pp. 1–42, 2021.

[154] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilin-
guistic token-based code clone detection system for large scale
source code,” IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670,
Jul. 2002.

[155] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
algorithms for document fingerprinting,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2003, pp. 76–85.

[156] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for
finding copy-paste and related bugs in operating system code,”
in Proc. Symp. Oper. Syst. Des. Implementation, 2004, pp. 289–302.

[157] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scal-
able and accurate tree-based detection of code clones,” in Proc.
Int. Conf. Softw. Eng., 2007, pp. 96–105.

[158] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,”
2017, arXiv:1708.02368.

[159] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo,
“SymDiff: A language-agnostic semantic diff tool for imperative
programs,” in Proc. Int. Conf. Comput. Aided Verification, 2012,
pp. 712–717.

[160] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A scalable
approach for vulnerable code clone discovery,” in Proc. IEEE
Symp. Secur. Privacy, 2017, pp. 595–614.

[161] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proc. Int. Conf. Softw. Eng.,
2016, pp. 297–308.

[162] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: An
automated vulnerability detection system based on code similar-
ity analysis,” in Proc. Annu. Conf. Comput. Secur. Appl., 2016,
pp. 201–213.

[163] D. Miyani, Z. Huang, and D. Lie, “BinPro: A tool for binary
source code provenance,” 2017, arXiv:1711.00830.

[164] A. Rahimian, P. Charland, S. Preda, and M. Debbabi, “RESource:
A framework for online matching of assembly with open source
code,” in Proc. Int. Symp. Found. Pract. Secur., 2012, pp. 211–226.

[165] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,”
in Proc. 8th Work. Conf. Mining Softw. Repositories, 2011, pp. 63–72.

[166] Y. Ji, L. Cui, and H. H. Huang, “BugGraph: Differentiating source-
binary code similarity with graph triplet-loss network,” in Proc.
ACMAsia Conf. Comput. Commun. Secur., 2021, pp. 702–715.

Dongkwan Kim received the PhD degree from the
School of Electrical Engineering, Korea Advanced
Institute of Science and Technology. He is a free-
lancer security researcher. His research interests
include securing software, embedded& cyber-phys-
ical systems, and cellular infrastructures. He com-
peted in various hacking contests, such as
DEFCON,Codegate, andWhitehat Contest.

KIM ETAL.: REVISITING BINARYCODE SIMILARITYANALYSIS USING INTERPRETABLE FEATURE ENGINEERING AND LESSONS 1681

http://www.scipy.org/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://www.oreans.com/themida.php

Eunsoo Kim received the PhD degree from the
Graduate School of Information Security, KAIST. He
is a security researcher with Samsung Research.
His research interests include finding vulnerabilities
in various software and embedded systems.

Sang Kil Cha received the PhD degree from the
Electrical & Computer Engineering Department,
CarnegieMellonUniversity. He is anAssociate Pro-
fessor of computer science with KAIST. His current
research interests revolve mainly around software
security, software engineering, and program analy-
sis. He received an ACM distinguished Paper
Award, in 2014. He is currently supervising GoN
and KaisHack, which are, respectively, undergrad-
uate and graduate hacking teamwith KAIST.

Sooel Son received the PhD degree from the
Department of Computer Science, University of
Texas at Austin. He is an Associate Professor of
the School of Computing, KAIST. He is working on
various topics regardingweb security and privacy.

YongdaeKim received thePhDdegree fromCom-
puter Science Department, University of Southern
California. He is a professor with theDepartment of
Electrical Engineering, and an affiliate professor
with the Graduate School of Information Security,
KAIST. Between 2002 and 2012, he was a profes-
sor with the Department of Computer Science and
Engineering, University of Minnesota - Twin Cities.
Before coming to the US, he worked 6 years in
ETRI for securing Korean cyber-infrastructure. He
served as a KAIST chair professor between 2013

and 2016, and received NSF Career Award on storage security and
McKnight Land-Grant Professorship Award from University of Minnesota,
in 2005. His main research includes novel attacks and analysis methodolo-
gies for emerging technologies, such as 4G/5G cellular networks, drone/
self-driving cars, and blockchain.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

