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An Explainable and Resilient Intrusion Detection
System for Industry 5.0

Danish Javeed, Tianhan Gao, Prabhat Kumar and Alireza Jolfaei

Abstract—Industry 5.0 is a futuristic transformative model
that aims to develop a hyperconnected, automated, and data-
driven industrial ecosystem. This digital transformation will boost
productivity and efficiency throughout the production process
but will be more prone to new sophisticated cyber-attacks.
Deep learning-based Intrusion Detection Systems (IDS) have the
potential to recognize intrusions with high accuracy. However,
these models are complex and are treated as a black box by
developers and security analysts due to the inability to interpret
the decisions made by these models. Motivated by the challenges,
this paper presents an explainable and resilient IDS for Industry
5.0. The proposed IDS is designed by combining bidirectional
long short-term memory networks (BiLSTM), a bidirectional-
gated recurrent unit (Bi-GRU), fully connected layers and a
softmax classifier to enhance the intrusion detection process in
Industry 5.0. Then, we employ the SHapley Additive exPlanations
(SHAP) mechanism to interpret and understand the features
that contributed the most in the decision of the proposed cyber-
resilient IDS. The evaluation of the proposed model using the
explainability can ensure that the model is working as expected.
The experimental results based on the CICIDDoS2019 dataset
confirms the superiority of the proposed IDS over some recent
approaches.

Index Terms—Deep Learning (DL), Cyber-Attacks, Explain-
able Artificial Intelligence, Intrusion Detection System (IDS),
Industry 5.0

I. INTRODUCTION

The fifth industrial revolution also known as Industry 5.0 is
considered as a next-level advancement. Its goal is to combine
the human expert’s creativity with effective, intuitive, and
explicit machinery to bring forth manufacturing solutions that
are more user-friendly and resource-efficient than those of
Industry 4.0 [1]. It provides a narrative intent to facilitate the
users and organizations. Industry 5.0 is expected to have a
huge impact on consumer technology, accelerating innovation
and revolutionizing the way products are conceived, man-
ufactured, and supplied to customers. Consumer Electronic
(CE) devices play a crucial role in such an industry through
collecting data from the sensors and machines, monitoring and
controlling them remotely [2]. Consumer-grade sensors and
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cameras are used to capture environmental data, i.e., temper-
ature, air quality, and humidity, which can then be utilized
to optimize industrial operations. Additionally, CE devices
like smartphones, wearables, and tablets function as interfaces
between machines and operators, offering real-time data and
alarms on the status of the equipment. As a result, academia,
industry, and individuals are endeavoring to integrate rapid
commercialization flow while paying slight attention to the
safety and security of Industry 5.0 devices and networks [3].
For instance, autonomous robots in manufacturing plant can be
remotely hijacked and controlled by cybercriminals to frighten
the company. Even with the availability of traditional secu-
rity measures like authentication, encryption, access control,
and data confidentiality, Industry 5.0 network have proven
vulnerable to network attacks, necessitating the need for an
extra layer of security. One commonly used strategy is to
develop and deploy Intrusion Detection Systems (IDSs) for
connected Industry 5.0 systems [4]. However, the variety of
cyber attacks makes traditional IDS less effective. Thus, it
is crucial to design an effective and reliable system in line
with contemporary criteria. The IDS tracks online activity
in real-time and spots unusual behavior. In the recent years,
Deep Learning (DL)-based IDS became a trending research
topic for researchers around the globe and they proposed
numerous DL-based IDS to protect such industries against
cyber threats. The authors of [5] proposed an IDS to identify
threats and safeguard the network from them. However, for
early detection, the proposed IDS must be updated frequently
and should include the patterns and characteristics of new
potential attacks.

DL-based IDS provides an efficient performance. How-
ever, these models lack explainability and interpretability, i.e.,
comprehending the underlying data proof of the prediction
decisions for the behavior of the designed model [6]. Con-
sequently, the decision lacks trust and their output cannot be
further used to optimize the behaviour and reasoning offered
by the sophisticated algorithm. The Explainable AI (XAI)-
based IDS gives methodical and comprehensible justifications
for its behaviors that users can follow. For instance, the authors
of [7] designed a comprehensible architecture for IoT setups
to track customer sentiment. They base their approach on
merging enterprise data and IoT to model consumer sentiment,
which improves customer prioritization and aids in problem-
solving. Likewise, the authors in [8] proposed an XDL-based
model to design an efficient IDS for Internet of Medical
Things (IoMT) networks. Research on XDL-based IDS is still
in its infancy, especially for IoT-enabled Industrial networks.
Therefore, the proposed work designed an explainable and
resilient IDS to protect such industries against evolving threats.
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A. Contribution

The major contributions of this research work are manifold:
• A novel explainable and cyber-resilient IDS is designed

by combining bidirectional long short-term memory net-
works (BiLSTM), a bidirectional-gated recurrent unit (Bi-
GRU), fully connected layers, and a softmax classifier to
enhance the attack detection process in Industry 5.0.

• The SHapley Additive exPlanations (SHAP) mechanism
is employed to interpret and understand the decision
made by the proposed DL-based sophisticated IDS. As
a result, the explanation will help the security analyst
to interpret the traffic features from the CICIDDoS2019
dataset and the output can be further used to optimize and
develop new algorithms for DL-based IDS. Furthermore,
the experimental results based on the CICIDDoS2019
dataset confirms the superiority of the designed IDS over
some recent threat detection techniques.

The remainder of this work is structured as follows; Section
II discuss the related work. The proposed detection scheme is
elaborated in Section III. The experimental details are provided
in Section IV. Section V discuss the result analysis. Finally,
the conclusion along with the future remarks are presented in
Section VI.

II. RELATED WORK

Over the last decade, DL and ML-based approaches have
demonstrated their utility in detecting anomalous entities in
traditional IoT-based networks. The authors of [9] proposed
a DL-based IDS which is capable to encounter the existence
of threats in IoT networks. The model is based on a CNN
classifier to obtain desired security objective. The authors
trained and evaluated their proposed framework on the BoT-
IoT dataset that comes with a huge variety of security threats
and is considered an ideal choice to train IDS. The system
has achieved 92.46% accuracy when evaluated on diverse
performance metrics. The authors of [10] proposed a Stacked
Denoising Auto-encoder Support Vector Machine (SDAE-
SVM)-based model to detect threats in large-scale industrial
networks. The authors used the KDD-CUP99 dataset for
training and testing purposes. Their proposed system shows
competitive strength against a diverse variety of potential
security threats and achieved 97.83% accuracy. In [11], the
authors employed Natural Language Processing (NLP) and
Multi-Layer Perceptron (MLP) to differentiate between crucial
and non-crucial posts on the Dark Web.

Another Deep Neural Network (DNN)-based DDoS at-
tack detection framework is presented in [12]. The authors
employed the CICDDoS2019 dataset for experimentation
and achieved an accuracy of 94.57%. Further, a cognitive
computing-based-IDS is proposed in [13]. The authors com-
bined Gated Recurrent Unit (GRU) and Binary Bacterial For-
aging Optimization (BBFO) for efficient intrusion detection.
Their proposed scheme is trained and evaluated with the
CICIDS2017 dataset and achieved an accuracy of 98.45%.
The authors of [14] designed a Generative Adversarial Net-
works (GAN) based IDS. The authors trained their model
using the CICIDS2017 dataset and achieved 88.70% accuracy.

Another intrusion detection scheme using Aquila Optimizer
(AQO) is proposed to combat botnet attacks in IoT-based
smart environments. NSL-KDD and CICIDS2017 datasets are
used for model training. The system significantly proves its
effectiveness in terms of threat detection [15].

A DNN-based model is presented that introduces a pixel
drop method to eliminate the existence of anomalies in
medium to large-scale IoT-based smart networks. The frame-
work analyzes the traffic streams to investigate suspicious
entities and based on threat impressions; malicious traffic is
highlighted [16]. The authors of [17] proposed an IDS for
industrial environments. The authors used the power system
and UNSW-NB15 dataset to evaluate the performance of
their beta mixture-hidden Markov (MHMMs)-based model.
The size of these datasets was reduced by the authors using
Independent Component Analysis (ICA).

The authors of [18] proposed a model to detect intrusions
in the IIoT network. They used UNSW-NB15 and BoT-IoT
datasets for experimentation and achieved an accuracy of
91.25% for UNSW-NB15 and 98.10% for the BoT-IoT dataset.
A hybrid DL autoencoder MLP along with the capabilities
of automatic feature extraction is employed by the authors
in [19]. They used the CICDDoS2019 dataset for experi-
mentation and achieved a detection rate of 98.34%. Another
DL-based IDS for SDN-based IoT networks is proposed in
[20]. The authors utilized DNN with GRU-RNN to detect
threats in such a network. Their proposed model achieved
efficient results with 80.70% and 90% accuracy. However,
their proposed scheme has a high FPR of 0.78%. The authors
of [21] employed LSTM with fully-connected layers along
with a hyper-parameters tuning method to identify normal and
malicious events. They used six datasets to evaluate binary
and multi-class intrusion detection scenarios. Moreover, in
[22], the authors used a DNN-based scheme for identifying
fraudulent activity in different IoT devices. They evaluated
their proposed scheme under UNSW-NB15 and NSL-KDD
datasets and achieved 92.40% and 98.60% detection rates.

III. PROPOSED INTRUSION DETECTION SYSTEM

In this section, we discuss the main components of the
proposed explainable and resilient-centric deep learning-based
IDS for the Industry 5.0 network. We first describe the
Proposed DL-based Cyber Threat Detection Scheme, followed
by Connected Layers and Classifer. We further describe Ex-
plainable AI. Finally, we present the Proposed Network Model.
The notations used in this work are mentioned in Table I.

A. Proposed DL-based Cyber Threat Detection Scheme

1) BiLSTM: BiLSTM seems exclusively identical to its
unidirectional counterpart (LSTM). The sole distinction is that
the BiLSTM network connects with both the past and the
future. For example, with synchronized repeat connections, a
one-way LSTM may be trained to predict the dataset when it is
loaded one at a time. On the rear tag, the BiLSTM additionally
provides the following characters in succession, allowing us
to access future information [23]. The BiLSTM consists of
three gates, such that an input (Ipt ), forget (Fgt ), and output
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Fig. 1: Proposed Intrusion Detection System’s Architecture

TABLE I: Table of Notation

Notation Description
Ipt Input Gate
Fgt Forget Gate
Opt Output Gate
Zt Cell State
Zt Candidate for the Cell State
Xt Current Input
Ht−1 Previous Hidden State
σ Sigmoid Function
We Weight Matrix
Bs Weight Bias
Upt Update Gate
Ret Reset Gate
Ht Final State
⊙ Point-wise Multiplication
→ Forward Process
← Backward Process

gate (Opt ) along with a cell state (Zt ) and a candidate for the
cell state (Ct ). The Ipt keeps the state of the cell updated. The
following equations control the operations to update the Ct for
forward (→) and backward (←) process respectively [23]:

−→
Ct = tanh ((

−−−−−→
WecHt−1) ∗ (

−−−→
W cXt ) +

−→
Bsc) (1)

−→
Zt = (

−−−−−→
Fgt Ht−1) + (

−−−→
IptCt) (2)

−→Ipt = α((
−−−−−−−→
WeipHt−1) + (

−−−−→
WeipXt ) +

−→
Bsip) (3)

←−
Ct = tanh ((

←−−−−−
WecHt−1) ∗ (

←−−−
W cXt ) +

←−
Bsc) (4)

←−
Zt = (

←−−−−−
Fgt Ht−1) + (

←−−−
IptCt) (5)

←−Ipt = α((
←−−−−−−−
WeipHt−1) + (

←−−−−
WeipXt ) +

←−
Bsip) (6)

The Fgt takes the current input (Xt ) and the previous hidden
state (Ht−1) as inputs. Further, it uses the sigmoid function (σ)
to output a value.

−→
Fgt = α((

−−−−−−−→
Wef gHt−1) + (

−−−−→
Wef gXt ) +

−→
Bsfg ) (7)

←−
Fgt = α((

←−−−−−−−
Wef gHt−1) + (

←−−−−
Wef gXt ) +

←−
Bsfg ) (8)

The Opt determines the next timestep hidden state (Ht )
which comprise all the information of the prior inputs, thus it
is required to make the predictions. Such a process requires
two steps for finding the next timestamp:

−→
Opt = α((

−−−−−−−→
WeopHt−1) + (

−−−−−→
WeopXt ) +

−−→
Bsop) (9)

−→
Ht = tanh(

−→
Zt ) ∗

−→
Opt (10)

←−
Opt = α((

←−−−−−−−
WeopHt−1) + (

←−−−−−
WeopXt ) +

←−−
Bsop) (11)

←−
Ht = tanh(

←−
Zt )⊙

←−
Opt (12)

Where
−→
Wec ,

−−→
Weip ,

−−→
Wefg ,

−−−−−−−−−→
Weop and

←−
Wec ,

←−−
Weip ,

←−−
Wefg ,

←−−
Weop are

the weight matrices, while
−→
Bsc ,
−→
Bsip ,

−→
Bsfg ,

−−→
Bsop and

←−
Bsc ,
←−
Bsip ,

←−
Bsfg ,

←−−
Bsop are its respective biases. The Xt represents the current

input and the Hadmard product is denoted by ⊙.
2) BiGRU: A BiGRU consists of two GRUs; one process-

ing the information in the forward direction and the other pro-
cessing it backward. It consists of Update and reset gates(Upt ),
(Ret ) along with a canditate cell(Ct ) and a final state(Ht ).
To prevent the RNN gradient disappearance or explosion,
the gate structure might opt to save context information.
The GRU has a simpler structure than the LSTM and trains
more quickly. The following equations compute the BiGRU
transition functions for the forward process (→) [24].

−→
Upt = σ(

−−−−−→
WeNupNt +

−−−−−−−→
Wehu(H t−1) +

−−→
Bsup) (13)

−→
Ret = σ(

−−−−−→
WeNre Nt +

−−−−−−−→
Wehr (Ht−1) +

−−→
Bsre) (14)

−→
Ct = tanh (

−−−−→
WeNc Nt +

−→
Ret ⊙

−−−−−−−−→
Wehc(Ht−1) +

−→
Bsc) (15)

−→
Ht =

−−→
Up

t
⊙
−−−−→
(Ht−1) +

−−−−−−→
(1− Up

t
)⊙−→Ct (16)
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Algorithm 1 Proposed DL-based Intrusion Detection System

1: procedure INPUT:(Read the Dataset (CICIDDoS2019))
2: OUTPUT: Attack classes
3: Pre-process Dataset Removing NaN values Imputa-

tion of Infinity values Convert categorical features into
numeric data Data Normalization (0 and 1)

4: Divide CICIDDoS2019 into CDS19Train,
CDS19V al and CDS19Test.

5: Perform Encoding and decoding
Add BiLSTM layers and perform encoding
−→
Ct = tanh ((

−−−−−→
WecHt−1) ∗ (

−−−→
W cXt ) +

−→
Bsc)−→

Zt = (
−−−−−→
Fgt Ht−1) + (

−−−→
IptCt)

−→Ipt = α((
−−−−−−−→
WeipHt−1) + (

−−−−→
WeipXt ) +

−→
Bsip)

−→
Fgt = α((

−−−−−−−→
Wef gHt−1) + (

−−−−→
Wef gXt ) +

−→
Bsfg )

←−
Opt = α((

←−−−−−−−
WeopHt−1) + (

←−−−−−
WeopXt ) +

←−−
Bsop)←−

Ht = tanh(
←−
Zt )⊙

←−
Opt

6: Build model using BiGRU and Softmax classifier
−→
Upt = σ(

−−−−−→
WeNupNt +

−−−−−−−→
Wehu(H t−1) +

−−→
Bsup)

−→
Ret = σ(

−−−−−→
WeNre Nt +

−−−−−−−→
Wehr (Ht−1) +

−−→
Bsre)

−→
Ct = tanh (

−−−−→
WeNc Nt +

−→
Ret ⊙

−−−−−−−−→
Wehc(Ht−1) +

−→
Bsc)−→

Ht =
−−→
Up

t
⊙
−−−−→
(Ht−1) +

−−−−−−→
(1− Up

t
)⊙−→Ct

Add softmax layer
σ(
−→
D )i =

eDi∑K
Z=1 e

Dz

Calculate categorical cross-entropy loss
L (ŷc, yc)=−

∑n
i=1

∑C
c=1 y

xi
c · log (p (ŷic = yic | xi))

7: Perform Testing using CDS19Test

8: Evaluate performance using various metrics
9: Use SHAP library to analyze the features

10: end procedure

Where σ is the sigmoid operator,
−−→
Ht−1,

←−−
Ht−1 are the prior

block hidden states, while
−−−→
WeNup ,

−−−→
WeNre ,

−−→
WeNc and

←−−−
WeNup ,

←−−−
WeNre ,

←−−
WeNc are the weight matrices for the current input

−→
Nt

and
←−
Nt . Further,

−−→
Bsup,

−−→
Bsre,

−→
Bsc and

←−−
Bsup,

←−−
Bsre,

←−
Bsc are its

respective biases. Moreover, ⊙ is the point-wise multiplication
between the two vectors, and tanh represents the non-linear
point-wise activation function. The following equations com-
putes the transition functions for the backward process (←):

←−
Upt = σ(

←−−−−−
WeNupNt +

←−−−−−−−
Wehu(H t−1) +

←−−
Bsup) (17)

←−
Ret = σ(

←−−−−−
WeNre Nt +

←−−−−−−−
Wehr (Ht−1) +

←−−
Bsre) (18)

←−
Ct = tanh (

←−−−−
WeNc Nt +

←−
Ret ⊙

←−−−−−−−−
Wehc(Ht−1) +

←−
Bsc) (19)

←−
Ht =

←−−
Up

t
⊙
←−−−−
(Ht−1) +

←−−−−−−
(1− Up

t
)⊙←−Ct (20)

Finally the concatenation (⊕) of the → and ← is done by the
following equation:

Ht =
−→
Ht ⊕

←−
Ht (21)

B. Connected Layers and Classifier for Threat Detection

The proposed threat detection module comprises two layers
of BiLSTM having 200 and 100 neurons with 0.2% dropout
rate to avoid overfitting followed by a dense layer of 30
neurons. We further employed 2 layers of BiGRU with 100
and 50 neurons respectively. We adopt ADAM as an optimizer,
while CC-E and RELU as activation and loss functions. A
complete architecture of the proposed scheme is shown in
Fig 1 and the complete procedure of the proposed IDS is
explained in Algorithm 1. Finally, in the output layer, we
use Softmax classifier for attack classification. The following
equations compute such operations:

σ(
−→
D )i =

eDi∑K
Z=1 e

Dz
(22)

where σ is the softmax, Di is input vector, eDi is the standard
exponential function for the Di. Further, K represents the
number of classes and eDz is the standard exponential function
for the output vector respectively. Finally, we calculate the loss
with categorical cross-entropy loss:

L (ŷc, yc) = −
n∑

i=1

C∑
c=1

yxi
c · log (p (ŷic = yic | xi)) (23)

where yc is actual and ŷc is predicted output, x is the pattern
of input sequence, n is the number of observations, and p
belongs to a specific threat type y.

C. Explainable AI

DL-based models are getting popularity in safety-critical
IoT applications and the demand for justifications for their
predictions is rising [25]. The XAI provides methodical and
comprehensible justifications for its behavior that human users
can follow. Many ML-based models, i.e., NB, LR, and DT
are fundamentally understandable on a modular level [26].
Unlike ML-based models, the DL models provide superior
performance but these models are unable to interpret their
predictions. Understanding the rationale behind a model’s
decision for users and stakeholders helps build trust and
confirms that the model is solving an issue securely and
robustly. One of the reasons for the ”black-box” DL model’s
hesitant acceptance in many safety-critical sectors is their
lack of transparency. Thus, scholars have been looking into
numerous explainability methods to aid users in interpreting
the decisions of black-box models. Some of them are as
follows: 1) Text Explanations: By computing a relevance
score for the model’s controlled variables, this method is
utilized to explain the intricate internal workings of the model.
2) Local Explanations: it is used for measuring a model’s
reaction to small modifications for building explanations. 3)
Explanations using representative examples: The training data
and its effect on a model’s decision are better understood using
this method. 4) Visual Explanations: The model’s behavior is
visualized using the visual explanation technique. It is used to
provide captions for images that explain why they belong to a
certain class in image classification tasks. SHAP is one of the
approaches that has been proposed for relevance explanations
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TABLE II: System Specifications for Experimentation.

System Aspect Specification
Central Processing Unit (CPU) Corei7(2.260GHz)
Graphics Processing Unit (GPU) Geforce RTX 2060
Operating system (OS) Windows 10
Random Access Memory (RAM) 32GB
language Python
Libraries sklearn, Pandas, numpy

[27]. In this paper, we explain the importance of features in the
decision of proposed DL-based IDS by employing the SHAP
framework.

IV. EXPERIMENTAL SETUP

This section presents the experimental design followed by
the dataset details, pre-processing, and evaluation metrics.

1) Experimental Design: The experiments are performed
using a Legion PC with a 2.60 GHz Hexacore Coffee Lake
CPU, 32 GB RAM, and a Geforce RTX 2060 Max-Q 8GB
GPU. The proposed threat detection scheme is developed
through the Keras library of TensorFlow. Further, we have
employed Python to run the implementation scripts. Complete
details are provided in Table II.

2) Dataset: The proposed work used the CICIDDoS2019
[28] for experimentation purposes. The datasets contains mod-
ern reflective DDoS attack types, i.e., MSSQL, SSDP, UDP,
SYN, UDP-Lag, Portmap, and WebDDoS attacks. This work
divides the dataset into training and testing sets, i.e., 70% and
30%.

3) Dataset Pre-processing: First, we removed all rows with
NaN and Infinity values because they could affect the model’s
performance. We further used Sklearn label encoder to convert
all non-numerical values to numerical values. The only non-
numerical feature in the dataset is the ′Label′, which we con-
verted to binary using the Scikit-learn label encoder. Moreover,
MinMax scalar function is employed for data normalization
[29].

4) Evaluation Metrics: This work evaluates the proposed
threat detection scheme by employing the standard evaluation
metrics, such that Receiver Operating Characteristic (ROC )
curve, Confusion Matrix (CM ), Accuracy (ACC), Recall (RE),
Precision (PR ), F1-score (F1), and extended evaluation met-
rics, i.e., TPR , NPV , TNR , FPR , FNR , FDR , and FOR . The
extended evaluation metrics are defined in Table III. While the
following equations compute the value of ACC , PR , RE , and
F1.

1) ACC : The effectively predicted instances over the com-
plete number of instances.

ACC =
TP + TN

TP + TN + FP + FN )
(24)

2) PR : It is the extent of positives that are genuine positives.

PR =
TP

TP + FP
(25)

3) RE : It recognised TP that have been classified as positive.

RE =
TP

TP + FN
(26)

TABLE III: Details of TPR , TNR , FPR & FNR .

Terms Description
TPR Positive occurrences that have been properly deter-

mined by the model.
TNR Negative instances that the model adequately char-

acterised.
FPR The model maps negative data as positive.
FNR Positive instances are designated as negative in-

stances by the model.

4) F1: The harmonic mean of the RE and PR . The F1 is
determined utilizing the underneath numerical condition.

F1 =
2(TP )

2(TP + FP + FN )
(27)

V. RESULT ANALYSIS

In this section, we discuss the simulation results and per-
formance analysis of the proposed intrusion detection scheme.

A. Performance analysis of proposed threat detection frame-
work

In this subsection, we discuss the efficiency of the proposed
IDS. The proposed DL-based threat detection model has
efficiently learned from the dataset as proven by the accuracy
vs loss in Fig 2. The model achieved Validation ACC of
99.77% with a validation loss of 0.0055% with 10 epochs.
We also measure the performance of the proposed IDS class-
wise in terms of ACC , PR , TPR , and FNR . The model has
significantly learned the normal and attack signatures and
achieved ACC , PR and TPR values between 92% to 100%
except for the DDoS class, where the model achieved 78.63%
TPR as depicted in Table IV. Further, the model achieved
FNR of 0.00012% to 0.0213% for the respective classes
accordingly. We further provide the CM and ROC of the
proposed model to prove its efficacy. Table V depicts the
CM of the model where it demonstrates its efficiency by
categorizing all instances of the datasets into their respective
classes. Similarly, the ROC curve values derived for various
attack classes is illustrated in Fig 3. It shows that the scores for
all the classes are almost equal to one. Moreover, the proposed
model achieved macro and micro-average of 0.99 and 1.00
respectively.

B. XAI interpretation for CICIDDoS2019 dataset

In this subsection, we discuss the XAI interpretation of the
dataset. The demonstration of decision-making by complex
models is illustrated via the SHAP decision graphs. SHAP
provides a number of plots, i.e., Decision Plot (DP ), Waterfall
Plot (WP ) and Summary Plot (SP ). The DP plot is given in
Fig 4. The explainer’s expected value is used to center the
plot on the X-axis. Similar to how the effects of the linear
model are relative to the intercept, every SHAP value (SV )
is related to the estimated value (EV ) of the model. The Y-
axis represents the model features. Fig 5 depicts the (WP ) of
the dataset. It demonstrates how this kind of representation
behaves for TP , FP , FN and TN . The blue and red bars of
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TABLE IV: Class-wise Result Analysis of the Proposed IDS

Parameters Benign MSSQL SSDP DDoS SYN WebDDoS Portmap UDP UDP-Lag
ACC 99.98% 100% 99.03% 99.03% 99.98% 99.99% 100% 99.99% 100%
PR 99.98% 100% 92.30% 98.31% 99.70% 99.90% 100% 100% 100%

TPR 99.98% 100% 98.45% 78.63% 100% 99.90% 100% 99.89% 100%
FNR 0.000013% 0.000125% 0.001541% 0.021369% 0.000110% 0.000956% 0.00014% 0.000102% 0.00025%

TABLE V: Confusion Matrix of Proposed IDS
`````````Predicted

Actual Benign MSSQL SSDP DrDoS SYN WebDDoS Portmap UDP UDP Lag

Benign 48266 0 0 35 0 10 0 0 11
MSSQL 0 2701 0 0 2 5 0 0 8
SSDP 0 0 9367 0 0 0 015 0 0
DDoS 0 0 0 1691 0 6 0 2 0
SYN 0 1 0 0 1673 0 0 0 4
WebDDoS 9 0 0 0 0 2309 0 0 0
Portmap 0 0 3 0 20 0 2984 0 0
UDP 0 0 11 0 6 1 0 1316 0
UDP Lag 0 2 0 0 4 0 0 0 1708

TABLE VI: Class-wise Detection Accuracy Comparison of the Proposed IDS against Baseline Detection Schemes

Schemes Benign MSSQL SSDP DDoS SYN WebDDoS Portmap UDP UDP-Lag
RF 100% 98.59% 98.50% 97.68% 95.56% 96.59% 99.15% 99.26% 99.17%
DT 99.93% 98.83% 98.87% 98.14% 97.89% 98.67% 99.23% 99.14% 99.59%

Proposed IDS 100% 100% 99.03% 99.11% 99.98% 99.99% 100% 99.99% 100%

Fig. 2: Accuracy vs Loss of Proposed IDS

Fig. 3: ROC of Proposed IDS

Fig. 4: Shap values for CICIDDoS2019 dataset using decision
plot.

the WP plot depicts the features and contributes to the overall
classification score. Further, it can decrease or increase the
classification score. Finally, Fig 6 represents the SP plot of the
dataset. With the most essential features at the top and the least
important at the bottom, the SP plots are a Visualization Plot
(VP ) for global interpretation that conveys the value of global
features across the entire model. Since they have a greater
average influence on the output of the model, the features in
this plot with big absolute SV are classified as significant.
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Fig. 5: Shap values for CICIDDoS2019 dataset using waterfall
plot.
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Fig. 6: Shap values for CICIDDoS2019 dataset using summary
plot.

C. Comparison with baseline detection schemes

In this subsection, we have conducted the performance com-
parison of the proposed model against the baseline detection
schemes. We have used the results obtained from the proposed
threat detection scheme for comparison with GRU and LSTM.
Fig 7 depicts the values of ACC , PR , RE , and F1 achieved by
the Proposed IDS as 99.77%, 98.79%, 98.42%, and 99.41%
respectively.

Table VI depicts the class-wise Detection ACC comparison.
The Proposed IDS achieved a detection ACC of 97% to 100%
for MSSQL, SSDP, DDoS, Portmap, UDP, UDP-Lag, and Be-

Fig. 7: Overall comparison of Proposed IDS against baseline
detection schemes

Fig. 8: TPR , TNR and NPV comparison of Proposed IDS
against baseline detection schemes

nign. However, it obtained 95.56% detection ACC for SYN and
96.59% for WebDDoS attack classes. Fig 8 depicts the values
of TPR , TNR , and NPV , where the proposed IDS achieved
TPR of 97.42% and 99.88% TNR and NPV . However, the
GRU and LSTM show less significant performance, which
proves the superiority of the Proposed IDS against the baseline
detection schemes. Finally, Fig 9 depicts the comparison
in terms of FPR , FNR , FDR , and FOR . It is shown that
the Proposed IDS achieved FPR , FDR , FOR of 0.0041%,
0.0025%, 0.0004% with FNR of 0.0485% respectively. The
values of the Proposed IDS are considerably lower than the
other detection models. The lower rates of such metrics prove
the efficiency of the Proposed IDS.

D. Comparison with recent state-of-the-art detection frame-
works

Lastly, we compare the Proposed IDS’s performance with
recent threat detection schemes from the current literature, i.e.,
[12], [19], [10], [11] and [17] to further validate its efficacy.
Table VII depicts the comparison in terms of ACC . Some of
the recent works have either used old datasets, i.e., Power
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Fig. 9: Comparison of the Proposed IDS against baseline
detection schemes in terms of FPR ,FNR ,FDR and FOR

TABLE VII: Comparison of Proposed IDS with recent frame-
works

Ref Year Scheme Dataset ACC
This work 2023 Proposed IDS CICDDoS2019 99.77%
[12] 2021 DNN CICDDoS2019 94.57%
[19] 2021 DLAMLP CICIDDoS2019 98.34%

[10] 2020 SDAE-SVM KDD-CUP99 97.83%
[11] 2019 MLP NA 79.40%
[17] 2018 MHMMs Power system 96.32%

system and KDD-CUP99, which have less practical values
for IoT or they achieved less significant outcomes. We adopt
CICDDoS2019, which contains network flow-based instances
and is an IoT-based dataset. The Proposed IDS outperformed
the recent detection frameworks by achieving a higher ACC of
more than 2%.

VI. CONCLUSION

An intrusion detection system is one of the most important
security tool for industrial networks. However, most of the
existing approaches based on ML and DL techniques are
treated as a black box by the security analysts and devel-
opers. In this article, we have designed a new explainable
and resilient intrusion detection system in Industry 5.0 that
combines bidirectional long short-term memory networks, a
bidirectional-gated recurrent unit, a fully connected layer, and
a softmax classifier for attack detection. Furthermore, the
proposed framework adopts SHAP technique to understand the
importance of the features that contributed the most to attack
detection using the CICIDDoS2019 dataset. The experimental
results confirm the superiority of the proposed approach over
some existing state-of-the-art schemes. However, the proposed
IDS has some limitations, such that, it is vulnerable to insider
threats where intruders can disrupt the network without in-
terfering with the flow between the industrial network and
the Internet. Future research will include designing a novel
approach for attack detection in Domain Name Service (DNS)
of Industry 5.0.
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