
Cerebro: Static Subsuming Mutant Selection
Aayush Garg , Milos Ojdanic, Renzo Degiovanni , Thierry Titcheu Chekam,

Mike Papadakis , and Yves Le Traon

Abstract—Mutation testing research has indicated that a major part of its application cost is due to the large number of low utility

mutants that it introduces. Although previous research has identified this issue, no previous study has proposed any effective solution

to the problem. Thus, it remains unclear how to mutate and test a given piece of code in a best effort way, i.e., achieving a good trade-

off between invested effort and test effectiveness. To achieve this, we propose Cerebro, a machine learning approach that statically

selects subsuming mutants, i.e., the set of mutants that resides on the top of the subsumption hierarchy, based on the mutants’

surrounding code context. We evaluate Cerebro using 48 and 10 programs written in C and Java, respectively, and demonstrate that it

preserves the mutation testing benefits while limiting application cost, i.e., reduces all cost application factors such as equivalent

mutants, mutant executions, and the mutants requiring analysis. We demonstrate that Cerebro has strong inter-project prediction

ability, which is significantly higher than two baseline methods, i.e., supervised learning on features proposed by state-of-the-art, and

random mutant selection. More importantly, our results show that Cerebro’s selected mutants lead to strong tests that are respectively

capable of killing 2 times higher than the number of subsuming mutants killed by the baselines when selecting the same number of

mutants. At the same time, Cerebro reduces the cost-related factors, as it selects, on average, 68% fewer equivalent mutants, while

requiring 90% fewer test executions than the baselines.

Index Terms—Mutant, mutation, mutation testing, subsuming mutant, mutant prediction, static selection, static mutant selection, static sub-

suming mutant selection, static subsuming mutant prediction, encoder-decoder, machine translation, tf-seq2seq

Ç

1 INTRODUCTION

RESEARCH and practice with mutation testing has shown
that it can effectively guide developers in improving

their test suite strengths [3], [14], and can be used to reliably
compare test techniques [5], [50]. A key issue though, is that
it is expensive, as a large number of mutants are involved,
the majority of which are of low utility, i.e., they do not con-
tribute to the testing process [3], [27], [30]. This means that
mutation testers should filter their mutant sets using man-
ual analysis to identify equivalent mutants [9], and perform
numerous test executions to discard mutants that do not
provide testing value, i.e., mutants that are detected by the
tests designed to detect other mutants [3], [27], [30].

Working with large real-world systems makes the prob-
lem almost intractable due to the vast numbers of mutants
involved. Test execution overheads alone can limit the scal-
ability of the technique. For instance, in our experiments,
we needed around 48 hours to execute the mutants for a sin-
gle component of the systems we examined. At the same
time the manual effort required by testers is escalated with

larger programs as the number of mutants grows propor-
tionally to program size.

To reduce application cost, it is imperative to limit the
number of mutants to those that are actually useful, prior to
any manual mutant analysis or test execution. Thus, we
need to identify which mutants are killable in order to limit
the manual effort involved in their identification, and also
to identify the mutants that are subsuming (disjoint)1, in
order to reduce unnecessary computations, and to provide
accurate adequacy measurements [46].

This problem is known as the mutant selection prob-
lem [47] and has been studied in the form of selective muta-
tion [43], [68], i.e., restricting the number of transformations
to be used, with limited success [11], [34]. Though, the key
issue with mutant selection is the simple syntactic-based
nature of the selection process. The issue is that mutants are
introduced everywhere with respect to simple language
operators, e.g., by replacing an operator with another, that
completely ignore the program and particular location
semantics. This operator matching mutant selection has the
unfortunate effect of introducing mutants independent of
their context and program semantics.

We propose Cerebro 2, a machine learning technique that
learns to identify interesting mutants given their context. In
particular we learn the associations between mutants and
their surrounding code. Our learning scope is a relatively
small area around the mutation point that differentiates

� Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Mike Papadakis, and
Yves Le Traon are with the University of Luxembourg, 4365 Esch-sur-Alz-
ette, Luxembourg. E-mail: {aayush.garg, milos.ojdanic, renzo.degiovanni,
michail.papadakis, yves.letraon}@uni.lu.

� Thierry Titcheu Chekam is with SES, 6815 Betzdorf, Luxembourg.
E-mail: thierry.titcheu.chekam@ses.com.

Manuscript received 26 April 2021; revised 29 December 2021; accepted 30
December 2021. Date of publication 11 January 2022; date of current version 9
January 2023.
This work was supported by Luxembourg National Research Funds (FNR) through
the INTER Project under Grant INTER/ANR/18/12632675/SATOCROSS.
(Corresponding author: Aayush Garg.)
Recommended for acceptance by L. Mariani.
Digital Object Identifier no. 10.1109/TSE.2022.3140510

1. The term disjoint mutants refers to a minimal subset of mutants
that need to be killed in order to reciprocally kill the original set [30],
[45].

2. Cerebro is a fictional device appearing in Marvel comics used by
the X-Men to detect human mutants. More details in https://en.
wikipedia.org/wiki/Cerebro.

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2507-8846
https://orcid.org/0000-0002-2507-8846
https://orcid.org/0000-0002-2507-8846
https://orcid.org/0000-0002-2507-8846
https://orcid.org/0000-0002-2507-8846
https://orcid.org/0000-0003-1611-3969
https://orcid.org/0000-0003-1611-3969
https://orcid.org/0000-0003-1611-3969
https://orcid.org/0000-0003-1611-3969
https://orcid.org/0000-0003-1611-3969
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0003-1852-2547
mailto:aayush.garg@uni.lu
mailto:milos.ojdanic@uni.lu
mailto:renzo.degiovanni@uni.lu
mailto:michail.papadakis@uni.lu
mailto:yves.letraon@uni.lu
mailto:thierry.titcheu.chekam@ses.com
https://en.wikipedia.org/wiki/Cerebro
https://en.wikipedia.org/wiki/Cerebro

locally, the mutants that are useful from those that are not.
This allowsmutating the program elements to fit best to their
context, instead ofmutating entire codebaseswith every pos-
sible transformation, enabling inter-project predictions.

Cerebro operates at lexical level, with a simple code prepro-
cessing. In particular, a mutant and its surrounding code is
represented as a vector of tokens where all literals and identi-
fiers, i.e., user defined variables, types, and method calls, are
replacedwith predefined, hence predictable, identifier names.
This allows restricting the related vocabulary and learning
scope to a relatively small fixed size of tokens around the
mutation points. Learning is performed using a powerful and
language-agnostic machine translation technique [8] that we
train on related code fragments and their labels.

We consider useful, the subset of mutants that resides on
top of the subsumption hierarchy and subsumes the
others [33], aka subsuming mutants [27], for the set of all pos-
sible mutant instances produced by a given set of mutation
operators. Mutant M1 subsumes mutant M2 if every test
case detectingM1 also detectsM2. This implies that the tests
detecting the subsuming mutant will also detect the sub-
sumed ones thereby making subsumed mutants redundant.

We implemented Cerebro and evaluated its ability to pre-
dict (inter-project predictions) subsumingmutants on a large
set of programs, composed of 48 C programs (CoreUtils) and
10 Java projects (Apache Commons, Joda-Time, and Jsoup).
Our results demonstrate that Cerebro significantly outper-
forms both, random mutant selection and a supervised
machine learning approach (used by previous research) on
both, C and Java benchmarks.

In particular, our results show that Cerebro significantly
outperforms the baselines. In Java projects, Cerebro obtained
2.81 times higher MCC3 values, an improvement of 82% in
F-measure, 68.88% in Precision, and 85.71% in Recall over
the state-of-the-art supervised machine learning. In C pro-
grams, Cerebro obtained 2.76 times higher MCC values, 3.72
times higher precision, and slightly increased Recall value
(4% higher). The improvement measured in F-measure is
approximately 65%.

To put the predictions into a context and understand its
influence onmutation testing, we also validated Cerebro in a
controlled simulation of the envisioned use case. In particu-
lar, we simulate a scenario where testers are guided bymuta-
tion testing, i.e., they design test cases based on mutants.
Therefore, fewer mutants imply less effort, while stronger
mutants imply stronger tests. Our analysis shows that Cere-
bro achieved more than twice the subsuming mutation
scores4 in both, C and Java programs that we use. At the
same time Cerebro required significantly less effort in terms
of both, analyzed equivalent mutants and test executions. In
C programs, 3.70% of the mutants analyzed by Cerebro are
equivalent, while 55.56% and 53.33% analyzed by random
mutant selection and supervised learning, respectively are
equivalent; Cerebro also required 91% fewer test executions

than random selection and supervised learning, respectively.
In Java programs, Cerebro required the analysis of 41% and
36% fewer equivalent mutants, and 92% and 87% fewer test
executions than random mutant selection and supervised
learning, respectively.

All-in-all our paper makes the following contributions:

1) We present Cerebro, a powerful static subsuming
mutant selection technique.

2) We provide evidence suggesting that Cerebro suc-
cessfully predicts subsuming mutants with 0.85 Pre-
cision, 0.33 Recall and 0.46 MCC.

3) We show that Cerebro significantly outperforms the
current state-of-the-art, i.e., random mutant selection
and previously proposedmachine learning technique,
by revealing 2 times the subsuming mutants, while
analyzing 64% to 67% fewer equivalent mutants and
requiring 89% to 92% fewer test executions.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces preliminary concepts necessary in subse-
quent sections. Section 3 describes the envisioned use case
for Cerebro and elaborates on a particular motivating exam-
ple. Section 4 describes the approach in detail. Section 5
introduces the research questions and Section 6 details the
experimental setup. The results of our experimental evalua-
tion are summarized in Section 7.We discuss threats to valid-
ity in Section 9. In Section 8 we also discuss the impact of the
abstraction process and mutants’ context size on Cerebro’s
prediction performance. Finally, we discuss related work in
Section 10, and present our conclusion and future work in
Section 11.

2 BACKGROUND

2.1 Subsuming Mutants

Mutation is a test adequacy criterion in which test require-
ments are represented by mutants that are obtained by per-
forming slight syntactic modifications to the original program.
Then, the tester needs to design test cases in order to kill the
mutants, i.e., to distinguish the observable behavior between
themutant and the original program. Somemutants cannot be
killed as they are functionally equivalent to the original pro-
gram. Hence, the quality of a test suite is measured by the
mutation (adequacy) score, a percentage metric obtained by
the ratio of killedmutants over the total number of (non-equiv-
alent) generatedmutants.

Mutation testing is a promising, empirically validated
software testing technique that hasn’t achieved its full
potential yet [47]. It is often considered as computationally
expensive, mainly due to the large number of mutants that
it introduces, which require analysis and execution with the
related test suites. One may notice that the number of
mutants is disproportionate with the number of test cases to
kill them, since one test case can kill several mutants at the
same time. Thus, the effort put into analyzing and executing
mutants that do not help to improve test suites is wasted.
Hence, it is desirable to analyze only the mutants that add
value, i.e., subsuming mutants [3], [27], [30], [33].

Intuitively, subsuming mutants are the minimum subset
of all mutants that when killed, by any possible test suite,
results in killing the entire set of killable mutants. Given

3. The Matthews Correlation Coefficient (MCC) [40] is a reliable metric
of the quality of prediction models [55], relevant when the classes are
of very different sizes, e.g., in case of C programs, 10.2% subsuming
mutants (positives) over 89.8% non-subsuming mutants (negatives).

4. Subsuming mutation score (MS*) is the ratio of the killed and the
total number of subsuming mutants.

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 25

two mutants M1 and M2, it is said that M1 subsumes M2 if
every test suite T killing M1 also kills M2. Unfortunately,
identifying subsuming mutants is undecidable as it is not
possible to know a mutant’s behavior under every possible
input. Thus, researchers typically approximate them through
test suites [3], [27], [34], [45], [46].

More precisely, let M1, M2 and T be two mutants and a
test suite, respectively, where T1 � T and T2 � T are the set
of tests from T that kill mutants M1 and M2, respectively,
and T1 6¼ ; and T2 6¼ ;, indicating that both M1 and M2 are
killable mutants. We will say that mutant M1 subsumes
mutant M2, if and only if, T1 � T2. In case T1 ¼ T2, we say
that mutants M1 andM2 are indistinguishable for T . The set
of mutants which are both killable, and subsumed only by
indistinguishable mutants are called subsuming mutants.

For example, if we have a mutant set of 3 mutants (M1,
M2, andM3) and a test set T ¼ ft1; t2; t3g, whereM1 is killed
by T1 ¼ ft1g; M2 is killed by T2 ¼ ft1; t2g; and M3 is killed
by T3 ¼ ft3g. We can notice that every time that we run a
test (t1) to kill mutant M1 we will also kill mutant M2. How-
ever, the opposite does not hold. Thus, we have two sub-
suming mutants, i.e.,M1 andM3.

Subsuming mutation score (MS*) is the ratio between
killed subsuming mutants over the total number of subsum-
ing mutants [46]. Subsuming mutation score has been pro-
posed [3], [30], [46] as a reliable metric to evaluate the
effectiveness of testing techniques as it does not consider
the presence of subsumed mutants. Subsumed mutants can
artificially inflate the mutation score of a testing technique
and can mislead its apparent ability to detect faults. For
instance, following our previous example, a test suite ft1,
t2g kills 66.7% of all the mutants (i.e., M1 and M2), but 50%
of the subsuming ones (M3 is not killed).

Interestingly, killing subsuming mutants leads to the kill-
ing of all killable mutants, thus, testers needs to focus muta-
tion analysis on subsuming mutants. The problem though,
is that one needs to know the subsumption relations
between mutants in advance, before starting to analyze the
mutants and designing tests. To deal with this issue, we
introduce Cerebro, a static technique that predicts subsuming
mutants without requiring any dynamic analysis, with the
aim to help testers decide on which mutants to use when
performing mutation-guided test generation [23], [48].

2.2 Machine Translation

Machine Translation can be considered as a transformation
function transformðXÞ ¼ Y , where the input X ¼ fx1; x2;
. . . ; xng is a set of entities that represents a component to be
transformed, to produce the output Y ¼ fy1; y2; . . . ; yng,
which is a set of entities that represent a transformed (desired)
component. In the training phase, the transformation function
learns on the example pairs ðX;Y Þ available in the training
dataset. In our context, X contains the source code with an
annotation that indicates the location and type of the mutation
operator applied, and Y contains the same information, plus a
label that indicateswhether themutant is subsuming or not.

The transformation function is trained to append the label
to a given mutant by training the function on the example
pairs (Code+MutationAnnotation, Code+MutationAnnota-
tion+Label), where Code+MutationAnnotation represents

the source code with an annotation in the statement to indi-
cate the mutation operator type applied. This learned trans-
formation is used as our prediction model for predicting
subsuming mutants. Among the several machine translation
algorithms that have been suggested over the past years, we
use the RNN Encoder-Decoder which is established and is
used bymany recent studies [58], [60], [61].

2.3 RNN Encoder-Decoder Architecture

The RNN Encoder-Decoder machine translation is com-
posed of two major components: an RNN Encoder to
encode a sequence of terms x into a vector representation,
and an RNN Decoder to decode the representation into
another sequence of terms y. The model learns a conditional
distribution over an (output) sequence conditioned on
another (input) sequence of terms: P ðy1; . . . ; ymjx1; . . . ;xnÞ,
where n and m may differ. For example, given an input
sequence x = Sequencein = ðx1; . . . ;xnÞ and a target sequence
y = Sequenceout = ðy1; . . . ; ymÞ, the model is trained to learn
the conditional distribution: P ðSequenceoutjSequenceinÞ ¼
P ðy1; . . . ; ymjx1; . . . ;xnÞ, where xi and yj are space-separated
tokens. A bi-directional RNN Encoder [8] (formed by a
backward RNN and a forward RNN) is considered the most
efficient to create representations as it takes into account
both past and future inputs while reading a sequence [6].

3 USE CASE SCENARIO AND MOTIVATION

3.1 Use Case Scenario

Fig. 1 shows an overview of how the testing process is per-
formed when it is guided by mutation. We adapted this
figure from the one published in [4, Figure 5.2]. Given a pro-
gram P as input, the mutation testing process starts by cre-
ating a set M of mutants forming the test requirements. Test
requirements are satisfied when tests kill the mutants. Since
the number of mutants are excessive and form the key cost
factor of mutation testing [47], testers select a subset M 0 of
mutants from M to focus on their analysis. Then, testers
pick a mutant m 2M 0 and design a test t capable of killing
m or judge it as equivalent and discard it. The process is
repeated until the design of test is capable of killing a prede-
fined ratio of mutants (threshold). Finally, the designed test
suite T is used to check the correctness of program P (w.r.t.
test suite T). If test suite T detects some bug in program P ,
then P has to be fixed and the same mutation testing proce-
dure can again be employed.

Fig. 1. Cerebro Mutation Testing process. Given a program P and a
mutant set M, Cerebro selects from M a subset of mutants M 0 to be
used for test generation. M 0 is then used to in Test generation, test exe-
cution and mutation score calculation steps.

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

It is worth mentioning that there are two major cost fac-
tors in mutation testing, these are the equivalent and sub-
sumed mutants. This is because they introduce overheads
both during test generation and test execution, leading to
minor test effectiveness improvements. Therefore, to reduce
mutation testing effort while preserving its effectiveness, it
is essential to focus on subsuming mutants.

Hence, we develop Cerebro, a machine learning technique
that learns from mutants’ surrounding context to predict
which mutants are subsuming. Given the input program, P
and the set M of mutants, Cerebro selects a subset M 0 of
mutants that is probably subsuming (predicted as subsum-
ing by Cerebro), to be used for mutation testing (to guide
testers and evaluate test effectiveness). Based on M 0, testers
and/or automatic test generation techniques can focus on
the few strong mutants and design effective test cases.

3.2 Motivating Example

Let us consider the code snippet of function max of Fig. 2a,
which takes three integers as input and returns the maxi-
mum number among them. Also, consider (for simplicity)
that we have the 11 mutants shown in the figure. For
instance, mutant M0 mutates sub-expression a >= b of line
2 into a < b. Similar mutations on relational operations
were applied to produce mutants M1, M3, M5, M6 and M8.
Mutants M2 and M7 replace the conjunction (&&) by the dis-
junction (||). While mutants M4, M9 and M10 replace the
returned variable name by other variable name or constant
(M10 replaces variable name c by constant 0).

For the sake of the thorough demonstration, we observed
scenarios under the following testing conditions: A test case
invoking max(1,2,0) and expecting 2 as a result, kills
mutant M3, as well as, mutants M0, M2, M5, M8, and M9.
But tests invoking max(2,0,1), max(1,0,2), and max

(0,2,1) will kill mutants M0, M2, M5, M8, and M9, except
M3. Fig. 2b shows a graph representation of the subsump-
tion relation between the 9 killable mutants. Moreover,
Fig. 2b shows thatM3 subsumesM0,M5,M8 andM2. Partic-
ularly notice that mutants M5 and M8 are indistinguishable,
since they are killed by the same tests, and subsume mutant
M9. Although, mutantsM1 andM6 are equivalent.

In summary, mutants M3, M4 and M7 are subsuming,
indicating that in order to kill every killable mutant it is suf-
ficient to kill only these 3 subsuming mutants.

Cerebro will take as input the program max and the set of
mutants, and it will point to those that are most likely sub-
suming. In an ideal scenario, Cerebrowould point only toM3,
M4 and M7, but it is possible, as in every machine learning
based technique, that it does somemistakes, i.e., incorrect pre-
dictions of subsuming mutants, pointing to some non-sub-
suming (subsumed or equivalentmutants) as subsuming.

For instance, consider the case in which Cerebro predicts
M3 andM4 andM10 as subsumingmutants. Therefore, a tester
will incrementally design test cases to kill all the predicted
mutants. Assume that the tester starts by analyzing mutant
M3 and designs a test to kill it, e.g., by invoking max(1,2,0).
This test does not kill the rest of the selectedmutants. The tes-
ter then proceeds to analyze the surviving mutant M4, for
which he/she designs a test that invokes max(2,0,1) to kill
it. Finally, the tester designs a test by invoking max(0,1,2),
which kills mutant M10 and also (non selected) subsuming
mutant M7. Notice that this test suite designed to kill all
mutants selected by Cerebro progressively increments the
MS*: first test kills subsuming mutantM3 leading to a MS* of
33.33%; second test kills subsuming mutant M4, obtaining
66.66% ofMS*; and finally, third test kills collaterally subsum-
ingmutantM7 leading to aMS* of 100%.

Consider a scenario inwhichmutants are selected randomly.
For instance, assume that M9 is the first one to be selected for
analysis for which a test case invoking max(0,2,1) is
designed to kill it. This test collaterally kills mutants M5 and
M8, but it does not kill any subsuming mutant. Then, assume
that equivalent mutant M1 is randomly selected, adding no
value to the testing process, but requiring analysis anyway.
Afterwards mutant M0 is randomly selected for which a test
case invoking max(2,0,1) is designed to kill it, that fortu-
nately also kills subsuming mutant M4. Then, mutant M2 is
randomly selected for which the tester designs a test to kill it
by invoking max(1,0,2). This test also kills mutantM10, but
no subsuming mutant is killed. After that, tester randomly
selects mutant M3 for analysis and designs a test by invoking
max(1,2,0) to kill it. This test kills subsuming mutant M3

and also mutantM2. Finally, mutant M4 is randomly selected
for which the tester designs a test to kill it, by invoking max

(2,0,2). Hence, all subsumingmutants are killed.
In this particular scenario we can observe that MS*

remains at 0% after analyzing the first 2 mutants randomly
selected, and reaches a MS* of 33.33% after analyzing the

Fig. 2. The example shows that by analyzing only the three subsuming mutantsM3, M4 and M7 is enough for covering all 9 killable mutants. Particu-
larly, mutantsM1 andM6 are equivalents.

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 27

third randomly selected mutant. The analysis of the fourth
selected mutant (non-subsuming) did not add value (MS*
remains the same). Finally, fifth and sixth analyzed mutants
were subsuming, leading to a test suite that obtains MS* of
100% after analyzing 6 mutants.

Fig. 2c depicts the progress of MS* obtained by the test
suites when guided by Cerebro and randommutant selection
in the previously described scenarios. Through this example
we demonstrate a case where two approaches analyze the
same number of mutants (same effort) with Cerebro having
higher effectiveness (MS*) than the random mutant selec-
tion baseline. At the same time, in order to reach the same
MS* as Cerebro, random mutant selection needs more effort,
i.e., it will require the analysis of many more mutants than
Cerebro (in the example random baseline analyzed two times
more mutants than Cerebro).

There are several points wewant to highlight about the par-
ticular scenarios just described. First, it is essential to notice
that mutants selected by Cerebro will be as close as possible to
subsuming in the subsumption relation. Killing these (almost
subsuming) mutants can help in killing subsuming mutants
predicted as non-subsuming by Cerebro, for instance, the test
that kills subsumed mutant M10, also kills subsuming mutant
M7 that was incorrectly predicted as non-subsuming by Cere-
bro. Second, it is also important to notice thatCerebro selects the
least possible number of equivalent mutants, saving the time
of analysis to the tester (in the example,Cerebro did not predict
any equivalent mutant as subsuming). Third, notice that the
prediction performance obtained byCerebro does not necessar-
ily reflect its effectiveness in practice, sincemutant kills are not
independent of one another. While Cerebro reached 66.66% of
Precision and 66.66% of Recall in the example, in practice, the
test suite designed to kill all selected mutants obtains 100% of
subsuming mutation score (MS*). And fourth, it is worth to
study the trade-off between the effectiveness and effort of the
different mutant selection techniques. We consider all these
points in our empirical evaluation to assess the prediction per-
formance, effectiveness, and effort required by Cerebro and the
relatedmutant selection techniques.

4 APPROACH

Themain objective of Cerebro is to automatically learn the silent
features/patterns of the context surrounding subsuming

mutantswithout requiring any features definition and/or selec-
tion by human intervention, that we can use later to predict if
mutants on an unseen source code are likely to be subsuming
or not. Thus, we train a machine translator (viz. an encoder-
decoder model) to identify subsuming mutants, by feeding it
with source code where the statement (to mutate) is annotated
with themutant type and its label (subsuming or not). Machine
translators have been successfully used to translate text from
one language to another, as they automatically recognize (i) the
features of the language (to be translated) and (ii) the required
translation (to the desired language). In our case, it is used to
automatically identify the features of subsumingmutants with-
out any investment of time and/or resources to define features.

After training, one can input to the translator, an unseen
mutant (source code where the statement to mutate is anno-
tated with the mutation annotation). The translator will
append the label to the mutant given as input, to predict
whether it is subsuming or not.

Fig. 3 shows an overview of the implementation. For
training, Cerebro takes a set of mutants and their correspond-
ing label. In each mutant source code, the statement (to
mutate) is annotated with the mutation annotation, and the
model learns the label to be appended to this annotation,
that indicates whether the mutant is subsuming or non-sub-
suming. We can summarize Cerebro’s pre-processing, train-
ing and testing steps as follows:

1) Abstraction: Producing abstracted code of the actual
source code by removing irrelevant information (e.g.,
comments) and replacing user-defined identifiers and
literals (e.g., variable names) by predictable tokens;

2) Pairs Generation: Generating the pairs (input-expected
output) to be used for training, by adding the corre-
sponding label into themutation annotations;

3) Training:Training themachine translator to learnwhich
label is to be appended to themutation annotations;

4) Testing:Utilizing the trained translator to predict and
append labels to the mutation annotations present in
unseen mutant source code.

In the remainder of this section we describe each of the
aforementioned phases of our approach, in detail.

4.1 Abstracting the Irrelevant Information

A major challenge in dealing with raw source code is the
huge vocabulary created by the abundance of identifiers

Fig. 3. Implementation: Source code is abstracted and attached with mutation annotation to produce mutant annotations. Model is trained on mutant
annotations to further append the label (subsuming/non-subsuming). Trained model is provided with an unseen mutant annotation to append the
label. The appended label acts as the prediction for the unseen mutant annotation.

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

and literals used in the code. On such a large scale, vocabu-
lary may hinder the goal of learning features surrounding
the subsuming mutants. Thus, to reduce vocabulary size,
we abstract source code by replacing user-defined entities
with re-usable identifiers.

Fig. 4 shows an actual code snippet (Fig. 4a) converted
into its abstract representation (Fig. 4b). The purpose of this
abstraction is to replace any reference to user-defined enti-
ties (function names, types, goto labels, variable names and
string literals) by identifiers that can be reused across
source code file, hence reducing the vocabulary size. Thus,
our abstraction approach first detects user-defined entities
before replacing themwith unique identifiers (new IDs).

New IDs follow the regular expression (fn|tp|lb|vr|

lr)_(num)þ, where num stands for numbers 1; 2; 3; . . .
assigned in a sequential and positional fashion based on the
occurrence of that entity. All the user-defined Function
names, Type names, Variable names, Labels, and String Liter-
als are replaced with fn_num, tp_num, lb_num, vr_num,
and lr_num, respectively. Thus, the first function name
found receives the ID fn_1, the second receives the ID
fn_2, and so on. If any of these entities appear multiple
times in a source code file, it is replaced with the same ID.

Additionally, we remove code comments and add muta-
tion annotations to encode the mutation operator and the
corresponding label (to be learned by the translator). Our
mutation annotations have the general shape “MST[+Mutatio-
nOperator+]MSP[]”, where MST and MSP denote mutation
annotation start and stop, respectively, andMutationOperator
indicates the applied mutation operation (in green in Fig. 4c).
Between the last brackets [], our trained model adds one of
the labels S or N, indicating that themutant obtained by apply-
ing the mutation operation, is predicted as subsuming or non-
subsuming, respectively.

4.2 Pairs Generation

The mutation operation (ReturnValsMutator5) shown in
Fig. 4c represents a mutant in which the sentence return

null is replaced by throw new java.lang.RuntimeEx-

ception() exception. Notice that this mutant is labeled as
subsuming in our dataset, since there is only one test that
can kill it, when the input option is null. Hence for train-
ing we consider S as the label to be learned by the translator
to predict this mutant as subsuming.

To do so, we train in pairs (MutantAnnotation, Muta-
ntAnnotation+Label), where the first component is the

annotated code shown in Fig. 4c, and the second component
is the same code with the predicted label, i.e., MST

[ReturnValsMutator]MSP[S] in our case, to indicate
that the mutant is subsuming. The resulting text is arranged
in a single sentence to represent a sequence of space-sepa-
rated entities (the representation supported by the machine
translator). The only difference between the input sequence
given to the translator and the expected output sequence
produced by it, is the predicted label S or N. Using these
sequences, we intend to capture as much code as possible
around the mutant without incurring the exponential
increase in training time.

4.3 Building the Machine Translator

To build our machine translator, we train an encoder-
decoder model that can transform an input sequence to a
desired output sequence. In our representation, a sequence
consists of tokens separated by spaces that ends with a new-
line character. Thus, we train the encoder-decoder by feed-
ing it with pairs of sequences, produced in the previous
step. The translator learns to replicate the abstracted source
code with the mutation annotation and to append the label
(S/N) that will be used as a prediction for the mutant.

We found that training the translator on sequences of
maximum 100 tokens in length is computationally feasible,
but expensive (740 training hours required on a Tesla V100
GPU). Hence, we also experiment with sequences of 50
tokens in length and demonstrate that the computation cost
of training the translator can be further contained (360 train-
ing hours required). We name Cerebro trained on sequences
of 100 tokens in length as Cerebro-100. Following our nam-
ing convention, we name Cerebro trained on sequences of 50
tokens in length as Cerebro-50.

4.4 Predicting From Appended Labels

To predict whether or not a certain mutation at a particu-
lar position in an unseen code is subsuming, we abstract
the unseen code followed by sequence generation which
results in abstracted code sequence attached with muta-
tion annotation as depicted in Figure 3. We feed this
sequence into the trained machine translator to yield an
output sequence with an appended label. The appended
label acts as a prediction (subsuming/non-subsuming)
for this specific mutation. If the translator produces an
output sequence with a change other than appending the
predicted label, the input sequence is predicted as non-
subsuming, by default. In our experiments reported in

Fig. 4. Abstraction: Actual Source Code (4a) is abstracted by replacing user-defined entities (Function names, Type names, Variable names) with
tokens (fn_num, tp_num, vr_num) to achieve the Abstracted Code (4b). Mutant annotation (4c) is generated by adding the Mutation annotation with
its corresponding label, i.e., Subsuming (S) or Non-Subsuming (N). The trained model is used for prediction of unseen mutant annotations.

5. https://pitest.org/quickstart/mutators/#RETURN_VALS

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 29

https://pitest.org/quickstart/mutators/#RETURN_VALS

Section 7, this happened in 4.2% and 0.1% of the sequen-
ces for C and Java programs, respectively.

5 RESEARCH QUESTIONS

We start by checking the prediction ability of Cerebro and
ask:

RQ1 Prediction Performance: How effective is Cerebro in
predicting subsuming mutants?

We leverage two datasets, made of C and Java programs,
for which extensivemutation analysis has been performed to
identify subsuming mutants. We reimplemented 2 techni-
ques that we use as baselines in our analysis. The first base-
line is a Random mutant sampling, while the second is a
supervised machine learning method based on manually
designed features that were used by previous work [11] (e.g.,
data flow, control flow, etc.). These features are used to train
a binary classifier in order to predict whether a mutant is
subsuming or not. Further details about the baselines can be
found in Section 6.3.

After analyzing the predictions, we turn our attention to
the envisioned application scenario; measuring test effec-
tiveness of the predicted mutants. It is important to check
the application case because a) predictions may select
weak mutants [11] (weak subsuming mutants result in
lower test effectiveness than the strong ones), b) selected
mutants may not be diverse as they may include mutually
subsuming mutants [33], and c) tester benefits are unclear.
Thus, we ask:

RQ2 Effectiveness Evaluation: How does Cerebro compare
with the baselines in terms of subsuming mutation
score?

We perform a simulation of a mutation testing scenario
where a tester analyzes the selected mutants in order to gen-
erate tests [5], [11], [34]. For test effectiveness, we measure
the subsuming mutation score (MS*) achieved by the tests
that kill the selected mutants. In essence, we evaluate the
guidance offered by the mutants when testers design tests
to kill the selected mutants. It is worth noticing that in this
part of the experiment we control the number of mutants,
i.e., all techniques analyze the same number of mutants.
Such simulation is typical in mutation testing literature [5],
[11], [34] and aims at quantifying the benefit of an approach
over the other.

Complementary to the previous question, we compare
the effort required by each technique to obtain the same
level of test effectiveness. Hence, we first investigate the
human effort measured in terms of the number of mutants
analyzed by the tester, to reach the same subsuming muta-
tion score using Cerebro and the baselines. Hence, we ask:

RQ3 Manual Effort: How many mutants require manual
analysis in order to reach a given level of subsuming
mutation score?

We perform a similar simulation of a testing scenario in
which we measure how many mutants the tester needs to
analyze (generate a test case to kill or judge equivalence),
until he/she obtains a determined subsuming mutation
score. This allows us to quantify the human effort required
by each approach to obtain the same benefit.

Related to the previous question, we also investigate the
number of test executions necessary to reach the same sub-
suming mutation score, by following the incremental pro-
cess of mutation analysis, i.e., a tester picking a mutant and
analyzing it. If the picked mutant is killable, he/she gener-
ates a test case that kills it, and then checks if the remaining
alive (not analyzed and not killed) mutants are collaterally
killed by the same test (by executing the generated test on
alive mutants). The killed mutants are removed from the set
of alive mutants. Then, we ask:

RQ4 Computational Effort: How many test executions are
required in order to reach a given level of subsuming
mutation score?

We perform a simulation as before, but in this case, every
time that a test is generated, we count the number of test
executions and measure the attained subsuming mutation
score, until we reach a given subsuming mutation score.

6 EXPERIMENTAL SETUP

6.1 Benchmarks and Ground Truth

In order to show that our approach is language agnostic, we
make our evaluation on a set of C and Java programs.

C-Benchmark: To perform our study that requires strong
test suites, we used an independently built dataset from
related work [12]. It includes C programs from the GNU
Coreutils,6 that consist of file, text and shell utility programs
widely used in Unix systems. The data-set is composed of
48 GNU Coreutils (v8.22) programs aka subjects (mentioned
in Table 1), each packaged with an accompanying system
test suite, generated by developers. The size of these pro-
grams ranges from 1,000 to 14,000 lines of code (LOC), with
a median size of 3,500 LOC. For each subject, the data-set
includes a mutant-test killing matrix that records, for each
mutant, a set of tests that kill it.

The mutant-test killing matrices were obtained by gener-
ating mutants using the Mart mutant generation tool [13]
and executing them against large test pools. The test pools
were built by considering developer tests and adding auto-
matically generated tests using a 24 hours run of KLEE [10].
Additionally, mutation-based test suites were automatically
generated using 128 different configurations of SEMu [12],
each running for 2 hours, and an additional ‘seeded‘ test gen-
eration of KLEE. To reduce the total execution cost, for each
program, the 3 functions that were covered by the largest
number of developer tests were selected for mutation analy-
sis, i.e., mutants were generated only for these functions.

We use these mutant-test killing matrices to compute the
mutant subsumption, following the definition given in Sec-
tion 2.1, and label each mutant as either subsuming or non-
subsuming. To make the problem as balanced as possible
(to assist in machine learning), we mark as subsuming all
mutants in the top of the hierarchies, including mutually
subsumed mutants.

Needless to say, it is possible to have some noise in our
labeling process in the sense thatmutants labeled as subsum-
ing may be non-subsuming. The data-set reduced this noise
by augmenting the test suiteswithmultiple large and diverse

6. https://www.gnu.org/software/coreutils/

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

test suites generated by different state-of-the-art tools. Please
refer to the threat in Section 9 for a related discussion.

Java-Benchmark: For Java we select a set of well-tested open
source projects from GitHub. We select projects from the

Apache Commons Proper7 repository of reusable Java com-
ponents, Joda-Time8 - a date and time library, and Jsoup9 - an
HTML manipulation library. The set counts 10 projects:
commons-cli, commons-codec,commons-collections,
commons-csv, commons-io, commons-lang, commons-

net, commons-text, jsoup, joda-time. These projects
contain up to 284 classes. Table 1 reports the version/
commit of each project we used for our study. Following
a similar procedure done for C in [12], we also build test
pools by using developer tests and adding automatically
generated tests by running EvoSuite[23] for each project
with the default running time, but with multiple coverage
metrics10. The mutant-test killing matrices were obtained
using Pitest [17]. For each project, we run the mutants on
the test pools for 48 hours. To reduce execution time, we
select the classes processed during that time lapse.

Table 2 records the total number of mutants, number
(and percentage) of killable and subsuming mutants, and
number of test cases conforming to the mutant-test killing
matrices. Please note that the difference on the ratio of sub-
suming mutants with previous research [3], [33], [46] is due
to the inclusion of all mutually subsuming mutants. As
already explained, we include all subsuming mutants to
avoid misleading our learner.

6.2 Equivalent Mutants

Early research on mutation testing has demonstrated that
deciding whether a mutant is equivalent is an undecidable
problem [9]. Mutation testing may produce a mutant that is
syntactically different from the original, yet semantically
identical, aka equivalent mutant [31]. Undecidability of
equivalences means that it is impossible to automatically
discard them all. As a result, the tester may never know
whether he or she has failed to find a killing test case
because the mutant is particularly hard to kill, yet remains
killable (a ‘stubborn’ mutant [65]), or whether failure to find
a killing test case derives from the fact that the mutant is
equivalent. The best options we have are effective algo-
rithms that can remove most equivalent mutants, e.g., in C
data-set [12] authors applied TCE (Trivial Compiler Equiva-
lence) [25], [31] to filter out equivalent and duplicated
mutants. Interestingly, early research on mutation testing
[2] has shown that humans also make many mistakes
(approximately 20%) when judging mutants (as being
equivalent or not). This means that it is unrealistic to expect
that automated tools (or testers, in case of manual test case
design) kill all killable mutants.

To make a fair approximation of killable mutants we used
state-of-the-art test generation tools (KLEE[10], SEMu [12],

TABLE 1
Benchmark

Project Web URL Version/
Commit

C

base64,
basename,
chcon, chgrp,
chmod,
chown,
chroot,
cksum,
comm, date,
df, dirname,
echo, expr,
factor, false,
groups, join,
link, logname,
ls, md5sum,
mkdir, mkfifo, https://github.com/coreutils/

coreutils.git
v8.22

mknod,
mktemp,
nproc,
numfmt,
pathchk,
printf,
pwd,
realpath,
rmdir,
sha256sum,
sha512sum,
sleep,
stdbuf, sum,
sync, tee,
touch,
truncate,
tty, uname,
uptime, users,
wc,
whoami [12]

Java

commons-cli https://github.com/apache/
commons-cli.git

6490067

commons-
collections

https://github.com/apache/
commons-collections.git

d6eeceb

commons-text https://github.com/apache/
commons-text.git

26a308f

commons-csv https://github.com/apache/
commons-csv.git

865872e

commons-
lang

https://github.com/apache/
commons-lang.git

2c0429a

commons-io https://github.com/apache/
commons-io.git

c126bdd

commons-net https://github.com/apache/
commons-net.git

33df028

commons-
codec

https://github.com/apache/
commons-codec.git

475910a

jsoup https://github.com/jhy/jsoup.git 528ba55
joda-time https://github.com/JodaOrg/joda-

time.git
767c94e

TABLE 2
Test Subjects

Language #Programs #Mutants #Killed #Subsuming #Testcases

C [12] 48 71,850 49,530 (68.9%) 7,358 (10.2%) 136,412
Java 10 153,823 124,064 (80.6%) 41,219 (26.8%) 21,878

7. https://commons.apache.org
8. https://github.com/JodaOrg/joda-time/
9. https://github.com/jhy/jsoup
10. LINE:BRANCH:MUTATION:OUTPUT:METHOD:CBRANCH

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 31

and EvoSuite [23]), together with mature developer test suites
to identify killable mutants. For the remaining live mutants
(i.e., mutants that are killed neither by developers written nor
automatically generated test suites) we assumed that live
mutants are equivalent. Although, this assumption may have
some impact on our results (refer to Section 8.4 for an analysis
of the impact of this assumption), it allows quantifying the
effort involved by testers in analyzing low utility mutants
when using the current state-of-the-art advances. Moreover,
since Cerebro performs machine learning, it learns from the
employed data. This means that the availability of clean data,
with a clear signal to learn, will allowCerebromake better pre-
dictions, thereby potentially improving its performance.

6.3 Baselines

We consider 2 baselines. The first one is the Random mutant
sampling that samples uniformly from the entire set of
mutants. The second baseline is a Decision Tree classification
based on the features proposed by relatedwork [11], [29].

Previous works showed a strong connection between
mutant utility and surrounding code (utility captured through
CFG, data flows, AST, etc. features). Thus, we use the mutant
features to predict subsumingmutants in bothC and Java. Fea-
tures belong to 4 categories: Mutant Type related features,
Control-Flow graph related features, Control and Data depen-
dency related features, and AST related features. In total we
used the 28 features, used by the related work [11], for the C
programs, and implemented 16 of those features for Java11.
We excluded features such as AstChildHasIdentifier and Ast-
ChildHasLiteral that we found unfeasible to implement in the
employed tools, i.e., Pitest works at byte-code level making it
difficult to identify the original source code expression. Never-
theless, the excluded features were approximated by mutant
type.

After extracting the features, following the related
work [11], we trained a stochastic gradient boosted Decision
Tree model by using the same configuration as the related
work [11].We followed the same validation setup forCerebro.

6.4 Implementation and Model Configuration

We rely on the srcML tool [18] to convert source code into an
XML format to tag literals, keywords, identifiers, comments,
and our mutation annotations. This helps in separating
user-defined identifiers and string literals (the largest part
of the vocabulary) from language keywords as srcML sup-
ports C, Java and other languages. Then, we implement the
ID replacement to generate the abstracted code.

We follow the sequence pair generation procedure men-
tioned in Section 4.2 to generate sequences from the abstracted
code. These sequences serve as training input for our encoder-
decoder model, which we build using tf-seq2seq [1], a general-
purpose encoder-decoder framework. Following previous
works [60], [61], we configure our model with bidirectional
encoder. We use a Gated Recurrent Units (GRU) network [16]
to act as the RecurrentNeural Network (RNN) cell, whichwas

shown to perform better than possible alternatives (simple
RNNs or gated recurrent units) in related prediction tasks [56].
To achieve good performance with acceptable model training
time, we utilize AttentionLayerBahdanau [7] as our attention
class, configured with 2 layered AttentionDecoder and 1 lay-
ered BidirectionalRNNEncoder, bothwith 256 units.

To determine an appropriate number of training epochs,
we conducted a preliminary study involving a validation
set, independent of both, training and test sets that we use
in our evaluation. Here we incrementally train the model,
with checks after every epoch to monitor model training
accuracy. We pursue training the model till the training per-
formance on the validation set does not improve anymore.
We found 15 epochs to be a good default for our validation
sets. Once model training is complete, we follow the proce-
dure explained in Section 4.4 to predict whether an unseen
mutant annotation sequence is subsuming or not.

The codebase of C and Java programs with mutant infor-
mation, abstracted code, and mutant annotation sequences
that the encoder-decoder model trains on and predict, with
mapping to the original code, are publicly available at
https://github.com/garghub/Cerebro. In addition to our
dataset, we have made available our source code and
trained models as well.

6.5 Experimental Procedure

In the first experimental part, we evaluate the prediction
ability of our approach, answering RQ1, while in the second
part, we evaluate cost-effectiveness of Cerebro, answering
RQs2-4.

6.5.1 First Experimental Part

We start by evaluating the prediction performance of Cerebro,
and the baselines, using four typical metrics, namely, Precision,
Recall, F-measure, and Matthews Correlation Coefficient (MCC)
[40]. A confusion matrix is computed for each one of the stud-
ied methods, which stores the correct and incorrect predic-
tions. Given a subsuming mutant, if it is predicted as
subsuming, then it is a true positive (TP); otherwise, it is a false
negative (FN). Given a non-subsuming mutant, if it is pre-
dicted as non-subsuming, then it is a true negative (TN); other-
wise, it is a false positive (FP). Then we can use the confusion
matrix to quantitatively evaluate the prediction performance
ofCerebro andDecision Trees predictionmodels

Precision ¼ TP

TP þ FP
Recall ¼ TP

TP þ FN

F �measure ¼ 2� Precision�Recall

PrecisionþRecall

MCC ¼ TP � TN � FP � FN
ffiðTP þ FP ÞðTP þ FNÞðTN þ FP ÞðTN þ FNÞp :

Intuitively, Precision is the ratio of mutants truly subsuming
among all the mutants predicted as subsuming. Recall is the
ratio of mutants correctly predicted as subsuming among all
the subsumingmutants. F-measure indicates the weighted har-
monic mean of Precision and Recall. Matthews Correlation

11. statementComplexity, expressionComplexity, MutantType,
BlockDepth, CfgDepth, CfgPredNum, CfgSuccNum, NumInBlock,
NumOutDataDeps, NumInDataDeps, NumOutCtrlDeps, NumInCtrl-
Deps, AstNodeParentType, NumberOfAstParents, AstNodeType,
NumberOfAstChildren

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

https://github.com/garghub/Cerebro

Coefficient (MCC) [40] is a reliable metric of the quality of pre-
diction models [55], that in contrast to the previous metrics,
also takes into account the TrueNegatives (correctly predicted
non-subsuming mutants). It is generally regarded as a bal-
anced measure that can be used even when the dataset is
unbalanced, i.e., the classes are of very different sizes, e.g., in
case of C programs, 10.2% subsuming mutants (Positives)
over 89.8% non-subsumingmutants (Negatives).MCC returns
a coefficient between 1 and -1. An MCC value of 1 indicates a
perfect prediction, whereas a value of -1 indicates a perfect
inverse prediction, i.e., a total disagreement between predic-
tion and reality. AnMCC value equals 0 indicates that the pre-
diction performance is equivalent to randomguessing.

The mutants selected by Cerebro are the ones predicted as
subsuming. ForDecision Trees baseline, as it computes a prob-
ability of a mutant being subsuming, we followed the proba-
bility margin convention and considered those mutants
whose predicted probability was higher than 0.5 [11].

To assess the performance we perform a inter-project eval-
uations. We use 5-folds cross validation, where we evenly
split each benchmark in 5 parts (10 programs and 2 projects
per fold for C and Java benchmark, respectively). Then, for
each benchmark, we repetitively use 1 fold for testing and 4
folds for training (1 part out of 4, is used for validation).

6.5.2 Second Experimental Part

To study the cost and test effectiveness of our approach and
the baselines, we simulate a testing scenario where a tester
selects a subset of mutants, to use for mutation analysis, and
designs tests to kill them. Algorithm 1 provides the pseudo-
code of the simulation process we follow in our experiments.
It takes as input a set M of mutants to analyze, the test pool P
and a target subsuming mutation score tMS*, and returns a
test suite T that kills everymutant from M (or reaches the pre-
specified subsuming mutation score). Additionally, it
returns the subsuming mutation score obtained by the test
suite T (currMS*), number of analyzed mutants (ana-
lyzedMut), number of equivalentmutants analyzed (equi-
vMut), and number of test executions (tExec) required to
generate test suite T during the simulated mutation testing
scenario.

The simulation starts by picking (pickNextMutant)
the top mutant m, according to the technique used (Cere-
bro, Decision Trees, and Random), among survived mutants
from set C (initialized with all mutants from M). It then
checks if there exists some test in the test pool P that kill m
(this process simulates a tester picking, analyzing, and
designing a test to kill a mutant). If no test kills mutant m,
we judge it as equivalent and remove it from C. Other-
wise, we randomly pick one test t from the pool that kills
m. Then, we run the test t on every mutant from C to check
if the same test consequently kills other mutants (killed
mutants are then removed from C). This process continues
by taking the next survived mutant and finding a test to
kill it until every mutant in C has been killed or until the
desired subsuming mutation score is reached. We run this
simulation with the set of mutants selected by Cerebro,
Decision Trees, and Random, respectively, and use the
reported values to compare their cost-benefit performance
for answering RQ2-4. Since Algorithm 1 includes some

random decisions, we repeat this process 1,000 times for
all the approaches.

Algorithm 1. Pseudo-Code of the Simulation Procedure
to Answer RQ2-4

Input: set of mutants M
Input: test pool P
Input: target subsuming mutation score tMS�
Output: test suite T covering mutants in M

Output: subsuming mutation score currMS* obtained by T

Output: analyzedMut number of analyzed mutants
Output: equivMut number of equivalent mutants analyzed
Output: tExec number of test executions
1: T ;
2: C M "set of survived mutants
3: currMS� 0

4: while currMS� < tMS� and :isEmptyðCÞ do
5: m pickNextMutantðCÞ
6: analyzedMutþþ
7: if the test pool P can kill mutant m then
8: t randomlyPickTestKillingðm; PÞ
9: T T [ftg "add test t to the suite
10: tExecþ ¼ sizeðCÞ "run t on mutants from C

11: remove from set C all mutants killed by t

12: else
13: equivMutþþ "m is judged as equivalent
14: end if
15: currMS� calculateMS � ðM; TÞ
16: end while
17: return T; currMS�; analyzedMut; equivMut; tExec

To answer RQ2, we measure the effectiveness (benefit) of
the approaches in terms of the subsuming mutation score
(MS*), i.e., the ratio between killed and total number of sub-
suming mutants, achieved by the generated test suites when
analyzing the selected mutants. The subsuming mutation
score reduces the influence of redundantmutants [33], [46].

For assessing the effectiveness of the approaches, we aim
at controlling the number of mutants selected by each tool.
In the case of Cerebro, the mutants selected are the ones pre-
dicted as subsuming by our model. For Decision Trees base-
line, we rank (in descending order) the mutants according
to the predicted probability of being subsuming, and follow
the ranking to pick mutants (from highest probability to
lowest) for analysis. Random baseline randomly ranks the
mutants to be selected. Initially, we consider the same num-
ber of selected mutants for the 3 approaches, defined as the
number of mutants predicted as subsuming by Cerebro. For
instance, if Cerebro predicts 20 mutants as subsuming, then
Decision Trees and Random baselines will also select the top
20 ranked mutants. Our intention is to compare the effec-
tiveness reached by each approach, when the number of
selected mutants is equal.

Additionally, we study the number of equivalent mutants
selected by each approach (as these are an important source
of redundancy during mutation testing), as well as, the
required number ofmutants selected by the baselines in order
to reach the same subsumingmutation score asCerebro.

To answer RQ3 and RQ4, we study the effort (cost)
required by each approach in two ways. We measure the
human effort in terms of the number of analyzed mutants,

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 33

killable or not, that are presented to testers for analysis (i.e.,
either designing a test to kill these or judging these as equiv-
alent), when applying mutation testing. Intuitively, for a
given set of mutants, the number of analyzed mutants can
be considerably smaller than the entire set’s size because a
test designed by analyzing one mutant can kill other
mutants as well. Hence, we also measure the computational
effort in terms of the number of test executions performed,
during the mutation analysis procedure, i.e., we count the
test executions required at every step where a new test is
created. As for RQ2, here we also study the number of test
executions and the number of mutants that require analysis
by the baselines, to reach the same subsuming mutation
score as Cerebro.

7 EXPERIMENTAL RESULTS

7.1 Prediction Performance (RQ1)

Table 3 records the average (and median) performance met-
rics. Fig. 5 shows the performance comparison in box plot for-
mat showing the distribution of performance indicators
(MCC, F-measure, Precision, and Recall) for both approaches
in C, and Java Benchmarks.

On average, Cerebro obtains a high Precision, i.e., 0.93
and 0.76 (Cerebro-100), and 0.82 and 0.72 (Cerebro-50) in C
and Java benchmarks, respectively. Testers focusing on
mutants selected by Cerebro can be confident that these are
very likely to be subsuming, providing high utility to the
testing process. On the other hand, Recall achieved is low,
i.e., 0.26 and 0.39 (Cerebro-100), and 0.21 and 0.31 (Cerebro-
50) in C and Java benchmarks, respectively. This indicates
that many subsuming mutants are mistakenly predicted as
non-subsuming by Cerebro. In practice these mutants can
still be collaterally killed by other (mutually subsumed)
subsuming mutants correctly predicted as subsuming by
Cerebro (which is often the case, as we will show when
answering RQ2 in the following section). Needless to say,
any complementary mutation testing and mutant selection
technique can be employed to analyze the remaining
mutants that are not killed by test suites designed to kill
mutants selected by Cerebro.

On comparison with baselines, we observe that Cerebro
clearly achieves much higher prediction performance in

comparison to Decision Trees in both benchmarks. The dif-
ferences are statistically significant.12

In C-Benchmark, on average, Cerebro with its MCC of
0.47 (Cerebro-100), and 0.39 (Cerebro-50) outperforms Random
(0.0 MCC). Cerebro also outperforms Decision Trees, on aver-
age, with 2.76 times higher MCC and 64% improvement in
F-measure. It is worth mentioning that while Cerebro
achieves 3.72 times higher precision than Decision Trees, Cer-
ebro also offers an improvement of 4% in Recall over Deci-
sion Trees.

In Java-Benchmark, on average, Cerebro with its MCC of
0.45 (Cerebro-100), and 0.38 (Cerebro-50) outperforms Random
(0.0 MCC). Cerebro also outperforms Decision Trees, on aver-
age, with 2.81 times higher MCC, and an improvement of
82% in F-measure, 68.88% in Precision, and 85.71% in Recall.

In summary, Cerebro offers an improvement in prediction
capability (MCC) of 2.78 times higher than Decision Trees.

7.2 Effectiveness Evaluation (RQ2)

Figs. 6a and 6d show the average subsuming mutation score
(MS*) obtained when selecting the same number of mutants
(by all techniques). In C-Benchmark, on average, Cerebro-
100 obtains an MS* of 87.50%, which is 2.39 and 2.63 times
higher MS* than Decision Trees and Random, respectively.
Moreover, Cerebro-50 obtains an MS* of 71.43%, which is
2.02 and 2.17 times higher MS* than Decision Trees and Ran-
dom, respectively.

In Java-Benchmark, on average, Cerebro-100 obtains an
MS* of 95.90%, which is twice higher than Decision Trees,
and 69.53% improvement over Random. Moreover, Cerebro-
50 obtains an MS* of 95.66%, which is 2.20 times higher than
Decision Trees, and 83.33% improvement over Random. The
differences are statistically significant, according to the com-
puted p� value. We also compared them with the Vargha-
Delaney A measure (Â12) [62], showing that Cerebro achieves
better MS* than Decision Trees, and Random, in 92.4%, and
95.7% of the cases.

We also study the selection size needed by Decision Trees
and Random to achieve the same MS* obtained by Cerebro.
For C-Benchmark, Fig. 6b shows that while Cerebro-100
selects only 2.35% of the mutants, Decision Trees, and Ran-
dom need to select 85.42% (36.35 times higher), and 87.61%
(37.28 times) of the mutants to achieve same MS* as Cerebro.
Also, Fig. 6e shows that while Cerebro-50 selects only 2.52%
of the mutants, Decision Trees, and Random need to select
34.23% (13.57 times higher), and 42.37% (16.79 times) of the
mutants, to achieve same MS* as Cerebro. For Java-Bench-
mark, while Cerebro-100 selects 9.85% of the mutants, Deci-
sion Trees, and Random need to select 44.80% (4.55 times
higher), and 78.97% (8.02 times) of the mutants, to achieve
same MS* as Cerebro-100. Also, while Cerebro-50 selects
11.60% of the mutants, Decision Trees, and Random need to
select 41.77% (3.60 times higher), and 75.09% (6.48 times) of
the mutants, to achieve same MS* as Cerebro-50. We
obtained a statistically significant p� value and Â12 when

TABLE 3
(RQ1) Prediction Performance of Cerebro and Decision Trees

Average (and Median) Performance in C-Benchmark

Approach MCC F-measure Precision Recall

Decision Trees 0.17 (0.18) 0.25 (0.26) 0.25 (0.25) 0.25 (0.27)
Cerebro-50 0.39 (0.40) 0.34 (0.34) 0.82 (0.82) 0.21 (0.22)
Cerebro-100 0.47 (0.47) 0.41 (0.40) 0.93 (0.93) 0.26 (0.25)

Average (and Median) Performance in Java-Benchmark

Approach MCC F-measure Precision Recall

Decision Trees 0.16 (0.18) 0.28 (0.30) 0.45 (0.48) 0.21 (0.21)
Cerebro-50 0.38 (0.38) 0.42 (0.42) 0.72 (0.73) 0.31 (0.30)
Cerebro-100 0.45 (0.45) 0.51 (0.52) 0.76 (0.73) 0.39 (0.38)

On Average, Cerebro Outperforms by 2.78 Times Higher MCC Than Deci-
sion Trees.

12. We compared the MCC values using Wilcoxon signed-rank test
and obtained a p� value < 5:07e�3 in comparison to Decision Trees.
We also compared the MCC values with the Vargha-Delaney A mea-
sure [62] and observed that in all (100%) cases, Cerebro significantly out-
performs baseline techniques.

34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

compared these values, evidencing that Cerebro in more
than 98.5%, and 99.1% of the cases, selects fewer mutants
than Decision Trees, and Random.

We also measure the percentage of equivalent mutants
selected. For C-Benchmark, Fig. 6c shows that 1.10% of
mutants selected by Cerebro-100 are equivalent, whereas
24.44%, and 26.09%, of the mutants selected by Decision Trees,
and Random, are equivalent. Also, Fig. 6f shows that 4.37% of
mutants selected by Cerebro-50 are equivalent, whereas 24%,
and 26.23%, of the mutants selected by Decision Trees, and

Random, are equivalent. In Java-Benchmark, 9.95% of the
mutants selected by Cerebro-100 are equivalent whereas for
Decision Trees, and Random, 15.11% (51.86%more), and 19.33%
(94.27% more) selectedmutants are equivalent. Also, 5.45% of
the mutants selected by Cerebro-50 are equivalent whereas for
Decision Trees, and Random, 15.86% (2.91 times higher), and
19.26% (3.53 times higher) selected mutants are equivalent.
The differences are statistically significant. Â12 shows thatCer-
ebro in more than 90%, and 98.4% of the cases selects fewer
equivalent mutants than Decision Trees, and Random. These

Fig. 5. (RQ1) Prediction Performance Comparison: On average, Cerebro-100 outperforms Decision Trees by 2.76 times, and 2.81 times higher MCC
in C, and Java Benchmark. Moreover, Cerebro-50 outperforms Decision Trees by 2.29 times, and 2.38 times higher MCC in C, and Java Benchmark.
Overall, Cerebro outperforms by 2.78 times higher MCC than Decision Trees.

Fig. 6. (RQ2) Results of the Simulation - Trade off between mutant selection size and MS*.

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 35

results provide evidence that our approach can reduce signifi-
cantly this long-standing problemofmutation analysis.

7.3 Number of Analyzed Mutants (RQ3)

Figs. 7a and 7d show the average subsuming mutation score
(MS*) obtained by each technique for the same number of
analyzed mutants. In C-Benchmark, on average, Cerebro-100
achieved an MS* of 78%, which is an improvement of
89.41%, and 71.20% over the MS* of Random, and Decision
Trees, respectively. Moreover, Cerebro-50 achieved an MS* of
65.75%, which is 2.14 times higher than Random and an
improvement of 97% over Decision Trees In Java-Benchmark,
on average, Cerebro-100 achieved an MS* of 94.90%, an
improvement of 49.24% and 71.21% over Decision Trees and
Random, respectively. Moreover, Cerebro-50 achieved an
MS* of 95.65%, an improvement of 78.65% and 91.94% over
Decision Trees and Random, respectively. The differences are
statistically significant, according to the computed p� value
and Â12. We observed that Cerebro in more than 96.2%, and
98.4%, of the cases is better than Decision Trees, and Random.

We also study what should be the percentage of mutants
to be analyzed by Decision Trees and Random to achieve the

same MS* as Cerebro. For C-Benchmark, Fig. 7b shows that
while Cerebro-100 analyzes 1.21% mutants, Decision Trees,
and Random need to analyze 22.33% (18.45 times higher),
and 22.80% (18.84 times higher) of mutants to reach same
MS* as Cerebro-100. Also, Fig. 7e shows that while Cerebro-50
analyzes 1.02% mutants, Decision Trees, and Random need to

analyze 11.92% (11.58 times higher), and 13.17% (12.78

times higher) of mutants to reach same MS* as Cerebro-50. In
Java-Benchmark, while Cerebro-100 analyzes 3.22% mutants,

Decision Trees, and Random need to analyze 12.07% (3.75

times higher), and 18.05% (5.61 times higher) of mutants to

reach same MS* as Cerebro-100. Moreover, while Cerebro-50
analyzes 2.52% mutants, Decision Trees, and Random need to

analyze 12.00% (4.76 times higher), and 17.19% (6.82 times)

of mutants to reach same MS* as Cerebro-50. We obtained a

statistically significant p� value and Â12, showing that Cere-
bro in more than 99% of the cases analyzes less mutants

than Decision Trees and Random.
We also measure the percentage of equivalent mutants

analyzed by each technique. For C-Benchmark, Fig. 7c shows
that, on average, Cerebro-100 analyzes 3.70% equivalent
mutants, while 53.33% (14.41 times higher), and 55.56% (15.02

Fig. 7. (RQ3) Results of the Simulation - Trade off between percentage of mutants analyzed and MS*.

36 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

times higher) of the mutants analyzed by Decision Trees, and
Random are equivalent. Also, Fig. 7f shows thatCerebro-50 ana-
lyzes 11.31% equivalent mutants, while 50% (4.42 times
higher) of the mutants analyzed byDecision Trees and Random
are equivalent. For Java-Benchmark, on average, 33.48% of
the mutants analyzed by Cerebro-100 are equivalent, while
Decision Trees, and Random analyze 52% (55.31% more), and
57.04% (70.37%more) equivalent mutants. Also, 23.72% of the
mutants analyzed by Cerebro-50 are equivalent, whileDecision
Trees, and Random analyze 56.08% (2.36 times higher), and
57.38% (2.42 times higher) equivalent mutants. This indicates
that the baselines suggest the consumption of a large effort to
analyze redundant mutants, in comparison to Cerebro. The
differences are statistically significant. Â12 suggests that Cere-
bro in more than 98% of the cases analyzes fewer equivalent
mutants thanDecision Trees, andRandom.

7.4 Number of Test Executions (RQ4)

Figs. 8a and 8c show the average subsuming mutation score
(MS*) when the number of test executions are fixed. In C-
Benchmark, on average, Cerebro-100 achieves an MS* of
74%, outperforming Decision Trees, and Random by 62.82%,
and 66.52% (Decision Trees, and Random achieve 45.45%, and
44.44% of MS*). Also, Cerebro-50 achieves an MS* of 65.52%,
outperforming Decision Trees, and Random by 80.95%, and
77.14% (Decision Trees, and Random achieve 36.21%, and
36.99% of MS*). In Java-Benchmark, on average, Cerebro-100
and Cerebro-50 achieve an MS* of 95.65% in both simula-
tions, an improvement of approx. 67%, and 58% over Deci-
sion Trees, and Random (Decision Trees, and Random achieve
57.38%, and 60.40% of MS* in first simulation when com-
pared against Cerebro-100, and 50.41%, and 60.21% of MS*
in the second comparison simulation against Cerebro-50).
We obtained a statistically significant p� value. Also Â12

suggests that Cerebro in 94.15%, and 95.7%, of the cases is
better than Decision Trees, and Random.

We also measure the test executions required by the base-
lines to achieve the same MS* as Cerebro. Fig. 8b shows that,
in C-Benchmark, Cerebro-100 requires 291 test executions
(median), while Decision Trees, and Random require 3,345,
and 3,149. Also, Fig. 8d shows that Cerebro-50 requires 125

test executions (median), while Decision Trees, and Random
require 1,785, and 2,182. This shows that Cerebro-100 is 10-12
times less and Cerebro-50 is 14-17 times less expensive (com-
putationally) than the baselines.

In Java-Benchmark, Decision Trees, and Random require
517,040, and 795,304 test executions (median) to achieve the
same MS* as Cerebro-100, for which 65,741 test executions are
required. Moreover, Decision Trees, and Random require
560,866, and 894,494 test executions to achieve the same MS*
as Cerebro-50, for which 50,622 test executions are required.
This shows that the baselines require 7 to 12 times, and 11 to 17
times higher computational effort than Cerebro-100, and Cere-
bro-50.

These differences are statistically significant. Â12 value
indicates that in more than 98.7% of the cases, Cerebro exe-
cutes fewer tests than Decision Trees and Random.

8 DISCUSSION

Cerebro is a learning-based method, and thus its performance
depends on a number of parameters and design decisions we
made. To this end, we discuss the key (intuitive) parameters
that make the Machine Translation approach we use effective
(Section 8.1), together with empirical results demonstrating
the potential impact on the model’s performance given the
design decisions of using unabstracted code sequences (Sec-
tion 8.2), sequences with decreased length during training
(Section 8.3), and the impact of assuming unkilled mutants as
equivalentmutants during testing (Section 8.4).

8.1 Why Cerebro is a Good Candidate for
Subsuming Mutant Prediction?

There are three main factors that make Machine Translation a
good candidate for subsuming mutant prediction. The first
one is that it learns to select mutants using the exact local con-
text (entire code snippet composed of 50-100 tokens, repre-
sented as a sequence), while previous work considers AST
and data-flow abstractions [11], ignoring the exact formula-
tion of the code snippet. In a sense, the key determining factor
is the sequence that code tokens appear in the local context
(considered code snippet). The second reason is that the

Fig. 8. (RQ4) Results of the Simulation - Trade off between number of test executions and MS*.

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 37

machine translator includes a powerful self-attention mecha-
nism, which together with the encoder-decoder architecture
makes the learning resistant to noise [59], and able to learn
out of imbalanced data. Overall, previous research has shown
that this architecture often makes the best predictions for
manyNLP tasks [20]. This is actually the reasonwhyMachine
Translation has been successfully used in code analysis tasks
such as mutant generation, code clone detection, test asser-
tions generation, etc. The third reason is the diversity of the
selected mutants, i.e., Cerebro selects a few mutants per code
block, which allows eliminating local redundancies, while
spreading testing across the entire code-base.

8.2 Impact of Removing Code Abstraction

We analyzed the impact of using unabstracted code sequen-
ces to train our models instead of proposed abstracted code
sequences and how it affects the model prediction perfor-
mance (RQ1). In this experiment, we just removed the code
comments and kept everything else as it is. We found a pre-
diction performance reduction for projects in both C and Java
benchmarks. For C-Benchmark, the model performance dete-
riorated by 18.9% in MCC, 14.4% in Precision and 18.1% in
Recall. For Java-Benchmark, although we found an improve-
ment of 15.4% in Recall, the overall performance deteriorated
by 17.9% inMCC and 22.5% in Precision.

8.3 Impact of Reducing the Sequence Length

We also analyzed the impact of reducing the length of sequen-
ces thatwe use to train ourmodels and how it affects themodel
prediction performance (RQ1). In this experiment, we reduced
the sequence length from 50 tokens per sequence to 25 tokens
per sequence. Fig. 9 and Table 4 shows the average andmedian
scores achieved by the models. For simulation details on Effec-
tiveness Evaluation (RQ2), Number of Analyzed Mutants
(RQ3) and Number of Test Executions (RQ4), please refer to
our online repository. From these results we found that reduc-
ing the length of sequences used by the models to train also
deteriorated the model prediction performance for projects in
bothC and Java benchmarks. ForC-Benchmark, themodel per-
formance deteriorated by 23.5% in MCC, 22.2% in Precision
and 18.1% in Recall. For Java-Benchmark, although we found
an improvement of 18.7% in Recall, the overall performance
deteriorated by 24.7% inMCCand 28.6% in Precision.

8.4 Impact of Considering Equivalent, Mutants That
are Subsuming, i.e., Impact of Potential
Mistakes in Our Evaluation

In our experiments, we considered the mutants that were
not killed by our test suite as unkillable a.k.a. equivalent.

Although this being an undecidable problem (as we elabo-
rated in Section 6.2), we analyzed the impact of what would
have happened if the mutants that we considered as equiva-
lent were subsuming instead. Hence, we addressed this by
introducing noise in our evaluation, i.e., we assumed 2%
equivalent mutants in our evaluation set as subsuming and
analyzed the change in performance (MS* achieved) for all
the approaches (Cerebro, Decision Trees and Random). We
gradually increased the noise percentage from 2% till 10%
(i.e., 2%, 4%, 6%, 8%, 10%) and analyzed the change in
behaviour for all the approaches (i.e., change in MS*), if it
increases or decreases with increase in noise.

We found that Cerebro’s and Decision Trees’ performances
are more or less inversely related to the noise in evaluation
(Fig. 10). Higher the noise, lower the MS* achieved by both
the approaches (with an exception of 10% noise in C bench-
mark for Decision Trees where Decision Trees performed bet-
ter than in case of 8% noise, as detailed in Table 5). For
Random selection, the performance also deteriorated in most
of the cases, with an exception of 10% noise in C benchmark,
and 6% and 8% noise in Java benchmark where Random’s
performance improved by 6.48%, and 0.23% and 1.26%
improved MS*, respectively. Despite the reduction in per-
formance due to introduced noise, Cerebro still achieves
higher MS* than the baselines (Fig. 10).

9 THREATS TO VALIDITY

External Validity: Threats may relate to the subjects we used.
Although our evaluation expands to both C and Java projects

Fig. 9. Impact of the abstraction process and sequence length in Cerebro’s prediction performance: On average, MCC is decreased by 18% with
unabstracted code and decreased by 24% with sequence length 25.

TABLE 4
Impact of the Abstraction Process and Sequence Length in
Cerebro’s Prediction Performance: On Average, MCC is

Decreased by 18%With Unabstracted Code and Decreased by
24%With Sequence Length 25

Average (and Median) Performance in C-Benchmark

Approach MCC F-measure Precision Recall

Cerebro-100 0.47 (0.47) 0.41 (0.40) 0.93 (0.93) 0.26 (0.25)
Cerebro-50 0.39 (0.40) 0.34 (0.34) 0.82 (0.82) 0.21 (0.22)
Cerebro-unabs 0.32 (0.31) 0.28 (0.27) 0.70 (0.73) 0.17 (0.16)
Cerebro-25 0.30 (0.29) 0.27 (0.28) 0.64 (0.61) 0.17 (0.18)

Average (and Median) Performance in Java-Benchmark

Approach MCC F-measure Precision Recall

Cerebro-100 0.45 (0.45) 0.51 (0.52) 0.76 (0.73) 0.39 (0.38)
Cerebro-50 0.38 (0.38) 0.42 (0.42) 0.72 (0.73) 0.31 (0.30)
Cerebro-unabs 0.31 (0.34) 0.43 (0.41) 0.56 (0.53) 0.36 (0.38)
Cerebro-25 0.29 (0.32) 0.42 (0.41) 0.51 (0.45) 0.36 (0.37)

38 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

of different sizes, the resultsmay not generalize to other proj-
ects or programming languages. We consider this threat as
low since we have a large sample of programs, i.e., we per-
form one of the largest mutation testing studies to date.

Other external threat lies in the operators we used, since
our prediction approachmight not work for different types of
mutants. To reduce this threat, we employ modern mutation
tools, for both C and Java that implement a large variety of
mutation operators. For the C-Benchmark, taken from [12],
816 simple operators across 18 categories were considered;
while for creating our Java-Benchmark, we consider the
group “ALL” of mutation operators provided by Pitest [17],
resulting in 112 simple operators across 29 categories.

Internal Validity: Threats may relate to the restriction that
we impose on sequence length, i.e., a maximum of 100 tokens.
This was done to enable reasonable model training time,
approximately 740 hours. Moreover, restricting the sequence
length to 50 assisted to reach an appropriate training time of
360 hours. However, it resulted in a prediction performance
deterioration of approximately 15%, as discussed in Section 8.
Other threats maybe due to the use of machine translation for
classification. This choice was made for simplicity, to use the

related framework out of the box, similar to the related studies
[60], [61]. Still a potential “sequence to class classifier” may
yield better results, though such improvements should be
marginal given the low number of unexpected labels we get,
i.e., on average, 2.15% of the mutants do not get a valid label
(4.2% in C and 0.1% in Java).

Threats may also relate to the features we implemented
for training the Decision Trees baseline. We follow the guide-
lines provided in [11], to extract the 16 features for our Java
dataset. Unfortunately, many of the 28 features for C pro-
grams presented in [11] depend on the semantic of the C
language, that we found unfeasible to be replicated in Java.
However, the prediction performance of Decision Trees in
Java are in line with the results obtained for C, indicating
that the impact of this threat is low.

Other internal validity threats could be related to the test
suites we used and the mutants considered as subsuming and
equivalent. To deal with this issue, we used well-tested pro-
grams and state-of-the-art tool to generate extensive pools of
tests (KLEE [10], SEMu [12], and EvoSuite [23]). Since identify-
ing subsuming and equivalent mutants is an undecidable
problem, in our experimental setup, we approximate them
through an extensive pool of tests. This has been a typical pro-

cess followed in related mutation testing studies [3], [27], [34],

[45], [46]. To be more accurate, our underlying assumption is

that the extensive pool of tests used in our experiments are a

valid representation of all possible tests that a tester canmanu-

ally or automatically generate. This assumption allowed us to

identify the minimal set of mutants (i.e., subsuming mutants)
that a tester needs to kill in order to kill every other killable

mutant (i.e., subsumed mutants). Also, we assumed that

unkilled mutants are equivalent. Even if this may not be the

case, it is likely that the testers guided by mutation won’t be

able to kill all the killable mutants. Here it must be noted that

since Cerebro is quite precise, its feeding with less noisy data,

i.e., correct labels, will make it perform better, i.e., more accu-

rate labelling in training will result in better predictions. Nev-
ertheless, we also investigate the impact of having such noisy

data and foundminor discrepancies, please refer to Section 8.4.
Cerebro’s usemay also pose additional threats. In particular,

Cerebro required approximately 5minutes for preprocessing of
the projects and 5minutes for classification (decoding results).
While this time overhead is low, compared to the hours of test
executions, it may still be important. Although our implemen-
tation is non-optimal and involves no parallelism, however
our encoding and decoding can easily be parallelized, since
mutant instances are independent of one another.

Fig. 10. Impact of noise in evaluation on all approaches’ performance (MS*): Cerebro’s and Decision Trees’ performances are more or less inversely
related to the noise in evaluation. For Random selection, the performance also deteriorated in most of the cases, with exceptions of 10% noise in C
benchmark, and 6% and 8% noise in Java benchmark where Random’s performance improved by 6.48%, and 0.23% and 1.26% improved MS*,
respectively.

TABLE 5
Impact of Noise in Evaluation on All Approaches’ Performance
(MS*): Cerebro’s and Decision Trees’ Performances are More or

Less Inversely Related to the Noise in Evaluation

Performance Change % (Median) in MS* w.r.t. noise for C-
Benchmark

Noise (%) Cerebro Decision Trees Random

2% # -2.24% # -3.61% # -13.91%
4% # -3.10% # -3.59% # -8.89%
6% # -4.67% # -3.83% # -0.95%
8% # -5.78% # -7.40% # -8.17%
10% # -7.06% # -6.53% " +6.48%
Performance Change % (Median) in MS* w.r.t. noise for Java-
Benchmark

Noise (%) Cerebro Decision Trees Random

2% # -2.19% # -1.17% # -0.16%
4% # -4.55% # -1.89% # -0.39%
6% # -6.15% # -2.76% " +0.23%
8% # -7.50% # -3.76% " +1.26%
10% # -8.61% # -4.63% # -2.80%
For Random selection, the performance also deteriorated in most of the cases,
with exceptions of 10% noise in C benchmark, and 6% and 8% noise in Java
benchmark where Random’s performance improved by 6.48%, and 0.23% and
1.26% improved MS*, respectively.

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 39

Construct Validity: Our assessment metrics, subsuming
mutation score, number of equivalent mutants and number
of test executions may not reflect the actual testing cost /
effectiveness values. These metrics have been suggested by
literature [5], [34], [47] and are intuitive, i.e., number of
selected and analyzed mutants essentially simulate the
manual effort involved by testers, subsuming mutation
score the level of covering the test requirements [3], [46],
and number of test executions capture the computational
effort involved. Here it should be noted that automated test
generation tools may reduce this cost but they require test-
ers to check the related test oracles. Similarly, equivalent
detection techniques and related heuristics may also reduce
the manual effort involved [32]. Though, in C we applied
TCE (Trivial Compiler Equivalence) [25], [31] to filter out
equivalent and duplicated mutants and our approach still
provided significant benefits. Similarly, the use of test exe-
cutions capture the computational effort involved indepen-
dently of the test execution framework and optimizations
used [15], [47], [64], [69], the machines and the level of paral-
lelization used during test execution. Nevertheless, the dif-
ferences are substantial making such threats unlikely to
happen. Overall, we mitigate these threats by following sug-
gestions from mutation testing literature [5], [34], [47], using
state-of-the-art tools, performing several simulations, form-
ing very large and diverse test pools, and got consistent and
stable results across our subjects.

10 RELATED WORK

Mutation testing has been established as one of the strongest
test criteria [3], [14]. Despite its potential, mutation is con-
sidered to be expensive since it introduces too many
mutants. To this end, random mutant sampling [19], [49]
and selective mutation [43] (restricting mutant instances
according to their types) have been proposed as potential
solutions. Unfortunately, these approaches fail to capture
relevant program semantics and performing similarly to
random mutant sampling [11], [34], [68].

Other attempts regard the selection of relevant program
locations, which should be mutated. Sun et al. [57] proposed
selecting mutants that reside in diverse static control flow
graph paths. Gong et al. [24] identified dominator nodes
(using static control flow graph) to select mutants.

More recent attempts regard the identification of interest-
ingmutants (pairs ofmutant types and related locations). Pet-
rovic and Ivankovic [51] and Just et al. [29] proposed using the
code AST in order to identify “useful” mutants. Petrovic and
Ivankovic used what they called arid nodes (special AST
nodes), while Just et al. used the AST parent and child nodes,
in order to identify high utility mutants.Mirshokraie et al. [41]
employed complexity metrics together with test executions to
select killable mutants. Similarly, Titcheu et al. [11] employed
static features, including data flow analysis, complexity and
AST information, in order to perform mutant selection, wrt
mutants linkedwith real faults.

In our analysis we approximate the performance of the
above approaches through the two baselines we adopt and
show that our approach significantly outperforms these.
Random mutant sampling is performing comparably to
operator mutant selection [68], while the supervised baseline

we consider simulates the AST-based and complexity-based
approaches.

Perhaps the closest work to ours, is from Marcozzi et al.
[38], which attempts to identify subsumed mutants using
verification techniques (such as weakest precondition).
While Marcozzi et al.’s approach is particularly powerful, it
targets weak mutation and not strong as we do. This results
in several false positives in the strong mutation case due to
failed error propagation [14]. Moreover, Marcozzi et al.’s
approach is time consuming, requires complex computa-
tions and infrastructure while Cerebro is fast and simple.
Nevertheless, future research should attempt to combine
these methods.

Tufano et al. [60] proposed using Neural Machine Transla-
tion to learn mutations from bug fixes with the aim of intro-
ducing mutations that are syntactically similar to real bugs.
Cerebro relies on the same technology, though it targets a differ-
ent problem; the identification of high utility mutants, among
those given by regular mutation testing tools, while Tufano
et al. aim at generating mutants regardless of their potential.
This indicates that Cerebro can complement Tufano et al by
selecting relevantmutants.Nevertheless,we focus on subsum-
ing mutants, that could help measuring test adequacy and
designing test suites, which are unlikely to be supported by
Tufano et al. as there is no notion of subsumption in the bug-
fixing sets they use. Moreover, wemake no assumption on the
availability and repetitiveness of historical bugs and their fixes.

Predictive mutation testing (PMT) [67] attempts to pre-
dict whether a given test can kill a given mutant without
performing any mutant execution. The approach relies on a
set of both static and dynamic features (relying on coverage
and code attributes) and achieves relatively good results
(on average with 10% error). Though, PMT mainly targets
intra-project predictions, while Cerebro targets inter-project.
Nevertheless, PMT is incomparable to Cerebro since it aims
at evaluating test execution results, while we do mutant
selection prior to any test execution. In other words, we aim
at identifying the mutants to be used for test design/genera-
tion, while PMT to verify whether mutants are killed by
some tests. Therefore, the two methods target different but
complementary problems.

EvolutionaryMutation Testing (EMT) [21] utilises dynamic
features (execution traces) in order to identify interesting loca-
tions and mutant types. As such, EMT requires tests and user
feedback, which make it different but complementary to ours;
Cerebro can set a starting point for EMT or integrate its predic-
tions within EMT’s fitness function. Higher-order mutation
[27] aims at dynamically optimizing mutants based on given
test suites. This means that Cerebro can be directly applied to
support test generation prior to any test generation, while
higher-order mutation is only applicable after test generation.
Perhaps more importantly, Cerebro does not introduce any
expensive dynamic mutant execution, while higher-order
mutation introducesmajormutant execution overheads.

11 CONCLUSION AND FUTURE WORK

We presented Cerebro, a method that learns to select sub-
suming mutants (subset of mutants that subsumes the
others, i.e., tests killing them also kill all the mutants of the
given mutant set) from given mutant sets. Experiments

40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

with 58 programs showed that Cerebro identified subsuming
mutants with 0.85 precision and 0.33 recall at an inter-proj-
ect scenario (trained on different projects than the ones it
was evaluated). These predictions enable testers designing
test cases capable of killing more than two times the sub-
suming mutants that they would kill if they were using
either randomly selected mutants or another previously
proposed machine learning-based mutant selection tech-
nique. At the same time Cerebro entails the analysis of
66% fewer equivalent mutants and 90% less mutant execu-
tions, indicating a large reduction on the practical effort/
cost of the approach.

Recently, it has become increasingly common to pre-train
the entire model on a data-rich task, which causes the model
to develop general-purpose abilities and knowledge that
can then be transferred to downstream tasks [52]. In this
practice aka Transfer Learning and its applications to com-
puter vision [44], [63], pre-training is typically done via
supervised learning on a large labeled data set like Image-
Net [53]. In contrast, modern techniques for transfer learn-
ing in Natural Language Processing (NLP) often pre-train
using unsupervised learning on unlabeled data [20], [36].
The resulting pre-trained models are further trained on spe-
cialized datasets to accomplish the desired tasks. Unsuper-
vised pre-training for NLP is attractive and seems a good fit
for neural networks as it have been shown to exhibit
remarkable scalability, i.e., it is often possible to achieve bet-
ter performance simply by training a larger model on a
larger data set [26], [28], [37], [54]. It will be worthwhile to
explore such available pre-trained models [22], [39] and if
these can be further refined to address our specific predic-
tion task.

On the other hand, as we have shown that Cerebro is pro-
ficient in capturing the silent features and patterns of the
code context, it is promising to explore Cerebro in security-
specific task such as prediction of zero-day vulnerabilities,
which pose a very high risk [66]. Vulnerabilities are fewer
in comparison to defects, limiting the information one can
learn from. Also, their identification requires an attacker’s
mindset [42], which developers or code reviewers may not
possess. Lastly, the continuous growth of codebases makes
it difficult to investigate them entirely and track all code
changes. For instance, Linux kernel, which is one of the proj-
ects with the highest number of publicly reported vulner-
abilities, reached 27.8 million LoC (Lines of Codes) at the
beginning of 2020 [35]. Hence, it will also be rewarding to
explore Cerebro in this line of work.

REFERENCES

[1] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015. [Online]. Available: tensorflow.
org.

[2] A. T. Acree, “On Mutation,” Ph.D. thesis, School of Information
and Computer Science, Georgia Inst. Technol., Atlanta, Georgia,
1980.

[3] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoreti-
cal minimal sets of mutants,” in Proc. IEEE 7th Int. Conf. Softw.
Testing, Verification Valid., 2014, pp. 21–30.

[4] P. Ammann, J. Offutt, “Introduction to Software Testing,” 1st ed.
New York, NY, USA: Cambridge Univ. Press, 2008.

[5] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage
criteria,” IEEETrans. Softw. Eng., vol. 32, no. 8, pp. 608–624,Aug. 2006.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate, in Proc. 3rd Int. Conf.
Learn. Representations, 2015.

[7] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recog-
nition,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2016,
pp. 4945–4949.

[8] D. Britz, A. Goldie, M.-T. Luong, and Q. Le, “Massive exploration
of neural machine translation architectures,” in Proc. Conf. Empir.
Methods Natural Lang. Process., 2017, pp. 1442–1451.

[9] T. A. Budd and D. Angluin, “Two notions of correctness and their
relation to testing,“ Acta Inf., vol. 18, no. 1, pp. 31–45, Mar. 1982.

[10] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. 8th USENIX Conf. Oper. Syst. Des. Implementation,
2008, pp. 209–224.

[11] T. T. Chekam, M. Papadakis, T. F. Bissyand�e, Yves Le Traon, and
K. Sen, “Selecting fault revealing mutants,“ Empir. Softw. Eng.,
vol. 25, no. 1 pp. 434–487, 2020.

[12] T. T. Chekam, M. Papadakis, M. Cordy, and Y. Le Traon, “Killing
stubborn mutants with symbolic execution,“ ACM Trans. Softw.
Eng. Methodol., vol. 30, no. 2, Jan. 2021.

[13] T. T. Chekam, M. Papadakis, and Y. Le Traon , “Mart: A
mutant generation tool for LLVM,” in Proc. 27th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019,
page 1080–1084.

[14] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An
empirical study on mutation, statement and branch coverage fault
revelation that avoids the unreliable clean program assumption,”
in Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 597–608.

[15] L. Chen, L. Zhang, “Speeding up mutation testing via regression
test selection: An extensive study,” in Proc. 11th IEEE Int. Conf.
Softw. Testing Verification Valid., 2018, pp. 58–69.

[16] K. Cho et al., “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in Proc. Conf.
Empir. Methods Natural Lang. Process., 2014, pp. 1724–1734.

[17] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Vent-
resque, “PIT: A practical mutation testing tool for java (demo),” in
Proc. 25th Int. Symp. Softw. Testing Anal., 2016, pp. 449–452.

[18] M. L. Collard, J. I. Maletic, “srcML 1.0: Explore, analyze, and
manipulate source code,” in Proc. IEEE Int. Conf. Softw. Mainte-
nance Evolution, 2016, pp. 649–649.

[19] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer,
vol. 11, no. 4, pp. 34–41, Apr. 1978.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguis-
tics: Human Lang. Technol., 2019, pp. 4171–4186.

[21] J. J. Dom�ınguez-Jim�enez, A. Estero-Botaro, A. Garc�ıa-Dom�ınguez,
and I. Medina-Bulo , “Evolutionary mutation testing,” Inf. Softw.
Technol., vol. 53, no. 10, pp. 1108–1123, 2011.

[22] Z. Feng et al., “CodeBERT: A pre-trained model for programming
and natural languages,” in Proc. Findings Assoc. Comput. Linguis-
tics: EMNLP, 2020, pp. 1536–1547.

[23] G. Fraser, A. Zeller, “Mutation-driven generation of unit tests
and oracles,” in Proc. ACM Int. Symp. Softw. Testing Anal., 2010,
pp. 147–158.

[24] D. Gong, G. Zhang, X. Yao, and F. Meng, “Mutant reduction based
on dominance relation for weak mutation testing,” Inf. Softw. Tech-
nol., vol. 81, pp. 82–96, 2017.

[25] F. Hariri, A. Shi, V. Fernando, S. Mahmood, and D. Marinov,
“Comparing mutation testing at the levels of source code and
compiler intermediate representation,” in Proc. 12th IEEE Conf.
Softw. Testing, Valid. Verification, 2019, pp. 114–124.

[26] J. Hestness et al., “Deep learning scaling is predictable, empiri-
cally,” 2017, arXiv:1712.00409.

[27] Y. Jia, M. Harman, “Higher order mutation testing,” Inf. Softw.
Technol., vol. 51, no. 10, pp. 1379–1393, 2009.

[28] R. J�ozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,
“Exploring the limits of languagemodeling,” 2016, arXiv:1602.02410.

[29] Ren�e Just, B. Kurtz, and P. Ammann, “Inferring mutant utility
from program context,” in Proc. 26th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2017, pp. 284–294.

[30] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation
testing alternatives: A collateral experiment,” in Proc. Asia Pacific
Softw. Eng. Conf., 2010. pp. 300–309.

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 41

tensorflow.org
tensorflow.org

[31] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and
M. Harman, “Detecting trivial mutant equivalences via compiler
optimisations,” IEEE Trans. Softw. Eng., vol. 44, no. 4, pp. 308–333,
Apr. 2018.

[32] M. Kintis, M. Papadakis, and N. Malevris, “Employing second-
order mutation for isolating first-order equivalent mutants,”
Softw. Testing Verification Rel., vol. 25, no. 5/7, pp. 508–535, 2015.

[33] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng,
“Mutant subsumption graphs,” in IEEE 7th Int. Conf. Softw. Testing
Verification Valid. Workshops, 2014, pp. 176–185.

[34] B. Kurtz, P. Ammann, J. Offutt, M�arcio, E. Delamaro, M. Kurtz,
and Nida G€okçe, “Analyzing the validity of selective mutation
with dominator mutants,” in Proc. 24th ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2016, pp. 571–582.

[35] Linux in 2020: 27.8 million lines of code in the kernel, 1.3 million in
systemd,” Accessed: Oct. 12, 2020. [Online]. Available: https://www.
theregister.com/2020/01/06/linux_2020_kernel_systemd_code/

[36] Z. Liu, W. Lin, Ya Shi, and J. Zhao, “A robustly optimized bert
pre-training approach with post-training,” in Proc. China Nat.
Conf. Chin. Comput. Linguistics, 2021, pp. 471–484.

[37] D. Mahajan et al., “Exploring the limits of weakly supervised pre-
training,” in Proc. Eur. Conf. Comput. Vis, 2018, pp. 181–196.

[38] M. Marcozzi, S. Bardin, N. Kosmatov, M. Papadakis, V. Prevosto,
and Loı̈c Correnson, “Time to clean your test objectives,” in Proc.
40th Int. Conf. Softw. Eng., 2018, pp. 456–467.

[39] A. Mastropaolo et al., “Studying the usage of text-to-text transfer
transformer to support code-related tasks,” in Proc. IEEE/ACM
43rd Int. Conf. Softw. Eng., 2021, pp. 336–347.

[40] B. W. Matthews, “Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme,” Biochimica et Biophysica
Acta (BBA) - Protein Struct., vol. 405, no. 2, pp. 442–451.

[41] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Guided muta-
tion testing for javascript web applications,” IEEE Trans. Softw.
Eng., vol. 41, no. 5, pp. 429–444, May 2015.

[42] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges
with applying vulnerability prediction models,” in Proc. Symp.
Bootcamp Sci. Secur., 2015, pp. 1–9.

[43] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
experimental determination of sufficient mutant operators,” ACM
Trans. Softw. Eng. Methodol., vol. 5, no. 2, pp. 99–118, 1996.

[44] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and trans-
ferring mid-level image representations using convolutional neu-
ral networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2014, pp. 1717–1724.

[45] M. Papadakis, T. T. Chekam, and Y. Le Traon, “Mutant quality
indicators,” in Proc. IEEE Int. Conf. Softw. Testing Verification Valid.
Workshops, 2018, pp. 32–39.

[46] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon ,
“Threats to the validity of mutation-based test assessment,” in
Proc. 25th Int. Symp. Softw. Testing Anal., 2016, pp. 354–365.

[47] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Har-
man, “Chapter six - Mutation testing advances: An analysis and
survey,” Advances Comput., vol. 112, pp. 275–378, 2019.

[48] M. Papadakis and N. Malevris, “Automatic mutation test case
generation via dynamic symbolic execution,” in Proc. IEEE 21st
Int. Symp. Softw. Rel. Eng., 2010, pp. 121–130.

[49] M. Papadakis and N. Malevris, “An empirical evaluation of the
first and second order mutation testing strategies,” in Proc. 3rd Int.
Conf. Softw. Testing Verification Valid., 2010, pp. 90–99.

[50] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation
scores correlated with real fault detection?: A large scale empirical
study on the relationship between mutants and real faults,” in
Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 537–548.

[51] G. Petrovic and M. Ivankovic, “State of mutation testing at
google,” in Proc. 40th IEEE/ACM Int. Conf. Softw. Eng. Softw. Eng.
Pract. Track, 2018, pp. 163–171.

[52] C. Raffel et al., “Exploring the limits of transfer learning with a
unified text-to-text transformer,” 2019, arXiv:1910.10683.

[53] O. Russakovsky et al., “Imagenet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[54] N. Shazeer, et al., “Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer,” in Proc. 5th Int. Conf.
Learn. Representations, 2017.

[55] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of
machine learning in software defect prediction,” IEEE Trans.
Softw. Eng., vol. 40, no. 6, pp. 603–616, Jun. 2014.

[56] A. Shewalkar, D. Nyavanandi, and S. Ludwig, “Performance eval-
uation of deep neural networks applied to speech recognition:
RNN, LSTM and GRU,” J. Artif. Intell. Soft Comput. Res., vol. 9,
pp. 235–245, 2019.

[57] C.-AI Sun, F. Xue, H. Liu, and X. Zhang, “A path-aware approach
to mutant reduction in mutation testing,” Inf. Softw. Technol.,
vol. 81, pp. 65–81, 2017.

[58] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks, in Proc. 27th Int. Conf. Neural Inf.
Process. Syst., 2014, pp. 3104–3112.

[59] G. Tang, M. M€uller, A. Rios, and R. Sennrich, ”Why self-attention?
A targeted evaluation of neural machine translation architectures,”
in Proc. 2018 Conf. Empir. Methods Natural Lang. Process., 2018,
pp. 4263–4272.

[60] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, ”Learning how to mutate source code from bug-
fixes,” in Proc. IEEE Int. Conf. Softw. Maintenance Evolution, 2019,
pp. 301–312.

[61] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D.
Poshyvanyk, ”An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw.
Eng. Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019.

[62] A. Vargha and H. D. Delaney, ”A critique and improvement of the
”CL” common language effect size statistics of McGraw and
wong,” J. Educ. Behav. Statist., vol. 25, no. 2, pp. 101–132, 2000.

[63] J. Yangqing et al., ”Convolutional architecture for fast feature
embedding,” in Proc. ACM Int. Conf.Multimedia, 2014, pp. 675–678.

[64] B. Wang, Y. Xiong, Y. Shi, Lu Zhang, and D. Hao, ”Faster muta-
tion analysis via equivalence modulo states,“ in Proc. 26th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2017, pp. 295–306.

[65] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stub-
born mutation operators using human analysis of equivalence,”
in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 919–930.

[66] Zero-day vulnerability,”Accessed:Oct. 12, 2021. [Online].Available:
https://www.trendmicro.com/vinfo/us/security/definition/
zero-day-vulnerability

[67] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang,
“Predictive mutation testing,” IEEE Trans. Softw. Eng., vol. 45,
no. 9, pp. 898–918, Sep. 2019.

[68] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-
based and random mutant selection: Better together,” in 28th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2013, pp. 92–102.

[69] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing
inspired by test prioritization and reduction,” in Proc. Int. Symp.
Softw. Testing Anal, 2013, pp. 235–245.

Aayush Garg received the MS degree in computer
science with a concentration in security from Boston
University, Boston, Massachusetts, in 2019. He is a
doctoral researcher with the Department of Com-
puter Science, Faculty of Science, Technology and
Medicine (FSTM), University of Luxembourg. He
has several years of industrial experience as a
software developer in Fintech Organizations. His
research areas comprise computer security, compu-
tational intelligence in software engineering, and
mutation testing.

Milos Ojdanic received the MSc degree from the
Faculty of Innovation, Design, and Technology,
M€alardalen University, V€astera

�
s, Sweden, in 2019.

He is a doctoral researcherwith the Interdisciplinary
Center for Security, Reliability, and Trust (SnT), Uni-
versity of Luxembourg. His research interests
include software development, testing, and evolu-
tion. In particular, he focuses on evolving systems,
change-aware testing criteria, mutation testing, and
predictionmodeling.

42 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code/
https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code/
https://www.trendmicro.com/vinfo/us/security/definition/zero-day-vulnerability
https://www.trendmicro.com/vinfo/us/security/definition/zero-day-vulnerability

Renzo Degiovanni received the PhD degree in
computer science from the National University of
Cordoba, Cordoba, Argentina. He is a research
associate with the Interdisciplinary Center for
Security, Reliability and Trust (SnT), University of
Luxembourg. His research interests include soft-
ware engineering, specifically the validation and
verification of software. His research has contrib-
uted to the automation of requirements engineering
activities, software testing, and formal software
verification.

Thierry TitcheuChekam received the BSc degree
in computer science and technology from the Uni-
versity of Science and Technology of China, Hefei,
China, in 2013, the MEng degree in software engi-
neering from the School of Software, Tsinghua Uni-
versity, Beijing, China, in 2015, and the PhD
degree in computer science from the University of
Luxembourg, Esch-sur-Alzette, Luxembourg. He is
a software engineer with SES, Luxembourg. His
research areas comprise software testing, muta-
tion analysis, symbolic execution, and cloud com-
puting/storage.

Mike Papadakis received the PhD degree in com-
puter science from the Athens University of Eco-
nomics and Business, Athens, Greece. He is a
senior research scientist with the Interdisciplinary
Center for Security, Reliability and Trust (SnT), Uni-
versity of Luxembourg. He is recognised for his
work on software testing and in particular in the
area of mutation testing. His research interests
also include static analysis, prediction modelling,
and search-based software engineering.

Yves Le Traon is professor with the University of
Luxembourg, where he leads the SERVAL (SEcu-
rity, Reasoning and VALidation) Research Team.
His research interests within the group include (1)
innovative testing and debugging techniques, (2)
Android apps security and reliability using static
code analysis, machine learning techniques and,
(3) model-driven engineering with a focus on IoT
and CPS. His reputation in the domain of software
testing is acknowledged by the community. He has
been general chair of major conferences in the

domain, such as the 2013 IEEE International Conference on Software
Testing, Verification and Validation (ICST), and program chair of the 2016
IEEE International Conference onSoftwareQuality, Reliability and Security
(QRS). He serves at the editorial boards of several, internationally-known
journals (Software Testing, Verification & Reliability, Software and Sys-
tems Modeling, IEEE Transactions on Reliability) and is author of more
than 150 publications in international peer-reviewed conferences and
journals.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GARG ETAL.: CEREBRO: STATIC SUBSUMING MUTANT SELECTION 43

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

