
Let’s TalkWith Developers, Not About
Developers: A Review of Automatic Program

Repair Research
Emily Winter , Vesna Nowack , David Bowes , Steve Counsell , Tracy Hall ,

Sæmundur Haraldsson , and John Woodward

Abstract—Automatic program repair (APR) offers significant potential for automating some coding tasks. Using APR could reduce the

high costs historically associated with fixing code faults and deliver significant benefits to software engineering. Adopting APR could

also have profound implications for software developers’ daily activities, transforming their work practices. To realise the benefits of

APR it is vital that we consider how developers feel about APR and the impact APR may have on developers’ work. Developing APR

tools without consideration of the developer is likely to undermine the success of APR deployment. In this paper, we critically review

how developers are considered in APR research by analysing how human factors are treated in 260 studies from Monperrus’s Living

Review of APR. Over half of the 260 studies in our review were motivated by a problem faced by developers (e.g., the difficulty

associated with fixing faults). Despite these human-oriented motivations, fewer than 7% of the 260 studies included a human study.

We looked in detail at these human studies and found their quality mixed (for example, one human study was based on input from only

one developer). Our results suggest that software developers are often talked about in APR studies, but are rarely talked with. A more

comprehensive and reliable understanding of developer human factors in relation to APR is needed. Without this understanding, it will

be difficult to develop APR tools and techniques which integrate effectively into developers’ workflows. We recommend a future

research agenda to advance the study of human factors in APR.

Index Terms—Human factors, software development, automatic program repair

Ç

1 INTRODUCTION

WE investigate how the human factors associated with
developers are considered in automatic program

repair (APR) research, and, where human studies have been
conducted, we evaluate their quality. APR is an increasingly
important area of software engineering research, being the
first relatively mature application of automatic code genera-
tion. Automatically fixing code faults promises many poten-
tial benefits, including improving the quality of software [1],
reducing the development time spent on fault fixing [2] and

lowering the overall costs of software development [3].
These benefits are very attractive to software companies
with several (e.g., Facebook) already trying out APR techni-
ques in their development pipeline [4].

APR is distinct from many of the other tools used by
developers. Whilst other tools offer developers assistance in
their work, APR has the potential to remove the developer
entirely from the process of bug fixing. Realising the bene-
fits of APR techniques requires a significant transformation
of software developers’ working practices. For successful
APR exploitation, developers need to accept the automation
of their previously manual fixing tasks and embrace and
use new APR tools and techniques. Developers will need to
change some of their day-to-day tasks. Some tasks may be
removed (for example, reducing manual fault-finding and
fault-fixing) and replaced with others (for example, provid-
ing APR tools with specifications or verifying automatically
generated patches). Fully automated APR tools may lead to
developer workloads being restructured in unknown and
possibly unpopular ways, given the freeing up of time pre-
viously taken up with manual code repair. Overall, APR
tools and techniques are likely to disrupt the workflow and
working practices of software developers, and may also
impact developer job satisfaction, motivation and retention.
Developing APR tools and techniques that are acceptable to
developers is critical to successfully capitalising on the
benefits that APR promises. Given the potential of APR
to disrupt software developers’ workflows it is essential
that the significant socio-technical implications of APR are

� Emily Winter, Vesna Nowack, David Bowes, and Tracy Hall are with the
School of Computing and Communications, Lancaster University, LA1
4YW Bailrigg, Lancaster, U.K. E-mail: {e.winter, d.h.bowes, tracy.hall}
@lancaster.ac.uk, v.nowack@qmul.ac.uk.

� Steve Counsell is with the Department of Computer Science, Brunel
University of London UB8 3PH Uxbridge, London, U.K.
E-mail: steve.counsell@brunel.ac.uk.

� Sæmundur Haraldsson is with the Department of Computing Science and
Mathematics, University of Stirling, FK9 4LA Stirling, U.K.
E-mail: saemundur.haraldsson@stir.ac.uk.

� John Woodward is with the School of Electronic Engineering and Com-
puter Science, Queen Mary University of London, E1 4NS London, U.K.
E-mail: j.woodward@qmul.ac.uk.

Manuscript received 14 October 2021; revised 1 February 2022; accepted 2
February 2022. Date of publication 16 February 2022; date of current version
9 January 2023.
This work was supported by the Engineering and Physical Sciences Research
Council, U.K. under Grant EP/S005749/2.
(Corresponding author: Emily Winter.)
Recommended for acceptance by P. Runeson.
Digital Object Identifier no. 10.1109/TSE.2022.3152089

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023 419

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0003-3314-7300
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0002-6524-9179
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0001-7014-2811
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2939-8919
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0002-2728-9014
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0003-0395-5884
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
https://orcid.org/0000-0002-2093-8990
mailto:e.winter@lancaster.ac.uk
mailto:d.h.bowes@lancaster.ac.uk
mailto:tracy.hall@lancaster.ac.uk
mailto:v.nowack@qmul.ac.uk
mailto:steve.counsell@brunel.ac.uk
mailto:saemundur.haraldsson@stir.ac.uk
mailto:j.woodward@qmul.ac.uk

considered in APR research. For example, there is a risk that
developers feel threatened by APR, resisting the technology’s
adoption. Resistance is common when new technologies
replace humans in the work place (e.g., [5], [6]) and requires
great effort to overcome. The interplay between APR and
developers must be carefully understood andAPR technology
offered to developers appropriately. To avoid APR being
rejected by developers, research effort must be targeted at
understanding the human factors related toAPR tools.

In his 2020 keynote [7], Westley Weimer (one of the origi-
nators of APR) highlighted the urgent need to better under-
stand the human factors associated with developer use of
APR. We respond directly to Weimer’s call for greater
understanding by providing a comprehensive analysis of
the current state-of-the-art in APR human factors research.
We hope our analysis will equip future researchers with a
helpful base on which to motivate and design human stud-
ies in APR. Our results should enable the acceleration of
APR human factors research and help generate a clearer
understanding of how APR tools should be designed for
positive interaction with human developers.

Our aim is to investigate the extent to which human fac-
tors are taken into account by existing APR research. We
critically review APR studies reported in the literature. Our
review is similar to a systematic literature review [8] except
that we use an existing corpus of APR studies rather than
identifying those studies ourselves. We analyse 260 APR
studies curated in Monperrus’s Living Review on Auto-
matic Program Repair [9] in terms of their consideration of
developer human factors. We identify whether APR studies
are motivated by problems faced by software developers
and whether studies claim that the APR tool or technique
being proposed is helpful to software developers. We
looked in detail at any research that included a human
study, evaluating the quality of these human studies to get
a better understanding of the maturity and reliability of
existing knowledge related to human factors in APR.

The results of our review of APR research suggest that
there is considerable work still to be done in understanding
APR in relation to developers. Of 186 Living Review papers
that introduced a new tool or technique, 65% were motivated
by a problem that software developers face (for example, the
difficulty of fixing faults) and 34% claimed that their tool or
technique would be helpful to software developers (for
example, by saving developer time), despite presenting no
human study to demonstrate this. Less than 7% of studies in
the Living Review (17 of 260) include some form of human
study. Our quality assessment finds that the quality of these
17 studies varied, with few justifying key study design deci-
sions, such as why particular sampling strategies or data col-
lection methods were used. Overall, our research suggests
that automatic program repair studies frequently talk about
developers, but very rarely talk with developers.

Successfully transferring APR into industrial practice
depends on APR techniques complementing, rather than dis-
rupting, developers’ working practices and workflows. Our
findings suggest that significantly more APR research needs
to examine the developer human factors, and the quality of
human studies must improve if APR technical progress is to
be effectively exploited by industry. Despite Software Engi-
neering being recognised as both a social and technical

activity [10], [11], technical innovation continues to dominate
Software Engineering research [12]. Neglecting the social and
human dimension of technical innovation is not unique to
APR and underpins the lack of practitioner uptake that has
plagued much Software Engineering research. For example,
most debugging tools developed by software engineering
researchers have not been adopted widely by professional
software developers [13]. APR is a relatively new area of Soft-
ware Engineering. As such we now have a chance to address
the socio-technical balance in future research. We advocate
embedding consideration of developers alongside technical
innovation to enable the development of tools and techniques
likely to transfer into industrial practice. On the basis of our
review, we develop and present a future research agenda to
advance the study of human factors inAPR.

Our research aim to advance the study of human factors in
APR has certain caveats. It is not our recommendation that all
studies in APR include a user study. There are many cases
where this would not be appropriate and could in fact slow
down the pace of innovation inAPR. It is important that inno-
vative approaches be published, though they may not be at a
stage where a user study would be appropriate. Instead, we
simply encourage more APR researchers to carry out thor-
ough and well-motivated user studies, both ‘scoping studies’
that explore developer needs and user evaluations. Perhaps
counter-intuitively, we caution against user studies being
seen as prerequisites for publishing research results. Research
carried out by Buse et al. found that ‘highly selective conferen-
ces tend to publish a larger proportion of papers containing
user evaluations’ [14]. Our quality assessment of the human
studies in APR suggests that this may result in poorly-
designed user studies tacked onto the end of technical papers
as a way of fulfilling the expectations of peer review. We
would encourage a shift within the SE community, away
from expecting a user study as a form of validation — which
may allow for the publication of poor user studies — to
instead having higher standards for user studies when they
are presented.

This paper is structured as follows: Section 2 outlines
related work; Section 3 highlights our aims, research ques-
tions and contribution; and Section 4 describes our method-
ology. Sections 5 and 6 provide findings and discussion. In
Section 7 we make recommendations for future developer-
centred research in APR. Before concluding (Section 9), we
identify some threats to validity and action taken to mitigate
them (Section 8).

2 RELATED WORK

Reviews of secondary literature – including systematic litera-
ture reviews, annotated bibliographies and various kinds of
literature synthesis – are common in software engineering.
There have been two surveys specifically of the APR litera-
ture. Gazzola, Micucci and Mariani [2] surveyed 108 papers,
which they categorised into different types of APR, such as
the different kinds of algorithms deployed. Monperrus’s bib-
liography [15] similarly divideswork onAPR into its different
technical approaches or types. Neither of these reviews identi-
fies papers that include a human study, although in their sec-
tion on ‘empirical evidence’, Gazzola et al.mention one study
with developers. Within APR, there have also been more

420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

specific reviews, such as Liu et al.’s critical review on how
APR systems are evaluated [16]. In addition, there have been
several systematic literature reviews of different human fac-
tors in software engineering, such as motivation [17] and
personality [18], as well as a more overarching systematic lit-
erature review of ‘behavioural software engineering’ [19].

Our work can be broadly positioned alongside such stud-
ies. However, systematic literature reviews and synthesis
studies tend to cover more established areas of research. For
example, research synthesis aims to compare and contrast
evidence from multiple sources in order ‘to build knowl-
edge and reach conclusions about the empirical support for
a phenomenon’ [20]. By contrast, human factors are under-
studied in APR and not yet an established field of research,
making many synthesis approaches unsuitable. Similarly to
Liu et al.’s recent study that provided a critical review on
the evaluation of APR systems [16], we take a critical and
evaluative approach to assess a less developed research
space. Our goal is to understand the current state of
research in human factors in APR and how such research
can be advanced. Liu et al.’s study considered the metrics
used in the evaluation of APR systems (for example, num-
ber of correct patches generated, time needed to generate
patches), and does not examine the role of human studies in
APR evaluation. However, our research supports their find-
ing that it is difficult to compare APR tools and techniques
due to widely varying methods of evaluation.

Ourwork also has similarities in approach to Storey et al.’s
[12] review of human aspects in the publications that
appeared at ICSE and in the Empirical Software Engineering
journal during a one year snapshot (2017). Storey et al. focus
on who benefits from a research study, what the main type of
research contribution is and how the research was carried
out. We similarly consider whether the APR papers we
review introduce a new tool/technique and, in our quality
assessment of the existing human studies, identify the
research methods used. However, we also provide an in-
depth quality assessment of existing human studies within
APR, in order to understand the current state of the field and
identify potential research gaps. This enriches the focus of
Storey et al. of ‘how much’ with an additional focus on ‘how
well’. In addition, we respond to Storey et al.’s invitation for
similar studies considering other venues and publication
dates by suggesting that considering the state of human fac-
tors within different software engineering sub-fields may
also be of benefit.

In focusing on APR, our work demonstrates that Storey et
al.’s findings apply to the specific software engineering area
of APR. Whilst APR was not the topic of any of the 151
articles reviewed by Storey et al., our findings largely mirror
Storey et al.’s that ‘although a majority of these papers claim
the contained research should benefit human stakeholders,
most focus predominantly on technical contributions’ and
rarely involve human studies [12]. Whilst there is not neces-
sarily any reason to expect that APR would be different to
software engineering more generally, we wanted to thor-
oughly assess the state of human factors research in APR in
order to present recommendations specifically tailored to
the APR domain. This is important because APR is a new
and rapidly advancing field of software engineering – with
vast potential to impact upon software developers’ work –

that has so far not been explored qualitatively or quantita-
tively to the extent that other areas of software engineering
have.

By focusing specifically on APR, we also uncover some
strikingly different findings from Storey et al.’s study. For
example, whilst Storey et al. find a high number of papers
that use mining software repositories as a research strategy,
we find only a small number of APR papers that use soft-
ware repositories as a source of data, which we discuss in
Section 4. This may be a result of the nascent nature of APR,
providing an important opportunity to reflect on the state of
the field at this early stage. We hope our work may inspire
similar studies in more established areas of software engi-
neering to aid comparison. This is important to ensure we
gain understanding of different sub-fields, and the similari-
ties and differences between them.

We provide a thorough discussion of human studies
within APR in this paper. However, it is worth mentioning
here a couple of relevant studies that have been published
since we conducted our analysis, and are included in the
more recent version of Monperrus’s Living Review. Noller
et al.’s survey of 103 participants found high willingness
from participants to review automatically generated patches
[21]. The survey results also provide indications of what
might increase developer trust in automatically generated
patches, such as test cases, explanations of the patch, and
evidence of patch correctness. Alarcon et al.’s experimental
study also considered trust in APR, and found that the
source of the repair (human versus automated) had signifi-
cant influence on trust perceptions and intentions, partici-
pants having higher trust in human repairs than automated
repairs [22]. Both these studies demonstrate recent advances
in human factors research in APR.

3 AIMS

The aim of this paper is to provide an assessment of the cur-
rent state of the APR literature when it comes to the consid-
eration of human factors. This paper addresses four core
research questions.

� RQ1: To what extent, and in what ways, does the
APR literature consider human factors?

� RQ2: What are the strengths and weaknesses of
existing human studies within the APR literature?

� RQ3: What are the key findings of existing APR
human studies?

� RQ4: What future research directions are needed to
progress the study of human factors within APR?

In addressing these questions through an in-depth
review of 260 Living Review papers, we make the following
contributions:

� Contribution 1: We provide the first in-depth review
of the extent to which human factors are considered
in the APR literature.

� Contribution 2: Drawing on existing quality assess-
ment criteria for empirical studies in software engi-
neering, we propose a new set of quality assessment
criteria. Our criteria aim to be more robust and repli-
cable to allow for future evaluations of human stud-
ies in APR. In addition, they are designed for use

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 421

with different kinds of empirical study, both qualita-
tive and quantitative.

� Contribution 3: We assess APR human studies for
quality and identify their current strengths and
weaknesses

� Contribution 4: We offer a series of recommendations
for future APR research that thoroughly considers
human factors. In so doing, we hope to inspire a
wave of human-centered APR research more atten-
tive to the needs of developers that can subsequently
offer APR solutions that meet these needs.

4 METHODOLOGY

Our review used the Living Review [9] as a corpus and
involved two main phases: first, a broad consideration of
how much and in what ways APR research is considering
developers; and, second, an in-depth quality assessment of
human studies within APR. In this Section, we introduce
our corpus (the Living Review) and our overall approach,
before outlining the main methods we used to answer our
research questions. Please see the appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2022.3152089, for
an overview of each author’s involvement.

4.1 Our Corpus- the Living Review

We use Martin Monperrus’s ‘The Living Review on Auto-
mated Program Repair’ [9] as an already-existing corpus of
the key APR literature. The Living Review is a ’live’ version
of Monperrus’s widely-cited bibliography on APR [15] and
is updated every two to three months. We used the Decem-
ber 2019 version of the Living Review. Fig. 1 shows the pub-
lication dates of all 264 works in the December 2019 version,
demonstrating the growth of the APR field since the early
2000s.

Others have previously used the Living Review as a cor-
pus for their own studies. Durieux et al. used the Living
Review to identify existing test-suite repair tools [23], while
Wang et al. used it to identify automated patch correctness
assessment techniques [24]. Similarly to our own study, Liu
et al. used the Living Review to extract relevant papers for

their critical review of APR evaluation [25]. Using the Liv-
ing Review as an APR corpus has two other advantages.
First, whilst it should not be considered fully comprehen-
sive, by comparison to the other main APR literature review
[2], the Living Review includes more than double the num-
ber of papers. Second, the Living Review is regularly main-
tained rather than being static. This means that it would be
possible to re-assess our findings in the future, applying our
method to new APR work.

4.2 Our Approach

As mentioned in Section 2, a review of an under-developed
research area, such as human factors in APR, needs a differ-
ent approach to most systematic literature reviews and
research syntheses. As well as exploring trends and themes
within the APR literature, we also take a critical approach,
identifying the strengths and weaknesses of the current liter-
ature in order to make recommendations for APR research
that includes consideration of human factors. In taking such
an approach, our work can be positioned alongside other
recent software engineering publications, such as [26], [27]
and [28].

4.3 RQ1- To What Extent, and in What Ways, Does
the APR Literature Consider Human Factors?

To address RQ1, we conducted a review of the Living
Review papers. First, we searched each Living Review paper
to identify those that included a human study, using five key
search terms: ‘user’, ‘human’, ‘developer’, ‘engineer’ and
‘programmer’. From this, we found 17 items from the Living
Review that included a human study (6.5% of the 260 Living
Review papers we had access to). We extracted these 17
papers for in-depth analysis in order to answer RQ2.We con-
centrated our focus for RQ1 on the vast majority of Living
Review papers that did not include a human study and
whether software developers were nonetheless considered;
if so, we explored inwhat ways.

Similarly to Liu et al. [25], we reviewed the 243 Living
Review papers with a series of questions designed to criti-
cally review an under-explored research domain. These
questions (see Table 1) aim to capture the extent to which
developers are taken into consideration in APR research.

All 243 Living Reviewpapers (excluding the 17 human stud-
ies) were imported into SLuRp, a software system designed for
the management of systematic literature reviews [29]. SluRp

Fig. 1. Publication dates of the living review items (December 2019
version).

TABLE 1
Questions for Review of Living Review Papers

Question

1 Does the paper report on the development of a
new APR tool/technique?

2 Does the paper identify as motivation a problem
that developers currently face?

3 Does the paper state that their APR tool/
technique will be helpful to developers (e.g.,
reduced effort)?

4 Does the paper state that their proposed APR
tool/technique will change developers’ activities
(e.g., introduce new tasks)?

422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3152089
http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3152089

automatically highlighted five key search terms (as also used to
identify the human studies): ‘developer’, ‘engineer’, ‘human’,
‘user’ and ‘programmer’. We also added a further three key
search terms that emerged as useful when trialling the review
questions- ‘manual’, ‘expert’ and ‘practitioner’. Thesewere also
highlighted automatically by SluRp. (The number of occur-
rences of each search term can be found in theAppendix.)

Each paper was reviewed by two authors of this study
independently, assigned randomly by SLuRP. The review
protocol was: to read the abstract, introduction and conclu-
sion of each paper; and to use the yellow highlighted search
terms to review the rest of the paper in order to answer the
review questions. One author was excluded from the review
process to act as an independent mediator and moderator of
disagreements between pairs of reviewers, ensuring consis-
tency across moderation.

The answers to the review questions (see Table 1) were
recorded by each reviewer on SLuRp. Each review question
had a ‘yes’/‘no’ tick-box answer, followed by free-text space
for reviewers to provide cut-and-paste quotations from the
paper as evidence for their answer. Quotations were also
collected in order to thematically analyse them later, as a
way of adding depth to the ‘yes’ responses.

Three different question versions were trialled with a
small subset of eight papers reviewed by all authors. This
led to refinement of the questions (with final versions
shown in Table 1) and the establishment of shared under-
standing among the authors. Of the remaining 235 papers

that were each reviewed by two authors, there was 79.7%
agreement across all of the 940 answers (four ‘yes’/‘no’
questions for each paper). The percentage agreement varied
across the four questions, as summarised in Table 2.
Cohen’s Kappa scores for each pair of reviewers for each
question are provided in the appendix, available in the
online supplemental material. All findings subsequently
reported also include the eight papers used in the trial.

The moderator assessed the 191 conflicts between pairs
of reviewers and resolved the majority of these conflicts.
Unresolved conflicts (a total of 56, or 6.0% of all answers)
were discussed by the pair of reviewers, managed over
email in the case of simpler conflicts and verbally for more
complex conflicts. All discussion and decisions were noted
in SLuRp.

The next phase was to conduct a thematic analysis of the
quotations that had been collected for Q2, Q3 and Q4 (see
Table 1) as part of the review process. Thematic analysis ‘is
a method for identifying, analyzing, and reporting patterns
(themes) within data’ [20] and it is particularly appropriate
for more explorative research. Two authors worked
together to create a codebook, which included definitions of
each code and an example quotation. This codebook was
developed inductively (see [30]), working from the data to
establish thematic codes, rather than coming up with a pre-
determined list of themes that were then applied to the data.

Once the codebook was established (see Tables 8, 9 and
10), three authors were assigned on SLuRp to each paper.
We assigned three authors, rather than two, because the the-
matic analysis involved a more complex subjective, inter-
pretive judgement than the yes/no judgement of the
review. Multiple thematic codes could be chosen for a single
quotation, where applicable. We also included a box for
‘other’, which could be used for reviewers to suggest addi-
tional thematic codes. Again, one author acted as indepen-
dent moderator of any disagreements, not taking part in the
reviewing.

Similarly to the prior process, we undertook pilots to
ensure that all authors understood the thematic codes. After

TABLE 2
Reviewer Agreement for Each Review

Question

Question Percent agreement

1 91.3
2 72.7
3 77.9
4 82.3

TABLE 3
Thematic Coding Agreement, by Review Question (see Table 1)

Agreement Thematic codes for Q2 Thematic codes for Q3 Thematic codes for Q4

Perfect agreement 18.6% 12.5% 8.5%
All 3 reviewers agree on at least one code 41.1% 26.6% 17.0%
2 reviewers agree on at least one code 29.5% 46.9% 48.9%
No agreement 10.9% 14.1% 25.5%

TABLE 4
APR Papers That Study Developers Indirectly

Paper Nature of study [31] Findings

[32] Bug reports containing automatically generated
patches submitted to open source software developers

Bug reports including automatically generated patches
were addressed in 66% of cases (over a two week period)

[33] Automatically generated patches submitted as
GitHub Pull Requests (PRs)

5 out of 12 patches were accepted

[34] Automatically generated patches submitted as PRs 89% of automatically generated PRs were accepted
[4] Acceptance of Getafix fix suggestions at Facebook 42% of Getafix fix suggestions were accepted

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 423

the full thematic coding was complete, all conflicts were
moderated, discussedwhere needed, and decisions recorded
in SLuRp. The agreement levels for the completed thematic
analysis are shown in Table 3. To summarise, there was a
majority of at least partial agreement for all three questions
that were thematically coded: 89.2% for Q2 quotations;
86.0% for Q3 quotations; and 74.4% for Q4 quotations.

Disagreement arose when the quote was slightly ambigu-
ous or required more interpretation. For example, one
reviewer commented, ‘partially I would agree with X too,
because there is some additional information but it’s not
very clear’, whilst another reviewer commented on their
interpretation process: ‘I would say that it’s “effort reduc-
tion” as I interpret the stated “helpfulness” to be less work
to look for where to fix’.

4.4 RQ2- What are the Strengths and Weaknesses
of Existing Human Studies Within the APR
Literature?

To address RQ2, we conducted a quality assessment of the
17 papers from the Living Review that included some form
of human study. Human studies were found using the key
search terms, outlined under Section 4.3. The criterion for
inclusion as a human study was that contact with humans
was direct and elicited, what Storey et al. refer to as
‘engaging humans’ [12]. We did not include, for example,
analysis of developer patches or comments about automati-
cally generated patches that were publicly available on
repositories such as Github. However, we did examine all
four of these studies that appeared in the Living Review,
and their key features and findings are summarised in
Table 4.

Of these four studies that did not engage with developers
directly, none are large enough to be considered as software

repository mining studies, but they share similarities with
this approach. Such studies cannot be quality assessed
using the same criteria as studies that engage directly with
developers to elicit specific data. Developers are not actively
participating in a primary empirical study; rather, second-
ary ad hoc data generated by developers is collected and
analysed. Our aim was to establish quality criteria for
empirical studies that directly engaged humans, and that
could be broadly applied to a wide range of user studies;
therefore we excluded these four studies from our main
analysis. In Section 6, we consider the current paucity of
mining software repository studies in APR when compared
with Storey et al.’s review of software engineering more
generally.

We wanted to establish how well direct human studies
had been carried out to understand the current state of APR
research with developers. We used existing work on quality
assessment within SE to consider ways of assessing the
APR human studies, specifically two lists of quality criteria
that had been developed for use within empirical SE [31],
[35]. Table 5 summarises and compares these two lists of cri-
teria by theme.

We used the comparison of these two existing quality crite-
ria to identify six core categories for quality assessment crite-
ria: aims, research design, recruitment, data collection,
analysis and findings, and limitations. These were designed
to be applicable to all kinds of empirical studies, both quanti-
tative and qualitative. For each of our categories, we devel-
oped three separate tick-box criteria, shown in Table 6.
Following Dyba

�
andDingsøyr [35], we chose to use ‘yes’/‘no’

answers. Table 5 demonstrates how our quality assessment
criteria map onto the categories we identified in [31] and [35],
including why we chose not to use some of these categories.
We excluded control group as a quality criterion, because con-
trol groups are only appropriate for experimental design not

TABLE 5
Existing Quality Criteria

Category Summarised criteria from [31] Summarised criteria from [35] Mapping onto our own
quality criteria (see Table 6)

1. Empirical study N/A Based on research? N/A- Prerequisite
2. Research context N/A Description of research

context?
Aims

3. Research design Description of experiment
design?

Research design appropriate
to research aims?

Research design

4. Recruitment N/A Recruitment strategy
appropriate to research aims?

Recruitment

5. Control group N/A Was there a control group? N/A- Not universal
6. Research units Description of sample/

experimental units?
N/A N/A- Not universal

7. Data collection Description of data collection
procedures and measures?

Data addresses research
issue?

Data collection

8. Data analysis Definition of data analysis
procedures?

Rigorous data analysis? Analysis and findings

9. Reflexivity Discussion of experimenter
bias?

Consideration of researcher-
participant relationship?

Limitations

10. Limitations Discussion of study
limitations?

N/A Limitations

11. Findings Clear statement of findings? Clear statement of findings? Analysis and findings
12. Replicability Evidence that the experiment

can be used by others?
N/A Data collection

13. Research significance N/A Study of value for research or
practice?

Too subjective

424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

for all empirical studies, and we aimed to develop a list of
quality assessment criteria appropriate for all human studies.

Two authors assessed each paper and then discussed
their answers. Agreement was often simple, as in the case of
one reviewer having missed something. Overall, inter-rater
agreement was 78.4%. The Cohen Kappa coefficient was
0.569, indicating ’moderate agreement’ [36] and a level of
agreement beyond chance. The percentage agreement for
each of the quality criteria are provided in the appendix.

Agreement between the authors was generally very
strong, except for ‘Aims’ and ‘Data Collection-What’. Dis-
agreement here arose when aims and data collection were
reported fairly implicitly, indicating the degree to which
core elements of a human study are not necessarily being
clearly and explicitly reported.

Having agreed independently in 78.4% of cases, discus-
sion led to quick agreement in a further 20.0% of cases, leav-
ing just 1.6% of cases where the opinion of a third author
was needed. Kitchenham et al. found discussion a highly
important part of quality review processes [37], and this
was reaffirmed by our experiences.

5 FINDINGS

5.1 RQ1- To What Extent, and in What Ways, Does
the APR Literature Consider Human Factors?

Table 7 summarises the results of the review questions over
the 243 APR papers. These results indicate three core find-
ings. First, the APR papers make some significant claims about
developers without having conducted a human study. Of the
81.1% of papers that introduced a new tool or technique,
67.0% mention a problem that developers currently face as
a motivation for their work and 36.0% specify that their
APR tool/technique will be helpful to developers. These
statements are made without any interaction with software
developers. The evidence base for these claims is discussed
in Section 6.

Second, there remain many papers that do not consider the
developer at all and are purely technical in their outlook. Of the
papers that introduced a new tool or technique, 33.0% did

not state as motivation a problem currently faced by devel-
opers and 64.0% do not specify that their tool or technique
will be helpful to developers. These papers are grounded in
technical motivations or challenges (such as improving on
the shortcomings of other tools or techniques) and the
authors’ technical achievements and contribution.

Finally, keeping humans ‘out of the loop’ would seem to be a
key goal of APR, with only 21.8% of papers that introduced a
new tool or technique stating that the tool would introduce
a new task or activity for developers, such as verifying and
choosing patches or writing a specification. Stressing the
lack of required human input was more common.

We considered the quotations collected in more detail
using thematic analysis. Tables 8, 9 and 10 show the the-
matic codes, their definitions, and an indicative quotation
from the Living Review papers. Figs. 2, 3 and 4 show the
percentage of quotes that were coded with each of the the-
matic codes (quotations could be coded with multiple the-
matic codes, where appropriate).

For Q2 (Does the paper identify as motivation a problem that
developers currently face?), the main motivation identified in the
papers was that fixing faults takes a lot of developer time and
effort, featuring as a motivation for over 60% of the quota-
tions collected for Q2. The next most prevalent theme was

TABLE 6
APR Human Studies Quality Criteria

Shorthand Full criteria

Aims Aim(s) of human study clearly stated
Aims-RQs Research question(s) and/or hypotheses specifically related to the human study
Aims-Motivation Clear motivation for the human study
Research Design Research design clearly described
Research Design-Aims Research design well suited to the aims of the study
Research Design-Motivation Utilised methods clearly motivated
Recruitment-Who Who the participants are and where they were recruited from
Recruitment-How How participants were recruited
Recruitment-Motivation Recruitment choices and/or sampling strategy clearly motivated
Data Collection-How How data was collected is clearly explained
Data Collection-What What kind of data was collected is clearly explained
Data Collection- Replicability Public availability of data collection tools and/or data
Analysis and Findings-How How the data was analysed is clearly explained
Analysis and Findings-Motivation The analytical procedures used are clearly motivated
Analysis and Findings-Findings Findings are clearly described and explained
Limitations-Validity Consideration of validity
Limitations-Generalizability Consideration of generalizability
Limitations-Reliability Consideration of reliability and trustworthiness

TABLE 7
Review Question Results

Question Percent of papers
marked ‘yes’

1-Does the paper report on the
development of a new APR tool/
technique?

81.1

2-Does the paper identify as motivation a
problem that developers currently face?

54.3

3-Does the paper state that their tool will
be helpful to developers (e.g., reduced
effort)?

29.2

4-Does the paper state that their tool/
technique changes developers activities
(e.g., introduces new tasks)?

17.7

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 425

‘difficulty’, that developers find program repair difficult.
This applied to over 30% of Q2 quotations.

For Q3 (Does the paper state that their tool will be helpful to
developers (e.g., reduced effort)?), the key finding was that reduc-
tion of developer effort was the main benefit promised to develop-
ers. Perhaps surprisingly, the theme ‘usability’ was the least
common, with few papers claiming that they had developed
a tool that would be usable by developers. As none of the
papers in this part of our review included a human study,
none of these assertions are based on having trialled or eval-
uated the tool or technique with developers.

For Q4 (Does the paper state that their tool/technique changes
developers’ activities (e.g., introduces new tasks)?), the most com-
mon additional task required was that developers had to provide
some form of specification to the APR tool. Whilst most of the
codes are a type of additional task, the codes ‘added value’
and ‘flexibility’ refer to how this additional work was posi-
tioned in the papers. ‘Added value’ refers to when the paper
stressed that developers were given information to assist
them with the new task and ‘flexibility’ refers to when the
paper indicated that the additional tasks gave developers
choice or options over the process. Flexibility was the more
prevalent of these themes, representing the main way in
which the introduction of new tasks was positioned, and
perhaps justified, emphasising developer choice and
agency.

Another key finding for Q4 is that, whilst manual debugging
was presented as difficult (Q2 quotations), the new developer tasks

resulting from APR tools/techniques were presented as straight-
forward or easy; for example, ‘the programmer is required to
define a catalog of hotspots, syntactic constructs considered
to be error-prone. Instead of manually searching for hot-
spots, programmers just define a catalog of syntactic con-
structs’ [38] (our italics). It is unclear to what extent such
tasks are indeed easy.

To summarise, in answer to ‘RQ1- To what extent, and in
what ways, does the APR literature consider human factor?’,
we find that around two thirds of APR papers make some sig-
nificant claims about developers without having conducted a
human study, while around a third of papers are purely tech-
nical in outlook not considering human factors at all. A key
statedmotivation for APR researchwas that developers spend
much time and effort fixing faults, while a main stated benefit
of the research was to reduce developer effort. Additional
tasks required as a result of APR, such as providing specifica-
tions, were generally positioned as straightforward.

5.2 RQ2- What are the Strengths and Weaknesses
of Existing Human Studies Within the APR
Literature?

We found 17 human studies in the Living Review, including
one PhD thesis [39]. Date of publication ranged from 2006 to
2019, with only three studies published between 2006 and
2013 and six studies published in 2018. This does suggest
that the number of human studies is increasing as the field

TABLE 8
Thematic Codes for Q2- Does the Paper Identify as Motivation a Problem That Developers Currently Face?

Thematic code Definition Indicative quotation

Difficulty Developers find program repair hard Manually debugging a defective program is
notoriously difficult

Fault localisation Localising the fault is a challenge for
developers

The programmer’s ever recommencing fight against
error involves two tasks: finding faults; and
correcting them

Frustration Developers find program repair
frustrating

Even a non-scalable automatic repair method can
help save a lot of time and avoid much frustration

Mistakes when coding Developers prone to making mistakes in
original code

Programmers make mistakes

Mistakes: when fixing faults Developers prone to making mistakes
when fixing faults

Human developers often introduce new defects over
the course of repairing others

Need for advanced skills Program repair requires the developer to
have advanced skills

Unfortunately, correctly fixing distributed timing
bugs is challenging for developers, as it involves
global reasoning beyond one thread or one node,
and often requires non-traditional synchronization

Shortcomings of a current repair
technique: too many options

Current technique provides developers
with too many options to sift through

Even with automated bug localization, the
programmer must still assess these locations to
choose where and how to fix the program

Shortcomings of a current repair
technique: understandability

Current technique yields output that
developers struggle to understand

This kind of correction is not readable and cannot be
easily understood and verified by the design
engineer

Tedium Developers find program repair boring Even if the bug’s cause is known, detecting a bug in
such programs and generating a bug fix patch
manually is a tedious task

Time/effort Program repair takes a lot of developer
time/effort

Localizing and fixing bugs is known to be an effort-
prone and time-consuming task for software
developers

Time pressures Program repair has to be conducted
within pressurised timeframes

Modern software applications must satisfy strict
release requirements that impose short bug fixing
and maintenance cycles, putting significant pressure
on developers

426 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

grows, though only in proportion to the growth of the field
(as 2018 has the largest number of papers in the Living
Review, see Fig. 1).

Table 11 highlights some key details of the human stud-
ies we found in the Living Review: the type of study, the
number of participants and, where it was stated, who these
participants were. UGs refers to undergraduate students;
PGs to postgraduates; and AMTs to Amazon Mechanical
Turk workers. Table 11 shows that the most commonly used
research methods were (quasi)experimental and survey-based.
The number of participants, however, varied greatly, rang-
ing from just one to several hundred. The implications of
the common types of study and the kinds of participants
recruited are discussed in Section 6.

APR Human Studies are Highly Tool Specific. Fourteen of
the seventeen papers introduce a new tool or technique that
the authors developed and then conduct a human study to
test out this tool/technique. The exceptions were [39], [43]
and [53]: these all presented participants with patches

generated from other tools or taken from benchmark suites.
For example, Fry et al. consider how maintainable partici-
pants considered automatically generated patches taken
from a benchmark suite, while Tao et al. study developers’
reactions to high- and low-quality patches. The implications
of this are also considered in Section 6.

5.2.1 Quality Assessment Results

We evaluated each of the 17 human studies according to the
18 quality criteria shown in Table 6, meaning that each
human study was given a score out of 18. The highest score
achieved by a human study paper was 17 [53], while the
lowest score was 2. The mean score was 8.3 and the median
score was 9, demonstrating the fairly low scores achieved
by individual papers.

The quality criteria also helped to highlight the strengths
andweaknesses of human studies in the APR field, summar-
ised in Fig. 5. This figure highlights some major weaknesses

TABLE 9
Thematic Codes for Q3- Does the Paper State That Their Tool Will be Helpful to Developers (e.g., Reduced Effort)?

Thematic code Definition Indicative quotation

Difficulty reduction Proposed tool/technique removes a
challenging task

Beanbag program is much easier than manually
implementing the fixing procedure

Efficiency Proposed tool/technique makes things more
efficient

Wolverine, by virtue of this seamless integration of
debugging and repair, allows advanced debug-
repair strategies [. . .] facilitating significant speed
ups during repair

Time/effort reduction Proposed tool/technique will save developer
time/effort

By automatically building fixes for bugs in real-
world programs, it can help curb the large amount of
resources - in time and effort – that programmers
devote to debugging

Usability Proposed tool/technique is easy to use This approach [provides] a clear, predictable fixing
semantics, so that end users can clearly know how
their updates affect other parts of the model

User understanding Proposed tool/technique contributes to user
understanding

Programmers viewing the analysis output can use
such patches as guides, starting points, or as an
additional way of understanding what went wrong
where

TABLE 10
Thematic Codes for Q4- Does the Paper State That Their Tool/Technique Changes Developers’ Activities

(e.g., Introduces new Tasks)?

Thematic code Definition Indicative quotation

Added value The developer is given more
information than before

The fixes that pass validation are presented to the
user, heuristically ranked according to how likely
they are correct

Additional tasks required: manual
application

The developer has to apply the
repair

By suggesting that an identifier be inserted or
modified, the choice is still up to the programmer

Additional tasks required: testing The developer has to carry out tests We assume that programmers should decide the
behavior of a merged program and usually prepare
test cases to check if it behaves correctly

Additional tasks required: spec The developer has to provide some
sort of specification

To fix the bugs in a program with this novel
approach, a user needs only to provide either a
formal specification or a set of unit tests

Additional tasks required:
verification

The developer has to check
provided fix and/or choose
between possible fixes

In general, user interaction is necessary to select the
desired repair from the set of possible repairs given
by the algorithm

Flexibility The developer is given choices/
options on the process

In practice, the choice of which mutant operators to
use would come down to the intuition, needs, and
resources of the programmers and software
engineers applying the strategy

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 427

in the current APR human studies. Specifically, APR human
studies are not currently well motivated and justified. Only one
paper explained why the method they used had been
adopted and was appropriate: Cambronero et al. explained
that their experiment had been chosen to ‘model a scenario,
inherent in the use of generate-and-validate automatic patch
generation, in which the developer is given patches that vali-
date butmay ormay not be correct’ [41]. The remaining stud-
ies gave no justification for their choice of method andwhy it
might be well suited to their research aims and questions: in
such cases, the method was just announced without any
motivation. Similarly, analytical procedures taken - such as
the choice of particular statistical tests - were rarely justified.
Few papers explained why they had recruited the partici-
pants they had, or what their sampling strategy was and
why this was appropriate. All the papers seemed to use
some form of convenience or volunteer sample, but the
nature of the sample was never identified or explained.
Though a little more common, very few papers explained
why their chosen participants were the right people to take
part in the human study. Based on this overall absence of
thorough explanation and justification, the current state of
APR human studies seems to be fairly under-developed.

A lack of maturity in current APR human studies is also
demonstrated by examples where the conclusions offered by
studies were not in line with the data presented. One study

concluded that ‘through a user study, we have shown that
Fix-It can reduce the human effort in code review to a signifi-
cant extent’ [40]. However, the user study included only one
person, who considered that Fix-It was able to provide fixes
in 43% of cases, which does not necessarily equate with a
reduction in human effort (as it does not take into account
time taken to validate fixes, etc.). Similarly, another paper,
reporting on participants’ answers to the question ‘does
FIXML help to understand your mistakes when you cannot
resolve them by yourself?’, includes ‘neutral’ responses with
‘yes’ responses and as a result over-states howmany partici-
pants gained understanding through using the tool [49]. This
also indicates that peer reviewersmay not give due consider-
ation to human studies that represent just a small part of pre-
dominantly technical papers, meaning that misleading
reports of human study findingsmay be published.

In answer to ‘RQ2- What are the strengths and weak-
nesses of existing human studies within the APR liter-
ature?’, we find that human studies within APR are
currently characterised by a lack of methodological diver-
sity. Whilst the human studies generally had well described
research design, data collection and findings, they were
often poorly motivated with little justification of key deci-
sions (such as choice of methods or type of participants).

5.3 RQ3- What are the Key Findings of Existing APR
Human Studies?

We also provide here a summary of the key findings
reported in the human studies. The findings can be placed
into three main categories:

� Attitudinal: Participants’ reactions to, and feelings
about, the tool

� Tool performance: How the tool performed in the con-
text of the human study

� Human performance: How participants performed
under the task conditions

Table 12 summarises the key findings of these human
studies, split into these key categories and divided into sub-
categories.

The findings in the ‘human performance’ category (i.e., how
participants performed under experimental conditions) are surpris-
ingly mixed. Two papers found that having access to the tool
or its generated patches did not improve participants’ ability

Fig. 2. Thematic code percentages for Q2 quotations - Does the paper
identify as motivation a problem that developers currently face?.

Fig. 3. Thematic code percentages for Q3 quotations - Does the paper
state that their tool will be helpful to developers (e.g., reduced effort)?.

Fig. 4. Thematic code percentages for Q4 quotations - Does the paper
state that their tool/technique changes developers activities (e.g., intro-
duces new tasks)?.

428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

to successfully complete the task [41], [47], whilst two papers
found that it did [46], [53]. Similarly, two papers reported
that having access to the tool or its generated patches did not
improve participants’ ability to complete the task quickly
[41], [53], whilst two papers found that it did [46], [47]. One
study found that one group of participants (teaching assis-
tants) completed the task quicker with access to the tool and
one group (students) completed it slower [55].

Not all the findings of these human studies were positive.
In contrast to the claims made in Living Review papers with-
out human studies that APR tools would be helpful to devel-
opers, several of the human studies did not show that the
APR tools were in fact helpful. Cambronero et al.’s study
found little difference between the performance of two
groups of participants in terms of time taken to perform the
tasks and the number of correct patches submitted [41]. Both
groups had been asked to repair defects and were given the
location of the defective lines of code, but one group had
access to five automatically generated patches, of which one

was correct. Cambronero et al. concluded that ‘solely provid-
ing subjects with automatically generated patches may not
be sufficient to see an effect in terms of patch integration pro-
ductivity [. . .] Subjects spent most of their time trying to
understand the defect and the way the provided patches
related to the original source code containing the defect’ [41].
From this, it seems that an understanding of the original
defect may be a prerequisite for developer patch acceptance,
indicating that work needs to be done into how automati-
cally generated patches are presented to developers.

Daniel et al.’s study found that more faults were intro-
duced by participants that had access to their tool than
those that did not. In contrast to the caution exhibited by
Cambronero et al.’s participants regarding patch acceptance,
Daniel et al. suggest that these participants might have
‘become overly reliant on the tool. This can be mitigated by
training users to carefully inspect the repairs suggested by
ReAsssert rather than accepting them blindly’ [42]. The
results from [41] and [42] present a more complex picture

Fig. 5. Human studies strengths and weaknesses.

TABLE 11
APR Human Studies Included in the Living Review

Paper Experiment? Survey? Other? Number and make-up of participants

Balachandran [40] Elicited developer feedback 1
Cambronero [41] X X 12 (all PGs)
Daniel [42] X X 18 (13 PGs, 3 UGs, 2 industry professionals)
Fry [43] X X 150 (27 UGs, 14 PGs, 116 AMTs)
Gulwani [44] X X 52
Hata [45] X 20 (5 UGs, 14 PGs, 1 Professor)
Kaleeswaran [46] X 10 (2 PGs, 8 industry professionals)
Kalyanpur [47] X 12
Kim [48] X 153 (17 PGs,72 UGs, 164 industry professionals)
Le [39] X X 35
Lee [49] X X 18 (all UGs)
Liu [50] X 7
Mahajan [51] X 240 (all AMTs)
Mahajan [52] X 37 (all UGs)
Tao [53] X X 95 (44 PGs, 28 industry professionals, 23 AMTs)
Tomida [54] Tool demo followed by discussion 7 (4 PGs, 1 UG, 2 professors)
Yi [55] X X 300 (263 UGs and 37 TAs)

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 429

than the simplistic message of ‘our new tool will help soft-
ware developers’ provided by many of the Living Review
papers that do not include a human study. In particular, the
contrasting findings relating to patch acceptance suggest
that the issue of what influences developers’ patch accep-
tance requires further research. Daniel et al.’s suggestion of
the risk of developer complacency also opens up key
research questions around how patch acceptance is best
managed and what tooling might be appropriate to ensure
careful developer validation of patches.

Alongside positive feedback, there was also critical
feedback provided by participants in some of the human
studies. In Tao et al.’s study, participants said: that the gen-
erated patches may be confusing, misleading or incom-
plete; that they may either overcomplicate or oversimplify
the problem; that they may not be helpful for unfamiliar
code; that they may not work if the test suite is not suffi-
cient [53]. The participants in Liu et al.’s study voiced
some concern about the accuracy of the patches generated
by the tools [50]. Daniel et al.’s participants expressed the
concern that the tool could make developers more careless
(and this seems to be supported by the fact that partici-
pants with access to the tool introduced more faults) [42].
Again, this complicates the more simplistic picture pro-
vided by the papers reviewed in the first part of our study.
Research is needed to explore these developer concerns in
more depth and identify ways of mitigating them through
tool design.

To summarise, in answer to ‘RQ3- What are the key find-
ings of existing APR human studies?’, we find some mixed
findings as to the helpfulness of APR for participants (in
terms of aiding participants in their completion of a
given task, for example), as well as evidence of negative
developer feedback.

6 DISCUSSION

6.1 Fault Fixing as ‘Difficult’: Common Knowledge?

We found little empirical evidence presented for fault fixing
being time-consuming and/or difficult. Analysis of the Q2
quotes (Does the paper identify as motivation a problem that devel-
opers currently fix?) demonstrates that the idea of fault fixing as
time-consuming or difficult was often expressed in general,
rather than specific terms.Of the 40 quotations thatwere coded
with ‘difficulty’, 15 referred to difficulty in very generic terms.
The same applies for 26 out of 75 quotations thematically
coded with ‘time/effort’. In addition, the difficulty and time-
consuming nature of fault fixing is often referred to as estab-
lished fact or as ‘common knowledge’, and rarely backed-up
with an appropriate citation. Only one of the references used
to support the idea of fixing faults being time-consuming and/
or difficult was in fact an empirical study with developers. For
the code ‘difficulty’, over half the quotations did not include a
reference at all to support this claim.

The notion that fixing faults is a difficult activity is not
necessarily backed up by the literature. As recently as 2018,
Beller et al. stated: ‘surprisingly we have little knowledge on
how software engineers debug software problems in the
real world, whether they use dedicated debugging tools,
and how knowledgeable they are about debugging’ [56].
B€ohme et al. agree, asserting that ‘how humans actually
debug is still not really well explored’ [57]. Such work sug-
gests that we don’t yet know much about how developers
fix faults, let alone how they feel about it.

6.2 Do Developers Want to be Out of the Loop?

One reason for papers not often stating that their proposed
APR tool or technique would lead to new tasks or activities
for developers is that full automation of repair is a key goal

TABLE 12
Key Findings of APR Human Studies

Attitudinal No. of human studies

Participants found the tool/patches/repairs useful 5 [42], [44], [45], [46],
[49]

Participants expressed some critical feedback about the tool/patches/repairs 3 [42], [50], [53]
Participants rated after-repair version of website better than pre-repair version (readability/aesthetics) 2 [51], [52]
Participants considered the tool able to fix errors 1 [40]
Participants felt that the tool/patches/repairs would save their time 1 [50]
Participants felt that the tool/patches/repairs would lead them to respond quicker to a bug report 1 [50]
Participants rated the tool’s generated patches better than those generated by another tool 1 [48]
Participants rated the tool’s generated patches similarly to human-written ones 1 [48]
Participants considered the task(s) easier when they had access to the tool/patches/repairs 1 [46]

Tool performance No. of human studies

The tool was successfully able to fix errors and/or generate patches 3 [42], [44], [49]
Generated patches/repairs were similar to human-written ones 1 [42]

Human performance No. of human studies

Access to tool/patches/repairs decreased the time it took participants to debug/complete task 3 [46], [47], [55]
Access to tool/patches/repairs did not decrease the time it took participants to debug/complete task 3 [41], [53], [55]
Different types of participants made varyingly effective use of repairs/patches 2 [53], [55]
Access to tool/patches/repairs improved participants’ ability to debug/complete task 2 [46], [53]
Access to tool/patches/repairs did not improve participants’ ability to debug/complete task 2 [41], [47]
Access to tool/patches/repairs led to participants introducing more faults that those who did not have
access

1 [42]

Participants were able to understand generated patches with documentation as well as they did human
patches

1 [43]

430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

of many papers. Full automation may be a key technical
goal in terms of proving the efficacy of an APR system, but
there is a need to explore whether developers in fact want to
be out of the loop in this way. Some findings from existing
human studies would suggest that developers do not neces-
sarily want this, such as the participants in [41] who took a
long time trying to understand both the original defect and
the automatically generated patch. This demands further
research, otherwise we may find APR innovation that is
highly unpopular with developers and at odds with their
workplace values.

The concern expressed by participants in [42] that devel-
opers might become careless also points to the potential
advantages of manual debugging, such as taking care when
writing code to avoid needless errors. Manual debugging
also gives developers the opportunities to learn from their
mistakes, and future work needs to consider the risks of
deskilling posed by APR advances.

The idea of program repair bots is an interesting one in
terms of allowing for interaction between the human devel-
oper and the APR tool. Monperrus, for example, envisages
‘conversational systems for patch explanation: developers
would be able to ask questions about the patch behaviour,
and the program repair bots would answer to those ques-
tions’ [58]. Van Tonder and Le Goues also consider the pos-
sibilities of repair bots, the effectiveness of which depend
‘on successful integration with human processes of software
development’ [59]. Whilst this work is currently nascent
and at the conceptual stage, our research findings suggest
repair bots could be a promising direction, particularly, for
example, for aiding developer understanding of automati-
cally generated patches.

6.3 Beyond Tool-Specific Studies

APR human studies are currently highly tool-specific, eval-
uating in some way an APR tool or technique introduced in
the rest of the paper. This is significant, because these
human studies reveal little about how developers feel about
APR more generally. This may indicate an assumption that
APR is the future and will be easily embedded into indus-
try, and it is just a question of the refining of specific tools
or techniques, or even a competition to produce the best.
Whilst developers may comment on the likelihood of adopt-
ing the specific tool under investigation, this does not neces-
sarily reveal much about their attitudes towards APR tools
and techniques more generally, often instead reflecting the
particular advantages or disadvantages of the proposed
tool. Owing to this specificity, the human studies may not
provide other researchers working within the APR field
with many takeaways for their own work, the findings
instead being more applicable to how the proposed tool/
technique might be further developed.

It is also challenging to compare the results of these
human studies. Whilst one tool-specific study did compare
their own proposed tool to GenProg [48], a genetic-pro-
gramming based repair tool [60], the rest of the studies com-
pare their proposed tool to ‘no tool’. In addition, the studies
conducted – though largely of similar types, a survey or a
task-based experiment – varied. For experimental studies,
the type of tasks performed by participants differed, as did

the control and experimental conditions. These conditions
included, for example, one group of participants with and
one group without the repair technique/tool introduced in
the paper [42], [47], [55] or one task where participants had
use of the tool and one task where they could not use the
tool [46]. The different experimental conditions make com-
parison of the tools challenging.

The surveys also had highly varied approaches. Two sur-
vey-based studies by the same authors elicited feedback on
the aesthetics of an original webpage versus the same web-
page repaired by their tool [51], [52]; one involved asking a
developer to feedback on the tool’s capability to find fixes for
different faults [40]; one involved a small number of devel-
opers being asked whether the patches generated would
save time and be beneficial [50]; one asked participants to
review patches [48]; and the remaining study asked partici-
pants to rank fixes (both incorrect and correct) according to
their understandability and helpfulness [45]. Again, this
variety of empirical measures limits comparability between
human studies when it comes to considering the usefulness
of these APR tools for developers. This makes it difficult to
understand what kind of APR tools might most benefit
developers. In addition, fewer than half the human studies
included some form of replication package, meaning that it
would be difficult to replicate many of the studies with a dif-
ferent tool/technique to enable comparison.

6.4 The Limits of Usability

The majority of human studies within APR share a common
emphasis — i.e., the use of human participants to test or val-
idate a proposed tool or technique. Whether stated or not,
all these studies test the hypothesis that their proposed tool
or technique leads humans to achieve a better outcome in
some way (be that faster, more efficient, or more correct).
Whilst there might be some element of attitudinal study,
such as participants’ opinions on the helpfulness of the tool,
the main focus is very much on the tool or technique’s
usability, with human studies used to validate the tool, and
confirm its efficacy.

However, there are limits to the focus onusability. Singer et
al. highlight the strong focus within tool development on
usability testing suggesting that usability does not in fact
equatewith usefulness, and argue that ‘the usability approach
cannot speak to the issue of whether a user will adopt and use
a new tool in the workplace because that is not the point, or
the focus of usability’ [61]. This is because usability testing
normally occurs outside normal work settings, this being the
case in the APR human studies we evaluate. Experimental
studies separate the user from their normal forms of behav-
iour as they are isolated from the other resources they might
usually use in their work, such as in-house tools or the advice
of colleagues. Singer et al. highlight that ‘during usability test-
ing, the user is essentially forced to use the software. In conse-
quence, it is impossible to collect data on whether the user
would use the software if he [sic] were given a choice between
his [sic] existing work practices and the new software’ [61].
This highlights the need to ground new tool design in the
study of both existing practices and the use of tools in realistic
settings.

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 431

6.5 Participation of Professional Developers

Professional developers were under-represented as partici-
pants in the APR human studies. Of the seventeen studies, 11
involved a majority of either undergraduate or postgraduate
students [41], [42], [44], [45], [49], [52], [54], [55], or Amazon
Mechanical Turkworkers [51], or both [43], [53] (see Table 11).

The use of students in software engineering research has
been recently defended [62], but it remains a contested area
[63]. As discussed earlier, we found that very few papers
provided a justification for their recruitment choices, i.e.,
why students might be appropriate participants. Given the
lack of rationale provided, it is therefore hard to judge
whether students were suitable research participants for the
APR human studies. However, we would argue that the
under-representation of professional developers in APR
human studies is problematic for a field that is highly moti-
vated, as shown in the first part of our study, by problems
faced by developers.

6.6 Paucity of Mining Software Repository Studies

Storey et al. [12] include mining software repository studies
in a category they term ‘data strategies’, defined as ‘empirical
studies that rely primarily on archival, generated or simu-
lated data’, and find that this strategy is the most commonly
used in their sample of papers. By contrast, we find only a
small number of papers in our study of APR publications
that engage with data from software repositories. This prob-
ably reflects the nascent stage of APR.

Should APR aim to mirror other fields in software engi-
neering and increase its number of software repository min-
ing studies, such as submitting patches and collecting
acceptance rates and feedback? Certainly, such studies are
highly scalable with the potential to yield large quantities of
data, as well as often being straightforward to replicate.
They may also offer a high degree of realism. However,
these studies also have their limitations. As Weimer com-
ments about his own study [32], ‘this experiment only
shows that patches work, it does not show why’ and that
‘probing studies, presumably involving human subjects,
remain as future work’. Whilst we welcome the insight that
might be provided from larger studies gathering developer
feedback more indirectly, we argue this should comple-
ment, rather than replace, more in-depth empirical studies
with developers. Storey et al. also caution against over-reli-
ance on data mining studies, specifying that the data col-
lected is ‘inadequate for understanding previous human
behaviour and can be misleading in terms of predicting
future developer behaviours’ [12].

6.7 Barriers to Conducting Human Studies

It is not clearwhy the quality of human studies within APR is
not higher. It may be that APR researchers tend to be techni-
cal experts who lack the skills and experience to perform
high quality human studies (as also speculated by Storey
et al. [12]). Or it may be that APR researchers struggle with
the barriers to user evaluation in SE that Buse et al. report,
such as difficulty recruiting participants and the time needed
to design and carry out human studies [14]. However, it
should be noted that these barriers are not necessarily any
different in software engineering than in other disciplines

where user studies are much more readily carried out, such
as psychology. Buse et al. also suggest that peer reviewers
tend to look for some form of user evaluation, which may
have the unintended side effect of small user studies being
added to predominantly technical papers. This suggests that
applying guidelines to peer review of user studies would be
helpful and such guidelines exist [64]. However, future work
is needed to establish the reasons underpinning the lack of
quality in humanAPR studies that we report.

7 RECOMMENDATIONS: RQ4- WHAT FUTURE
RESEARCH DIRECTIONS ARE NEEDED TO

PROGRESS THE STUDY OF HUMAN FACTORS

WITHIN APR?

In response to our analysis of the APR literature and to
answer RQ4, we make a series of recommendations for
improving the study of human factors within APR. These
recommendations are split into three key areas: methods;
reporting of human studies; and the scope of human factor
research. Both ‘methods’ and ‘reporting’ largely respond to
the weaknesses of APR human studies that we uncovered
through our quality assessment. In the ‘scope’ recommen-
dation, we consider the fact that the APR human studies we
considered were mainly tool specific and suggest that APR
human studies could be broadened in scope to include
more general studies as well as tool evaluations.

It should be noted here that we are not recommending
that all APR research include a human study, but rather that
more human studies be conducted in APR and that attention
is given to their quality. Particularly, we would encourage
studies that give greater attention to what the developer
needs andwants fromAPR, as well as well-conducted evalu-
ation studies using professional developerswith varying lev-
els of experience of APR technology (from none to expert).
Kirbas et al.’s previous work on the adoption of APR at
Bloomberg, London [65], reports scepticism and suspicion of
APR. Only through exposing developers to the technology
and its benefits did developers begin to viewAPR as a useful
and positive influence in their roles. Work on fine-tuning
and improving the human experience of APR tools in Bloom-
berg is an ongoing challenge and not static.

Whilst we consider APR to be distinct in its potential
impact upon software developers, it is not necessarily the
case that new methods or techniques are required to
research its human factors. As such, the recommendations
we offer here may well be applicable to other software engi-
neering domains.

7.1 Methods

Human Studies Should Make use of a Diversity of Methods. The
small number of existing human studies demonstrate a reli-
ance on very few methods, being either some form of con-
trolled, task-based experiment or a survey. Both of these
methods have distinct advantages. A controlled experiment,
for example, allows the researcher to consider the impact of a
single variable (in this case, use or non-use of the proposed
APR tool or its generated patches) in a controlled environ-
ment that reduces the potential impact of other variables. A
survey allows the researcher to collect the views and

432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

opinions of more participants than could feasibly take part
in a controlled experiment and enables the collection of
both qualitative and quantitative data. However, surveys
and controlled experiments, like all methods, have their
limitations.

The study of human factors in APR would benefit from
far greater methodological diversity of a relatively radical
nature. For example, we see few industry-academic studies
where the authors have actually spent concerted amounts
of time in the organisation they’ve collaborated with. Seminal
and ground-breaking work on bug detection and prediction
by Ostrand, Weyuker and Bell in the past [66] has shown
the value of joint understanding, knowledge and co-opera-
tion between industry and academia. Both Ostrand and
Weyuker worked in academia and industry during periods
of their research. APR requires understanding developer
processes, nuances and/or tacit knowledge that cannot be
gained through on-site research meetings only. Whilst valu-
able approaches, some of the most commonly-used meth-
ods in APR research currently (e.g., surveys or experiments)
may not map onto the use of planned APR tools or techni-
ques in natural and realistic settings. Ethnographic studies
offer one possible approach for studying how a tool or tech-
nique might be used in ‘messier’, but more realistic, envi-
ronments; see [67] for an overview of using ethnography in
software engineering research.

7.2 Reporting of Human Studies

Human Studies Must be Comprehensively Reported. One per-
haps unintended consequence of the increased focus on
human factors in software engineering is minimal human
studies being tacked onto the ends of predominantly techni-
cal papers. In the majority of cases, these very small studies
were poorly justified, contextualised and designed. There is
no doubt that the technical and human need to be more
fully integrated into software engineering publications,
reflecting the inherent socio-technical nature of the software
engineering enterprise. However, a scantly described study
taking up a couple of a paragraphs in a full paper does not
strike us as the right approach. As predominantly technical
papers are likely to be reviewed by academics with predom-
inantly-technical expertise and less expertise in human
studies, poorly-designed human studies that make up a
very small part of the paper may escape the attention of
peer reviewers. We found several examples of human stud-
ies where results were erroneously reported (see 5.3). How-
ever, if such findings were taken at face value they could
negatively impact upon future work. Human studies should
be thorough and they should also be fully reported in order
to allow for replication, where necessary.

The Need for Clear Motivation. The human studies were
most clearly lacking in terms of motivation and provision of
rationale. This included motivation for performing the
human study at all and clearly motivated research methods
and research design, recruitment and sampling rationale,
and data analysis approaches. Justification of key methodo-
logical decisions and choices should be a cornerstone of all
human studies, and be taken into account in peer review
processes.

7.3 The Scope of Human Factors Research

Human Studies Should be General as Well as Tool-Specific. The
human studies reported were predominantly tool-specific;
that is, they reported on the results of a study of a particular
tool or technique. This is an important way in which aca-
demic software engineers test and validate the APR tools or
techniques they are developing. However, there is also a
need for some more general studies of APR to address
rather different kinds of research questions. For example,
how do software practitioners’ currently find and fix faults?
Debugging, and its associated processes, is an under-
researched and poorly understood area [68], yet under-
standing these processes plays a pivotal role in considering
how APR is best introduced to developers.

Other questions include: How do developers feel about
proposed APR tools and techniques? How do they think
APR would change their workflow and the everyday nature
of their working life? What disadvantages do developers
perceive in APR? The work in [65] showed that an unantici-
pated side-effect of APR was greater awareness of opportu-
nities by developers for cleaning and refactoring their code
[69], in essence widening the reach of APR.

All these types of questions would allow for the develop-
ment of increased understanding of software practitioners’
attitudes towards APR and most importantly, if negative,
how to change those attitudes. Whilst there are notable
exceptions (such as Facebook’s adoption of Getafix), adop-
tion of academia-built tools within industry remains uneven
and slow [70], [71]; and understanding software developers’
attitudes towards APR might help diminish this industry-
academia gap. It is also important to understand the gaps
between academic and industry priorities for the adoption
of APR, as a recent paper on the introduction of APR at
Bloomberg demonstrates [65].

8 THREATS TO VALIDITY

In this Section, we highlight and discuss two key threats to
validity: the selection of papers we reviewed; and the inter-
pretive judgements involved in reviewing.

Rather than carrying out our own systematic literature
review, we used an existing corpus of APR literature, the
Living Review [9]. The Living Review is a large and com-
prehensive bibliography, and has been used by other
research as a corpus [16], [23], [24]. However, it may not be
fully comprehensive as it is maintained by only one person,
and in addition it may be biased towards more technical
studies at the expense of more developer-focused research.
To mitigate this threat, we carried out a search for
‘automatic program repair’ AND (‘human factors’ OR
‘human study’ OR ‘user study’) on ACM Digital Library,
IEEE Xplore and arXiv. We looked at all the papers that
emerged from these searches and, by using the protocol
described in Section 4 to determine whether a paper
included a human study, found one APR human study that
was not included in the Living Review. This human study
[72] confirms our core findings in that it is a minimally-
described experiment (with participants asked to review
human-written repairs and automated repairs), featuring
undergraduate students and Amazon Mechanical Turk
workers as its participants. As a result, we are confident

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 433

that our quality assessment of human factors within APR is
representative of the APR literature.

All parts of our review involved human judgement and
interpretation, which poses challenges for replicability. To
address this threat, all reviewing involved at least two
authors. Where the judgement involved was more complex
(as in the case of the thematic analysis), three authors were
allocated to each review. All conflicts were thoroughly dis-
cussed, and discussion was recorded in SLuRp.

It should be noted that our findings are not generalisable
to other areas of software engineering, and future research
would be needed to explore the state of human factors
research in other domains. However, our method (such as
the questions used to answer RQ1 and our quality criteria)
could be widely used within other SE domains.

9 CONCLUSION

This paper has presented the first review of the state of
human factors research in APR. In answer to RQ1 To what
extent, and in what ways, does the APR literature consider
human factors?, we find that developers are very often
talked about but far less frequently talked with. In addition,
many of the claims made about developers are unsubstan-
tiated and presented as ‘common knowledge’ with little
evidence to back them up. In fact, we know very little
about developers’ experiences of debugging [56], [57], let
alone their feelings about this part of their work. Of the
papers that introduced a new tool or technique, there were
also just over one third that were not motivated by a prob-
lem currently faced by developers and were purely techni-
cal in outlook.

RQ2 assessed the strengths and weaknesses of existing
APR human studies. We find that human studies within
APR are rare (less than 7% of papers in the Living Review)
and of highly mixed quality. In particular, we find that
human studies in APR are not sufficiently and clearly moti-
vated, with little rationale provided for key decisions made,
such as research design and participant recruitment strate-
gies. We also find that APR human studies are highly tool-
specific, telling us little about how tools compare to each
other and even less about how developers might feel about
APR more generally. There has also been as of yet little
research with professional developers, many studies recruit-
ing undergraduate students and/or Amazon Mechanical
Turkworkers as participants.

The findings of the existing APR human studies (RQ3:
What are the key findings of existing APR human studies?)
reveal a mixed picture in terms of the efficacy of APR tools
and techniques when it comes to their actual use, prompting
questions regarding how automatically generated patches
are best presented to developers. More research is needed
to thoroughly investigate developer concerns related to
APR and consider how to carefully address these concerns.
We also find that APR human studies are highly tool-spe-
cific, telling us little about how tools compare to each other
and even less about how developers might feel about APR
more generally.

In our recommendations (RQ4- What future research
directions are needed to progress the study of human factors
within APR?), we suggest that future APR research should

be not only tool-specific but also broader in focus, consid-
ering developer attitudes towards APR more generally, as
well as exploring how APR tools would fit into developers’
existing workflows, complementing rather than disrupting
existing practices. We also recommend that future APR
research make use of a diversity of methods, including
qualitative research methods, and that, in publications,
human studies be comprehensively reported and clearly
motivated.

There are many thorough and sophisticated human stud-
ies in software engineering (for example, [73], [74]). There is
no need for APR researchers to re-invent the wheel when it
comes to empirical studies, but collaboration with software
engineering researchers more focused on the human-side or
with social scientists is clearly needed.We suggest that inter-
disciplinary research that brings together both social and
technical expertisemay be an important future step in APR.

Our key finding that human factors are under-studied in
APR is mirrored in software engineering more generally
[12]; APR is certainly not the exception. Many studies have
maligned the industry-academia gap, where tools devel-
oped in academia are not widely adopted in industry. The
emergence of APR as an important field of research within
software engineering represents a key opportunity to
ensure that future APR research and development is devel-
oper-centred and that the tools developed in coming years
fully realise their potential to benefit developers.

ACKNOWLEDGMENTS

We are very grateful for the helpful feedback we received
from our reviewers.

REFERENCES

[1] X. D. Le, “Towards efficient and effective automatic program
repair,” in Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng.,
2016, pp. 876–879.

[2] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software
repair: A survey,” IEEE Trans. Softw. Eng., vol. 45, no. 1, pp. 34–67,
Jan. 2019.

[3] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each,” in Proc. IEEE 34th Int. Conf. Softw. Eng., 2012,
pp. 3–13.

[4] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning to
fix bugs automatically,” Proc. ACM Prog. Lang., vol. 3, no. OOP-
SLA, pp. 1–27, Oct. 2019

[5] N. Abbas and N. Policek, “‘don’t be the same, be better’: An
exploratory study on police mobile technology resistance,” Police
Pract. Res., vol. 22, no. 1, pp. 849–868, 2021.

[6] M. Alohali, F. Carton, and Y. O’Connor, “Investigating the antece-
dents of perceived threats and user resistance to health informa-
tion technology: A case study of a public hospital,” J. Decis. Syst.,
vol. 29, no. 1, pp. 27–52, 2020.

[7] W. Weimar, “Program repair, patch quality, and human factors,”
keynote at 2nd Int. Workshop Automat. Program Repair, May
2021.

[8] B. A. Kitchenham et al., “Preliminary guidelines for empirical
research in software engineering,”Main, vol. 28, no. 8, pp. 721–734,
2002.

[9] M. Monperrus, “The living review on automated program
repair,” HAL/archives-ouvertes.fr, Lyon, France, Tech. Rep. hal-
01956501, 2018.

[10] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
Advanced Empirical Software Engineering, (Guide to advanced
empirical software engineering Series). Berlin, Germany:
Springer, 2008, pp. 285–311.

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

[11] H. Robinson, J. Segal, and H. Sharp, “Ethnographically-informed
empirical studies of software practice,” Informat. Softw. Technol.,
vol. 49, no. 6, pp. 540–551, 2007.

[12] M. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou, “The
who, what, how of software engineering research: A socio-techni-
cal framework,” Empirical Softw. Eng., vol. 25, pp. 4097–4129, 2020.

[13] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld,
“Studying the advancement in debugging practice of professional
software developers,” Softw. Qual. J., vol. 25, no. 1, pp. 83–110,
2017.

[14] R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers of
user evaluation in software engineering research,” SIGPLAN
Notices, vol. 46, no. 10, pp. 643–656, Oct. 2011.

[15] M. Monperrus, “Automatic software repair: A bibliography,”
ACM Comput. Surv., vol. 51, no. 1, Jan. 2018.

[16] K. Liu et al., “A critical review on the evaluation of automated pro-
gram repair systems,” J. Syst. Softw., vol. 171, 2021, Art. no. 110817.

[17] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Informat. Softw. Technol., vol. 50, no. 9, pp. 860–878, 2008.

[18] A. Soomro, N. Salleh, E. Mendes, J. Grundy, G. Burch, and A. Nor-
din, “The effect of software engineers’ personality traits on team
climate and performance: A systematic literature review,” Infor-
mat. Softw. Technol., vol. 73, pp. 52–65, 2016.

[19] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software
engineering: A definition and systematic literature review,”
J. Syst. Softw., vol. 107, pp. 15–37, 2015.

[20] D. S. Cruzes and T. Dyba, “Research synthesis in software engi-
neering: A tertiary study,” Informat. Softw. Technol., vol. 53, no. 5,
pp. 440–455, 2011.

[21] Y. Noller, R. Shariffdeen, X. Gao, and A. Roychoudhury, “How to
trust auto-generated code patches? A developer survey and
empirical assessment of existing program repair tools,” 2021,
arXiv:2108.13064.

[22] G. M. Alarcon et al., “Would you fix this code for me? Effects of
repair source and commenting on trust in code repair,” Systems,
vol. 8, no. 1, pp. 1–17, 2020. [Online]. Available: https://www.
mdpi.com/2079–8954/8/1/8

[23] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical
review of java program repair tools: A large-scale experiment on
2,141 bugs and 23,551 repair attempts,” in Proc. 27th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019,
pp. 302–313.

[24] S. Wang et al., “Automated patch correctness assessment: How far
are we?,” in Proc. 35th IEEE/ACM Int. Conf. Automated Softw. Eng.,
2020, pp. 968–980.

[25] K. Liu et al., “A critical review on the evaluation of automated pro-
gram repair systems,” J. Syst. Softw., vol. 171, 2021, Art. no. 110817.

[26] X. Huang, H. Zhang, X. Zhou, M. A. Babar, and S. Yang,
“Synthesizing qualitative research in software engineering: A criti-
cal review,” in Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 1207–1218.

[27] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: A critical review and guidelines,” in
Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 120–131.

[28] H. Zhang, X. Huang, X. Zhou, H. Huang, and M. A. Babar,
“Ethnographic research in software engineering: A critical review
and checklist,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2019, pp. 659–670.

[29] D. Bowes, T. Hall, and S. Beecham, “SLuRp: A tool to help large
complex systematic literature reviews deliver valid and rigorous
results,” in Proc. 2nd Int. Workshop Evidential Assessment Softw.
Technol., 2012, pp. 33–36.

[30] D. S. Cruzes and T. Dyba, “Recommended steps for thematic syn-
thesis in software engineering,” in Proc. Int. Symp. Empirical Softw.
Eng. Meas., 2011, pp. 275–284.

[31] B. Kitchenham et al., “Trends in the quality of human-centric soft-
ware engineering experiments–A quasi-experiment,” IEEE Trans.
Softw. Eng., vol. 39, no. 7, pp. 1002–1017, Jul. 2013.

[32] W. Weimer, “Patches as better bug reports,” in Proc. 5th Int. Conf.
Generative Prog. Compon. Eng., 2006, pp. 181–190.

[33] M. Monperrus, S. Urli, T. Durieux, M. Martinez, B. Baudry, and
L. Seinturier, “Human-competitive patches in automatic program
repair with repairnator,” pp. 1–3, 2018, arXiv:1810.05806.

[34] D. Marcilio, C. A. Furia, R. Bonif�acio, and G. Pinto,
“Automatically generating fix suggestions in response to static
code analysis warnings,” in Proc. 19th Int. Work. Conf. Source Code
Anal. Manipulation, 2019, pp. 34–44.

[35] T. Dyba
�
and T. Dingsøyr, “Empirical studies of agile software

development: A systematic review,” Informat. Softw. Technol.,
vol. 50, no. 9, pp. 833–859, 2008.

[36] J. R. Landis and G. G. Koch, “The measurement of observer agree-
ment for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174,
1977. [Online]. Available: http://www.jstor.org/stable/2529310

[37] B. Kitchenham et al., “Can we evaluate the quality of software
engineering experiments?,” in Proc. ACM-IEEE Int. Symp. Empiri-
cal Softw. Eng. Meas., 2010, pp. 1–8.

[38] C. Kern and J. Esparza, “Automatic error correction of java
programs,” in Formal Methods for Industrial Critical Systems, S.
Kowalewski and M. Roveri, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 67–81.

[39] X. B. D. Le, “Overfitting in Automated Program Repair: Chal-
lenges and Solutions,” Ph.D. dissertation, Singapore Manage.
Univ., 2018.

[40] V. Balachandran, “Fix-it: An extensible code auto-fix component
in review bot,” in Proc. IEEE 13th Int. Work. Conf. Source Code Anal.
Manipulation, 2013, pp. 167–172.

[41] J. P. Cambronero, J. Shen, J. Cito, E. Glassman, and M. Rinard,
“Characterizing developer use of automatically generated
patches,” 2019, arXiv:1907.06535.

[42] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert: Sug-
gesting repairs for broken unit tests,” in Proc. 24th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2009, pp. 433–444.

[43] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proc. Int. Symp. Softw. Testing Anal., 2012,
pp. 177–187.

[44] S. Gulwani, I. Radi�cek, and F. Zuleger, “Automated clustering and
program repair for introductory programming assignments,” in
Proc. 39th ACM SIGPLAN Conf. Prog. Lang. Des. Implementation,
2018, pp. 465–480.

[45] H. Hata, E. Shihab, and G. Neubig, “Learning to generate cor-
rective patches using neural machine translation,” 2018,
arXiv:1812.07170.

[46] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “Minthint:
Automated synthesis of repair hints,” in Proc. Int. Conf. Softw.
Eng., 2014, pp. 266–276.

[47] A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau , “Repairing
unsatisfiable concepts in OWL ontologies,” Semantic Web, Res.
Appl., vol. 4011, pp. 170–184, 2006.

[48] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proc. Int. Conf. Softw.
Eng., 2013, pp. 802–811.

[49] J. Lee, D. Song, S. So, and H. Oh, “Automatic diagnosis and
correction of logical errors for functional programming assign-
ments,” Proc. ACM Program. Lang., 2018, pp. 1–30.

[50] C. Liu, J. Yang, L. Tan, andM. Hafiz, “R2Fix: Automatically gener-
ating bug fixes from bug reports,” in Proc. Int. Conf. Softw. Testing
Verification Validation, 2013, pp. 282–291.

[51] S. Mahajan, N. Abolhassani, P. McMinn, and W. G. Halfond,
“Automated repair of mobile friendly problems in web pages,” in
Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 140–150.

[52] S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond,
“Automated repair of internationalization presentation failures in
web pages using style similarity clustering and search-based
techniques,” in Proc. IEEE Int. Conf. Softw. Testing Verification Vali-
dation, 2018, pp. 215–226.

[53] Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated
patches as debugging aids: A human study,” in Proc. 22nd ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 64–74.

[54] Y. Tomida, Y. Higo, S. Matsumoto, and S. Kusumoto,
“Visualizing code genealogy: How code is evolutionarily fixed
in program repair?,” in Proc. Work. Conf. Softw. Visual., 2019,
pp. 23–27.

[55] J. Yi, U. Ahmed, A. Karkare, S. Tan, and A. Roychoudhury, “A
feasibility study of using automated program repair for introduc-
tory programming assignments,” in Proc. 11th Joint Meeting Found.
Softw. Eng., 2017, pp. 740–751.

[56] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the dichot-
omy of debugging behavior among programmers,” in Proc. 40th
Int. Conf. on Softw. Eng., 2018, pp. 572–583.

[57] M. B€ohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe,
and A. Zeller, “Where is the bug and how is it fixed? An experi-
ment with practitioners,” in Proc. 11th Joint Meeting Found. Softw.
Eng., 2017, pp. 117–128.

WINTER ETAL.: LET’S TALKWITH DEVELOPERS, NOT ABOUT DEVELOPERS:... 435

https://www.mdpi.com/2079--8954/8/1/8
https://www.mdpi.com/2079--8954/8/1/8
http://www.jstor.org/stable/2529310

[58] M. Monperrus, “Explainable software bot contributions: Case
study of automated bug fixes,” in Proc. 1st Int. Workshop Bots
Softw. Eng., 2019, pp. 12–15.

[59] R. van Tonder and C. Le Goues , “Towards s/engineer/bot: Prin-
ciples for program repair bots,” in Proc. IEEE/ACM 1st Int. Work-
shop Bots Softw. Eng., 2019, pp. 43–47.

[60] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Softw.
Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[61] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An exami-
nation of software engineering work practices,” in Proc. Conf. Cen-
tre Adv. Stud. Collaborative Res., 1997, Art. no. 21.

[62] D. Falessi et al., “Empirical software engineering experts on the
use of students and professionals in experiments,” Empirical Softw.
Eng., vol. 23, no. 1, pp. 452–489, Feb. 2018.

[63] R. Feldt et al., “Four commentaries on the use of students and pro-
fessionals in empirical software engineering experiments,” Empir-
ical Softw. Eng., vol. 23, pp. 3801–3820, 2018.

[64] P. Ralph et al., “ACM SIGSOFT empirical standards,” 2020,
arXiv:2010.03525.

[65] S. Kirbas et al., “On the introduction of automatic program repair
in bloomberg,” IEEE Softw., vol. 38, no. 4, pp. 43–51, Jul./Aug.
2021.

[66] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the loca-
tion and number of faults in large software systems,” IEEE Trans.
Softw. Eng., vol. 31, no. 4, pp. 340–355, Apr. 2005.

[67] H. Sharp, Y. Dittrich, and C. B. de Souza, “The role of ethno-
graphic studies in empirical software engineering,” IEEE Trans.
Softw. Eng., vol. 42, no. 08, pp. 786–804, Aug. 2016.

[68] H. Lieberman, “The debugging scandal and what to do about it
(introduction to the special section),” Commun. ACM, vol. 40,
no. 4, pp. 26–29, 1997.

[69] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[70] V. Ivanov, A. Rogers, G. Succi, J. Yi, and V. Zorin, “What do soft-
ware engineers care about? Gaps between research and practice,”
in Proc. 11th Joint Meeting Found. Softw. Eng., 2017, pp. 890–895.

[71] L. Briand, “Embracing the engineering side of software engineer-
ing,” IEEE Softw., vol. 29, no. 4, pp. 96–96, Jul./Aug. 2012.

[72] M. Endres, G. Sakkas, B. Cosman, R. Jhala, and W. Weimer, “Infix:
Automatically repairing novice program inputs,” in Proc. 34th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2019, p. 399–410.

[73] M. Petre, “Uml in practice,” in Proc. Int. Conf. Softw. Eng., 2013,
pp. 722–731.

[74] D. van der Linden et al., “Schr€odinger’s security: Opening the box
on app developers’ security rationale,” in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., 2020, pp. 149–160.

Emily Winter is currently a senior research asso-
ciate with Lancaster University, specialising in the
socio-technical dimension of software engineer-
ing. A sociologist by background (PhD, Lancaster
University, 2017), her research interests include
the perceptions and attitudes of software devel-
opers about the technologies that they build and
the tools that they use.

Vesna Nowack received the PhD degree in com-
puter architecture from Universitat Polit�ecnica de
Catalunya, Spain, in 2016. In 2017, she became
a teaching assistant with Technische Universit€at
Dresden, Germany. Since June 2019, she has
been a postdoctoral researcher with the Queen
Mary University of London, U.K. and Lancaster
University, U.K. Her current research focuses on
automatic program repair, in particular genetic
improvement, generation of fix patterns and
application of repair tools in industry.

David Bowes is currently a senior lecturer of
computer science with Lancaster University. He
has developed significant expertise in analysing
defects in software over a period of over ten years
and published widely in the area of defect predic-
tion. He is an expert in software development and
brings a focus on the production of successful
tools. He has previously developed tools to collect
data, analyse defective code, and assess the per-
formance of defect prediction models. He has a
deep knowledge of analysis methods, having built
many defect prediction models.

Steve Counsell received the PhD degree from the
University of London, in 2002. He is currently a pro-
fessor of software engineering with the Department
of Computer Science, Brunel and the head of Brunel
Software Engineering Laboratory (BSEL). He has
authored or coauthored more than 190 research
papers on topics, including data mining, software
refactoring, software evolution, and defect analysis.
He is a fellow of British Computer Society and was a
software developer in industry prior to academia.
He has worked extensively on large research proj-
ectswith industry in the past.

Tracy Hall is currently a professor with Lancaster
University. Her research interests include software
engineering, code analysis, and defect prediction.

Sæmundur Haraldsson is currentlya lecturerwith
the University of Stirling. He has co-organised every
tutorial on Genetic Improvement with GECCO,
PPSN, and CEC. He has coauthored multiple publi-
cations on the subject, including two that have
received best paper awards the first comprehensive
survey on GI which was published in 2017. He has
been invited to give talks on the subject in multiple
venues for academical, industrial, and general pub-
lic audiences worldwide. His PhD thesis (submitted
in May 2017) details his work on the world’s first live
GI integration in an industrial application.

John Woodward received the BSc degree in theo-
retical physics, theMSc degree in cognitive science,
and the PhD degree in computer science from the
University of Birmingham, U.K. He is currently with
School of Electronic Engineering andComputer Sci-
ence, QueenMary University of LondonU.K., where
he is the head of Operational Research Group. Pre-
viously, he was with the European Organization for
Nuclear Research (CERN), Switzerland, where he
conducted research into particle physics, the Royal
Air Force as an Environmental Noise Scientist, and
Electronic Data Systems as a systems engineer.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

