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 Abstract—With the development of network and
communication technology, artificial intelligence, distributed
computing and beyond fifth-generation communications,
Industry 5.0 is booming and obtains rapid growth. To improve
the processing efficiency of intensive tasks, Mobile Edge
Computing (MEC) technology can facilitate task offloading
from mobile devices to edge servers. Traditional methods do
not fully consider that applications are usually composed of
dependency-aware tasks, which neglect the impact of task
dependencies on offloading strategies and lead to low
efficiency in task scheduling. This paper proposes a joint
optimization of energy consumption and time delay for
dependency-aware task offloading with mobile edge
computing. First, in order to minimize the energy
consumption and task processing of mobile device, a
dependency-aware task offloading model is established.
Secondly, the dependencies between tasks are analyzed to
construct a Directed Acyclic Graph (DAG), and an algorithm
based on topological ordering is introduced to obtain
possible solutions for task scheduling. Furthermore, to
minimize the total cost, an improved Particle Swarm
Optimization (PSO) algorithm is used to obtain the optimal
task offloading decision and MEC server selection
optimization. Experimental results demonstrate that the
proposed strategy can reduce the time cost and energy
consumption compared to existing typical methods for tasks
with different dependencies effectively.

Index Terms—Mobile edge computing, Industry 5.0, task
scheduling, offloading strategy, particle swarm optimization.

I. INTRODUCTION

ITH the development of cutting-edge technologies such
as complex networks and artificial intelligence, human

society has gradually entered the industrial 5.0 era. By utilizing
the technologies of digital twins, parallel systems, AR/VR/MR
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and brain computer interfaces, the enterprises reconstruct
themselves into a virtual factory that synchronizes with real
data from factories. The entire elements, business and process
of the enterprise will be visualized and analyzed accurately, and
quasi control can be achieved while greatly reduce the
operation, maintenance and production costs of the entity.
Faced with increasingly complex market competition and the
growing demand for speed and customization from consumers,
automated production alone cannot meet customer needs.
Industry 5.0 aims to promote cooperation between humans and
intelligent devices, combining human creativity with the
accuracy and speed of automation. With the rapid development
of Industrial Internet, the number of industrial devices on the
cloud is increasing. The continuous expansion of network scale
has led to increasingly high requirements for real-time analysis
of massive data. Edge computing has gradually become the
focus of attention in the field of Industrial Internet. Due to the
low computing capacity of terminal devices and the constraints
of their own battery energy, they cannot provide users with a
relatively satisfactory computing experience [1].
Aiming to solve the above problem, Mobile Edge Computing

(MEC) is introduced to avoid long delay by locating
computing/processing near the terminal device [2]. MEC
servers with strong computing power near mobile users can
improve the computing power at the edge of the network. In
this way, mobile devices can offload particular tasks to a nearby
base station or Access Points (APs) equipped with MEC server.
Relying on the powerful computing capacity of MEC servers, it
can significantly reduce the energy consumption and
processing delay of computationally intensive tasks, meet
latency sensitive requirements, and improve the Quality of
Service (QoS) of mobile applications [3]. The emergence of the
fifth generation of mobile communication system (5G) has led
to an explosive growth of applications for mobile terminals [4].
The scale of application scenario is also increasing, for example,
natural language processing, virtual reality, and highly
interactive online applications. Many computing intensive
tasks are delivered to terminal devices for processing, such as
artificial intelligence and massive information. Although
handheld terminal devices have made significant progress after
decades of development, they may not be able to keep up with
the requirements of endlessly emerging application in aspects
of communication and computing resources [5]. Moreover, the
limitations of battery power, computing capacity and physical
size of mobile devices prevent smooth execution of computing
intensive applications on mobile devices. By transferring the
computing intensive tasks from Internet of Things (IoTs)
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devices to cloud servers or MEC servers, mobile terminals can
provide better user experience [6]. However, the task
offloading process can be affected by various factors in
different fields, such as communication channels, link quality,
customer’s preferences, the mobility of IoTs devices, and the
availability of MEC servers [7]. Therefore, the task scheduling
and the selection of MEC servers are the most critical issues for
optimization of the cost and delay in total task processing.
Offloading decisions require dynamic decisions about whether
to offload tasks to the MEC server or the remote data
processing center. When plenty of tasks are handled to offload
towards the MEC server, excessive bandwidth resources will be
consumed and also lead to unexpected transmission delay [8].
Thus, it is crucial to design an optimal offloading decision
scheme for scheduling the tasks to the servers with adequate
processing power.
To avoid excessive task offloading from massive mobile

devices to edge nodes and balance the load on MEC servers
being elected of task processing by multiple mobile devices
simultaneously, this paper proposes a joint optimization of energy
consumption and time delay for dependency-aware task offloading
with mobile edge computing. The contributions of this work are
as follows:
(1) To minimize the energy consumption and task processing

of mobile device, we formulate a dependency-aware task
offloading model.
(2) We construct a Directed Acyclic Graph (DAG) to analyze

the dependencies between tasks, and designed an algorithm
based on topological ordering to obtain possible solutions for
task scheduling.
(3) To minimize the total cost, we propose an improved

Particle Swarm Optimization (PSO) algorithm to achieve the
optimal task offloading decision and MEC server selection
optimization.
The rest of the paper is organized as follows: In Section 2, we

list the relevant studies. Section 3 elaborates the system model.
The formulated problems and solutions are presented in Section
4. The results and analysis are presented in Section 5. Section 6
summarizes the conclusions.

II. RELATED WORKS

In recent years, some scholars have studied task offloading in
MEC scenarios from different perspectives. To solve the
problems of task offloading and resource allocation in dynamic
environments, Ranadheera et al. [9] proposed a reinforcement
learning framework based on software defined edge clouds to
optimize the utilization of distributed computing resources. Liu
et al. [10] proposed a two-step joint clustering and scheduling
scheme to optimize resource utilization between cells. By
deploying a large number of micro base stations with MEC
servers at the edge of the network, it can support efficient and
flexible large-scale connections. Huang et al. [11] designed a
heuristic task offloading algorithm to optimize the allocation of
the channels and presented power distribution strategy to
reduce the system computing overhead. To obtain the
low-latency of 5G communications and optimize the MEC
resource’s allocation, Pang et al. [12] proposed a task
offloading algorithm based on a convex programming model.

Zhang et al. [13] implemented an energy-aware offloading
scheme to jointly optimize the assignment of computing
capacity and communication resources under the constraint of
energy and delay sensitivity. By exploiting the prior knowledge
of future motion trajectories and channel states of mobile
devices, Wu et al. [14] proposed a simulated annealing
algorithm to reduce system service delay.
Due to the exorbitant expenses in the deployment and

maintenance of infrastructures, it is impractical to scatter
abundant servers and access points in the edge network.
Moreover, some edge computing server can only serve a
limited number of applications. In addition, the diversity of
different mobile devices has led to the instability of the edge
computing environment [15]. Therefore, how to assign
computing and bandwidth resources adaptively in the
ever-changing edge computing environment is facing
challenges. Wang et al. [16] proposed a resource assignment
algorithm based on deep reinforcement learning to optimize the
allocation of the resources under different MEC conditions.
The proposed method can greatly reduce the average service
time and balance the utilization of various resources. He et al.
[17] designed a general framework and presented smart
contract within a private blockchain network to improve the
security and privacy of edge computing-enabled IoTs. To deal
with different application requirements in multi-user wireless
networks and multiple wireless access modes of
communication between device, Lin et al. [18] employed
reinforcement learning technology to address the problem of
limited and inaccurate network information and presented an
optimal resource allocation strategy to minimize the total cost.
Lin et al. [19] introduced the AI service placement problem for
multiple users and formulated a mixed integer nonlinear
planning problem. By optimizing the resource allocation and
service layout, the total computing time and energy
consumption of all users can be minimized. Aiming at the delay
problem in real-time image processing, Shen et al. [20]
designed an intelligent recognition technology based on deep
learning to process real-time image. To improve the efficiency
of scheduling decision for the application with dependent tasks,
Sowndarya et al. [21] proposed an Individual Time Allocation
method with Greedy Scheduling (ITAGS) to minimize the
application execution cost.
Making the task offloading decision is the most critical issue

for improving efficiency and user experience. It is important to
analyze the dynamic decisions about whether tasks should be
offloaded to the MEC server or be processed locally. Moreover,
appropriate bandwidth allocation and resource scheduling are
crucial to minimize total computing time and energy
consumption. Traditional methods are inefficient in solving
dependent task offloading problems and ignore the impact of
task dependencies on offloading strategies. This paper proposes
a dependency-aware task offloading for joint optimization of
delay and energy consumption (DTO-JODE) under the
constraints of limited computing resources in MEC servers.

III. SYSTEM MODEL

A. Network model
The system of Mobile Edge Computing includes MEC

servers, APs and mobile devices, as shown in Figure 1. Mobile
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users can submit local tasks through WiFi, 4G or 5G
communication methods to MEC servers through wireless
channels for task offloading. { }1 2, , , LM M M M= L
represents the set of MEC servers, where L is the number of
edge servers. Each server is equipped with limited computing
resources, which can be quantified by CPU cycles. The major
notations used in the rest of the paper in Table 1. The specific
task offloading and resource allocation process is as follows:
(1) The mobile device sends an offload request to a nearby

connectable base station. After receiving the offload request,
the base station obtains the task scheduling based on the latest
completion time of each task.
(2) The mobile device can formulate task offloading and

resource allocation strategies according to the CPU frequency
and transmit power of the MEC server, computing capacity of
nearby edge servers, the resources required by tasks and the
current channel environment.
(3) The MEC server receives offloading and resource

allocation policies, sets CPU frequency and transmission power.
The tasks should be scheduled to be executed locally or
offloaded to a designated server.
(4) The MEC server executes the task and sends the

execution results to the mobile device.

Fig. 1. The system of mobile edge computing.

Table 1. Notations,
Notation Description

{ }1 2, , , LM M M M= L MEC server

{ }1= , , , ,s n eV V V V VL Task set

sV , eV
Virtual task to represent the beginning and
the end of the entire task

,i jV Ve The dependency relationship between tasks

iS The offloading strategy

,i kV Ms Flag used to indicate task iV being offloaded
to MEC server or be executed locally

iV
d ,

iV
c ,

iV
l

Input data size of the task iV , CPU’s
calculation resources per bit for task
processing and the CPU cycle required

i

local
VRt , ,i kV MRt Ready time for executing tasks locally and on

MEC servers

i

local
VFt , ,i kV MFt Completion time of the task iV being

executed locally and on edge servers

upR , downR
The transmission rate of data uploaded and
downloading the results by mobile devices to
the MEC server

, kup Mh , , kdown Mh
Channel gain between the MEC server kM
and the mobile device for uploading and
downloading data

d Channel bandwidth
P Optional set of transmission power levels

i

local
VT Task running time of local process

i

local
Vu

The assignment of the CPU frequency for
locally processed task iV

i

local
VE Local energy cost of task iV

y Effective switching capacitance

,i j

down
V VT Download time of intermediate data

( )iprec V Set of preceding tasks of task iV

,i j

up
V VT , ,i j

up
V VE

Time cost required and energy consumption
for offloading task to the MEC server kM

,i k

Mec
V MT

Time required for the MEC server kM to

perform task iV

,i kV MRt , ,i kV MFt
Ready time and completion time for
executing task iV on the edge server

i

Mec
VFt ,

i

Mec
VE

Total completion time and energy cost of task
iV

B. Task model
It is assumed that the application can be divided into multiple

dependent tasks, and each task can only be offloaded to an
adjacent MEC server. The task set corresponding to the
application on a mobile device is { }1= , , , ,s n eV V V V VL . Among
them, the two virtual tasks sV and eV , indicate the beginning
and end of the entire task, respectively. ,i jV Ve represents the
dependency relationship between tasks, which indicate that a
task must be completed before it can be executed. Multiple
tasks with dependencies can be constructed as a Direct Acyclic
Graph (DAG) ( ),G V E= , where ,i jV Ve EÎ . In addition,

iV
d is

the input data size of the task iV ,
iV

c represents the CPU’s

calculation resources per bit for task processing. ,i jV Vd
represents the amount of data to be transferred between the
previous task and subsequent tasks. Thus, the CPU cycle

iV
l

required by the task iV can be expressed as:
0,

* ,i

i i

i s e
V

V V

If V V or V
l

d c Otherwise
ì =ïï=íïïî

(1)

The offloading strategy of a task is represented by vector

1 2, , ,{ , , , }
i i i Li V M V M V MS s s s= L , and the elements { }, 0,1

i kV Ms Î .

The value of ,i kV Ms is set to 1, which indicates the task iV being

offloaded to MEC server kM . The vector element of all 0
indicates that the task will be executed locally. Since the tasks
can only be processed locally or by MEC server, the sum of the
vectors can be given by

,
1

0, ,
1,i k

L
i

V M
k

If task V is executed locally
s

Otherwise=

ìïï=íïïî
å (2)

The task processing includes two phases: preparation and
execution. The ready time that a task can prepare to enter the
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execution process after receiving all necessary input data can be
defined as the ready time of the task iV . Let

i

local
VRt and ,i kV MRt

represent the ready time for executing tasks locally and on
MEC servers, respectively. Besides,

i

local
VFt and ,i kV MFt

indicate the completion time of the task iV being executed
locally and on edge servers, respectively.

C. Communication model
The communication system employs the 5G technology with

orthogonal channels to allocate bandwidth for terminal devices,
and all devices will share the entire bandwidth. The mobile
devices can offload tasks to the MEC server for execution, and
the required intermediate data will be transferred to the
corresponding server. The data transmission also will result in
certain delays and energy consumption. At this time, the mobile
devices can choose different transmission powers to reduce
task delay and energy cost. Let sp be the transmission power
allocated by mobile users, the transmission rate of data
uploaded by mobile devices to the MEC server can be obtained
by Shannon theory [22]:

,
2 2= log 1 ks up M

up

p h
R d

s
÷ç ÷+ç ÷ç ÷ç

(3)

where d is the channel bandwidth. sp PÎ , and P is an
optional set of transmission power levels. Besides, , kup Mh is the

channel gain between the MEC server kM and the mobile
device for uploading data, and 2s is the noise power.
The transmission rate of the mobile device for downloading

the results from corresponding server can be expressed as:
,

2 2= log 1 kr down M
down

p h
R d

s
÷ç ÷+ç ÷ç ÷ç

(4)

where rp is the received power of the mobile device and

, kdown Mh is the channel gain between the mobile device and the

MEC server kM for downloading data.
Since the edge servers are linked to the backbone network,

the data transmission between them is set to a highly reliable
bandwidth condition. Additionally, data transfer delays
between edge servers will be ignored.

IV. FORMULATED PROBLEMS AND SOLUTIONS

A. Problem definition
1) Local computing
For locally processed task, the mobile device will allocate an

appropriate CPU frequency to the computing task for energy
saving. 0

localu UÎ , and 0U is the upper limit of mobile device's
computing power. By using Dynamic Voltage and Frequency
Scaling (DVFS) technology, CPU processor resources can be
dynamically allocated as needed. For a task, the mobile device
can assign the CPU frequency from a discrete level. Given the
CPU frequency of the device and the CPU cycle required for
the task, the task running time of local process can be calculated
as follows:

i

i

i

Vlocal
V local

V

l
T

u
= (5)

where
i

local
Vu is the assignment of the CPU frequency for locally

processed task iV .
In addition, the local energy cost of task iV can be expressed

as:

( )2
i i i

local local
V V VE l uy= (6)

where y is the effective switching capacitance based on the
hardware chip.
If the predecessor task jV of the task iV is executed on MEC

server kM , intermediate data ,i jV Vd should be downloaded
before local processing. Then, the download time of
intermediate data can be expressed as:

,
,

i j

i j

V Vdown
V V

down

d
T

R
= (7)

For task jV , , 1
i kV Ms = means that the task will be executed

on MEC server kM and the ready time of task iV can be
calculated by the sum of the completion time and the waiting
time for intermediate results to be transmitted to the mobile
device. Otherwise, , 0

i kV Ms = indicates that the mobile device

does not choose MEC server kM for offloading task jV , and
the ready time is equal to the completion time of the task. Thus,
the ready time for locally executed task iV can be expressed as:

( ) ( ) ( ){ }, , ,max 1 k

i i k j i k j i jj i

Mlocal local down
V V M V V M V V VV prec VRt s Ft s Ft TÎ= - + + (8)

where ( )iprec V denote the set of preceding tasks of task iV .
Therefore, the completion time of task iV being executed

locally can be expressed as:

i i i

local local local
V V VFt Rt T= + (9)

2) Edge computing
If the mobile device offloads the task iV to MEC server for

execution, the task latency should include the time delay for
transferring the required intermediate data from the local to the
server and the time delay for the edge server to execute the task.
The time cost and energy consumption required for offloading
task to the MEC server kM can be given by:

,
,

i j i

i j

V V Vup
V V

up

d d
T

R

+
= (10)

, ,i j i j

up up
V V V V sendE T p= (11)

In addition, the time required for the MEC server kM to
perform task iV can be expressed as:

,
,

i

i k

i k

VMec
V M

V M

l
T

u
= (12)

where ,i kV Mu is the CPU resources required for task iV being
reserved by MEC server.
Next, the ready time and completion time for executing task
iV on the edge server can be calculated by:
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( ) ( )( ){ }, , , , ,max 1
i k j k j i j j k j kj i

local up Mec
V M V M V V V V M V MV prec VRt s Ft T s TÎ= - + + (13)

, , ,i k i k i k

Mec Mec
V M V M V MFt Rt T= ++ (14)

Therefore, the total completion time and energy cost of task
iV can be expressed as:

( ), , ,1
i i k i i k i k

Mec local
V V M V V M V MFt s Ft s Ft= - + (15)

( ), , ,1
i i k i i k i j

Mec local up
V V M V V M V VE s E s E= - + (16)

3) Optimization objectives
According to the analysis, the completion time of all tasks is

1
i

n

V
i

FT
=
å . In addition, the total energy consumption of task

processing can be expressed as:

( ), , ,
1 1

1
i k i i k i j

n L
local up

V M V V M V V
i k

E s E s E
= =

= - + (17)

This study aims to minimize the total completion time of
tasks and the total energy consumption of mobile device by
dealing with dependent task offloading and resource
assignment. The optimization objectives can be defined as:

( )
1

min 1
i

n

V
i

E Ftq q
=

+ - å (18)

. .s t ( )1:
iV iC Ft Delay V£ ,

,2:
i k kV M MC u U<

,
03:

i

local
VC u U<

,
{ },4 : 0,1

i kV MC s Î
,

5 : 0 1C q< < .
Among them, 1C represents the delay tolerance that the task

completion delay time must meet. 2C and 3C represent the
computing power of edge servers and the CPU frequency limit
of mobile devices, respectively. 4C indicates that the task can
only be executed locally or offloaded to an edge server for
execution. 5C is the proportion of factors of energy
consumption or task completion time in objective function.
The problem includes the following optimization variables:

offloading decision, MEC server’s selection, and task
scheduling. Obviously, the constraint 4C can be regarded as a
multivariable integer programming problem, which is difficult
to obtain a closed solution. For convenience of analysis, we can
solve the problem by equivalently solving the sub problems:
task scheduling, optimization of offload decisions and edge
server’s selection.

B. Task scheduling
According to the previous derivation, the task being executed

locally should require adequate CPU frequency of the mobile
device in advance. Otherwise, it is necessary to select a suitable
MEC server for task offloading, and meanwhile set appropriate
transmission power to transmit the intermediate data required
for the next task. Generally speaking, the CPU frequency of the
mobile device is proportionate to the task execution time.
Choosing a higher CPU frequency or transmit power can
reduce latency but consume more energy. There will be a
trade-off between the minimization of latency and energy

consumption. According to analysis, energy consumption is
positively correlated with the CPU frequency at which tasks are
executed. Since the mobile device is usually energy constrained,
DVFS technology can be applied to adjust the CPU frequency
of mobile device to balance energy consumption and task
latency. Based on the DAG of dependencies between the tasks,
we use topology based sorting algorithm to obtain the solutions
for task scheduling optimization.
Topological sorting can sort the vertices of a directed graph.

It is concerned with the relationship of each vertex in the DAG
graph rather than the position and distance of each vertex. The
points with in-degree 0 should be chosen as the preferential
scheduled tasks. After processing the tasks, the in-degree of all
points associated with those points will be reduced by one, and
then the remaining tasks can be rediscovered for processing. By
analogy, the processing order of the tasks can be obtained. The
specific algorithm of tasks processing order will be given as
follows:
Algorithm 1: The processing order of the dependency-aware

tasks.
Input: G , task delay constraint.
Output: tasks processing order.
1: initialize the set of tasks with dependency Q and tasks

processing queue Y ;
2: the points with in-degree 0 are inserted into Q ;
3: while Q
4: for each edge ,i jV Ve
5: obtain the set of available processing nodes;

6: if ,
1

=0
j k

L

V M
k

s
=
å then

7: calculate
j

local
VT and

i

local
VRt ;

8 : else
9: calculate ,i kV MRt , ,j kV MFt and

i

Mec
VFt ;

10: end if
11: if ( )

iV iFt Delay V£

12: update the task scheduling queue Y ;
13: end if
14: end for
15: delete the chosen point from Q ;
16: end while

C. Optimization of offload decisions
Particle Swarm Optimization (PSO) is a population based

evolutionary method that originates from the study of the
behavior of bird flocks during predation [23]. The basic idea is
to utilize collaboration and information sharing among
individuals in a group to seek the best solution. Different from
other heuristic algorithms, PSO preserves the concepts of
population and evolution, and obtains the fitness value as a
criterion for evaluating the quality of optimization [24]. In the
process of finding the global optimal solution, PSO can not
only retain its own experience for self-learning, but also obtain
experience from other particles for social learning [25]. PSO
has good parallelism during optimization, and the algorithm has
strong robustness and anti-interference ability. The
optimization of offload decisions and edge server selection will
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be solved by our proposed PSO algorithm. This study takes the
latency and energy consumption generated by task execution
on the MEC server as optimization objectives, and the fitness
function is defined as follows:

( )
1

1
i

n

V
i

f E Ftq q
=

= + - å (19)

N particles generates randomly in a 1-dimensional search
space to form an original population. The original population is
encoded according to the task's offloading strategy. Each
particle contains two attributes: location and velocity. The
location represents a solution in the search space, and the
velocity represents the direction and speed at which the particle
finds the optimal task processing strategy in the search space.
The optimal location searched by the i -th particle during the
optimization process is denoted as iLpbest , and the optimal
location searched by the particle swarm during the global
search process is denoted as Lgbest . Thus, the process for
updating the position and velocity of the i -th particle can be
expressed as:

1 1

2 2

( ) ( 1) ( ( 1))
( ( 1))

iL iL iL iL

L iL

v t wv t c r pbest x t
c r gbest x t

     

 
(20)

( ) ( 1) ( )iL iL iLx t x t v t   (21)
where ( )iLv t indicates the velocity of i -th particle during the
iteration t , and ( )iLx t indicates the current position of the

i -th particle. w is the inertia weight. Besides, 1r and 2r are

random numbers between 0 and 1, 1c and 2c represent learning
factors, respectively.
PSO tends to fall into local optimizations. Larger value of

inertia weight is conducive to jumping out of the local solution
and facilitating global search. Conversely, small inertia weight
is beneficial for accurate local search of the current search area
[26]. When the value of the inertia weight is constant, there is a
lack of global search ability in the early stage of the iteration or
lose of local search ability in the late stage of the iteration. Thus,
it can easily cause the PSO method to fall into a local optimal
solution or generate oscillations near the global optimal
solution in the late stage. To balance global and local search
capabilities, the inertia weight is designed to be adjusted
dynamically as follows:

  
max max

max min max
max min max

max min

min min

,

,

,

i

i
i i

i

w f f
w w f f

w w f f f
f f

w f f


     


 

(22)

where if is the current fitness value of particle i . minf and

maxf are the average fitness of the particles, whose fitness value
is lower or greater than the mean value of the group,
respectively. Besides, minw and maxw are lower bound and
upper bound of the inertia weight factor.
The specific process of the algorithm is as follows: First, the

processing sequence can be obtained based on the task
dependency relationship and algorithm 1. Secondly, initialize
the requirement of task and resource of MEC servers, and
determine whether the task processing sequence is empty. If it

is not empty, offload the tasks in sequence to the MEC server
with the lowest total cost. The improved PSO algorithm is used
to solve the problem, updating the task completion time, total
energy consumption, and the remaining resources of the MEC
servers. The offloaded task can be deleted from the queue, and
the cycle continues until the optimal solution is obtained. The
details of the PSO algorithm are presented as follows:
Algorithm 2: The optimal offloading scheme of the

dependency-aware tasks.
Input: The task set V , the set of MEC servers M , the task

scheduling queue Y .
Output: Minimum fitness function value.
1: initialize all particles;
2: while ( t T< )
3: for each particle i
4: initialize the velocity ( )iLv t and position ( )iLx t ;
5: evaluate particle i and set ( )iL iLpbest x t ;
6: end for
7: for 1i= to N
8: update the inertia weight using Eq. (22);
9: update the velocities of all particles using Eq. (20);
10: update the positions of all particles using Eq. (21);
11: evaluate particle i ;
12: if ( ) ( )iL iLf x f pbest< then
13: iL iLpbest x=
14: end if
15: if ( ) ( )iL Lf pbest f gbest< then
16: L iLgbest pbest=
17: end if
18: end for
19: end while
The time complexity analysis of proposed algorithm is as

follows: the number of tasks is n , the number of edge servers is
L , the number of predecessor tasks for each task is p , the
particle population size is equal to N and the maximum
number of iterations is set to T . The offloading order of the
tasks can be solved from lines 1 to 6 in above pseudo code, and
the initialization of the algorithm will be with a time
complexity of  2n . Then, from lines 7 to 14, the offloading
can be executed in the order of the tasks in optimal queue.
During the offloading process, PSO algorithm needs to be used
to solve the total completion time of tasks and the total energy
consumption of mobile device by unloading with dependent
task offloading and resource assignment. Since the PSO
algorithm is one-dimensional, the time complexity is
 N T N   . Therefore, the time complexity of lines 7 to 14 in

pseudo code is   1nlp N T  . Therefore, the total time
complexity of the algorithm will be   2 1n nlp N T   .

V. EXPERIMENTAL RESULTS

In this section, some numerical results are presented to
evaluate the effectiveness of DTO-JODE. In the network
scenario, the application can be divided into several tasks.
According to the dependencies between tasks, the DAGs can be
generated. The Google dataset [27] is used to simulate the
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processing time and processing resources required for each task
on the MEC servers. Two types of dependency-aware task are
mainly considered: chain task and mixed task. For chain task,
the relationship of dependency refers to that each task can have
at most one successor task. For mixed task, any task can have
multiple predecessors or successors. The number of MEC
servers for caching a certain service is set to 50% of the total
number of edge servers. The channel bandwidth and
background noise environment between MEC servers are set
according to [28], and the downlink channel , kdown Mh is related

to the uplink channel , kup Mh with a correlation coefficient of 0.7.

Other specific parameter values are set as follows: sp = 0.1W,

rp = 0.05W, localU = 500MHz,
kM

U = 3000MHz, 1d = GHz,
2 -10=10s , maxw =0.9, minw =0.4, 1 2= =2c c .
Firstly, we analyze the convergence of the algorithm. The

convergence under different task dependencies with different
inertia weight values is shown in Figure 2. As can be observed
from the experimental results, the independent tasks, chain
tasks and mixed tasks will converge in the 37, 48, and 77
rounds with respect of 0.5w= , respectively. However, when
the inertia weight is designed to be adjusted dynamically and

[ ]0.4, 0.9wÎ , the convergence speed of different types of tasks
is better than fixed inertia weights, the convergence of
proposed algorithm demonstrates a very significant
improvement. Among them, independent tasks converge to 21
rounds, chain tasks converge to 34 rounds, and mixed tasks
converge to 58 rounds. From the characteristics of PSO, the
inertia weight value will affect the convergence speed of the
algorithm. Figure 3 shows the convergence under different task
dependencies for different population sizes. A larger group size
can expand the search space, but the computational complexity
also increases. From the experimental results, it can be seen that
increasing the initial population can improve the convergence
of the algorithm. However, to some extent, an excessively large
population size can also affect the efficiency of the algorithm,
as it is more sensitive to the complexity of the problem. The
experimental results also verify that dynamically adjustments
of the inertia weight value can significantly accelerate the
convergence speed of the algorithm.
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Fig. 2. Convergence under different task dependencies with different
inertia weights.
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Fig. 3. Convergence under different task dependencies for different
population sizes.
Next, the impact of different weighting factors on task

completion time and energy consumption is evaluated. Figures
4 and Figures 5 show the impact of weighting factors on task
response time and energy consumption respectively. Based on
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the previous theoretical analysis, that the larger of  indicate
the more attention mobile devices will pay to the energy
consumption of task processing. At this point, the goal of the
offloading strategy tends to optimize energy consumption.
From the experimental results, when =0.8 , the energy
consumption of task processing is smaller compared to other
situations, and task response time is relatively high. While
=0.2 , the goal of the offloading strategy prefers to optimize

task processing time. At that time, the mobile device will
consume higher energy consumption for task local processing.
Overall, when  is set to 0.6 or 0.4, the total cost of task
processing energy consumption and time delay is relatively
more balanced. In subsequent experiments, the weight factor of
the method will be set to 0.6. In practical application scenarios,
when the device has sufficient energy, mobile devices pay more
attention to shortening the response time of the task.
Conversely, while the energy is insufficient, mobile devices
will pay more attention to minimizing energy consumption.
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Fig. 4. Impact of weight factor on task latency.
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Fig. 5. Impact of weight factor on task energy consumption.
To evaluate the performance of the proposed method, several

typical algorithms are compared. Among them, the local
execution algorithm is to execute all tasks on the mobile device,
and the Random Scheduling (RS) determines scheduling
decisions for all tasks randomly. In the experiment, the number
of tasks is set to 8 to 20, and the node density of the DAG graph

is 0.5. Figure 6 illustrates the comparison of task offloading
delays among various algorithms in different types of tasks. For
independent tasks, local execution algorithm achieves the best
results. This is due to the transmission time overhead of no task
uploads or downloads, but on the other hand, local devices will
consume too much energy for task execution. Local execution
algorithm does not take into account of task size and
dependencies between tasks. All tasks are executed locally,
while mobile device’s computing resources are limited, it will
result in excessive task waiting time. On the one side, the tasks
can eliminate the transmission time of intermediate data
between tasks in local execution algorithm. When there are
dependencies between tasks, DTO-JODE performs
significantly better than other methods. This also indicates that
as the dependency relationships between tasks become
complex, the execution of one task depends on the execution
results of other tasks, which may lead to an increase in task
waiting time. Compared with ITAGS, DTO-JODE reduces task
latency by about 13.5% to 17.8%. The reason is that
DTO-JODE fully considers the dependency relationship
between tasks and prioritizes offloading the task with the
optimal path to the end task, which can reduce the waiting delay
of the task at the MEC server.
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Figure 6. Task latency of different algorithms.
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Figure 7. Energy consumption of different algorithms.
Figure 7 shows the comparison of energy consumption

among various algorithms in different types of tasks. Local
execution algorithm makes the worst performance in aspect of
the energy cost, and there is a significant increase as the number
of tasks increases and the complexity of task dependencies
increases. RR obtains the lowest energy consumption among
various algorithms in term of independent task. Since the task
offloads to available MEC servers for execution, it can spend
more communication time and consume a certain amount of
the transmission energy of mobile devices. However, in the
processing of the chain task and mixed task, random selection
of RR cannot adapt well to the dependency relationship of the
task and the resource allocation. Compared to local execution
algorithm, the energy consumption of DTO-JODE is reduced
by about 37% to 66%, Compared to ITAGS, it has decreased by
approximately 19% to 59%. Especially in mixed task scenarios,
the performance of the DTO-JODE method is more prominent.
The dependency relationships between tasks can result in
frequent data transmission between mobile devices and MEC
servers, valid task scheduling decision can reduce energy
consumption efficiently. By arranging the tasks appropriately,
DTO-JODE takes the latency and energy consumption
generated by task execution on the MEC server as optimization
objectives. Thereby, it can achieve joint optimization of delay
and energy consumption for dependency-aware tasks
effectively.
In addition, the performance of our method is verified under

the condition of changing the density of the DAG. Figure 8 and
Figure 9 show the comparison in terms of task delay and energy
consumption respectively. The number of tasks is set to 20, and
the range of density variation in DAG is between 0.3 and 0.8.
From the results, it can be observed that as the density of the
graph increases, there is little change in local execution and RS
methods. That is because the execution mode of each task in
those two methods is fixed and not affected by changes in graph
density. However, ITAGS is more significantly affected by
changes in graph density. It demonstrates that the individual
time allocation with greedy scheduling will discard a large
amount of DAG graph structure information, resulting in
inaccurate offloading decisions. In contrast, DTO-JODE
method can maintain effective offloading scheduling
performance under various graph density conditions.
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Figure 8. Task latency of different algorithms.
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Figure 9. Energy consumption of different algorithms.

VI. CONCLUSIONS

In this paper, we investigated the dynamic decisions and
resource allocation for task offloading to minimize total
computing time and energy consumption. To obtain the
tradeoff between the latency and energy consumption under the
constraints of limited computing resources, this paper proposes
a dependency-aware task offloading for joint optimization of
energy consumption and delay of task processing under the
constraints of limited computing resources in MEC servers.
First, a dependent task offloading model is established to
minimize the energy consumption and task processing of
mobile device. Secondly, we analyze the dependencies between
tasks to construct a DAG, and propose an algorithm based on
topological ordering to obtain a possible solution for task
scheduling. Subsequently, to minimize the total cost, an
improved PSO algorithm is used to obtain the optimal task
offloading decision and MEC server selection optimization.
Experimental results demonstrate that the proposed strategy
can reduce the time cost and energy consumption compared to
existing typical methods for tasks with different dependencies
effectively.
This paper only investigates the offloading of a single

application, and there exists collaborative offloading of
multiple applications in practical scenarios. Therefore, our
future work will extended to the multiuser case, investigate
collaborative computation offloading with complex
dependencies and experimentally verify the proposed strategy
in real applications.

ACKNOWLEDGMENT

This study was founded by Sichuan Science and Technology
Program No. 23ZDYF0738, No. 2022YFG0343, and the
National Natural Science Foundation of China with Grant
51975107 and Sichuan Science and Technology Major Project
No. 2022ZDZX0039, No.2019ZDZX0020.

REFERENCES
[1] Khan W, Ahmed E, Hakak S, et al. “Edge computing: A survey,”

Future Generation Computer Systems, 2019, 97: 219-235.
[2] Ma Hua-rong, Huang Peng, Zhou Zhi, et al. “GreenEdge:joint green

energy scheduling and dynamic task offloading in multi-tier edge
computing systems,” IEEE Transactions on Vehicular Technology,
2022, 71(4): 4322-4335.

[3] Parekh B, Amin K. “Edge intelligence: A robust reinforcement of edge
computing and artificial intelligence,” In: Proc. of Innovations in
Information and Communication Technologies (IICT-2020). Berlin:
Springer, 2021, pp. 461-468.

[4] Nguyen D, Ding Ming, Pham Q, et al. “Federated learning meets
blockchain in edge computing: Opportunities and challenges,” IEEE
Internet of Things Journal, 2021, 8(1): 12806-12825.

[5] Ndikumana A, Tran N, Kim K, et al. “Deep learning based caching for
self-driving cars in multi-access edge computing,” IEEE Transactions
on Intelligent Transportation Systems, 2020, 22(5): 2862-2877.

[6] Munir A, Blasch E, Kwon J, et al. “Artificial intelligence and data
fusion at the edge,” IEEE Aerospace and Electronic Systems
Magazine, 2021, 36(7): 62-78.

[7] Khan L U, Yaqoob I, Tran N H, et al. “Edge-computing-enabled smart
cities: A comprehensive survey,” IEEE Internet of Things Journal,
2020, 7(10): 10200-10232.

[8] Bahreini T, Badri H, Grosu D. “Mechanisms for resource allocation
and pricing in mobile edge computing systems,” IEEE Transactions on
Parallel and Distributed Systems, 2021, 33(3): 667-682.

[9] Ranadheera S, Maghsudi S, Hossain E. “Computation offloading and
activation of mobile edge computing servers: a minority game,” IEEE
Wireless Communications Letters, 2018, 7(5): 688-691.

[10] Liu L, Zhou Y Q, Garcia V, et al. “Load aware joint CoMP clustering
and inter-cell resource scheduling in heterogeneous ultra-dense
cellular networks,” IEEE Transactions on Vehicular Technology,
2018, 67(3): 2741-2755.

[11] Huang J W, Lan Y H, Xu M F. “A simulation-based approach of
QoS-aware service selection in mobile edge computing,” Wireless
Communications and Mobile Computing, 2018, 2018: 1-10.

[12] Pang S C, Wang S Y. “Joint wireless source management and task
offloading in ultra-dense network,” IEEE Access, 2020, 8:
52917-52926.

[13] Zhang J, Hu X P, Ning Z L, et al. “Energy-latency tradeoff for
energy-aware offloading in mobile edge computing networks,” IEEE
Internet of Things Journal, 2018, 5(4): 2633-2645.

[14] Wu D P, Yan J J, Wang H G, et al. “User-centric edge sharing
mechanism in software-defined ultra-dense networks,” IEEE Journal
on Selected Areas in Communications, 2020, 38(7): 1531-1541.

[15] Tran T, Pompili D. “Adaptive bitrate video caching and processing in
mobile-edge computing networks,” IEEE Transactions on Mobile
Computing, 2018, 18(9): 1965-1978.

[16] Wang Jiadai, Zhao Lei, Liu Jiajia, et al. “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,”
IEEE Transactions on Emerging Topics in Computing, 2019, 9(3):
1529-1541.

[17] He Ying, Wang Yuhang, Qiu Chao, et al. “Blockchain-based edge
computing resource allocation in IoT: A deep reinforcement learning
approach,” IEEE Internet of Things Journal, 2020, 8(4): 2226-2237.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3338620

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Chen Xu et al.: Energy Consumption and Time Delay Optimization of Dependency-aware Tasks Offloading for Industry 5.0 Applications

[18] Dai Yueyue, Zhang Ke, Maharjan S, et al. “Edge intelligence for
energy-efficient computation offloading and resource allocation in 5G
beyond,” IEEE Transactions on Vehicular Technology, 2020, 69(10):
12175-12186.

[19] Lin Zehong, Bi Suzhi, Zhang Yingjun. “Optimizing AI service
placement and resource allocation in mobile edge intelligence
systems,” IEEE Transactions on Wireless Communications, 2021,
20(11): 7257-7271.

[20] Shen Tao, Gao Chan, Xu Dawei. “The analysis of intelligent real-time
image recognition technology based on mobile edge computing and
deep learning,” Journal of Real-Time Image Processing, 2021, 18(4):
1157-1166.

[21] Sundar S, Liang Ben. “Offloading dependent tasks with
communication delay and deadline constraint,” In: Proc of the 37th
IEEE Conf on Computer Communications, Piscataway, NJ: IEEE,
2018, pp. 37-45.

[22] Shiang H P, Schaar M V D. “Queuing-Based Dynamic Channel
Selection for Heterogeneous Multimedia Applications Over Cognitive
Radio Networks,” IEEE Transactions on Multimedia, 2008, 10(5):
896-909.

[23] Kennedy J, Eberhart R. “Particle Swarm Optimization,” In: Proc. of
IEEE International Conference on Neural Network, 1995, pp.
1942-1948.

[24] Hsieh S T, Sun T Y, Liu C C, Tsai S J, “Efficient population utilization
strategy for particle swarm optimizer,” IEEE Trans Syst Man Cybern
Part B Cybern, 2009, 39 (2): 444–456.

[25] Nickabadi A, Ebadzadeh MM, Safabakhsh R, “A novel particle swarm
optimization algorithm with adaptive inertia weight,” Appl Soft
Comput, 2011, 11 (4): 3658–3670.

[26] Zhang W, Ma D, Wei J J, Liang H F, “A parameter selection strategy
for particle swarm optimization based on particle positions,” Expert
Syst Appl, 2014, 41(7): 3576–3584.

[27] Zhang Jiao, Hu Xiping, Ning Zhaolong, et al. “Energy-latency
tradeoff for energy-aware offloading in mobile edge computing
networks,” IEEE Internet of Things Journal, 2017, 5(4): 2633-2645.

[28] Mazouzi H, Achir N, Boussetta K. “Elastic offloading of multitasking
applications to mobile edge computing,” In: Proc of the 22nd Int Conf
on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, New York: ACM, 2019, pp. 307-314.

Chen Xu received the B.S. degree in natural
polymer materials and engineering from Tianjin
University of Science and Technology, Tianjin,
China, in 2007, the M.S. degree in transportation
planning and management from Lanzhou
Jiaotong University, Lanzhou, China, in 2010,
and the Ph.D. degree in traffic information
engineering and control from Tongji University,
Shanghai, China, in 2021. From 2010 to 2013,
he was an Engineer with the Tongji Architectural

Design(Group) Co., Ltd., Shanghai, China. From 2014 to 2021, he
worked as a lecturer and master student supervisor at the School of
Computer Science and Information Engineering, Shanghai Institute of
Technology, Shanghai, China. Since 2022, he has been a post-doctoral
with the School of Mechanical and Electrical Engineering, University of
Electronic Science and Technology of China, Chengdu, China. His
research interests include sensor network, underwater unmanned
system, UUV database, intelligent computing.

Mengzhuo Lv received the B.S. degree in
mechanical and electronic engineering from
Beijing Institute of Technology, Beijing, China, in
2020.She is currently a Master's degree student
with the School of Mechanical and Electronic
Engineering,University of Electronic Science and
Technology of China, Chengdu, China. Her
research interests mainly include intelligent

manufacturing systems, robotics, and its applications.

Kun Zhang received the B.S. degree in electronic
and information engineering from Hainan
University, Haikou, China, in 2018. He is currently
working toward the Ph.D. degree in mechanical
engineering with the Mechanical Engineering of
the University of Electronic Science and
Technology of China, Chengdu, China. His
research interests include intelligent
manufacturing systems, robotics, and its
applications.

Kui Cao received the B.S. degree in electrical
engineering and the automatization
specialty from Aeronautical University, Yantai,
China, in 2016. He is currently working toward the
M.S. degree in mechanical engineering with the
University of Electronic Science and Technology
of China, Chengdu, China. His research interests
include intelligent manufacturing systems, robotics,
and its applications.

Gang Wang received the B.E. degree in
Communication Engineering and the Ph.D.
degree in Biomedical Engineering from
University of Electronic Science and
Technology of China, Chengdu, China, in 1999
and 2008, respectively. In 2009, he joined the
School of Information and Communication
Engineering, University of Electronic Science
and Technology of China, China, where he is
currently an Associate Professor. His current

research interests include signal processing and intelligent systems.
Since 2017, she has been an Assistant Professor with the School of
Aeronautics and Astronautics, University of Electronic Science and
Technology of China, Chengdu, China. Her research interests include
multi robot cooperation, weak target detection and tracking from
complex environment.

Mingzhu Wei received the B.S. degree in
instrument science and technology from
Yanshan University, Qinhuangdao, China, in
2006, the M.S. degree in instrument science
and technology from the Harbin Institute of
Technology, Harbin, China, in 2008, and the
Ph.D. degree in information and system
engineering from Politecnico di Torino, Turin,
Italy, in 2012. From 2012 to 2015, She was an
Engineer with the China Electronics Technology

Group Corporation No.38 Research Institute, Hefei, China. Since 2017,
she has been an Assistant Professor with the School of Aeronautics and
Astronautics, University of Electronic Science and Technology of China,
Chengdu, China. Her research interests include multi robot cooperation,
weak target detection and tracking from complex environment.

Bei Peng received the B.S. degree in mechanical
engineering from Beihang University, Beijing,
China, in 1999, and the M.S. and Ph.D. degrees
in mechanical engineering from Northwestern
University, Evanston, IL, USA, in 2003 and 2008,
respectively. He is currently a Full Professor of
Mechanical Engineering with the University of
Electronic Science and Technology of China,

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3338620

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Chen Xu et al.: Energy Consumption and Time Delay Optimization of Dependency-aware Tasks Offloading for Industry 5.0 Applications

Chengdu, China. He holds 30 authorized patents. He has served as a PI
or a CoPI for more than ten research projects, including the National
Science Foundation of China. His research interests mainly include
intelligent manufacturing systems, robotics, and its applications.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3338620

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


