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Abstract—Non-Intrusive Load Monitoring describes the pro-
cess of analyzing the aggregate household energy consumption
to infer the individual energy consumption patterns of different
appliances. Although NILM research has led to substantial
progress as regards the performance of deep learning models,
these models require exhaustive resources for the training phase
and, due to their computational demand, are not well suited for
deployment on edge devices with limited resources. NILM appli-
cations on low-resource devices enhance user adoption, opening
up new energy market prospects. Although there has been some
work toward edge-computed NILM, the proposed compression
frameworks provide a solution only for the deployment phase
since they are applied to the already trained models. This
study presents OPT-NILM, a novel pruning strategy to discover
sub-optimal NILM neural networks before full training, which
reduces computing costs for both testing and training phase, and
improves disaggregation performance compared to conventional
after-training pruning. OPT-NILM proposes a metric to find the
appropriate pruning threshold by evenly valuing model perfor-
mance and computing cost, unlike other approaches that apply
compression arbitrarily. Experimental results on the UK-Dale
dataset show that the OPT-NILM approach may reduce model
trainable parameters by up to 95% with minimal performance
loss.

Index Terms—Edge computing, Non-Intrusive Load Monitor-
ing, Pruning, Optimization, Resource Management

I. INTRODUCTION

Electricity load monitoring for appliances is a significant
task in light of current economic and ecological trends. It
complements home energy management systems (HEMSs)
and ambient assisted living (AAL) technologies, contributing
to efficient and cost-effective energy management [1], [2].
Additionally, electricity load monitoring serves as a tool for
detecting malfunctioning appliances, such as identifying issues
like frosting cycles in fridges with damaged seals, among other
possibilities. Promoting sustainable living requires household-
ers to adopt energy-related behavior changes. Energy moni-
toring plays a pivotal role in effective energy management by
enabling the monitoring of power consumption of individual
appliances, thus informing the planning of technical measures
to minimize energy usage. Energy disaggregation techniques
can be leveraged to enable granular monitoring of power
consumption at the appliance level.

Non-Intrusive Load Monitoring (NILM) or energy disaggre-
gation algorithms aim to infer the energy consumption patterns
of domestic appliances by decomposing the aggregated house-
hold energy consumption signal into the individual power

signals of its corresponding appliances [3]. Recently, there
is a significant number of publications for NILM using deep
learning models ([4], [5], [6]). Due to many limitations, NILM
approaches have not been widely used in households despite
the interest from the industry. Specifically, the training process
of such NILM models requires a lot of computational power
and resources, so they cannot be deployed on the user side,
i.e., on the edge. Instead, they require central servers or cloud
computing infrastructures, which increase the cost and energy
of running such a service. The current concept implies data
transfer between the data source and a central server, which
creates privacy problems and data storage costs [7]. Deploying
deep learning algorithms on the edge - at consumers’ homes
equipped with smart meters and low-power devices - could
be a viable solution. In order to make this transition from
central data processing to user-side energy disaggregation,
many different edge-NILM solutions have been proposed. The
main goal of all these solutions is to compress and optimize
the models’ structures to be able to operate with limited
computational resources. One of the most common techniques
used for NILM model compression is pruning [8], [9].

Pruning is a technique in deep learning that aids in the
development of smaller and more efficient neural networks
by eliminating unnecessary values in the final trained models’
weight tensors based on their contribution to their predictions.
The weights and neurons contributions can be determined by
local measures such as their magnitude and L1-norm [10].
However, the existing compression frameworks share the basic
limitation that they are being applied to a fully trained model,
and they cannot be executed before full training. Thus, the
proposed edge-NILM solutions do not solve the core issues
of central data processing in the sense that the network has to
initially be fully trained centrally by allocating all the demands
of the central server and cloud computing infrastructures. As
a result, current compression schemes only provide a solution
to the testing phase of NILM algorithms on the edge, which
is the least computationally heavy task of the whole process.
However, in the machine learning community, there is an
increasing interest in a new training trend according to which
we achieve training acceleration that embraces the promising
training-on-the-edge paradigm.

Here, we propose a prior-to-full-training NILM compression
scheme, which allows for the identification of optimal sub-
deep NILM networks without first requiring full training of
the selected model. Following such a scheme would aid in
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dealing with central data processing issues and NILM real-
world deployment since we are able to identify efficient sub-
NILM models at their initialization stage, eliminating the
training resources and creating efficient, lightweight models
that would be able to run in limited resource devices. While the
training phase of our framework necessitates data transmission
to a central node in order to train the identified sub-network,
it’s essential to underscore that since the deployment is taking
place in houses not included in the training set, the testing
phase functions without any subsequent data transmission. All
inferencing occurs directly on the edge side, bolstering data
privacy and promoting user adoption, given that there’s no
necessity for users to dispatch their consumption data to an
external entity.

Fig. 1. The comparison of the conventional pruning process (upper) and the
proposed OPT-NILM (lower).

These pruned models will be trained using fewer compu-
tational resources than the corresponding uncompressed ones
and at the same time tested on the edge, utilizing the user’s
limited resource devices. The main goal of the OPT-NILM is
to provide such a framework to optimally identify sub-deep
networks before training for a cost-effective user-side NILM.
The main contribution of this work is summarized below:
• Proposing a computationally efficient before-full-

training pruning scheme for edge computed NILM.
In contrast with the conventional pruning approaches, the
proposed approach identifies optimal sub-deep NILM net-
works prior to full training. The proposed framework not
only identifies sub-deep-neural-network structures that can
be easily deployed in a limited resource device, but it
also reduces the computational resources needed for the
training phase of the NILM models promoting the real-world
deployment and adoption of NILM applications.

• OPT-NILM identifies optimal sub-networks that achieve
better disaggregation performance compared to the
conventional after-training pruning schemes. Deep neu-
ral networks (DNN) are known to be over-parameterized.
Thus, a trained DNN for NILM contains many ineffectual
parameters that can be safely pruned or zeroed out with
a small or no effect on its performance. In our scheme,
where these parameters are pruned before the full training,
our sub-deep neural network structures are less overparam-
eterized during the full training, reducing the computational
resources needed and preserving a better trade-off between
disaggregation performance and reduction in the number of
trainable parameters.

• Proposing a model optimization metric to determine
the ideal balance between the model’s disaggregation
performance and compression. In NILM applications,
the trade-off between accuracy and efficiency is critical.
Assuming that we set a high pruning percentage, this results
in a significant accuracy drop since the pruned model will
not have enough representation power. OPT-NILM is both
a resource-efficient and performance-effective technique and
introduces an objective model optimization metric for NILM
that describes the trade-off between the performance and the
model complexity by equally weighting both these factors.

Although the proposed prior-to-full training pruning scheme
was inspired by the [11], this work is a pioneering application
within the NILM domain. Additionally, this study offers a
comprehensive comparison to other compression methods and
introduces a novel metric tailored to the unique needs of
NILM. From a technical standpoint, the primary contribution
of this paper is the introduction of a cost-effective and in-
teroperable deployment strategy for the proposed OPT-NILM
inference phase. Our solution is anchored on a Raspberry
Pi device and leverages the Z-Wave communication protocol.
Originally developed for use in connected home technology,
this protocol ensures reliable and robust data transmission
between monitored devices and their respective gateways [12].
The paper is structured as follows: Section 2 covers the
background on low-frequency NILM with deep learning and
compression methods. Section 3 delves into NILM problem
formulation and its deep neural network modeling. The pro-
posed solution is detailed in Section 4, while Sections 5 and 6
present and discuss results. Section 7 concludes and outlines
future directions.

II. RELATED WORK

In this section, we provide a brief background on deep
learning energy disaggregation approaches and a review of
the compression approaches used in deep learning, as well as
in deep-NILM models specifically.

A. Deep Learning Models for NILM

Deep learning has achieved enormous success in domains
such as natural language processing, time-series analysis, and
computer vision [13]. Over the last few years, numerous
deep learning approaches have been proposed for NILM
as it has been proved that they achieve a superior perfor-
mance [14], including Convolutional neural networks (CNN),
recurrent neural networks (RNN), long short-term memory
(LSTM), bidirectional (bi)LSTM, gated recurrent unit (GRU)
- (bi)GRU, and Transformer models [3]. RNN approaches,
such as LSTM and GRU, use feedback connections to capture
temporal dependencies within the power signals [15]. Both
LSTM and GRU architectures have been widely proposed in
NILM [16], [17] since they converge fast and provide a good
disaggregation performance. CNN-based architectures capture
long-range temporal dependencies in time-series data, making
them a successful NILM technique [18]. This strategy re-
quires large model depth and extensive filters, which increases
computational complexity. NILM techniques like [19] propose
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hybrid recurrent-convolutional architectures, benefiting from
the advantages of both types of layers. Transformer-based
architectures have become another widespread approach for
NILM [15], [20], [21] due to their ability to adopt self-
attention mechanism and process data in an order-invariant
way. However, all the aforementioned deep learning NILM ap-
proaches suffer from computational complexity issues, which
increase the training cost and limit their applicability in a real-
world deployment on edge.

B. DNN Compression Methods for NILM

Recent developments have driven the adoption of NILM
and related energy applications on edge devices. The basic
reason for that is that deploying such applications on the edge
eliminates the need to transfer data between the users and a
central data source, addressing the challenges tied to central
data processing and privacy. The landscape of research in edge
computed NILM is broad and includes different approaches,
from deep learning models on edge devices [8], [9], [22]–[24]
to feature extraction [25]–[27], federated learning [28] and
hardware-specific optimizations such as Field-Programmable
Gate Arrays (FPGAs) [29] and e-Sense device [30]. Since
NILM research has mainly been traversed to deep learning
techniques, there is a growing interest in works that deal
with NILM inference on edge devices to be deployed as
part of Home Energy Management Systems [31]. This trend
significantly influenced our decision in this paper to delve
deeper into the realm of deploying deep learning architec-
tures on resource-constrained devices and explore the existing
and new compression methodologies. However, research on
compression methodologies on edge-computed NILM models
remains limited. In [9], multiple pruning techniques, including
magnitude, relative threshold, and entropy-based pruning, are
being investigated and applied on NILM CNN sequence-to-
point (seq2point) proposed in [23]. These methods are tested
on the kettle and dishwasher appliances from the Refit dataset
[32]. The application of a quantization approach has also been
proposed in [24]. In this work, the same seq2point CNN
architecture is being modified from 32-bit float to 8-bit integer
model weights. [8] proposes a model compression scheme of
a multi-class seq2point CNN using pruning and tensor decom-
position. This approach is evaluated on 3 different appliances
from UK-DALE, and REDD datasets [33], [34]. In [35], a
performance-aware NILM compression technique is proposed,
incorporating an after-pruning approach (PAOP) and an after-
pruning approach combined with quantization (PAOPQ) tested
across four different architectures. Lastly, in [28], the authors
introduced a cloud model compression technique suitable for
edge implementation of FedNILM. This was achieved by
employing filter pruning within the convolutional layers of
the chosen deep-learning model. Although the aforementioned
works lead the way toward edge inference in NILM, they
provide some significant limitations. The basic drawback of
these approaches is that the existing compression schemes
are applied to already trained models. Thus, the proposed
approaches do not overcome the issues raised by the high
computational demand of the training phase and provide a

solution only for the testing phase of the NILM models.
Another limitation is that [8],[24] and [9] are being employed
in a seq2point CNN architecture, which is a computationally
inefficient approach since it provides only a midpoint predic-
tion for each window. Since seq2point models are trained to
predict the output signal only at the midpoint of the window,
they employ a sliding window approach to construct the
entire consumption signal, which increases the number of
forward passes and, consequently, the computational resources
required for inference compared to seq2seq models that predict
the entire sequence at once [23]. Finally, in both [9], and
[8], compression is applied in an arbitrary way, and there
is no framework that evaluates the trade-off between model
complexity and performance degradation to define the optimal
pruning level.

III. PROBLEM FORMULATION

This section presents NILM problem formulation as well
as its modeling using deep neural networks. It also discusses
some deep learning-related issues that hinder the real word
edge deployment of such an application.

A. NILM Problem Formulation

The concept of non-intrusive load monitoring was first
introduced by George W. Hart in 1992 [36]. According to their
proposed problem formulation, the aggregate active power of
a number of measured appliances m = 1, . . . ,M at time
t = 1, . . . , T can be formally defined as:

x(t) =

M∑
m=1

ym(t) + ϵnoise(t), (1)

where ym(t) expresses the power consumption of the m-th
appliance and ϵnoise(t) describes the noise originating from
the measurement equipment and the appliances that are not
sub-metered during the measurement campaign. [14]. The goal
of energy disaggregation is to solve the inverse problem in (1)
and determine the individual consumption ym(t) of a selected
appliance m at time t based exclusively on the measurement
of the aggregate signal x(t).

NILM is considered as a very challenging problem, as
power signals do not present any linearity, and the use of
each appliance depends on the contextual characteristics of
each household. The diverse energy consumption patterns
make the implementation of robust NILM algorithms with
good generalization behavior even more challenging. Finally,
another challenge that NILM models should deal with is the
dataset imbalance since every appliance is used with different
frequencies and duration.

B. Deep Learning Modelling of NILM

Deep learning for NILM was first introduced in 2015 by
Jack Kelly, with major progress on disaggregation perfor-
mance and generalization capability compared to conventional
approaches such as [4], [5]. Solving energy disaggregation
using deep neural networks is translated into a non-convex
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optimization problem. Specifically, learning in deep neural net-
works describes the process of calculating the weights of the
parameters associated with the various regressions throughout
the network. In order to find the parameters that give the best
approximation, an objective is needed. Assuming a training set
of v = 1, . . . , V values, the objective function J(·) quantifies
the distance between the ground truth consumption values, yn,
and the predicted ones, ŷn, as:

J(θ) =
1

2

V∑
v=1

L(ŷv, yv) (2)

where θ are the model parameters (or weights) and L(·) is
the cost function. Note that in (2) we omit the subscript
m as we describe the optimization function of a single
device. The minimization process of J(·) takes place through
the back-propagation step [37], where gradient descent is
applied to update the parameters of the model. Deep neural
networks are universal function approximators that are capable
of approximating very complicated functions. However, the
trade-off of this capability is the number of neurons needed.
Specifically, in order to approximate a non-convex function,
as it is needed to do in NILM, which is considered a very
challenging problem, it requires to use of high-complexity
deep learning models with many parameters [38]. Although
these models are considered as state-of-the-art approaches
toward NILM, they increase the computational complexity and
resources required to tackle this problem.

IV. METHODOLOGY

In this part, we describe the suggested OPT-NILM compres-
sion strategy as well as the standard after-training magnitude
pruning, which has already been employed in [8] [9] as a
way to reduce the complexity of NILM deep learning models
towards edge inference. In addition, we discuss the methods
and benefits of the suggested scheme, highlighting its key
contributions to the acceptance and implementation of an edge
NILM application in the real world. Lastly, we define a trade-
off metric for approximating the optimal pruning threshold in
relation to the model’s performance.

A. Magnitude Pruning

One of the most common methodologies for optimizing
DNN structures is magnitude pruning. The origin of idea of
pruning in artificial neural networks derives from synaptic
pruning in the human brain, where axons and dendrites decay
and die off, resulting in synapse elimination that occurs
between early childhood and the onset of puberty [39]. In
analogy, deep learning pruning removes redundant parameters
or neurons that do not significantly contribute to the model’s
predictions. Subsequently, model pruning is a technique that
reduces the number of the model’s weights, θ ∈ RK , to a
lower dimensional representation, θ̂ ∈ RK̂ in which K̂ < K,
by removing non-informative model connections.

Many deep-learning pruning variations have been proposed.
Specifically, pruning can either be applied after training or
iteratively during the training process [40] [41]. The removal

of connections is performed either in an unstructured way by
eliminating specific weights from each layer or in a structured
one by removing larger structures such as neurons or convo-
lutional filters [42]–[45]. Finally, pruning approaches remove
weights based on different metrics such as weights magnitude,
gradients magnitude, layer-wise mutual information, or learned
threshold via gradient descent [44], [46], [47].

In this work, we implement a post-training pruning based on
L1-norm metric as a baseline approach since it has also been
used for edge computed NILM in [8] [9]. This approach re-
moves the model’s connections with the smallest contribution
to its output according to a specified threshold pthrs. Given
a dataset D = {(x(t), ym(t))}Tt=1 corresponding to a time
window t = 1, . . . , T of measured signal powers and a desired
sparsity level pthrs (i.e. the percentage of removed parameters)
neural network structural pruning can be formulated as the
following constrained optimization problem:

min
θ0∈RN

L(D; θ0)

s.t. ∥θ0∥1 ≤ pthrs
(3)

Here, L(·) is the defined loss function, θ0 are the initial
weight values and ∥·∥1 is the standard L1-norm. Thus, after
magnitude pruning, the pruned model would only keep the
weights with the highest (1 − pthrs)% while the rest will be
discarded.

B. OPT-NILM approach

Magnitude pruning removes a percentage of a model’s
lowest L1-norm connections according to a specified pthrs.
However, the whole pruning procedure is being applied to an
already trained model, meaning that excessive computational
resources and data transmission to a central server are required
for the training process. The proposed OPT-NILM pruning
approach, which deals with the aforementioned limitations, is
mainly inspired by the Lottery Ticket Hypothesis paper [11].
According to this work, a randomly-initialized neural network
contains a sub-network that is initialized such that - when
trained in isolation - it can match the test set accuracy of the
original network after training for at most the same number
of iterations. The key characteristic of this approach is that
pruning is being performed before full training rather than
after training, as it is proposed in the existing edge NILM
frameworks. Based on this idea, our proposed prior-to-full
training pruning technique prunes the NILM networks at the
initialization stage. The first step of the proposed approach is
to initialize the NILM neural network and train it for a couple
of iterations while also keeping track of its initial weights
parameters θ0. In contrast with full training, where the model
should become as accurate as possible, in this stage, we are
trying to determine which of the initialized parameters lends
themselves to the task. In order to achieve this, the model
should only be trained for a couple of iterations, which are
significantly less compared to the full training. Subsequently,
this slightly trained model is pruned using the same techniques
that are used to prune a fully trained model. In this work, the
L1-norm pruning technique is used to remove the parameters
which are not helpful to the task. Since the model is not trained
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for a long time this technique gives an indication of not only
the current parameters but also of their initialization. Thus, if a
parameter is currently ineffective, its initialization is probably
not part of the optimal sub-network. The final step is to reset
the parameters that were not pruned back to their initialization
θ0.

The process of training, pruning, and resetting is repeated
for N̂ ≪ N , where N̂ stands for the epochs of the pretraining
cycle and N stands for the epochs of the full training till
the desired pruning level has been achieved. Once the optimal
sub-network has been found, this network can be trained fully.
Figure 2 provides a visual illustration of the process described
above.

Fig. 2. Overview of the OPT-NILM pruning scheme. Steps 2,3 and 4 consist
the pre-training process of finding the optimal sub-networks, and they are
repeated till the desired pruning level has been achieved..

From a more mathematical perspective, let f(x(t)Tt=1; θ0)
be a deep neural network with initial parameters θ0. The
procedure of the pretraining process is as follows: initially,
the network is trained for n̂ = 1, . . . , N̂ iterations until the
fist desired θTr

1 is obtained, where the superscript Tr denotes
the training state. This can be described as:

Train : θTr
n̂ = Ftrain

(
θRst
n̂−1

)
, (4)

where Ftrain(·) is a function describing the training procedure
of the network and θ

(Rst)
n̂−1 are weights obtained from the

network after the reset state. Afterwards, p1/n̂thrs % of smallest
magnitude weights are being pruned by applying a binary
mask µ ∈ {0, 1}K such that its initialization is θPr

1 = µ1⊙θTr
1 ,

where ⊙ denotes the Hadamard (point-wise) multiplication.
This is described as:

Prune : θPr
n̂ = µn̂ ⊙ θTr

n̂ , (5)

where θPr
n̂ are weights obtained from the network after pruning.

Then, the remaining weights are reset back to θ0 as

Reset : θRst
n̂ = Frst(θ0, θ

Pr
n̂ ), (6)

where Frst(·) is a function that replaces the non-zero index
values of the pruned network with those of θ0. Note that the
above described process is repeated for all the N̂ epochs. The
identified optimal sub-network f(x(t)Tt=1; θ̂) could then be
fully trained, employing much fewer computational resources

compared to the original uncompressed model. The proposed
OPT-NILM pruning scheme is compactly described in the
Algorithm (1).

Algorithm 1 OPT-NILM Compression Scheme
Initialize a neural network f(x(t)Tt=1; θ0)
while n̂ <= N̂ do
• Train the network for 1 epoch to obtain θTr

n̂

• Prune p
1/n̂
thrs% of the θTr

n̂ by creating a binary mask µn̂

• Reset the remaining weights back to θ0, Frst(θ0, θ
Pr
n̂ )

end while
Fully train the obtained sub-network f(x(t)Tt=1; θ̂)

The proposed pre-training process is able to find optimal
computational light sub-networks that could be deployed on
a limited resource device and trained using much fewer
computational resources, providing a cost-effective embedded
NILM solution for the consumers. Furthermore, experimental
results show that the proposed OPT-NILM scheme manages
to achieve better performance by identifying even smaller sub-
deep NILM networks than the conventional pruning scheme.
Last but not least, this approach could increase the efficiency
and enhance the design of the network by providing infor-
mation about what an optimal sub-network architecture would
look like in terms of layers’ importance and the number of
initial parameters.

C. Optimal pruning threshold estimation

A basic limitation of the aforementioned works on NILM
compression is that p̂optthrs is selected in an arbitrary way
without taking into account the performance of the models.
This paper proposes a metric that fills this gap and identifies
the optimal pruning threshold p̂optthrs for NILM models by
equally weighting the trade-off between model complexity and
disaggregation performance. This metric incorporates both the
performance degradation of the pruned model as well as the
gain in terms of parameter reduction. The metric that is being
used to find the p̂optthrs is the F1-score as presented in (7).

F1 =
TP

TP + 1
2 (FP + FN)

(7)

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity (%)

0.2

0.4

0.6

0.8

1.0

F1
 (

%
)

ideal point

optimal point

Magnitude Pruning

Sparsity - F1 Performance Tradeoff Example

Fig. 3. Example of the proposed trade-off metric. The blue dot denotes the
ideal point (sparsity=1.0, F1 = 1 while the orange dot denotes the optimal
point of the performance-sparsity curve.
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where TP, FP and FN stand for the True Positive, False Positive
and False Negative classified time instances in the predicted
signature. The reason that F1-score was the selected measure
for evaluating the disaggregation performance of the pruning-
performance trade-off metric is its ability to assess if the model
can properly identify the appliances’ activations and address
the class imbalance problem of NILM.

Pruning results are presented as an achieved performance
against the pruning percentage with values pthrs ∈ (0, 0.95).
The optimal point of such a curve is computed as the point
that has the minimal Euclidean distance from the ’ideal’ points
and whose coordinates are F1-score equal to 1 and pruning
percentage equal to 1. This metric using:

p̂optthrs = arg min
pthrs∈(0,0.95)

(dist (F1, pthrs)) (8)

and
dist(F1, pi) =

√
(1− F1)2 + (1− pi)2 (9)

where pi ∈ (0, 0.95). A visual representation of the proposed
trade-off metric is depicted in Figure 3.

Utilizing the performance-sparsity trade-off metric, we are
now able to identify the optimal pruning threshold of each
pruning technique and use it as a baseline to compare the
conventional NILM magnitude pruning with the proposed
before-full training NILM pruning scheme. Although different
trade-off metrics, such as the performance-sparsity rate of
change, could have been used to select the optimal pruning
level, the major advantage of the proposed metric is that since
the performance and the sparsity axis are in the same scale,
it equally weights the performance and the model complexity
factors concluding to a fair trade-off metric.

D. Deployment of OPT-NILM to consumer’s side

The objective of this paper is to introduce a cutting-edge and
cost-effective framework for NILM compression. However, to
ensure practical usability and consumer benefits, a deployment
scenario is essential. In this regard, we propose a decentral-
ized solution that eliminates data transmission requirements
for the inference phase and addresses privacy concerns of
the consumers. The developed solution is based on the Z-
wave communication protocol, which is ideal for smart home
solutions due to its ability to create a mesh network topology,
which allows devices to communicate with each other ensuring
the reliability and stability of the network as well as better
coverage and communication range [7], [48].

To implement our solution, several integral components are
employed. We utilize a Z-Wave energy meter, specifically the
Aeotec Home Energy Meter Gen 5 [49], which is capable of
recording up to 200 amps with an impressive 99% accuracy,
in order to monitor and transmit the aggregated consumption
data to the OPT-NILM inference service. As a gateway to
collect this data and execute the OPT-NILM inference service,
the Raspberry Pi Model 4 [50] was used, due to its cost-
efficiency, compact design for easy installation, and compe-
tency in facilitating Z-Wave communication using the Z-Wave
daughter card [51] To ensure users can conveniently access the
appliance-level consumption predictions while safeguarding

data security, we’ve set up a local host web service, negating
the need for transmitting data externally. A comprehensive
visual layout of the proposed OPT-NILM inference deploy-
ment strategy is depicted in Figure 4. The proposed solution
comprises four distinct services all developed and deployed
on the edge side. These services are tasked with gathering the
aggregate consumption data and producing the disaggregated
results.

Fig. 4. Proposed deployment architecture based on Z-wave communication
protocol.

• Z-Wave JS: This is an open-source dockerized service that
interfaces with the aggregate consumption smart meter via
the Z-Wave protocol. It then transmits the collected data to
the Z-Wave service through the MQTT (Message Queuing
Telemetry Transport) protocol.

• Z-Wave service: This custom service receives the collected
data from the Z-Wave JS UI via the MQTT protocol, and
subsequently forwards it to the DataBroker service through
an API (Application Programming Interface).

• Data-broker service: This service is responsible for receiv-
ing the data collected by the Z-Wave service and communi-
cates with a local PostgreSQL database. Additionally, the
Data-Broker service is tasked with updating (saving and
deleting) the collected data in the existing database.

• OPT NILM inference service: This service is deployed in a
Docker container that runs continuously on the edge device.
This service communicates directly with the PostgreSQL
database at specified intervals to generate the disaggrega-
tion results that they will visualised through the developed
localhost web service.

The demonstrated deployment scenario underscores the
practical applicability of our OPT-NILM approach, illustrating
its real-world operation. This strategy addresses privacy con-
cerns by keeping all data transmissions confined to the user’s
side, eliminating the need for external exchanges during the
whole inference phase.
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V. EXPERIMENTAL SETUP

In this section, we give details related to the experimental
setup. Specifically, we give a brief description of the dataset,
the selected evaluation metrics as well as the seq2seq model
architecture that was used to run our experiments and assess
the performance of the proposed pruning scheme.

A. Dataset

A publicly available electrical load measurement dataset -
UK-DALE [33] was used to showcase the proposed pruning
methodology. UK-Dale consists of aggregate consumption and
appliance-level energy consumption measurements from five
different houses in the United Kingdom.The dataset was built
at the sample rate of 1 Hz or one measurement per second
for whole-house and 1/6 Hz or one measurement every six
seconds for individual appliance consumption.UK-Dale has
been widely used for bench-marking NILM algorithms as
it is one of the first open-access datasets at this temporal
resolution. In this paper, the appliances used to evaluate and
test our algorithms include the kettle, the dishwasher, the
washing machine, and the fridge due to their high frequency
of use, high consumption, and presence in most houses.
Furthermore, another reason for selecting these devices is their
different consumption patterns, as the kettle provides an on-
off consumption signal, the dishwasher and washing machine
have different operational states, leading to a more complicated
consumption pattern, and the fridge operates continuously. The
aggregate signal was resampled to match the frequency of
the appliance-level signals at 1/6 Hz.The models were trained
using the data from houses 1,3,4 and 5, and they were tested
on unseen data from house 2.

B. Model architecture

To evaluate and test the proposed prior-to-full training
pruning scheme, we conducted experiments using a seq2seq
CNN model. The model’s architecture was inspired by the
seq2point CNN, which was proposed in [23], and it was also
used by the aforementioned NILM compression approaches.
The basic reason that we decided to modify this architecture
and use a seq2seq model is that seq2point models are less
computationally efficient since they produce only one time-
point prediction instead of whole windows requiring much
more forwards-pass iterations. The proposed model architec-
ture employs 5 1-D convolutional layers with rectified linear
activation functions (ReLU) followed by two linear layers with

Fig. 5. The proposed CNN seq2seq architecture. The values in CNN layers
represents (in channels,out channels,kernel size) while the values in linear
layers represents (in features,out features).

ReLU and Sigmoid activations correspondingly. The CNN
architecture is shown in Figure 5. The foundational model
outlined possesses 22,146,000 trainable parameters and takes
up 84 MB of memory. While each model in this study was
tailored for a particular appliance, the model’s minimal mem-
ory footprint posed no issues, especially since it was deployed
on a Raspberry Pi 4 with 4GB RAM and a storage capacity
of 16 GB. The parameters of the model that were adjusted for
optimal training cost include the weights of the convolutional
and linear layers of the model architecture described above.
Although the proposed pruning technique is designed to be
agnostic to specific model architecture, its practical implemen-
tation might necessitate some modifications depending on the
specific architecture. Our choice of a CNN structure for this
work was motivated by the robust compatibility of PyTorch’s
pruning module with the layers present in our proposed model.

C. Evaluation Metrics

We record three widely used metrics to evaluate model
performance. Mean Absolute Error (MAE), Symmetric Mean
Absolute Percentage Error (SMAPE) equations (10) and (11),
were calculated using the ground truth, yt, and estimated
appliance signature, ŷt, providing an evaluation of the NILM
model regression performance under a specific time window
t = 1, . . . , T as

MAE =
1

T

T∑
t=1

|ŷt − yt| (10)

and

SMAPE =
2

T

T∑
t=1

max

(
|yt − ŷt|

|yt|+ |ŷt| , ϵ

)
(11)

Moreover, F1 score (7) was also used to assess the model’s
classification performance. The on-off activations of the appli-
ances were computed by comparing the appliance consump-
tion pattern with the requirements of Table 1. In this study, F1

score is considered the most important metric, as it captures
the model’s ability to address the class imbalance, identify the
appliances’ activations and minimize the false positives. This
was also the reason that F1 score was selected to be used for
the p̂optthrs calculation.

VI. RESULTS

The conducted experiments presented in this section com-
pare the after-training pruning, which has been used in the
previous compression NILM frameworks [8], [9], [15] with
the proposed OPT-NILM scheme. The results focus on the
performance of each technique as well as on the reduction of
the model’s trainable parameters. It is worth noting that the
OPT-NILM approach requires multiple iterations in order to
identify the optimal sub-network, which may seem to extend
the cumulative training duration. To delve into details, for the
conducted experiments, the identification of the sub-networks
took 10 cycles of a single epoch each, amounting to 10%
of the full training duration that consisted of 100 epochs.
Although this might seem a significant time commitment,
the results are compelling. Namely, given that the proposed
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Fig. 6. Pruning threshold vs Performance degradation diagrams. The blue dot indicates the ideal point, while the green and orange dots represent the optimal
points based on the proposed trade-off metric.

compression scheme prunes the model’s parameters before
training, it establishes itself as an efficient NILM compression
framework. This is attributed to its dual benefit: it not only
produces optimized models tailored for seamless deployment
on edge devices with limited resources, but it also mitigates the
computational burden during the initial training phase, given
that training is executed on the identified sub-optimal model,
thereby diminishing computational expenses.

As can be seen in Figure 6, the performance-pruning level
curves indicate that the proposed prior-to-full training pruning
can achieve a significantly better disaggregation performance
with much fewer trainable parameters than the conventional
approach. Specifically, for kettle appliance that only presents
an ’on’ and an ’off’ state, the performance degradation, when
using the proposed pruning scheme, is indiscernible even
when the model only presents 5% of the initial weights.
On the other side, the impact of parameter pruning is more
severe on the dishwasher and washing machine, which have
a more complicated consumption signal with more opera-
tional states. Finally, OPT-NILM showcases its superiority in
fridge appliance where it also manages to sustain a better
performance-compression trade-off for all the selected eval-
uation metrics. To sum up, in all of the tested cases, the
proposed pruning technique seems to perform significantly
better than the conventional after-training pruning since, for
the same pruning levels, it manages to achieve significantly
higher performance. This assumption could also be confirmed

by looking at the consumption prediction diagrams in Figure
7, which present the inferred consumption pattern of each
appliance for a pruning threshold set to p̂optthresh of the OPT-
NILM approach and compares them with the baseline and
after-training pruning approach.

For the kettle appliance, our proposed pruning scheme
showcases a superior disaggregation capability even with the
pruning level set to 95%, as it manages to infer the correspond-
ing consumption pattern. On the other hand; conventional
magnitude pruning does not manage to detect the kettle’s
activation function at all, providing a very poor disaggregation
performance for the same pruning threshold. Comparing the
results of the proposed pruning scheme and the baseline
model, we could observe that both prediction curves are very
similar to each other even though the pruned model uses only
5% of the parameters of the baseline one. Specifically, the
OPT-NILM method surpasses the baseline model, yielding a
MAE error of 140 compared to the baseline’s MAE error of
153. For the dishwasher appliance, both techniques manage
to infer the appliance’s consumption pattern. However, the
conventional after-full training pruning provides many false
positive activations contrary to the proposed technique, which
successfully predicts both ’on’ and ’off’ states.

Comparing the identified sub-network for the dishwasher
appliances between the proposed pruning approach and the
baseline model, we observe a similar pattern with the kettle
appliance, with prediction curves being very similar to each
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Fig. 7. Prediction consumption diagrams using the OPT-NILM vs the after-training pruning scheme and the OPT-NILM vs the baseline model. The pruning
thresholds were set equal to the p̂optthrs of the OPT-NILM approach both for the OPT-NILM and after-training approaches, 95% for the kettle, 80% for the
dishwasher, 85% for the fridge and %60 for the washing machine.

TABLE I
COMPARATIVE EVALUATION RESULTS - DISAGGREGATION PERFORMANCE WITH RESPECT TO COMPRESSION THRESHOLD

Appliance Approach Compression metrics Performance metrics
Pruning Percentage (%)

p = p̂optthrs

Number of Trainable Parameters MFLOPs F1 MAE SMAPE

Kettle
Baseline 0 22146000 39.27 0.90 6.49 0.004

After-Training 85 3321900 19.07 0.84 9.81 0.006
OPT-NILM 95 1107300 15.86 0.90 6.58 0.004

Dishasher
Baseline 0 22146000 39.27 0.79 21.19 0.059

After-Training 75 5536500 23.86 0.62 25.65 0.127
OPT-NILM 80 4429200 21.13 0.66 22.07 0.097

Fridge
Baseline 0 2214600 39.27 0.72 28.01 1.39

After-Training 85 3321900 19.09 0.68 28.31 1.78
OPT-NILM 95 1107300 15.86 0.71 28.30 1.46

Washer
Baseline 0 22146000 39.27 0.68 7.69 0.029

After-Training 55 9965700 25.01 0.67 7.85 0.031
OPT-NILM 60 8858400 25.89 0.60 7.51 0.030

other even though the pruned network uses only 20% of
the baseline’s parameters. Notably, the OPT-NILM model
achieves a MAE of 41.5, whereas the post-training pruning

yields a MAE of 42.4, further demonstrating the former’s
superior performance. Similar behavior is also observed in the
fridge and washing machine appliances, with the OPT-NILM
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TABLE II
PERCENTAGE IMPROVEMENT IN COMPRESSION METRICS DURING
TRAINING AND INFERENCE PHASE OF THE FINAL PRUNED MODEL.

Phase Appliance Approach
Improvement (%)

Compression metrics
Num of Train

Params MFLOPs

Tr
ai

ni
ng

Kettle
After-Training

Pruning 0 % 0 %

OPT-NILM 95 % 60%

Dishwasher After-Training 0 % 0 %
OPT-NILM 80 % 46%

Fridge After-Training 0 % 0 %
OPT-NILM 95 % 60 %

Washer After-Training 0 % 0 %
OPT-NILM 60 % 34%

In
fe

re
nc

e

Kettle After-Training 85 % 51 %
OPT-NILM 95 % 60 %

Dishwasher After-Training 75 % 39%
OPT-NILM 80 % 46%

Fridge After-Training 85 % 51%
OPT-NILM 95 % 60 %

Washer After-Training 55 % 36%
OPT-NILM 60 % 34%

approach managing to perform significantly better than the
after-training approach and inferring a consumption pattern
very similar to the baseline model for a pruning threshold set
to 85% and 60% correspondingly. Based on the prediction
consumption diagrams for the washing machine, the OPT-
NILM achieved a MAE of 21.7, markedly better than the
after-training’s 542.1 and the baseline’s 22.2. A similar trend
was observed for the washer appliance, where the OPT-NILM
registered a MAE of 214, surpassing the baseline’s 232 and
the after-training’s 262. The hypothesis that the suggested
pruning approach could result in enhanced disaggregation
effectiveness identifying more computationally efficient NILM
models compared to traditional after-training pruning is also
confirmed by looking at the Table I, which presents the
disaggregation performance in regard to the model’s com-
pression. Specifically, according to this table, the proposed
technique achieves a better performance-compression trade-off
(i.e. high pruning threshold and low-performance degradation)
for all the tested appliances. Overall, the proposed OPT-NILM
methodology consistently outperforms the traditional after-
training pruning techniques and frequently produces compa-
rable or even better disaggregation results than the baseline
model. This enhanced performance is attributed to the fact
that the proposed pruning approach identifies an optimal sub-
structure within the initial network before the training stage,
manifesting an augmented generalization capability on unseen
data. This stands in contrast to the baseline model, which,
due to potential overparameterization, may incorporate extra-
neous noise that undermines its performance. Conventional
after-training pruning, on the other hand, operates under the
assumption that low-magnitude weights are inconsequential
and, therefore, dispensable. This assumption, however, is not
always correct. Some of these low-magnitude weights remain
pivotal to the model’s core functionality. Their removal can,
hence, significantly impair performance, rendering OPT-NILM
a more efficacious alternative.

However, despite the improvement in disaggregation perfor-
mance, the main contribution of the proposed pruning scheme
is the fact the model’s parameters are removed before the full
training of the model. This concludes with a more efficient
model initialization since the identified sub-network would
need much fewer computational resources to be fully trained.
Thus, the model’s training cost and computational resources
will be dramatically reduced, promoting the real-world de-
ployment and adoption of such a system. The reduction in
the model’s complexity is evaluated using the number of
trainable parameters as well as the number of floating point
operations (FLOPs) required to perform a forward pass. In
order to highlight the contribution of the proposed technique,
we evaluate the complexity of the pruned model both before
the full training and testing phase.

Table II indicates that the proposed pruning method leads
to a noteworthy enhancement in computational efficiency.
Specifically, the optimal sub-network for the kettle appliance
retains just 5% of the initial number of trainable parameters,
while the one for the dishwasher appliance retains 20% of
the initial number of trainable parameters. For the fridge
appliance, the optimal sub-network retains 5% of the initial
parameters, and for the washer appliance, it retains 40% of the
original model parameters. Similar behavior is also observed in
FLOPs parameters, where they also present a significant drop.
On the contrary, the conventional magnitude pruning approach
does not improve the computational efficiency of the model
during the training phase nor on FLOPs or model parameters.

Evaluating the computational complexity of the pruned
NILM models for the testing phase, we observe that the pro-
posed pruning technique is also superior in comparison to the
standard after-training pruning. In terms of both the number of
trainable parameters and FLOPs, the proposed pruning scheme
seems to identify more computationally efficient networks that
would be able to be deployed in a limited resource device and
produce better disaggregation performance.

TABLE III
COMPARATIVE RESULTS WITH OTHER WORKS AMONG ALL TESTED

APPLIANCES

Approach

Percentage
Change

Compression

Percentage
Change

Performance
Trainable

parameters MFLOPS F1 MAE SMAPE

Edge-NILM[8] -75% -44% -8.8% 18% 27%
PAOP[35] -37.5% -25% -7.01% 8.3% 15.2%

PAOPQ[35] -27.5% -18.1% -17.7% 6.5% 16.2%
OPT-NILM -82.5% -49.8% -7.4% 1.05% 18%

The superiority of our approach in terms of both compu-
tational complexity and disaggregation performance is also
demonstrated by comparing OPT-NILM’s overall performance
across all tested appliances against two other works,[8] and
[35] which employ after-training compression techniques on
the same model architecture. The comparative results pre-
sented in Table III indicate that our approach achieves a
better trade-off between compression and disaggregation per-
formance, surpassing the capabilities of current edge NILM
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solutions and offering a more dependable and computationally
effective framework for potential consumers.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed an efficient prior-to-full
training pruning scheme for edge deployment of NILM that
produces significantly better results than the conventional
after-training pruning approach and reduces the computational
resources for both the training and testing phase. The proposed
pruning scheme not only identifies sub-optimal networks with
better disaggregation performance but also assumes a cost-
effective NILM deployment since the sub-network structures
are identified before the training phase. Finally, we also
introduced a trade-off metric to identify the optimal pruning
threshold of a NILM model and use it to define a comparable
ground between the proposed pruning scheme and the ones
that have been used in past edge NILM research works. The
experimental findings confirm that the proposed methodology
outperforms conventional after-training pruning techniques,
not only in terms of disaggregation performance but also in
eliminating the computational costs of both training and testing
phases, providing a framework for a cost-effective, secure
and reliable embedded solution with high potential for the
consumer’s side. Additionally, OPT-NILM demonstrates an
overall superior trade-off between disaggregation performance
and compression when compared to other works, further
underscoring the effectiveness of the approach. Therefore, the
proposed solution presents a cutting-edge approach to edge-
based NILM area that holds significant promise for real-world
deployment and provides numerous advantages for consumers.

In our future research, we plan to explore additional pruning
techniques, such as gradient-based magnitude pruning and
information-based pruning, along with evaluating the efficacy
of structured pruning.Additionally, we also plan to utilize the
versatility of the developed pruning scheme and extend it
to other architectures prominent in the NILM domain, like
Transformers, LSTM and GRU. Finally, we aim to deploy our
solution in real-world settings at a larger scale to assess the
replicability of our simulation experiments under real-world
conditions.
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