
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 2, MAY 2022 127

VVC Search Space Analysis Including an
Open, Optimized Implementation

Adam Wieckowski , Jens Brandenburg, Benjamin Bross , Member, IEEE, and Detlev Marpe , Fellow, IEEE

Abstract—Versatile Video Coding (VVC) is a new video coding
standard finalized in July 2020. During the standard development
much attention was paid to keeping the decoding complexity
increase as small as possible, with more permissive approach
being taken with regard to the encoding. The VVC reference
software VTM in random access configuration requires around
double the time to decode and 8× the time to encode a video,
compared to High Efficiency Video Coding (HEVC) reference
software HM. With this runtime increase, an objective bitrate
reduction of around 40% is achieved. In this paper we analyze the
encoding complexity increase of VVC over HEVC. We abstract
the implementation-based aspects, including low-level software
optimizations and introduce an empirical measure to quantify the
extent of encoder search space given a specific search algorithm.
Based on the measure, we compare the search space of HM
and VTM, but also of the open and optimized VVC encoder
implementation VVenC, showing the potential for search space
reduction and its impact on compression performance. Overall, it
can be seen that while VVC’s search space is quite large in VTM,
it can be efficiently limited either by including early termination
strategies or by disabling VVC coding tools.

Index Terms—Optimization, video coding, video compression,
VVC, search space.

I. INTRODUCTION

THE VERSATILE Video Coding (VVC) standard [1] was
finalized in July 2020. The project has been developed

by the Joint Video Experts Team (JVET) of ITU-T VCEG
and ISO/IEC MPEG. VVC is designed to achieve multiple
objectives. First, the new standard should provide around 50%
bitrate reduction at the same subjective quality over its prede-
cessor, High Efficiency Video Coding (HEVC) [2], also jointly
developed by the aforementioned bodies. Another objective
is the applicability in versatile scenarios, ranging from con-
ventional SDR video coding, through HDR, high-resolution,
screen content coding, adaptive streaming to 360-degree video
for virtual reality.

The coding efficiency improvement over HEVC has
been officially tested in independent subjective evaluation.
These verification tests [3], [4] confirmed an average bitrate

Manuscript received June 30, 2021; revised January 18, 2022; accepted
January 19, 2022. Date of publication February 3, 2022; date of current version
June 3, 2022. (Corresponding author: Adam Wieckowski.)

The authors are with the Video Communication and Applications
Department, Fraunhofer Institute for Telecommunications, Heinrich
Hertz Institute, 10587 Berlin, Germany (e-mail: adam.wieckowski@
hhi.fraunhofer.de; jens.brandenburg@hhi.fraunhofer.de; benjamin.bross@
hhi.fraunhofer.de; detlev.marpe@hhi.fraunhofer.de).

Digital Object Identifier 10.1109/TCE.2022.3148813

reduction up to 50% for HD and UHD content and even more
for 360-degree video.

The bitrate reduction comes at a cost of increased
computational complexity. Measured in terms of runtime, in
the commonly used random access configuration, VVC soft-
ware test model VTM takes around 8× more time to encode
and 2× more to decode than the HEVC software test model,
HM [5]. First reports of optimized implementations includ-
ing real-time decoder implementations [6]–[8] and optimized
encoding algorithms [9]–[13] are available with very improved
runtime. Those indicate that the VVC complexity, and its com-
plexity increase when compared to HEVC, can only in limited
manner be measured when comparing the reference software
runtimes.

VVenC is an optimized encoder implementation [14], [15],
initially released shortly after standard finalization and reach-
ing version 1.0.0 in May 2021. The encoder can provide all
of VTM’s compression efficiency at less than half the run-
time, and provides alternative presets constituting encoding
time/efficiency tradeoffs.

Since the VVC standard only specifies the decoding process,
the complexity of HEVC and VVC is defined by the number
of operations required to decode a video from a conforming
bitstream. A theoretical analysis backed by measured software
runtime of available implementations [16] indicate the decod-
ing process of VVC to be around two times more complex
than HEVC. For the encoding, which is not standardized, but
always depends on the particular implementation, the number
cannot be quantified in a similar fashion. While the complexity
of the decoding algorithms contributes directly to the encod-
ing process, since an encoder always embeds a decoder, the
process is usually very unsymmetrical with the encoder taking
orders of magnitude more computational resources. While this
discrepancy might be caused by the algorithms themselves, we
assert it is foremost caused by the plurality of encoding options
defining the encoding search space.

In this paper we want to capture and quantify the asymme-
try between the algorithmic complexity of a standard mostly
defined by the decoding process and the encoding search
space, defined by the search algorithm of each specific encoder
implementation. We propose a search space quantification
method capturing the characteristics of block search differ-
entiating between block subdivision search complexity, mode
search within a block and combined search space. We discuss
the presented complexity analysis approach comparing three
encoder implementations – HM, VTM and VVenC at different
presets representing different search algorithm variants.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0490-5803
https://orcid.org/0000-0002-1608-3774
https://orcid.org/0000-0002-5391-3247

128 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 2, MAY 2022

Fig. 1. Recursive splits available in VVC: quad-split, vertical and horizontal
binary split, and vertical and horizontal ternary split.

The rest of this paper is structured as follows. In the
next section an overview of hybrid block-based video coding
with a special emphasis on the basics of HEVC and VVC
is given. In Section III, the VVenC encoder is described.
In Section IV, related work with regard to VVC complex-
ity analysis is discussed. Section V introduces the empirical
search space quantification method, while the measurements
for three encoder implementations are discussed in Section VI.
Section VII concludes the paper.

II. BLOCK-BASED HYBRID VIDEO CODING

Most modern video codecs including HEVC and VVC are
based on the block-based hybrid video coding paradigm. It has
proven very efficient, while also allowing a straightforward
definition of a deterministic decoding process, as required by
the standardization.

In this paradigm, a video is first split into blocks, usually in
a two-stage approach. First, a rigid subdivision into fixed size
blocks is performed, e.g., macroblocks in H.264/AVC [17] and
coding tree units (CTU) in HEVC and VVC. Then, each of
the blocks can be further subdivided as specified by the block
partitioning scheme of each standard. In AVC, a block subdi-
vision can be selected per macroblock from a set of predefined
models. In HEVC and VVC, a recursive subdivision based on
different split modes is used. In HEVC, starting from a cod-
ing tree unit (usually containing 64×64 luma samples and the
collocated chroma samples), a quad-split can be signaled indi-
cating the block is to be split into four equally sized subblocks.
This process is repeated recursively for each subblock until a
predefined minimal block size is reached or it is signaled that
no further split is performed. In VVC, the recursive split set is
extended by four additional modes (Fig. 1), thus not only the
split decision but also the split type has to be signaled. The
leaves of the splitting process in VVC and HEVC are called
coding units (CU).

For each coding unit, a coding mode has to be decided and
signaled in the bitstream. In hybrid video coding, a prediction
signal would be created for the block and the resulting resid-
ual error encoded and transmitted. The residual coding usually
employs a quantization step, being the main source of distor-
tion in lossy video coding. The prediction can be either based
on a intra picture (using already coded samples from the cur-
rently coded picture) or inter picture (using coded samples
from previously coded pictures) prediction. Within those two
prediction modes, a specific mode has to be selected, e.g.,
intra directional mode, or block displacement for inter picture
prediction (motion vector).

In HEVC, there is an additional split process available after
the intra/inter decision, wherein each coding unit can be fur-
ther non-recursively split into prediction units (PU). Each PU

TABLE I
ENUMERATION OF ALTERNATIVE PARTITIONING CONFIGURATIONS IN

HEVC INCLUDING ALLOWED PU SPLITS AT DIFFERENT DEPTHS

(POSSIBILITIES ONLY AVAILABLE IN INTER CUS

ARE SHOWN CURSIVE)

can utilize different prediction information, as long as all PUs
within a CU all use either intra or inter picture prediction. The
available PU splits for each available CU size are enumerated
in Table I.

The main task for an encoder is to decide how to partition
each CTU and which mode to use for each block. A naive
encoder can go through all available options and decide the
optimal encoding using the Lagrangian formulation of the rate-
distortion optimization (RDO) problem:

min {J}, where J = D + λ · R. (1)

The coding cost J is a weighted average of distortion D and
rate R, i.e., the number of bits required to represent a specific
encoding. The value λ is derived from the desired encoding
quality [18]. In (1), the resulting distortion has to be estab-
lished, which usually requires applying the decoding process,
thus the decoding complexity influence on the encoder.

The complexity of finding the optimal encoding through the
optimization (1) is defined by the plurality of encoding modes
for which the encoder estimates full coding cost J. In VVC,
with its modular design and many CU level decisions being
signaled in the bitstream [19], the plurality of those tested
modes is much higher than in HEVC.

In modern encoders, the split search usually employs the so
called G-BFOS (generalized Breiman, Freidman, Olshen and
Stone) algorithm [20], [21]. The algorithm finds the optimal
partitioning in a top down manner by iteratively deciding an
optimal partitioning for a specific block. A split mode with k
subblocks is treated as any other coding mode. Assuming the
optimal coding costs for each ith subblock is defined as Js,i
and the rate of coding the split decision is given by Rs the
coding cost of a split mode is defined as:

Js =
∑

i=1···k
Js,i + λ · Rs. (2)

The optimal subblock cost Js,i can itself be a result of split-
ting process (2). As can be seen in (2), with increasing split
recursion depth, the number of decisions grows exponentially.
In HEVC with only one split available the number of tested
blocks increases with the depth, but the number of samples
within a block decreases, effectively resulting in a linear rela-
tionship of maximal partitioning depth and overall number
of processed samples, as will be shown further. For VVC,

WIECKOWSKI et al.: VVC SEARCH SPACE ANALYSIS INCLUDING OPEN, OPTIMIZED IMPLEMENTATION 129

with multiple competing splits at each level [22], the growth
is exponential again.

Within this search, the encoder can make decisions based on
heuristics, i.e., without evaluating full coding cost (1) and (2).
While this might lead to slight quality degradation, it usually
significantly reduces the encoding complexity.

III. VVENC VVC ENCODER

During the VVC standard development, software test model
VTM has been used as a development platform and a proof
of concept for the VVC standard. Albeit newly adopted algo-
rithms had to show a reasonable tradeoff between coding gain
and encoder runtime increase, software optimization has not
been a distinct design goal of VTM.

A. VVenC Software Framework

The VVenC software encoder has been developed on top
of a striped down version of VTM. This initial baseline con-
tained only VVC partitioning, simple inter and intra prediction
as well as the in-loop filters. All other tools were reimple-
mented, based on the VTM software. Consequently, many
tools can produce equal results to their VTM counterparts.
For some tools, e.g., multiple transform set (MTS) or intra
sub-partitioning (ISP), alternative implementation approaches
were used. In these cases, coding results will differ from VTM,
yet achieving similar coding gains.

In VVenC a mixture of different techniques has been
used to speed up the encoder. During the development and
optimization of the software particular care has been taken
to identify and remove redundancies in the algorithms and
to optimize the memory layout to reduce performance bot-
tlenecks. Based on an in-depth analysis the SIMD instruction
vectorization has been revised and extended to support AVX2,
and adding new SIMD code for quantization and transfor-
mation processing, affine prediction, loop filtering, motion
compensated filtering, and more.

On top of the fine grained instruction level parallelization,
a hybrid multi-threading scheme was adopted to the encoder
software. This multi-threading scheme combines CTU and
frame level parallelization, based on a single thread pool
increasing efficient resource utilization and automatic work-
load balancing.

B. Encoder Search Space

Runtime improvements based on low-level optimizations,
such as described in the previous section, are limited by a
boundary, imposed by the inherent complexity of the algo-
rithm. Part of this complexity can be attributed to an essential
encoder component, the search for optimal encoding decisions.
Instead of being a monolithic part, this search is the prod-
uct of multiple hierarchical encoding decisions, establishing
the overall encoder search space. Pruning this search space
by reducing the number of encoding decisions provides the
means to reduce the encoder complexity. Typically, such prun-
ing leads to a degradation of coding performance. In [15], [23]
we discuss several such pruning algorithms implemented in
VVenC for different encoding decisions associated with tool

Fig. 2. Single threaded runtime and compression performance of HEVC
and VVC reference encoders, HM and VTM, as well as an optimized VVC
encoder VVenC (classes A1, A2 and B of JVET CTC in random access (RA)
configuration [24]).

as well as non-tool specific algorithms, like motion estimation,
partitioning search and others.

C. Pareto-Optimized Configuration Presets

Reducing the encoder complexity by pruning the search
space for a certain tool or algorithm introduces a new trade-
off between encoder runtime and coding gain. To provide
the full flexibility of VVC, these new tradeoffs have been
exposed by additional encoder configuration options. Besides
these VVenC specific configuration options, the encoder pro-
vides a large set of VTM-based options, also to adjust the
coding efficiency. The full set of encoder configuration options
constitutes a multi-dimensional vector. Each input configura-
tion vector can be mapped onto a two dimensional operation
point, representing a certain tradeoff between encoder run-
time and coding efficiency. Finding optimal tradeoffs requires
the determination of the set of Pareto optimal configuration
vectors for which neither the coding gain nor the encoder
runtime can be improved without impairing the other. For
VVenC we used an iterative search algorithm to approxi-
mate a set of Pareto optimal configuration vectors. Based
on those, five configuration presets are defined, representing
different encoder operation points. According to the encoder
runtime these presets are labeled faster, fast, medium, slow
and slower, for ease of use. Overall, the coding gain of the
presets spans from faster with 11% BD-rate gain over HM
up to slower providing all of VTM’s gain at less than half
of its runtime. Comparing faster and slower presets against
each other, a speedup of 70× can be achieved at the cost
of reduced compression efficiency [23], showing improve-
ment potential available by adapting the search space and
algorithm.

The single-threaded compression performance vs runtime
results, compared to HM and VTM are shown in Fig. 2. Each
of the points constitutes an alternative search approach, uti-
lizing different search space and traversing it in a different
manner. Using the method proposed in Section V, we quantize

130 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 2, MAY 2022

and analyze the number of decisions contributing to the extent
of the search space for each preset and contrast the numbers
with VTM and HM.

IV. RELATED WORK

Since the inception of the VVC standardization project, the
complexity of the novel codec has been the topic of var-
ious publications. The literature varies with regard to the
definition of complexity. In [16] the worst case decoding
complexity is analyzed theoretically and by comparing the
VVC reference software VTM to the HEVC reference HM
as well as some early decoder implementations. The theo-
retical analysis assumes that a good approximation of the
complexity is the number of performed multiply accumu-
late operations (MAC) and analyses core VVC algorithms
accordingly. In the encoding complexity analysis [16], an early
version of the optimized encoder VVenC is discussed. This
paper extends this preliminary encoding complexity analysis
with more details.

In [25]–[27] the encoding complexity is measured by the
means of VTM reference software runtime, compared to that
of HM. The analyses provide insightful information, each with
a different focus. In [25], [26], [28] the runtime of different
encoding aspects was measured and analyzed for different
encoding quality settings. In [27], [29] the encoding time
spent per video channel and block size in intra-only coding
was emphasized. In [25], [29] the impact of code vectoriza-
tion using SIMD is discussed. In [30] memory requirements
of VTM and HM are analyzed during encoding process. As
will be discussed further, the analyses based on the run-
time and memory profiling of the reference softwares cannot
abstract the different level of optimizations between the two
encoders, but also between different encoder modules within
each implementation.

Different approaches to complexity measurements were
used in [15], [31], [32]. Instead of profiling the software with
the full set of tools, the authors observed the software behav-
ior when tools are turned off or their implementation (e.g., the
search algorithm) is slightly adapted, up to enforcing optimal
decisions without search in [31]. This way the overall com-
plexity of the encoding process associated with a given tool
can be quantified. Still, the analysis is only given in the context
of a specific software implementation.

In this paper we try to separate the search space extent of a
specific standard and the search sub-space a specific encoder
actually evaluates from the computational complexity of spe-
cific signal processing algorithm, thus providing a level of
implementation abstraction.

Many papers implicitly discuss algorithms concerning
search space reduction, but use runtime as an evaluation
criteria [9]–[13]. Such an approach is valid while comparing
different search strategies within the same implementation,
but cannot be applied to compare the search strategies of
different encoders. Based on our proposed measure we dis-
cuss the search space increase between the reference softwares
HM and VTM, and the search space reduction introduced
in the optimized VVC encoder VVenC. Additional profiling

results allow for more detailed VVC encoding complexity
analysis.

V. SEARCH SPACE SIZE QUANTIFICATION

As concluded in [15], [16], [23], VVC complexity increase
is in large part caused by the search space increase, i.e., the
number of decisions the encoder has to make when select-
ing an optimal encoding for specific samples, possibly more
so than the algorithmic complexity increase of specific algo-
rithms. The latter can be somehow quantified by the decoding
complexity increase, and the remaining disproportion between
the encoding and decoding complexity increase can be roughly
attributed to the increased number of encoder decisions.

We propose an approach to quantify the search space size
for an encoder given a specific search algorithm. The presented
approach is based on the assumption that the encoding search
space of hybrid block-based video codecs is determined as
the product of the partitioning search space and the number
of tested coding modes per block. The former is determined
by the flexibility of the partitioning framework implemented
in a given codec. For VVC specifically, the novel quad-tree
with binary and ternary tree framework allows multiple lev-
els of recursive splits of different types, thus extending the
search space in two dimensions – an encoder has to decide the
split depth as well as split types. The mode search complex-
ity is determined by the number of per-block signaled coding
tools and modes. Specifically VVC, which was designed in
a very modular fashion, contains many tools that can be
selectively enabled or disabled on per-block basis. This con-
cerns both the prediction, as well as residual coding modes
available. We assume that the main burden of the coding
unit search loop lies with the modes for which full RDO
is done, i.e., for which a prediction is calculated, a residual
formed and reconstructed residual as well as reconstruction
error are calculated. We ignore the fact that many more
prediction candidates are estimated without being passed on to
full RDO.

In the following we define the encoding search space as the
plurality of modes actually tested by the encoder. It is usu-
ally by orders of magnitude smaller than the product space of
all possible encoding options allowed by a standard, and dif-
fers between encoders depending on the implemented search
algorithm.

To quantify the two described main aspects contributing
to search space size we define two empirical measures that
combined estimate the search space size.

A. Partitioning Search Space

Assuming encoding of a frame of size W × H with
4:2:0 chroma sub-sampling, NS = 1.5·W·H samples are being
encoded. During the CU search loop, the encoder decides for
which partitioning configurations to perform a mode search.
Assuming sequential operation, the encoder would perform a
mode search in iP ∈ 1 · · · NP blocks. The luma and chroma
size of each block are defined as WP(i, c) and HP(i, c), with
c = 0 specifying luma size and c = 1 chroma size. Assuming
neither U or V channel are ever tested without the other and

WIECKOWSKI et al.: VVC SEARCH SPACE ANALYSIS INCLUDING OPEN, OPTIMIZED IMPLEMENTATION 131

Fig. 3. Exemplary visualization of a block search of size 16 × 16 luma sample, with 4 alternatives evaluated (a)-(d). The block is analysed without
subpartitioning (a), using a single quad-split (b), a horizontal split (c) and a vertical split (d), resulting in Ns = 9 subblocks for which mode search is
performed. Ternary splits are not used in this example. Each subblock analysed in each of the partitioning configurations in sequentially enumerated as shown.
W1 · · · W9 and H1 · · · H9 describe the blocks’ widths and heights, with H1 = W1 = W6 = W7 = H8 = H9 = 16 and W2···5 = W8 = W9 = H2···7 = 8.
WP(i, c) = Wi / (1 + c) and HP(i, c) = Hi / (1 + c), as used in (3).

allowing WP(i, c) and HP(i, c) to be equal to zero, e.g.,
in the case of Chroma Separate Tree coding in VVC, the
partitioning search space during encoding can be defined as
(see Fig. 3):

SP =
∑

c=0···1,i=1···Np

WP(i, c) · HP(i, c) · (1 + c)/NS. (3)

The partitioning search space (3) quantifies how often a
sample is tested within different partitioning configurations.
Assuming the encoder cannot encode a sample without per-
forming a CU search within a valid partitioning it can be
assumed that SP ≥ 1. In the special case of SP = 1, the encoder
does not test alternative partitioning configurations with each
sample being tested in exactly only one partitioning configura-
tion (e.g., at the CTU level only without any further splitting or
given a-priori knowledge of optimal partitioning [31]). Given
the G-BFOS algorithm on which the search in HM, VTM
and VVenC are based and assuming no block is being visited
multiple times in the same partitioning configuration during
the search, an upper bound on SP can be formulated by enu-
merating all possible partitioning layouts within a search. The
numbers will be derived and discussed in the next section for
VVC and HEVC.

B. Coding Mode Search Space

We define the coding modes search space as the num-
ber of modes for which full RDO (1) including quantization
step is performed. The rationale behind that comes from rel-
atively high complexity of the quantization task, more so if
rate-distortion optimized quantization is being performed.

Analogue to Section V-A, the mode search space is the
average number of quantization processes each to-be-encoded
sample is part of, normalized by SP and the number of samples
in frame NS. Assuming the encoder performs the quantization
iQ = 1 · · · NQ times, the size of the to be quantized residual in
the iQth block is defined as WQ(i) · HQ(i). Since it is assumed
that the quantization is done for only a single component at
a time, it is not required to differentiate between the compo-
nents. The mode search space (or quantization search space),
is defined as:

SQ =
∑

i=1···Nq

WQ(i) · HQ(i) / (NS · SP). (4)

Contrary to SP, SQ (4) can be smaller than one, e.g., in a
case the encoder is forcing no-residual coding within a frame,
e.g., due to pre-analysis-based decision or time constraints.
It is not possible to formulate an upper bound for SQ, since
the number of full RDO processes lies fully in the encoder
search algorithm domain and is not strictly bound by any nor-
mative codec constraint, as in the case of partitioning. In the
worst case, an encoder could perform full RDO in each step
of motion search, instead on performing the motion search
based on distortion only and do full RDO for the final motion
estimation candidate only.

C. Combined Search Space

The combined search space, i.e., the multiplier of additional
decisions the encoder has to take compared to encoding with
all decision know a-priori, can be defined as:

S = SP · SQ. (5)

In the following sections the complexity analysis of VVC will
be performed based on measures SP, SQ and S. Measure S
estimates, based on empirical data, how often a full per-block
encoding and decoding process has to be performed for each
sample.

The described measures SP, SQ and S are independent of
the actual software or hardware implementation, including
low-level optimization, but they depend on the used search
algorithm.

The measurement of the overall coding block search space
through the measurement of the number of the evaluated parti-
tioning and quantization blocks per sample is motivated by the
two aspects wrapping the CU search. The partitioning defines
for which blocks mode search is to be performed. Quantization
is a computationally intensive step of full RD-cost being col-
lected for a given block, indicating number of modes which are
tested. The normalization by the number of encoded samples
is motivated by reduced complexity of small block encoding,
even if the relationship is not linear (small blocks are more
costly to process per sample [16]).

VI. VVC COMPLEXITY ANALYSIS

A. Experimental Setup

The following experimental data was acquired using ver-
sions of VVenC 1.0.0, VTM-11.0 and HM-16.22 modified

132 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 2, MAY 2022

TABLE II
EMPIRICAL QUANTITATIVE SEARCH SPACE MEASUREMENTS FOR TWO VVC ENCODERS AND

THE HEVC REFERENCE MODEL HM FOR I FRAMES ENCODING

TABLE III
EMPIRICAL QUANTITATIVE SEARCH SPACE MEASUREMENTS FOR TWO VVC ENCODERS AND

THE HEVC REFERENCE MODEL HM FOR P/B FRAMES ENCODING

Fig. 4. Approximate exponential relationship between BTT-depth and
partitioning search space SP bound in VVC, including a least-squares
approximation.

to measure SP and S, from which SQ = S/SP is derived.
The data was acquired for HD and UHD sequences from the
JVET common test conditions (classes A1, A2, and B) [24],
analogue to the results presented in Fig. 2. For VTM-11*,
the presented data results from encoding a reduced set of
only 100 frames due to long encoding times. Additionally,
a low-overhead profiling was enabled in VVenC 1.0.0 to
measure runtime of different encoding aspects (using the
ENABLE_PROFILING macro). This low-overhead profiling
tool was ported to VTM-11.0 and HM-16.22 to acquire compa-
rable timings. The profiling time measurements in Fig. 4 were
performed on 32 core server blades with Intel Xeon E5-
2697A v4 @2.6GHz CPUs, in single-threaded encoder
operation.

B. Search Space Analysis

Tables II and III summarize the empirical search space
measures SP, SQ and S for the five presets of VVenC, VTM in
CTC configuration, as well as HM in VVC CTC configuration.
For HM, two alternative approaches to dealing with prediction
unit splits are given, with the “HM-16.22 CU” showing the
number when not treating PU splits as a part of the parti-
tioning framework. Since the VVC standard does not allow
PU splitting in a sense it is used in HEVC, additionally an
alternative measurement “HM-16.22 CU+PU” is shown, in
which the PU splits are accounted for in the SP partitioning
search space measurement, rather than SQ. The mode con-
straint concept of VVC is somehow similar to the HEVC PU
concept, even if motived differently, and for VVC it is also
accounted for in SP. The combined search space S should
be equal for both HM measurements, with interpretation of
PU splits shifting the search space between partitioning and
modes search. For further discussions, “HM-16.22 CU+PU”
will be chosen as baseline if not explicitly stated
differently.

The min and max measurements constitute the minimal and
maximal geometric mean over the sequences at specific QP,
showing the value span between encoding at different quality
settings.

1) Partitioning Search Space: Additionally to the measured
values, an upper bound for SP, assuming an encoder using
the G-BFOS top-down search of all possible blocks with-
out early terminations, is derived. For VVC, it is derived
by counting all possible blocks within a CTU search without
any early termination strategies. This way, it can be ensured

WIECKOWSKI et al.: VVC SEARCH SPACE ANALYSIS INCLUDING OPEN, OPTIMIZED IMPLEMENTATION 133

TABLE IV
VVC SEARCH SPACE BOUND DEFINING PARTITIONING HIGH-LEVEL PARAMETERS USED IN VVENC PRESETS AND VTM

that all concepts and constraints can be accounted for in the
partitioning, including VPDU, global and local separate trees
and mode constraints. For HEVC, and thus the search in HM,
the derivation is more straightforward – each sample can be
visited within a block at a depth between 0 and 3 correspond-
ing to block sizes of 64 × 64 down to 8 × 8, accounting
to maximum four possible partitionings being tested for each
sample. In case of the measurement including the PU splits,
at each of the depths, any of the possible PU splits at each
depth constitutes a partitioning alternative, as enumerated in
Table I.

The HM search algorithm does not include any early termi-
nation conditions in the CU partitioning. For this reason, the
minimum and maximum values are the same in that case and
almost equal the upper bound. The small difference is caused
by picture boundary encoding, at which some blocks avail-
able in partitioning extend beyond encoded samples and will
be further split without a CU search in the specific block. In
HM, there is no early termination condition for the N/2 × N/2
intra split, meaning that the previous statement holds for the
intra frames even if accounting for the PU split. For P and B
frames, the PU split search for inter predicted blocks contains
some speedup logic, resulting in around 50–65% of the avail-
able search space being visited (min. and max. values from
Table III, respectively).

As previously discussed and widely agreed in
literature [9], [10], [12], [13], the partitioning in VVC
is much more complex with more partitioning depths avail-
able and multiple split options at each level. Comparing
the upper bound of the partitioning search space SP, and
assuming the G-BFOS algorithm, this complexity increase
can be quantified in terms of search space size. It has to
be noted that for both HEVC and VVC, the extent of this
search space is defined by high-level parameters, like CTU
size (partitioning root) and maximal allowed depth or block
size constraint. The number for HM, due to its exhaustive
configuration, constitutes the worst case for HEVC. On the
other hand, the numbers for the VVC encoders VTM and
VVenC constitute various predefined working points defined
by CTC configuration for VTM [24] and Pareto optimization
for VVenC [15], [23]. The search space could be considerably
extended, e.g., by allowing more than three recursive BTT
splits for VTM. The summary of used high-level partitioning
parameters defining VVC partitioning search space bound is
shown in Table IV.

For VTM the search space is increased around 17× for intra
frames and around 8× for P/B frames over HM (or respec-
tively over 20× and 55×, if not accounting for the PU split
in HEVC).

As described in [9], VTM already employs a set of very
effective fast partitioning search strategies. The described geo-
metric average speedup of 2.5× for all intra and 7× for
random access [9] is in line with the obtained numbers of vis-
ited blocks per sample compared to the upper bound (25-60%
for intra frames and 7-22% for P/B frames), indicating that the
extent of actually visited search space directly translates into
encoding time. Using the G-BFOS algorithm, the exponential
increase in possible partitioning configurations with increas-
ing depth in HEVC translates into a linear increase of search
space SP, due to the per-sample normalization. In VVC, the
partitioning is not only defined by the maximal allowed depth
of the single QT split, but also by the availability of alternative
splits, making the partitioning search space SP bound increase
exponentially with regard to the maximal allowed number of
recursive alternative splits, as can be observed in Fig. 4, even
when using the G-BFOS approach.

Due to the exponential search space increase, controlling
the maximal BTT depth partitioning parameter with regard
to the used working point is of crucial importance. In
VVenC the partitioning parameter are derived in an iterative
Pareto optimization approach together with all other coding
options [15]. For this reason, only the slower configuration
utilizes the VTM partitioning configuration, while in all other
presets the intra or inter frame maximal depth, or both,
are reduced. This results in the search space successively
decreasing towards faster, where the upper bound roughly
resembles the “HM-16.22 CU” numbers. VVenC faster, sim-
ilar to HEVC, only allows quad-splits. In VVenC fast and
faster the additional QT depth of 4 with 4 × 4 CU size is
allowed, which is not available in HEVC. The upper bound
of SP for VVenC medium is in the range of the “HM-
16.22 CU+PU” value. Utilizing the optimized partitioning
search, SP value is 3–4× smaller than the bound for this
preset.

On top of the search space restrictions introduced by lim-
iting the number of allowed recursive splits, VVenC employs
a set of additional heuristics in partitioning search [10].
Combined with reduced configuration, in the presets faster
through slow VVenC actually visits less partitioning candidates
than HM, which is consistent with it being faster than HM in

134 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 2, MAY 2022

those configurations (compare Fig. 2). In the slower preset SP
is still noticeably reduced by between 5-25% in comparison
to VTM through an adapted heuristic [10].

The relatively large span of SP in each encoder shows
that many of the partitioning early exit heuristics are content
dependent and will mostly improve low-bitrate or low-variance
content encoding. Towards VVenC in faster presets, this dis-
crepancy reduces indicating that with reduced number of
possible encodings (SP bound), its harder to find effective early
termination heuristics [10].

2) Coding Mode Search Space: After an encoder decides
to start a CU search within a specific block, increasing the
measure SP, a set of coding modes for that specific block is
tested to calculate or estimate their RD-cost to decide a specific
optimal encoding for that given block. Within this calculation,
the quantization process has been chosen to represent a quan-
titative measure for the extent of the per-block search space
including alternative prediction and residual coding modes that
can be signaled per block and need to be tested to find the
coding optimum.

Comparing the HM and VTM numbers shows that in
VTM CTC configuration, VVC introduces additional com-
plexity. VVC has more mode alternatives available per block,
with more intra modes, merge candidates, other improve-
ments to motion information signaling and residual generation
and coding alternatives including new transformation types.
HEVC on the other hand includes the concept of residual
quad-tree (RQT) which increases the number of quantiza-
tion processes per block. The TU split used in RQT is
counted as a part of SQ rather than SP. Overall, SQ is around
2–3× larger for VTM than HM, similar to the SP increase
for P/B frames, showing a balanced increase between cod-
ing tools and partitioning in motion compensated encoding.
For intra frame coding, the 2–3× increase of SQ is much
smaller than the around 10× increase of SP, showing an
imbalance.

Contrary to the partitioning search, the mode search includ-
ing RQT decisions in HM is fairly optimized, containing many
pruning strategies. The impact of the interpretation of the PU
splits either as a part of partitioning or mode search indicates
it has a big overall impact on the HM encoder search, roughly
similar to the partitioning without PU splits itself.

As previously discussed, to achieve the compression effi-
ciency of VTM, VVenC slower utilizes a similar search
algorithm, with the 2× speedup being more attributed to
improved implementation. For this reason, just as SP, SQ
is similar for both VTM and VVenC slower. It is reduced
gradually with the introduction of additional fast algorithms
including early search terminations and disabling some encod-
ing tools along the Pareto Set towards faster configurations.
For intra frames, the mode search in VVenC slower is actu-
ally more extensive than in VTM, increasing SQ by around
20%. This can be attributed to alternative implementation of
some residual coding tools and the random access based Pareto
optimization, which tends to obscure the runtime impact of
intra coded frames.

In VVenC medium, the extent of SQ in P/B frames is sim-
ilar to HM, indicating that the 4× speedup vs HM in this

configuration is mostly attributed to improved partitioning
search and implementation.

As discussed in Section III, VVenC faster mostly includes
coding tools not requiring per-block signaling, i.e., not
increasing SQ. This way, on average only around three dif-
ferent sets of residuals are being quantized for full RD-cost
calculation in P/B frames and 4.5 in intra frames. The 2×
runtime increase from VVenC faster to fast is larger than the
increase of per-block search space. It is attributed more to the
non-CU tools, like additional loop filter ALF and the applica-
tion of a temporal filtering, none of which is captured by the
measurement of SP, SQ and S.

C. Overall Complexity

Complementary to the search space increase, VVC intro-
duces new complex normative algorithms, determining the
decoding complexity and thus having a major impact on the
encoding complexity. Examples of such algorithms include
more complex merge derivation algorithms, template-based
residual coding CABAC context derivation, decoder side
motion vector refinement and a new pipeline step, the adaptive
loop filter.

The decoding complexity increase has been throughout
studied in the standardization process [32] and was analyzed
both empirically and theoretically [16]. It is broadly agreed
that VVC, utilizing all coding tools, requires around double
the computing power to decode over HEVC. This number
also roughly resembles the decoding time increase between
HEVC reference decoder HM and VVC reference decoder
VTM, both of which are optimized to a similar degree. Faster
software decoders are available for both standards showing
optimization potential. VVdeC, a freely available software
decoder for VVC, allows more than 2× speedup over VTM
without multi-threading, utilizing optimized tool implementa-
tions and more throughout vectorization. Similar speedup is
achieved between VTM encoder and VVenC in slower preset,
roughly showing the impact of more optimized implementation
in the latter.

The reported encoder runtime increase of VTM over HM is
around 8×. With the implementation complexity accounting
for around 1.5-2×, the remaining increase of 4-5.5× has to
be attributed to search space extension, which is confirmed
in the search space analysis in Table III (for random access
configuration complexity is mostly determined by P/B frames).

Fig. 5. shows average per-frame profiling results of VVenC,
VTM and HM, accumulated as a geometric mean across
all tested sequences. While the profiling shows the com-
bined effect of implementation complexity as well as search
space increase, it still allows to draw some conclusions.
In the following analysis the acronyms are used as defined
in [31].

1) Motion Search: Time spent in motion search (MVD) in
VTM is around 4× larger than in HM. For VTM though,
motion vector difference search consists of multiple parts.
Alternative motion models including affine motion and adap-
tive motion vector resolution each constitute separate encoder
search paths. Both models are new in VVC and can be signaled

WIECKOWSKI et al.: VVC SEARCH SPACE ANALYSIS INCLUDING OPEN, OPTIMIZED IMPLEMENTATION 135

Fig. 5. Low-overhead profiling results for VVenC 1.0.0 in 5 presets, VTM-11 and HM-16.22. The instrumentation results are normalized to the number of
encoded frames and averaged across the tested sequences and QP points using a geometric mean.

TABLE V
PEARSON AND SPEARMAN RANK CORRELATION OF RUNTIME AND COMBINED SEARCH SPACE S. THE CORRELATION IS FAIRLY HIGH WITHIN

A SPECIFIC IMPLEMENTATION, WITH THE HIGHEST SCORES REACHED IN LESS OPTIMIZED ENCODERS (VTM AND HM) AS WELL AS

CONFIGURATIONS WITH MOST OF THE COMPLEXITY CONTAINED WITHIN THE CU-LOOP (FASTER AND HM).
LAST COLUMN SHOWS COMBINED RESULTS FOR TWO IMPLEMENTATIONS

per block thus attributing to search space expansion rather than
complexity increase.

2) Merge Candidate Search: The profiling of merge can-
didate search indicates similar conclusions. The MRG bar for
VTM is an order of magnitude larger than for HM, which is
caused by the increased number of merge candidate derivation
and application methods. With SMVD and MMVD the initial
merge candidate is further extended, GPM allows blending of
multiple merge candidates, all increasing the number of tested
prediction candidates and possibly residuals. Only the DMVR
and BDOF tools, being implicitly applied, add to the com-
plexity of final motion compensation once a merge candidate
is decided without extending the search space. Both of those
implicit tools are active in VVenC faster, and it can be seen
that the profiling results still indicate low runtime compared
to HM.

3) Picture Level Processing: The increased picture level
processing time in VTM and VVenC are attributed to the
motion compensated temporal filtering step, which in VVenC
is further optimized using vectorization.

4) Deblocking: The deblocking filter in HM can be applied
very efficiently, contributing no measurable time to the over-
all encoding. This is different for VTM and caused by the
increased deblocking filter resolution and the introduction of
subblock motion models requiring fine deblocking even for
large block sizes. While the deblocking implementation is
improved in VVenC, this is the only encoding aspect VVenC
spends more time on than VTM. This behavior is caused by
the inclusion of the deblocking refinement into the CU search
loop. This additional step increases processing time of each
test without increasing the number of tested modes in VVenC.

136 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 2, MAY 2022

5) Adaptive Loop Filter: When comparing the results of
different VVenC presets, implementation differences don’t
play a role in the profiling. Starting from VVenC slower, com-
paring the bars towards VVenC faster, the profiling results
indicate search space reduction. Especially interesting in this
regard is the runtime reduction of ALF from VVenC slower
to slow, attributed to the exclusion of clipping values search,
reducing the search space by 16×, which directly translates to
respective runtime reduction.

This processing step, just like previous two, happens out-
side of the CU search loop and is not captured by the search
space measurements, showing the limitations of the proposed
method.

6) Other Observations: The difference between profiling
results of VTM and VVenC slower, apart from deblocking,
indicate the added level of optimization for each given pro-
cessing stage. Apart from the temporal filter implementation,
especially motion search, residual transformation and intra
prediction were efficiently improved, the latter two of which
have no vectorization included in VTM.

7) Correlation Analysis: Table V shows the Pearson and
Spearman Rank correlation of the combined search space S
(weighted sum of I and P/B frame values, using the intra
period as weight factor) and overall per-frame runtime. Each
sequence at each tested QP represents a data-point. Especially
the Spearman Rank correlation represents if the order of data
is similar, ignoring the linearity of the relationship. It is appar-
ent that the correlation is fairly high overall, but the highest
for less optimized encoders and configurations with most of
the workload contained within the measured CU-loop (VVenC
faster). Lower correlation in more optimized VVenC indicates
increased discrepancy between the search space and runtime,
as the different complexity of various decoding processess
required to evaluate an encoding cost is amplified.

Analyzing the combined correlation of VVenC slower and
VTM in Table V, which utilize a similar encoding algorithm
but within different software implementation, the combined
Spearman Rank correlation is lower than in each encoder by
itself. This can be attributed to differences in the implementa-
tion. Alas, the trellis quantization algorithm implementation,
making up large portion of the runtime, is comparable in
VVenC and VTM, explaining the relatively low magnitude of
the difference.

8) Summary: Overall, it can be seen that while the
improved implementation allows VVenC slower to be more
than 2× faster than VTM, the search space reduction allows
for more impactful runtime reduction, alas at the cost of
compression efficiency as shown in Fig. 2.

VII. CONCLUSION

In this paper we discussed the VVC encoding runtime
increase over HEVC, as can be observed comparing the refer-
ence implementations VTM and HM. We defined an empirical
measure for encoder search space size quantification and
measured it for HM, VTM and an optimized VVC encoder
VVenC. The measure can be used to compare encoding search
algorithm complexity not in the terms of runtime, but rather

in terms of performed rate-distortion tests per coded sample,
thus abstracting implementation and underlying hardware. We
propose to measure the coding unit loop search space extent in
terms of partitioning and mode overhead. For partitioning the
number of times a sample is part of a block search is counted.
The plurality of per-block mode decisions is defined as the
number of quantization processes happening within a block.
The product of the two measurements defines the combined
complexity of the coding unit search loop.

For the partitioning search space, upper bound is defined
for specific high-level configurations, estimated theoretically
in HEVC and empirically in VVC. It can be observed that the
partitioning as configured in VTM is one of the biggest con-
tributors to VTM search space. In most VVenC presets, the
partitioning search space bound is largely reduced by decreas-
ing the number of allowed recursive splits, while additional
heuristic algorithm ensure the actually measured partitioning
search space SP is smaller than the bound.

We showed that with its modular design VVC offers the
encoder many possibilities, effectively increasing the number
of encoder decisions, when compared to HEVC. Some of the
new tools do not require encoder search, and their complexity
is reflected in decoding complexity increase, as analyzed in
other literature.

We compared different encoding algorithm variants in
VVenC and VTM. Without significantly reducing the search
space and impairing the compression efficiency, VVenC pro-
vides similar gains over HM at less than half the runtime. Still,
the biggest speedup potential lies in search space reduction
either by the means of reducing the available toolset or intro-
ducing early exits. In VVenC, those options are mixed during
the configuration space Pareto optimization. While this comes
at compression efficiency tradeoff, the resulting working points
still provide significant gain over HM, which employing a
fairly thorough search algorithm can be seen as approxi-
mate upper bound for HEVC efficiency. Most VVenC presets
employ a smaller search space than HM, which is reflected in
reduced runtime.

In the future, a quantification of the prediction search
space can be measured in a similar manner, e.g., by count-
ing the samples processed in distortion computation by an
encoder, normalized by the overall number of encoded sam-
ples. Comparing such a measure to the mode search space SQ
could provide insights into the degree of optimization of an
encoder and the amount of implemented early exits.

Overall, VVC provides a large toolset that the encoder can
select from depending on user needs and application con-
straints. This paper demonstrates that while VVC offers an
encoder more decisions than HEVC, it does not force it to
evaluate them. Selecting the most promising paths from a wide
set, as VVenC does, provides better BD-rate gain much faster
than looking into every last corner as in the case of HM or
VTM (or, VVenC slower).

REFERENCES

[1] “Versatile video coding,” ITU, Geneva, Switzerland, ITU-T
Recommendation H.266, Aug. 2020.

WIECKOWSKI et al.: VVC SEARCH SPACE ANALYSIS INCLUDING OPEN, OPTIMIZED IMPLEMENTATION 137

[2] “High efficiency video coding,” ITU, Geneva, Switzerland, ITU-T
Recommendation H.265, Apr. 2013.

[3] V. Baroncini and M. Wien, VVC Verification Test Report for UHD SDR
Video Content, document JVET-T2020 of ITU-T/ISO/IEC Joint Video
Experts Team (JVET), JVET, Oct. 2020.

[4] V. Baroncini and M. Wien, VVC Verification Test Report for HD
SDR and 360◦ Video Content, document JVET-V2020 T2020 of ITU-
T/ISO/IEC Joint Video Experts Team (JVET), JVET, Apr. 2021.

[5] F. Bossen, X. Li, K. Sühring, K. Sharman, and V. Seregin, JVET AHG
Report: Test Model Software Development (AHG3), document JVET-
V0003 of ITU-T/ISO/IEC Joint Video Experts Team (JVET), JVET,
Apr. 2021.

[6] A. Wieckowski et al., “Towards a live software decoder implementa-
tion for the upcoming versatile video coding (VVC) codec,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Abu Dhabi, UAE, Oct. 2020,
pp. 3124–3128, doi: 10.1109/ICIP40778.2020.9191199.

[7] B. Zhu et al., “A real-time H.266/VVC software decoder,” in Proc. IEEE
Int. Conf. Multimedia Expo (ICME), Shenzhen, China, 2021, pp. 1–6,
doi: 10.1109/ICME51207.2021.9428470.

[8] F. Bossen, Performance of a Reasonably Fast VVC Software
Decoder, document JVET-S0224 of ITU-T/ISO/IEC Joint Video Experts
Team (JVET), JVET, Jun./Jul. 2020.

[9] A. Wieckowski, J. Ma, H. Schwarz, D. Marpe, and T. Wiegand, “Fast
partitioning decision strategies for the upcoming versatile video coding
(VVC) standard,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Taipei,
Taiwan, 2019, pp. 4130–4134, doi: 10.1109/ICIP.2019.8803533.

[10] A. Wieckowski, B. Bross, and D. Marpe, “Fast partitioning strategies
for VVC and their implementation in an open optimized encoder,” in
Proc. Picture Coding Symp. (PCS), 2021, pp. 1–5.

[11] M. Aklouf, M. Leny, F. Dufaux, and M. Kieffer, “Low complexity ver-
satile video coding (VVC) for low bitrate applications,” in Proc. 8th Eur.
Workshop Vis. Inf. Process. (EUVIP), Rome, Italy, Oct. 2019, pp. 22–27.

[12] T. Amestoy, A. Mercat, W. Hamidouche, D. Menard, and C. Bergeron,
“Tunable VVC frame partitioning based on lightweight machine learn-
ing,” IEEE Trans. Image Process., vol. 29, pp. 1313–1328, 2020.

[13] N. Tang et al., “Fast CTU partition decision algorithm for VVC intra and
inter coding,” in Proc. IEEE Asia–Pacific Conf. Circuits Syst. (APCCAS),
Bangkok, Thailand, 2019, pp. 361–364.

[14] A. Wieckowski et al., “VVenC: An open and optimized VVC
encoder implementation,” in Proc. IEEE Int. Conf. Multimedia
Expo Workshops (ICMEW), Shenzhen, China, 2021, pp. 1–2,
doi: 10.1109/ICMEW53276.2021.9455944.

[15] J. Brandenburg et al., “Towards fast and efficient VVC
encoding,” in Proc. IEEE 22nd Int. Workshop Multimedia
Signal Process. (MMSP), Tampere, Finland, 2020, pp. 1–6,
doi: 10.1109/MMSP48831.2020.9287093.

[16] F. Bossen, K. Sühring, A. Wieckowski, and S. Liu, “VVC com-
plexity and software implementation analysis,” IEEE Trans. Circuits
Syst. Video Technol., vol. 31, no. 10, pp. 3765–3778, Oct. 2021,
doi: 10.1109/TCSVT.2021.3072204.

[17] D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4 advanced
video coding standard and its applications,” IEEE Commun. Mag.,
vol. 44, no. 8, pp. 134–143, Aug. 2006.

[18] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90,
Nov. 1998.

[19] B. Bross et al., “Overview of the versatile video coding (VVC) standard
and its applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 31,
no. 10, pp. 3736–3764, Oct. 2021.

[20] D. Marpe et al., “Video compression using nested quadtree structures,
leaf merging, and improved techniques for motion representation and
entropy coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 20,
no. 12, pp. 1676–1687, Dec. 2010.

[21] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of
images and video,” in Proc. Int. Conf. Acoust. Speech Signal
Process. (ICASSP), vol. 4. Toronto, ON, Canada, 1991, pp. 2661–2664,
doi: 10.1109/ICASSP.1991.150949.

[22] Y.-W. Huang et al., “Block partitioning structure in the VVC
Standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 10,
pp. 3818–3833, Oct. 2021, doi: 10.1109/TCSVT.2021.3088134.

[23] J. Brandenburg, A. Wieckowski, A. Henkel, B. Bross, and D. Marpe,
“Pareto-optimized coding configurations for VVenC, a fast and efficient
VVC encoder,” in Proc. IEEE 23rd Int. Workshop Multimedia Signal
Process. (MMSP), 2021.

[24] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring, VTM
Common Test Conditions and Software Reference Configurations for
SDR Video, document JVET-T2010 of ITU-T/ISO/IEC Joint Video
Experts Team (JVET), JVET, Oct. 2020.

[25] Í. Siqueira, G. Correa, and M. Grellert, “Rate-distortion and com-
plexity comparison of HEVC and VVC video encoders,” in Proc.
IEEE 11th Latin Amer. Symp. Circuits Syst. (LASCAS), 2020, pp. 1–4,
doi: 10.1109/LASCAS45839.2020.9069036.

[26] F. Pakdaman, M. A. Adelimanesh, M. Gabbouj, and M. R. Hashemi,
“Complexity analysis of next-generation VVC encoding and decoding,”
in Proc. IEEE Int. Conf. Image Process. (ICIP), Abu Dhabi, UAE, 2020,
pp. 3134–3138, doi: 10.1109/ICIP40778.2020.9190983.

[27] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, “Complexity
analysis Of VVC intra coding,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Abu Dhabi, UAE, 2020, pp. 3119–3123,
doi: 10.1109/ICIP40778.2020.9190970.

[28] A. Mercat, A. Mäkinen, J. Sainio, A. Lemmetti, M. Viitanen, and
J. Vanne, “Comparative rate-distortion-complexity analysis of VVC and
HEVC video codecs,” IEEE Access, vol. 9, pp. 67813–67828, 2021,
doi: 10.1109/ACCESS.2021.3077116.

[29] I. Siqueira, G. Correa, and M. Grellert, “Complexity and coding effi-
ciency assessment of the versatile video coding standard,” in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), Daegu, South Korea, 2021, pp. 1–5,
doi: 10.1109/ISCAS51556.2021.9401714.

[30] A. Cerveira, L. Agos tini, B. Zatt, and F. Sampaio, “Memory
assessment of versatile video coding,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Abu Dhabi, UAE, 2020, pp. 1186–1190,
doi: 10.1109/ICIP40778.2020.9191358.

[31] A. Tissier, A. Mercat, T. Amestoy, W. Hamidouche, J. Vanne,
and D. Menard, “Complexity reduction opportunities in the future
VVC intra encoder,” in Proc. IEEE 21st Int. Workshop Multimedia
Signal Process. (MMSP), Kuala Lumpur, Malaysia, 2019, pp. 1–6,
doi: 10.1109/MMSP.2019.8901754.

[32] W.-J. Chen et al., JVET AHG Report: Tool Reporting Procedure
(AHG13), document JVET-S0013 of ITU-T/ISO/IEC Joint Video
Experts Team (JVET), JVET, Jun./Jul. 2020.

Adam Wieckowski received the M.Sc. degree in
computer engineering from the Technical University
of Berlin, Berlin, Germany, in 2014.

In 2016, he joined the Fraunhofer Institute
for Telecommunications, Heinrich Hertz Institute,
Berlin, as a Research Assistant. He coordinated
the development of HHIs’ VVC proposal software,
which later became the basis for VVC software test
model VTM. He contributed several technical con-
tributions during the standardization of VVC. Since
2019, he has been a Project Manager coordinating

the technical development of decoder and encoder solutions for the VVC
standard, VVdeC, and VVenC. His research interests include video coding,
information theory, complexity reduction, and computer science.

Jens Brandenburg received the Dipl.-Ing. degree in
computer engineering from the Technical University
of Berlin, Germany, in 2004, and the Dr.-Ing. degree
from the Friedrich–Alexander University Erlangen–
Nürnberg, Germany, in 2018. He joined the Video
Communication and Applications Department,
Fraunhofer Institute for Telecommunications,
Heinrich Hertz Institute, Berlin, in 2006, where
he has been working on the implementation of
different video decoder and encoder solutions for
the H.264/AVC/SVC, H.265/HEVC, and the now

emerging H.266/VVC standards. His research interests include HW/SW
co-design for embedded systems and the optimization of video processing
algorithms for real-time processing.

http://dx.doi.org/10.1109/ICIP40778.2020.9191199
http://dx.doi.org/10.1109/ICME51207.2021.9428470
http://dx.doi.org/10.1109/ICIP.2019.8803533
http://dx.doi.org/10.1109/ICMEW53276.2021.9455944
http://dx.doi.org/10.1109/MMSP48831.2020.9287093
http://dx.doi.org/10.1109/TCSVT.2021.3072204
http://dx.doi.org/10.1109/ICASSP.1991.150949
http://dx.doi.org/10.1109/TCSVT.2021.3088134
http://dx.doi.org/10.1109/LASCAS45839.2020.9069036
http://dx.doi.org/10.1109/ICIP40778.2020.9190983
http://dx.doi.org/10.1109/ICIP40778.2020.9190970
http://dx.doi.org/10.1109/ACCESS.2021.3077116
http://dx.doi.org/10.1109/ISCAS51556.2021.9401714
http://dx.doi.org/10.1109/ICIP40778.2020.9191358
http://dx.doi.org/10.1109/MMSP.2019.8901754

138 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 2, MAY 2022

Benjamin Bross (Member, IEEE) received the
Dipl.-Ing. degree in electrical engineering from
RWTH Aachen University, Aachen, Germany, in
2008.

In 2009, he joined the Fraunhofer Institute
for Telecommunications, Heinrich Hertz Institute,
Berlin, Germany, where he is currently heading the
Video Coding Systems Group, Video Coding and
Applications Department and in 2011, he became a
part-time Lecturer with the HTW Berlin University
of Applied Sciences. Since 2010, he is very actively

involved in the ITU-T VCEG | ISO/IEC MPEG video coding standardization
processes as a Technical Contributor, the Coordinator of core experiments,
and the Chief Editor of the High Efficiency Video Coding (HEVC) standard
[ITU-T H.265 | ISO/IEC 23008-2] and the new Versatile Video Coding (VVC)
standard [ITU-T H.266 | ISO/IEC 23090-3]. In addition to his involvement
in standardization, his group is developing standard-compliant software imple-
mentations. This includes the development of an HEVC live software encoder
that is currently deployed in broadcast for HD and UHD TV channels and
most recently, the open and optimized VVC software implementations VVenC
and VVdeC. He is an author or coauthor of several fundamental HEVC and
VVC-related publications, and an author of two book chapters on HEVC and
Inter-Picture Prediction Techniques in HEVC.

Mr. Bross received the IEEE Best Paper Award at the 2013 IEEE
International Conference on Consumer Electronics, Berlin, in 2013, the
SMPTE Journal Certificate of Merit in 2014, and an Emmy Award at the
69th Engineering Emmy Awards in 2017 as part of the Joint Collaborative
Team on Video Coding for its development of HEVC.

Detlev Marpe (Fellow, IEEE) received the Dipl.-
Math. degree (Highest Hons.) from the Technical
University of Berlin, Berlin, Germany, in 1990, and
the Dr.-Ing. degree from the University of Rostock,
Rostock, Germany, in 2004.

He joined the Fraunhofer Institute for
Telecommunications, Heinrich Hertz Institute,
Berlin, in 1999, where he has been heading the
Video Communication and Applications Department
since 2015. He has successfully contributed to the
three generations of modern video coding standards

H.264/AVC, H.265/HEVC, and H.266/VVC, including most of their major
enhancement extensions. He has authored numerous publications in the
research area of image and video coding, and holds several hundreds of
internationally issued patents in this area. His current research interests
include still image and video coding, signal processing for communications
and computer vision, machine learning, and information theory.

Dr. Marpe was a co-recipient of three Technical Emmy Awards as a
Key Contributor and the Co-Editor of the H.264/MPEG-4 AVC Standard in
2008 and 2009, and as a Key Contributor of H.265/MPEG-HEVC in 2017,
respectively. He received several best paper awards for his publications and
he was recipient of the Karl Heinz Beckurts Award in 2011 and the Joseph
von Fraunhofer Prize in 2004. From 2014 to 2018, he served as an Associate
Editor for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY. In recognition of his dedicated contributions and excellent
management of the review process, he was awarded the 2016 Best Associate
Editor Award of the IEEE Circuits and Systems Society. He is a member of
the Informationstechnische Gesellschaft of the Verband der Elektrotechnik
Elektronik Informationstechnik e.V.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

