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Abstract—5G emerges as the bedrock for the Industrial Inter-
net of Things (IIoT), it facilitates the seamless, low-latency fusion
of artificial intelligence and cloud computing, thereby fortifying
the entire industrial procedure within a framework of smart
and intelligent IIoT ecosystems. Concurrently, the continuously
changing landscape of cybersecurity threats in the realm of the
Internet of Things (IoT) is giving rise to unparalleled security
complexities. These challenges are particularly pronounced in
the context of zero-day attacks, and integration of 5G technology
further exacerbates the intricacy of the situation. Thus this paper
introduces a cutting-edge 5G-enabled framework for cyberthreat
detection leveraging Federated Learning (FL) without the need
for data sharing. It employs a dual Autoencoder (AE) based
model. Distinctly, our model utilizes two synchronized AEs for
each client, integral to FL mechanism. While one AE evaluates
the IIoT environment based on normal network patterns, another
focuses on attack scenarios. For decisive threat assessment, the
system uses the capabilities of a one-class SVM classifier with
AEs. Furthermore, our method ensures a synergistic blend of self-
learning and collaborative learning by implementing a polling
mechanism between overarching AE classifier and those tailored
to individual client data and counters zero-day threats and out
performs traditional AI/ML techniques.

Index Terms—5G, IIoT, Cyberthreat, Federated Learning,
Autoencoders, Zero-day attack

I. INTRODUCTION

The rapid proliferation of the Internet of Things (IoT) and its
industrial counterpart, the Industrial Internet of Things (IIoT),
signifies a remarkable evolution in the global technological
landscape [1]. This evolution involves the interconnection of
billions of entities, from everyday consumer electronics to
large-scale industrial apparatus, facilitated by the ability to
generate, process, and disseminate colossal volumes of data
[2].

In essence, IoT refers to the network of physical entities, or
“things”, integrated with a variety of technologies such as sen-
sors, software, and connectivity modules, which enable these
entities to coordinate and share data over the internet. These
entities encompass a broad spectrum of devices from smart
household appliances, such as thermostats and refrigerators,
to health-oriented devices like wearable fitness trackers [3].

On the other hand, IIoT, an offshoot of IoT, is focused pri-
marily on the industrial utilization of these technologies. The
IIoT framework incorporates elements of machine-to-machine
communication, automation techniques, Machine Learning
(ML), and real-time data analytics. These elements collectively
aim to amplify efficiency, productivity, and safety across

multiple sectors, including manufacturing, logistics, energy,
and transportation [4].

Wireless connections continue to play a crucial role in the
growth of IoT and IIoT, ensuring extensive and robust links
between devices, machinery, systems, individuals, and entities.
5G is set to drive the evolution of automated manufactur-
ing, particularly in localized and public 5G solutions. This
represents a pivotal opportunity to advance future wireless
communication [5].

IIoT systems, in particular, are prime targets for cyber-
attacks due to the expanded attack surface and each connected
device represents a potential weak spot. The data held within
these systems is often a treasure trove of intellectual property
and sensitive corporate information, making them attractive
targets for cybercriminals [6].

Furthermore, IIoT systems frequently suffer from insuf-
ficient security protocols, either from oversight or inherent
device limitations, rendering them comparatively easy targets
[7]. Moreover, the introduction of 5G in the IIoT expands
the potential for cyber attacks. The increased speed and
connectivity of 5G networks create more entry points for
hackers to exploit vulnerabilities in connected devices and
systems, posing greater risks to critical infrastructure, data
integrity, and operational continuity.

Security strategies that are adequately mature for conven-
tional Information Technology (IT) systems may not translate
seamlessly to the 5G-enabled IIoT context [8].

To circumvent these limitations, a growing body of recent
research is pivoting towards ML and Deep Learning (DL)
methodologies [9].

However, their practical application is often restricted due
to apprehensions about privacy, security risks associated with
data transfer between industrial environments and servers, and
the time-demanding nature of the training phase on a singular
machine [10].

Therefore, the integration of edge computing with DL
can help bring intelligence directly to the source of data
creation, thus tackling challenges such as data privacy, high
communication costs, the need for vast memory space, short-
ened training periods, and high latency [11]. Local DL and
distributed DL techniques have been developed to foster this
edge intelligence, and they function without the need for data
aggregation [12] thus reducing issues with singular machines.

However, these techniques frequently fail to accurately
identify zero-day attack instances, in which cybercriminals
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commandeer a network of compromised computing devices
to take advantage of previously unknown weaknesses in IoT
systems. A lack of existing training samples within individual
IoT-edge devices hampers the effectiveness of the above
methods in such situations. The detection of zero-day threats is
inherently difficult, primarily because of the lack of previous
information regarding such incidents [13], [14].

One potential remedy to this issue is Federated Learning
(FL) [15]. In the FL paradigm, each data proprietor (referred
to as a client) constructs a model using their proprietary data
and transmits the model weights to a centralized server. The
server’s function is to amalgamate these parameters to create
a comprehensive model, which can then be deployed across
all client environments [16].

Thus based on the aforementioned discussion, this paper
elucidates an FL-based framework for zero-day cyber-threat
detection within 5G-enabled IIoT ecosystems. This advanced
cyberthreat detection paradigm involves training two indepen-
dent AE models on each client’s data, one model learning
from normal traffic and another learning from attack traffic,
with the models’ parameters being shared with a server using
a 5G network, thereby eliminating the need to share raw data.

These parameters are then used by the server to build two
global components to learn normal and attack profiles. Using
these global models, each client maps its personal data into a
latent space and trains two classifiers for the received global
AE models. Further client trains two more one-class classifiers
on their local normal and attack data. Then shares the output
of four classifiers with their own polling unit (ϑ) for final
prediction. Every client has the ability to assess its condition
using the shared learning models for representation and the
repository of classifiers. Moreover, the system is equipped
with 5G capabilities, enabling it to achieve remarkable data
throughput and minimal communication delay. This empowers
sensors and devices to seamlessly exchange data in real-
time between clients and servers, especially when deployed
within a data-intensive 5G framework as exemplified in [17].
This advancement enhances system efficiency compared to
earlier iterations where immediate connectivity was restricted
to private networks with high-speed links. Consequently, the
newly devised system is well-suited for real-time applications.
Aiming to tackle the problem of zero-day attack detection, the
main contributions of the proposed framework are:

• Proposed a dual-model classification system within a
federated framework, designed to identify unfamiliar ex-
amples by contrasting them with distinct normal and
attack profiles.

• This work provides valuable insights and a robust solution
to counter zero-day attacks effectively. It proposes a novel
and effective framework that achieves high accuracy,
detection rate, and F1-score, outperforming traditional
models and hybrid approaches.

• The proposed framework provides the ability to effec-
tively handle imbalanced data sets by using two individ-
ual models for attack and normal traces.

The rest of the paper is organized as: Section 2 describes
the existing solutions to the zero-day attack. These include
centralized and decentralized ML/DL-based techniques. Next,

section 3 aims to address the proposed approach, explaining
the know-how of the proposed approach. It consists of the
workflow of the proposed technique along with the algorithms
and the diagrammatic representations. The proposed approach
is then validated by experimentation and the results obtained
are analyzed in section 4. It aims to compare the results of
various existing solutions with the proposed approach. Lastly,
the conclusion of the paper along with some scope for future
research is mentioned in section 5.

II. RELATED WORK

This section introduces the present techniques available for
cyber threat detection. AI-based IDS have been extensively
utilized in device-level detection, marking notable successes
[18], [19]. The majority of existing research, such as studies
[20], [21] on intrusion detection operate under a closed-set
assumption, meaning they only anticipate encountering attack
classes that were present in the training data set during testing.

In a 2017 study focusing on water treatment systems,
Inoue et al. [22] introduced an anomaly detection model
utilizing Deep Neural Networks (DNN). By employing Long
Short-Term Memory (LSTM) neural networks within their
investigation, they were able to reveal that the DNN model,
having been trained on normal data, exhibited performance
that surpassed that of the one-class Support Vector Machine
(SVM) model. The training process for the one-class SVM
model was more rapid compared to the DNN method they
proposed.

In 2020, there were numerous studies conducted on cyber-
threat detection. Audibert et al. [23] put forth an anomaly
detection approach in an unsupervised way and leveraging
AEs for multivariate time series. Their method exhibited rapid
training time, robustness to parameter selection, and stability.
Their result evaluation shows that their method stands up well
against other methods in the field.

Abdelaty et al. [24] introduced a modular deep learning-
oriented anomaly detection model for IIoT systems. They
evaluated their proposed model on two IIoT datasets and
found it to have superior performance, especially regarding
the F1-score metric, compared to several existing methods.
Whereas, Moon et al. [25] proposed a combined use of one-
class SVM and LSTM networks for anomaly detection within
IIoT systems. Their evaluation revealed that the LSTM-based
technique was more effective than the one that utilized one-
class SVM.

Moreover, Nagarajan et al. [26] offered an anomaly de-
tection method aimed at maintaining privacy within IIoT
networks. They compared their approach to two datasets with
traditional ML techniques. The results demonstrated that their
method had a higher detection rate than the others.

However, these closed-set AI-based Intrusion Detection Sys-
tems (IDS) come with inherent limitations. These systems of-
ten fall short when faced with unknown or novel attack vectors,
and they tend to generate high false positive rates, potentially
leading to alert fatigue. Moreover, maintaining closed-set IDS
involves labor(intensive), and frequent updates to incorporate
new threat intelligence, making it challenging to keep up with
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the rapidly evolving threat landscape. These systems struggle
to adapt to changes in network configurations and are ill-suited
to handling class imbalances or scaling effectively in dynamic
network environments. Attackers can exploit the weaknesses
of closed-set IDS through evasion techniques, emphasizing the
need for more adaptive and proactive security measures.

To address these limitations, the cybersecurity community
has recognized the importance of open-set intrusion detection
methods. Open-set IDS distinguishes between known and
unknown threats, primarily relying on anomaly detection and
more advanced machine learning techniques. These methods
offer a forward-looking approach by continuously learning
from new data and adapting to evolving threats, reducing false
positives, and offering better scalability and adaptability. They
are designed to be more resilient against evasion techniques
and can provide a more robust defense against an ever-
changing threat landscape, making open-set intrusion detection
an essential component of modern cybersecurity strategies.

Only a handful of studies have explored open-set intru-
sion detection. For instance, Hairab et al. [27] suggested a
method based on CNN for anomaly detection in IoT networks
to counteract zero-day attacks. Despite this, their proposed
method falls short of providing a detailed classification of
known attacks.

Ping et al. [28] proposed open-set IDS, that addresses
the problem of seen and unseen behaviors/traffic through
three modules named MinMax autoencoder, the classifier, and
pseudo extreme value machine. They conducted experiments
on USTC-TFC2016 & CSE IDS2018+ datasets to establish
the efficacy of their proposed approach achieving accuracy of
72% and 89.4% respectively.

Farrukh et al. [29] present a novel framework specifically
designed to address the open set recognition challenge within
the domain of Network Intrusion Detection Systems, with a
particular focus on IoT environments. The proposed frame-
work leverages image-based representations of packet-level
data, extracting both spatial and temporal patterns from the
network traffic. Furthermore, we incorporate stacking and sub-
clustering techniques, which facilitate the identification of pre-
viously unknown attacks by effectively capturing the intricate
and varied characteristics of legitimate network behavior.

Wu et al. [30], in their study, devised an intrusion detection
method based on dynamic ensemble incremental learning.
While this approach is capable of adapting to newly discovered
local attack variants, it struggles to incorporate knowledge
of new attacks that manifest in other IDSs. Given that IDS
devices dispersed across various geographical locations might
face different attack variants, collaborative model learning
can substantially enhance the defense capabilities of smart
community systems against unfamiliar attacks.

While the aforementioned methods yield exceptional results,
there’s a significant hurdle that precludes their widespread
adoption in the industrial sector. They are centralized tech-
niques in nature, requiring whole data to be housed on one
system for training purposes. It makes the training process
both time-consuming and hardware-intensive. Additionally, the
need to transfer and store all data samples from industrial
operations on one server raises concerns about security and

privacy. Various industrialists become hesitant to share their
data with other entities to train ML models. In response to
these challenges, several studies have devised the use of non-
centralized techniques, such as FL, to train models. These
methods circumvent the need for data sharing, addressing
many of the concerns associated with centralized systems.

Detection methodologies based on FL, as referenced in [10],
allow for the sharing of locally learnt parameters instead of
actual data. This approach is proved superior in accelerating
training, protecting privacy, and reducing latency. Popoola et
al. [31] employed this strategy by federating IoT edge devices
along with DNN to detect zero-day botnet attacks. [32] intro-
duced an innovative system combining blockchain technology
with federated intrusion detection to handle untrustworthy
updates. Meanwhile, Ruzafa et al. [33] devised an intru-
sion detection method leveraging semi-supervised federated
methodology. In this arrangement, unlabelled samples were
utilized for boosting performance of classification system.

In 2022, [34] introduced the FL technique designed to
detect attacks on solar farms. Tests in diverse scenarios and
comparisons with traditional ML strategies were noted. The
experiment demonstrated that their proposed FL-based model’s
performance closely mirrored its centralized counterpart but
with the advantage of reduced computational and data transfer
costs.

Rey et al. [35] suggested both supervised and unsupervised
FL-based methods for detecting malware, which they evalu-
ated under various conditions. They compared this model with
two other methods, revealing that the FL-based approach was
superior to employing multiple local models, one per client.

Even though the above FL-based methods tackle the pri-
vacy concerns related to centralized ML methods, they fall
somewhere short in detecting unknown attacks on IIoT. These
methods generally focus on the creation of general classifier
models and thus perform low when encountering zero-day
attacks. Moreover, the above methods do not give preference to
self-learning and completely rely on the global model, which
allows a single attack client to influence the overall global
model. Hence, above mentioned strategies do not handle the
zero-day scenarios well, thus creating a need for an efficient
model.

III. PROPOSED ZERO-DAY GUARDIAN FRAMEWORK

The conventional approach to ML, where the model is
trained and tested on the same set of data, restricts individual
client’s growth for detecting new attack traces. Collaborative
learning, on the other hand, offers a better way to enhance in-
dividual client progress. However, collaborative learning often
involves sharing data, which poses security risks. To address
this, FL emerged as a decentralized system that not only
ensures client security but also eliminates the need for data
sharing among clients. Additionally, FL enables individual
clients to participate in a global scenario, promoting better
learning outcomes.

FL is a privacy-preserving decentralized method, developed
by Google, that reduces the client-side computation and par-
allelly allows each client to gain global knowledge without
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Fig. 1. The proposed zero-day guardian framework with 5G network

globally sharing data with each other or without bringing data
to a central location. Let there be C clients c ∈ C, and the
number of communication rounds is R and client training data
as client t1, client t2, client t3, ..., client tc, .., client tC .
Each client tc = {client t Xc, client t yc}Cc=1 and testing
dataset as client tt X, client tt y for all clients. Each train-
ing data has a distinct distribution such that P (client ta) ̸=
P (client tb). Every client has its individual local model say
M and it is trained with loss function as:

L(client tc, w) =
1

|client tc|
∑

Lc(client t Xc (1)

, client t yc, w)

where
∑

varies for (client t Xc, client t yc) ∈ client tc
and Lc(client t Xc, client t yc, w) is a specific function to
be minimized. So our goal is to finally aggregate the Ml to
obtain global model Mg for each client by maintaining the
data privacy:

min{Mc}C
c=1

1

C

C∑
c=1

1

|client tk|
∗ (2)

∑client tc
i=1 L(M

(c)
l (client t Xc), client t yc)

In both conventional ML assessment techniques and feder-
ated approaches, the model is conditioned and evaluated using

identical categories of data. During the training phase, the
model assimilates the underlying patterns from each category
of data. Subsequently, these learned patterns are employed
to recognize samples from the corresponding classes in the
testing phase. However, these approaches assume that the
training dataset includes all the attack classes that the model
will encounter after deployment, which limits the system’s
ability to detect attacks outside its dataset. This lack of
robustness raises concerns about the system’s security, as
it may allow attack traffic to bypass its defenses. So, we
propose a dual AE model-enabled FL framework for handling
zero-day attacks in 5G-enabled IIoT systems. The proposed
framework aims to tackle the zero-day attack by separately
training classifiers to identify normal and attack traffic. This
in turn helps to train the classifiers more precisely to handle
only one kind of data empowering it with a higher detection
rate. The usage of separate models for normal and attack data
also handles the issues caused by the dominant class if the
dataset is imbalanced.

The scenario considered within the proposed framework
involves clients functioning as edge nodes, symbolizing in-
dividual industrial units. Each unit integrates a variety of
intelligent sensors, actuators, cameras, robots, machines, IC
controllers, and IoT-based chips to gather vital data. This
data is then stored in a database to facilitate the training
of a local model. Subsequently, these clients collaborate by
sharing gradients from their respective local models, which are
aggregated on a cloud server. This FL process is facilitated
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Algorithm 1 Zero-Day Guardian framework workflow
Prerequisites: Clients k with local data D, 2 local classifiers
℧b & ℧m, 2 global classifiers ⅁b & ⅁m, a data differentiator ℶ
and 2 AEs ϱlb & ϱlm for normal and attack data respectively,
and a voting unit ϑ.
A cloud server with 2 global AEs ϱgb & ϱgm , a weight
distributor ω, a data storage, an aggregator.
Working:

1: Use ℶ to divide the D into the normal and attack dataset
Dn & Da respectively.
(Db, Dm) = ℶ (D)

2: Use Db & Dm to participate in federated scenario to
obtain ϱgb & ϱgm
ϱgb = AEFedaratedb(Db, ϱlb)
ϱgm = AEFedaratedm(Dm, ϱlm)

3: Train the ℧b & ℧m

℧b = ℧b.fit(Db)
℧m = ℧m.fit(Dm)

4: Train ⅁b & ⅁m

⅁b = ⅁b.fit(ϱgb .predict(Db))
⅁m = ⅁m.fit(ϱgm .predict(Dm))

Testing Phase
5: Replicate the test data Td to generate 4 test spaces

Td1 = Td.copy()
Td2 = Td.copy()
Td3 = Td.copy()
Td4 = Td.copy()

6: Pass Tdb & Tdm through ϱgb & ϱgm obtained by federated
process.
Td′1 = ϱgb .predict(Td1)
Td′3 = ϱgm .predict(Td3)

7: Use classifiers to predict the probabilities
y predg = ⅁p.score samples(Td′1)
y pred′g = ey predg∑ℓ

j=1 e
y predgj

y predl = ℧l.score samples(Td2)
y pred′l = ey predl∑ℓ

j=1 e
y predlj

where, j = {1,2,3,4}, g = {1,3}, l= {2,4}
ℓ = len(y predg or l)

8: Combine the results of the local and global classifiers
individually

9: y pred self model = list()
10: for i in range(len(y predlb )):
11: if y predlb [i] ≥ y predlm [i]:
12: y pred self model.append (0)
13: else:
14: y pred self model.append(1)
15: y pred global model = list()
16: for i in range(len(y predgb )):
17: if y predgb [i] ≥y predgm [i]:
18: y pred global model.append (0)
19: else:
20: y pred global model.append(1)
21: Predict the outcomes
22: y pred = list()
23: for i in range(len(y pred self model)):
24: if y pred self model[i] == y pred global model[i] :
25: y pred.append(y pred global model[i])

26: else:
27: y pred.append(y pred self model[i])
28: y pred is desired output

through the utilization of the internet and the efficiency of
5G infrastructure, with its ultra-low latency, high bandwidth,
network slicing capabilities, and advanced security features,
5G facilitates real-time control, machine-to-machine commu-
nication, and seamless connectivity for an array of devices
and sensors, fostering the growth of interconnected, intelligent
systems. It enables real-time remote monitoring and mainte-
nance, enhances mobility for robots and autonomous vehicles,
and ensures scalability and energy efficiency in manufacturing
environments. Furthermore, 5G’s potential to offer global,
high-speed connectivity promises to reshape the way industries
operate, making them more efficient, responsive, and globally
connected.

The major components of the proposed framework are; at
the client end it consists of two global AEs and their associated
two classifiers, data storage, two more classifiers built on local
normal and attack data, a data distinguisher, and a polling
mechanism. At the server, we have an aggregator, weights
distributor, data storage, and two global AEs.

TABLE I
DESCRIPTION OF SYMBOLS USED IN PROPOSED APPROACH

Description Parameter

normal dataset Db

attack dataset Dm

Local AEs ϱlb , ϱlm
Global AEs ϱgb , ϱgm

Global one class classifiers ⅁b,⅁m

Local one class classifiers ℧b,℧m

Voting unit ϑ
Data differentiator ℶ
Encoder function f

Loss function ζ

Algorithm 1 describes the workflow of the proposed frame-
work with Table I describing the parameters involved. The
major steps of the proposed framework are:

• At each client it initially begins by initializing the data
distinguisher process where the normal traffic data is
separated from the attack one.

• These separated datasets Db for normal & Dm for attack
are used to separately train the local AE ϱlb for normal
traffic and AE ϱlm for attack traffic and shared with the
server.

• At the server, the process of aggregation takes place to
get the global AEs ϱgb and ϱgm for normal and attack
traffic respectively, and shared back to clients.

• Further on global AEs ϱgb and ϱgm , each client trains two
separate global one class classifiers such as ⅁b & ⅁m.

• Then on local data Db & Dm the clients local classifiers
℧b & ℧m, named as self-model classifiers are trained.

• In the case of testing, the testing data is first passed
through the ϱgb & ϱgm respectively and then classified
using the global classifiers ⅁b & ⅁m respectively.
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Fig. 2. Testing with the proposed framework at individual client

• The testing data is also passed through the self-model
classifiers to generate two more outcomes from ℧b &
℧m respectively.

• As a final prediction step, these predictions are combined
to generate the desired classification within the polling
mechanism.

As mentioned, each client has two local AE ϱlb for normal
traffic and AE ϱlm for attack traffic. This AE is a specially
designed network that has the power to transform data
through the use of neural structures. It takes the input data,
says D with fs features, processes them, and converts them
to another output set with the same fs-number of features.
It entails the usage of an encoder and decoder which works
collaboratively to first reduce the feature set to a specified
feature set say fs’ (through encoder) and then reconstruct
the feature set fs through its decoder set. AE employed in
our system mainly uses the same functionality and then uses
Mean Squared Error (MSE) as its loss function.

MSE = 1
n

∑n
i=1(ytrue − ypred)

2

where n is the total number of predictions
Once the local training of ϱl is completed, every client

shares its AE weights with the global server for the federated
process. Once the parameters of the client’s local components
are shared with the server, it employs the federated averaging
method, as described in [15], to amalgamate the components
into two global elements, as represented by Eq. (3) and Eq. (4).
The resultant global components are depicted in Eq. (5). These
consolidated global components are subsequently distributed
to the clients, allowing them to refine the components using
their individual local data. After this refinement, the param-
eters are shared back with the server using a 5G network
between the client and server. This iterative model weights
the training cycle, conveying them to the server, and their

subsequent aggregation constitutes the FL process.

Wi =
1

K

K∑
k=1

wk
i (3)

where Wi is the aggregated weights of components i
(normal or attack) and wk

i are the weights of components i
for client k.

Bi =
1

K

K∑
k=1

bki (4)

where Bi is the accumulated biases of normal or attack
counterparts of i and bki are the biases of component i for
client k.

ηi = ϱgi(X) = σ(wiX +Bi) (5)

In this context, ϱgi signifies the global AE function for
component i, ηi compares the new samples with the normal
and attack data.

Once the global models are shared with clients, they train
four one-class SVM classifiers, two using the new represen-
tations ηb and ηm from the global AEs and two on local
clients’ data for normal and attack traffic. One-class SVM
is a type of SVM algorithm used specifically for anomaly
detection rather than classic classification tasks. This technique
is particularly useful when the data consists mainly of one
class (the “normal” class) and the goal is to detect outliers
or anomalies, which form a second class that is typically
underrepresented in the dataset. As in our proposed approach,
we are separately training the classifiers of normal and attack
profiles, thus one-class SVM fulfills this purpose.

One-class SVM operates by defining a decision boundary
around the normal/attack data in a way that positions this data
in a small region while outliers fall outside this region. It
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achieves this by learning a decision function that is positive
for the region of normal/attack data and negative for the region
where outliers lie.

Algorithm 2 AEFederated
Input: K clients with their local data & a server

for comms round do
for client k do

Train the normal AE ϱ1 present with client
ζ(Dk

n, r
k
n(f

k
n(D

k
n)));

Train the attack AE ϱ3 present with client
ζ(Dk

a , r
k
a(f

k
a (D

k
a)));

Share the AE parameters ϱgi with server for
both AE‘s
ωi = {ωk

i |i ∈ {normal, attack}}
βi = {βk

i |i ∈ {normal, attack}}
end
Server aggregate the parameters & make the
global components ϱgi
Wi =

1
K

∑K
i=1 w

k
i

Bi =
1
K

∑K
i=1 b

k
i

ηi = ϱgi(D) = σ(wiD + bi);
Server shared global components with clients

end

However, it’s important to note that one-class SVM’s per-
formance can be sensitive to the choice of the kernel and the
kernel’s parameters, as well as the value of the hyperparameter
that controls the trade-off between maximizing the distance of
the hyperplane from the origin and minimizing the number
of instances that fall on the side of the hyperplane with
the outliers. Equation (6) shows the training objective of the
one-class SVM model. The goal of one-class SVM is to
obtain a hypersphere with the center of c and radius of Υ
by minimizing the Υ2.

minΥk
i ,c

k
i
Υk2

i + C

n∑
j=1

µj (6)

subjected to:
||ϱgi(Xk

i )− cki ||2 ≤ Υk2

i + µj

µj ≥ 0
where Υk

i and cki are the parameters of the one-class SVM
℧k

i which is trained for component i of client k, µj are slack
variables, C is the penalty parameters ϱgi(.) is the global AE
(Eq. 5) for component i and Xk

i are the local samples of client
k belongs to component i.

IV. RESULTS EVALUATION

In this section, we outline the experimental setup, dataset
description, zero-day scenario simulation, and subsequent
comparative result analysis. Our approach revolves around
a dual AE model-enabled 2-way FL framework designed
to counter zero-day attacks. The chosen dataset X-IIoTID
represents real cybersecurity incidents to ensure practicality.
We meticulously simulate zero-day scenarios to evaluate the
efficacy of our zero-day guardian framework. Result analysis

encompasses performance metrics, model accuracy, and com-
parison against traditional methods. This comprehensive eval-
uation demonstrates the efficacy of our approach in detecting
and mitigating zero-day threats, laying the foundation for more
robust and proactive cybersecurity measures.

A. Experimental setup and parameters

The proposed mechanism was developed and analyzed using
Python 3.10 *, on a MacBook Pro equipped with an Apple
M1 Pro processor. The MacBook Pro configuration includes
a 10-core CPU, a 16-core GPU, 16 GB of RAM, and a 1TB
SSD. Table II gives the parametric description of the proposed
framework with Table III describing the performance metrics
used for the evaluation.

TABLE II
PARAMETERS USED IN THE ZERO-DAY GUARDIAN MODEL

Model Parameters

FL Model Learning rate (0.01), Momentum (0.9), Decay (0.001), Loss
function (mean-squared error), Epoch (20), Number of
clients (K=10), Validation split= 0.2), Metrics (mean-squared
error)

AE Model
(normal or
attack)

2 Encoder layers (1 input layer with 59 neurons [shape of
training data] + 1 relu activated dense layer with 128 no. of
neurons), 1 Bottleneck layer (with sigmoid activation and
62 neurons), and 2 Decoder layers (1 mirror layer with
128 neurons and relu activation + 1 output layer with 59
neurons and linear activation) thereby giving total trainable
parameters as 31353

B. Dataset description

To evaluate the proposed framework we utilized X-IIoTID
dataset [36]. This dataset is specifically designed for IIoT
applications and captures system activity generated by a range
of IIoT devices. With a total of 820,834 traces, the dataset
comprises 68 features and encompasses 0-9 different labels.
These labels represent various attack types, along with a
separate label for normal requests. The whole training dataset
was divided among 10 clients for the FL approach. This
divided dataset for each client was further bifurcated into
normal and attack traffic using the data distinguisher and used
to train the individual AEs in a federated way respectively.

TABLE III
PERFORMACE METRICS

Accuracy (TP + TN)/(TP+TN+FP+FN)
Detection Rate (Recall) TP/(TP+FN)
F1-Score (2*Precision*Recall)/(Precision+Recall)

C. Building a zero-day scenario

A zero-day attack is characterized by its novelty and the fact
that it represents an unfamiliar type of threat that has not been
previously encountered or described to the model during its
training phase. In order to effectively simulate zero-day attacks

*https://docs.python.org/3/library/
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in our experiments, a commonly adopted practice involves
partitioning the dataset into two distinct groups: one consisting
of known network traffic and another comprised of ‘unknown’
network traffic. In the context of our specific experiments, we
implemented this approach by filtering out instances associated
with attack labels named ‘Lateral Movement’ (comprising
31,596 traces) and ‘Weapon’ (comprising 67,260 traces) from
the training dataset. This selective exclusion of attack labels
aimed to create a scenario in which the model encounters
attacks it has never been exposed to during training. However,
it is important to note that these excluded attack labels, namely
‘Lateral Movement’ and ‘Weapon’, were reintroduced in the
testing dataset, thus ensuring a comprehensive evaluation of
the model’s performance in the presence of these zero-day
attack types.

D. Result analysis

Here we analyze and compare the performance of the
various AEs with the proposed approach, comparison with
other federated attack detection DL models, and comparison
with other one-class classifiers, traditional ML classifiers, and
DL classifiers for individual clients.

1) Comparison with other AEs: Firstly, we compared the
performance of various AE models. Results obtained from the
comparison of different AEs on the X-IIOTID dataset with
the proposed approach are described in Table IV. The table
provides insights into the communication rounds required for
training the AEs and the corresponding AE loss for both attack
and normal traffic.

TABLE IV
COMPARISON OF DIFFERENT AES ON X-IIOTID DATASET

Type Comm.Rounds
AE Loss

attack data normal data

Multilayered AE

2 0.000463 0.000401
4 0.000421 0.000353
6 0.000398 0.000330
8 0.000382 0.000315
10 0.000370 0.000305

Singlelayered AE

2 0.002962 0.003452
4 0.002465 0.002992
6 0.002237 0.002774
8 0.002094 0.002638
10 0.001993 0.002541

Sparse AE

2 0.001134 0.001195
4 0.000949 0.000985
6 0.000866 0.000890
8 0.000825 0.000831
10 0.000780 0.000789

Variational AE

2 0.002384 0.002950
4 0.001470 0.001628
6 0.001176 0.001249
8 0.001022 0.001060
10 0.000925 0.000944

For the multilayered AE, it can be observed that for the
number of communication rounds from 2 to 10, the AE loss
decreases gradually for both attack and normal data. The
lowest AE loss values achieved for attack and normal data
are 0.000370 and 0.000305, respectively, at 10 communication

rounds. Similar trends can be observed in the case of the
single-layered AE, sparse AE, and variational AE, where
increasing the number of communication rounds results in a
decrease in AE loss. However, the AE loss values are higher
for all the other AEs in comparison to the multilayered AE.

Thus it can be concluded from the results that the Multilay-
ered AE demonstrates the lowest AE loss values among all the
AEs considered in this comparison for both attack and normal
traffic. Therefore, we used multilayered AEs in the proposed
approach.

2) Comparison of one-class SVM used in proposed frame-
work with other one class classifiers models: This section
compares the performance of the opted classifier (one-class
SVM) for the proposed approach with other one-class classi-
fiers. The other one-class classifiers considered are; Isolation
Forest (IF), Gaussian Mixture Model (GMM), Local Outlier
Factor (LOF), and Elliptic Envelope (EE).

The results of the classification performance for different
classifiers are presented in the given Figure 3 depicting the
accuracy, detection rate, and F1-score for each classifier.

Fig. 3. Comparison of one-class SVM in proposed framework with other
one-class classifiers

The proposed classifier achieves an accuracy of 99.328%, a
detection rate of 99.668%, and an F1-score of 99.844% indi-
cating that the one-class SVM used in the proposed framework
performs exceptionally well in accurately classifying the data,
detecting known and unknown (zero-day) traffic, with high
F1-score.

The IF classifier performs poorly, while the GMM, LOF,
and EE classifiers achieve varying degrees of effectiveness in
identifying zero-day attacks in the dataset. However, the one-
class SVM classifier exhibits the highest accuracy, detection
rate, and F1-score, indicating its superior performance in zero-
day attack detection compared to the other classifiers. Hence,
the one-class SVM is chosen for the proposed approach.

3) Comparison of the proposed framework with DL-based
FL models: Table VI presents the performance compari-
son of different DL models, including MLP, CNN, GRU,
CNN + GRU hybrid model, and the proposed model with
Table V describing their respective parameters. The results
demonstrate that CNN, while effective in capturing spatial
patterns, falls short when dealing with sequential information,
as evident through the superior performance of the CNN +
GRU hybrid system. On the other hand, the GRU model’s
limitations in handling spatial patterns are compensated by
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TABLE V
COMPARISON MODELS PARAMETERS

MLP Number of dense layers = 2,
number of neurons = (128,128),
activation function = (Relu, Relu),
optimizer=adam, loss = binary crossentropy

GRU Number of GRU layers = 2,
number of neurons = (128,108),
activation function = (tanh,tanh),
optimizer=adam, loss = binary crossentropy

CNN Number of CNN layers = 2,
number of filters = (128,128),
kernel size = 3,
1 flatten layer,
activation function = (Relu, Relu),
optimizer=adam, loss = binary crossentropy

CNN + GRU Number of CNN layers = 2,
number of filters = (128,128),
kernel size = 3,
1 flatten layer,
activation functions of CNN layers = (Relu, Relu),
number of GRU layers = 2,
number of neurons in GRU layers = (128,108),
activation function of GRU layers = (tanh,tanh)
optimizer=adam, loss = binary crossentropy

the CNN component of the hybrid model. Zero-day attacks
are typically designed to exploit vulnerabilities that are not
known to security experts or database systems. Since these
models learn from historical data and have not encountered
zero-day attack patterns, they lack the ability to detect zero-
day attacks effectively. This concept of learning provides
them the ability to easily handle and learn the known attack
patterns but falls short in case of unknown attacks. Moreover,
the proposed approach aims to understand the attack and
normal patterns separately therefore they are rendered more
power to understand the difference between normal and attack
patterns. Table VI demonstrates that the proposed approach
significantly outperforms all individual models, including the
hybrid CNN + GRU model, across all evaluation metrics. It
attains an outstanding accuracy of 99.32%, a detection rate of
99.69%, and an F1-score of 99.84%. These exceptional results
suggest that the proposed approach has successfully addressed
the challenge of zero-day attack detection and demonstrates
remarkable capabilities in accurately classifying it.

TABLE VI
COMPARISON OF PROPOSED WITH DL-BASED FL MODELS

Type Accuracy Detection Rate F1-score

MLP 75.557 64.371 76.029
CNN 79.469 70.873 80.610
GRU 42.439 38.060 44.308

CNN + GRU 85.761 77.737 86.799
Proposed 99.328 99.688 99.844

4) Comparison of the proposed approach with one class
classifiers in centralized settings: Here the proposed approach
is compared with one-class classifiers such as SVM, IF, LOF,
EE when applied to the centralized settings where all data
is located in one place. As shown in Figure 4 The proposed
framework demonstrates the highest accuracy, detection rate,
and F1-score among all evaluated classifiers, indicating its

superior performance in detecting known and unknown at-
tacks. Moreover, all the other one-class classifier, evaluated
on centralized data lags behind the proposed model. However,
in centralized settings data privacy is always a concern which
is also addressed in the proposed approach while utilizing the
FL-based framework.

Fig. 4. Comparison of the proposed framework with other one-class classifiers

Fig. 5. Comparison of the proposed framework with traditional ML classifiers

5) Comparison with ML models at individual client: This
section analyzes the effectiveness of the proposed approach in
comparison to traditional ML-based techniques for zero-day
attack detection. Figure 5 represents the significant difference
between the proposed framework and the other ML models
in terms of accuracy, showing that the proposed framework
outperforms other traditional models with the given dataset.
Similar to accuracy, the proposed approach demonstrates the
highest detection rate. The high detection rate of the proposed
approach indicates its ability to effectively identify zero-
day attack instances, making it a promising choice for the
application at hand in comparison to traditional ML solutions.

6) Comparison with DL models at individual client: Com-
parison the performance of the proposed approach with other
DL models at individual client level as shown in Figure 6.
The proposed model achieves exceptional performance with
an accuracy of 99.32%, detection rate of 99.69%, and F1-
score of 99.84%, showcasing its superior ability to accurately
classify instances and detect anomalies. The MLP, GRU,
and CNN models also perform well, achieving accuracies
of 87.66%, 87.87%, and 87.72%, respectively. In conclusion,
the proposed model outperforms all other models, exhibiting
the highest performance across all metrics, while the MLP,

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3335385

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

TABLE VII
SERVER SIDE SCALABILITY ANALYSIS IN TERMS OF MEMORY CONSUMPTION AND TIME

Type Number of
Client

Average Memory
consumption
per client in FL
process (in MB)

Average Memory
consumption in
overall FL process
(in MB)

Overall time take
in FL process (in
sec)

Time taken per
epoch per client
in FL process (in
sec)

normal

2 1814.565 3622.273 163.579 7
5 1783.715 8918.577 176.256 3

10 1776.471 17764.712 186.401 3
15 937.809 14067.139 203.705 2
20 1206.069 24121.373 250.181 1

attack

2 1858.528 3717.0586 178.5503 9
5 1936.666 9683.329 166.6853 3

10 1809.352 18093.515 198.4784 2
15 1853.859 27807.838 236.979 1
20 1876.939 37538.783 249.272 1

Fig. 6. Comparison of the proposed model with DL classifiers

GRU, and CNN models also achieve high performance in the
classification task.

7) Scalability Analysis: This section outlays the concept of
scalability with our proposed framework. It displays various
results of the proposed framework, analyzing it with multiple
clients. Moreover, it provides insights into the time taken and
memory consumption with varying numbers of clients.

Table VII shows results for five different scenarios, by
varying the number of clients as 2, 5, 10, 15, and 20 to show
the effect of scalability on the proposed approach. The met-
rics include average memory consumption per client ranging
from 937.809 MB to 1814.565 MB for normal scenarios and
1089.352 MB to 1936.666 MB for attack scenarios. Overall
memory consumption for the FL process ranges from 3622.273
MB to 24121.373 MB for the normal scenario and 9683.329
MB to 37538.783 MB for the attack scenario. Moreover, the
overall time taken for the complete FL process ranges from
163.579 seconds to 250.181 seconds for the normal scenario
and 166.6853 seconds to 249.272 seconds for the attack
scenario. The time taken per epoch per client ranges from 1
to 7 seconds for the normal scenario and 1 to 9 for the attack
scenario. These numbers provide a comprehensive overview
of how server-side performance metrics change with varying
client numbers in the FL process for different scenarios.
Thus, from the above results it is observed that even with an
increased number of clients (more connected IoT devices), the
proposed approach is able to deal with them without adding

much complexity and resource consumption to the system.

V. CONCLUSION

In conclusion, our research introduces an innovative ap-
proach to enhance cybersecurity defenses against zero-day
attacks and address data imbalance within the context of a
5G network. The proposed framework, which leverages a
dual Autoencoder (AE) model-enabled Federated Learning
(FL) system, has yielded remarkable results. It achieved an
exceptional accuracy rate of 99.32%, a detection rate of
99.69%, and an F1-score of 99.84%. These results clearly
surpass the performance of traditional models and hybrid
architectures, underscoring the framework’s effectiveness in
accurately identifying and classifying zero-day attacks. More-
over, the incorporation of separate AEs during training signif-
icantly improved the handling of data imbalance, particularly
benefiting underrepresented classes.

Furthermore, our adoption of the dual model FL frame-
work facilitated efficient collaboration and knowledge shar-
ing among distributed nodes, leading to enhanced model
generalization and scalability. These outcomes collectively
establish our approach as a robust and promising solution
to bolster cybersecurity defenses in the face of dynamic and
evolving threats in real-world scenarios. Nevertheless, it is
important to acknowledge that this approach does introduce
increased complexity and computation costs. In our forthcom-
ing research efforts, we intend to focus on optimizing the
FL process and explore its applicability in various domains,
continuing to push the boundaries of advanced threat detection
and data handling techniques. Concurrently, we will explore
the practical viability and implementation of integrating edge
computing with deep learning to harness edge intelligence
within intrusion detection systems, addressing the need for
real-world applicability and optimization.
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