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An Intelligent Intrusion Detection System for Smart
Consumer Electronics Network
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Abstract—The technological advancements of Internet of
Things (IoT) has revolutionized traditional Consumer Electronics
(CE) into next-generation CE with higher connectivity and intel-
ligence. This connectivity among sensors, actuators, appliances,
and other consumer devices enables improved data availability,
and provides automatic control in CE network. However, due to
the diversity, decentralization, and increase in the number of CE
devices the data traffic has increased exponentially. Moreover,
the traditional static network infrastructure-based approaches
need manual configuration and exclusive management of CE
devices. Motivated from the aforementioned challenges, this
article presents a novel Software-Defined Networking (SDN)-
orchestrated Deep Learning (DL) approach to design an intelli-
gent Intrusion Detection System (IDS) for smart CE network.
In this approach, we have first considered SDN architecture
as a promising solution that enables reconfiguration over static
network infrastructure and handles the distributed architecture
of smart CE network by separating the control planes and
data planes. Second, an DL-based IDS using Cuda-enabled
Bidirectional Long Short-Term Memory (Cu-BLSTM) is designed
to identify different attack types in the smart CE network. The
simulations results based on CICIDS-2018 dataset support the
validation of the proposed approach over some recent state-of-
the-art security solutions and confirms it a phenomenal choice
for next-generation smart CE network.

Index Terms—Consumer Electronics, Cyber-Attacks, Deep
learning, Internet of Things, Intrusion Detection System,
Software-Defined Networking

I. INTRODUCTION

THE Internet of Things (IoT) is a network of devices em-
bedded with software programs and sensors that utilize

the Internet to communicate data. The amalgamation of IoT
into traditional Consumer Electronics (CEs) has revolutionized
it into next-generation CEs with higher connectivity and intel-
ligence. This improved data availability and automatic control
in the CE network are made possible by the connectivity
of sensors, actuators, appliances, and other consumer devices
[1]. Nevertheless, CE devices connections are now remotely
accessed anytime, anywhere in the world with the utilization
of computing devices, including laptops, smartphones, and
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smartwatches, regardless of the network to which they are
connected. These smart devices can be used in various fields,
including smart homes [2].

The CE devices have significantly evolved in the last decade.
According to a recent study, the CE segment might reach
2,873.1m users by 2025 while the Average Revenue Per User
(ARPU) is expected to amount to US 317.10 billion [3]. Today,
every device may create and share data online, contributing
to the CE expansion. The traditional internet architecture is
a complex system with a multitude of network components,
i.e., routers, middleboxes, switches, and several layers, etc.
due to decentralization [4]. Therefore, the traditional network
design likewise struggles to adapt to the dynamic nature of
modern applications. Moreover, the traditional static network
infrastructure-based approaches need manual configuration
and exclusive management of CE devices. Potentially, this re-
sults in inefficient use of all resources, which exposes systems
to a variety of cyber-attacks [5]. However, it is clear from the
current literature that smart CE networks are subject to various
subtle, cyber threats, including botnets, brute force, Denial-
of-Service (DoS), Distributed Denial of Service (DDoS), and
web attacks [6]. The DDoS attack is identified as one of the
most dangerous attacks on today’s Internet. In DDoS, attackers
use many compromised hosts to generate a lot of worthless
traffic flow toward the target server, which causes servers to
overload quickly by consuming their resources and making
them unreachable to its user. Although DDoS attacks have
been investigated for more than two decades, still it is the
most compelling yet common attack approach in recent times
[7].

In this regard, Software-Defined Networking (SDN) and
Intrusion Detection System (IDS) can be considered the back-
bone for the next-generation smart CE network. An IDS is
designed to detect threats and malicious behavior to defend
the network against it [8]. However, for timely detection,
the conventional signature-based IDS must continuously be
updated and have information tagged as signatures or patterns
of prospective threats. Furthermore, it is unable to detect
zero-day threats. Hence, Intelligent threat detection techniques
should be developed to identify and counteract the most recent
cyber threats in smart CE networks, which are constantly
expanding with time. However, due to the specific service
needs of smart CE (such as low latency, resource limita-
tions, mobility, dispersion, and scalability), attack detection
fundamentally differs from conventional approaches in such a
network. Therefore, an adaptable, dynamic, well-timed, and
cost-effective detection framework against various growing
cyber threats is urgently needed for the CE networks [9].
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SDN provides higher security, scalability, dynamism, effi-
ciency, and reconfiguration. This is made possible by the built-
in SDN architecture, in which the control functions are trans-
ferred to a central controller rather than being incorporated into
the forwarding devices. This enables a controller to oversee
and run a CE network from a broad perspective [10]. Moti-
vated by the aforementioned challenges and discussions, this
scientific study aims to provide a highly scalable and effective
SDN-orchestrated IDS to safeguard the CE networks from
severe multi-vector cyber-attacks. Additionally, our proposed
detection framework is highly scalable, adaptable, economical,
and well-timed while utilising the underlying CE resources
without running out of resources. The main contributions of
this work are as follows.

• The authors employed SDN and an intelligent Cuda-
enabled Bidirectional Long Short-Term Memory (Cu-
BLSTM) to quickly and accurately identify threats in CE
networks.

• We compared the performance of the proposed Cu-
BLSTM model with baseline techniques,i.e., Cuda-
enabled Deep neural network (Cu-DNN) and Cuda-
enabled Gated recurrent unit (Cu-GRU), to evaluate the
proposed model thoroughly. For a fair comparison, all
models have been trained and assessed in the same
environment.

• A publicly accessible, intrusion dataset namely CICIDS-
2018 dataset is employed for model training and evalua-
tion. We also assessed the proposed model performance
against the most recent detection models from the current
literature and used 10-fold cross-validation technique to
show balanced results.

The rest of the article is as follows. Section II presents
related work. Section III gives complete details of the network
model and proposed Cu-BLSTM-based detection scheme. Sec-
tion IV presents the experimental setup and evaluation metrics.
The results have been discussed in Section IV-A. Finally, the
conclusion and future work is provided in Section V.

II. RELATED WORK

The CE is characterized by the integration of physical things
into a network in a way that makes them active participants in
corporate operations. These objects might include everything
from network gear to sensors to home and healthcare products.
CE is made up of a range of devices that can be wireless
or wired and can be used in several places and networks.
According to a recent Juniper report, more than 46 billion
IoT devices were in operation by 2021. This includes sensors,
actuators, and gadgets and represents a 200% growth over
2016 [11]. In any changing computer and network paradigm,
IoT becomes an integral part of it. IoT transformation is
growing exponentially, leading to significant growth in terms
of revenue and automation. Because these devices are created
to satisfy the individual demands of users, it is difficult to
find a solution that works for everyone [12]. With security
being a key concern right now, determining the security of
these devices is difficult. These products are too diverse to be
compared to a single procedure.

SDN and DL are combined for various benefits, including
SDN’s capacity to increase IoT’s efficacy and Network Traffic
Control in Vehicular Cyber-Physical Systems (VCPS) [13].
Application (AP), control (CP), and data planes (DP), as well
as associated south- and north-bound APIs are part of an SDN
architecture. By separating the DP and CP, the introduction of
SDNs has resulted in a new networking paradigm. The AP
only offers a thorough implementation of commands given by
the other planes and is strategically distinct from the other
planes. While the whole network’s decision-making is the
responsibility of the CP. It has customizable characteristics that
effectively connect the DP with other outside communication
technologies like the IoT [14]. The CP can allow the dynamic
analysis of all data traffic passing across an IoT network.
SDN provides bundled services for IoT, including flexibility,
scalability, security, and resilience in multi-controller environ-
ment [15]. Thus, a precise method of network inspection for
identifying suspicious activity, threats, and attacks is made
possible by the convergence of IoT with SDN, and this in-
tegration offers a bright future for such a network. Significant
interest has been shown in Deep Learning (DL) in the last
decade, and its applications are being investigated across a
wide range of study fields, including healthcare, automobile
design, and legal implementation [16]. Additionally, various
DL-based intrusion detection strategies have been put forth by
researchers recently to defend against malicious threats and
attacks in IoT networks. However, SDN-enabled, Intelligent
IDS are still in the early stages of a thorough evaluation of
diversified attacks in such networks.

The scientific literature has witnessed a plethora of research
contributions made to secure IoT against a scattered array of
internal and external attacks. The thorough development of
DL-driven IDS is addressed in [17], which is primarily de-
signed to detect common security attacks including port-based
attacks and the DOS slowloris and DOS Hulk. To accomplish
the intended security goals, the CICIDS2017 dataset is used
for experimentation. The authors compared their proposed
to existing techniques and exhibit a significant superiority
in terms of productivity, with an attack detection accuracy
of 98%. Another threat detection framework is proposed in
[18] that is composed of two renowned classifiers i.e Spider
Monkey optimization (SMO), and Stacked Deep Polynomial
Network (SDPN). Along with DoS attacks, the designed
model is capable to investigate major commonly occurring
attacks such as User-to-Root (U2R) attacks, Remote-to-Local
(R2L) attacks, probe attacks, etc. The designed framework
is trained on the NDL-KDD dataset, and its performance
is compared with benchmarked schemes. The model has
significantly achieved 99.02% accuracy.

Authors have specifically designed an IDS to carefully
detect DDoS attacks in large-scale IoT networks [19]. The
system is evaluated on comprehensive performance metrics
where it remarkably achieves high attack detection accuracy.
The authors of [20] created a threat intelligence technique
for industrial environments. The size of the UNSW-NB15
and power system datasets was reduced in this work using
Independent Component Analysis. Researchers have combined
LSTM with Variational Auto Encoder (VAE) technique to
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TABLE I: Literature Review

Ref Domain Model Dataset Analysis

[17] NIDS DNN CICIDS2017 The proposed model is designed to detect common security attacks including
port- based attacks and DOS. The authors achieved 98% detection accuracy.

[18] IoT SMO, SDPN NSL-KDD A DL-based threat detection framework is proposed to counter DoS, U2R, R2L,
and probe attacks. The model has shown 99.02% accuracy.

[19] IDS MLP, CNN, LSTM,
TCN

BoT-IoT,
CICDS2017, N-
BaIoT

The designed model is a defensive framework against frequently occurring
attacks in IoT. However, it causes significant computational overhead as well.

[20] IIoT
Beta mixture-Hidden
Markov Model (MH-
MMs)

UNSW-NB15, Power
system

Researchers have proposed a threat intelligence scheme for smart industries,
that have achieved 98.45% accuracy on a comparison scale with five other
benchmarked schemes.

[21] IoT LSTM-VAE ToN-IoT, IoT-Botnet The authors proposed a hybrid model to safeguard IoT environments and
achieved efficient detection accuracy.

[22] IoT GRU, DVAE ToN-IoT, IoT-Botnet
A blockchain and DL-based secure threat investigation framework is designed
that is highly efficient in terms of communication cost and computation cost.
The model has achieved 89.99% accuracy.

[23] IDS MLP. NLP Self-generated dataset
using Sixgill

The researchers proposed a threat discovery model for the dark web. Authors
claim to obtain more than 90% accuracy with MLP.

[24] IoT CNN BoT-IoT
An intrusion detection system for the vehicular network is presented to address
frequently occurring IoT attacks and their proposed model has demonstrated
99.25% accuracy.

design another attack detection scheme for IoT. The system
is effectively trained on ToN-IoT and IoT-Botnet datasets
to enhance the learning experience of the proposed system.
The system has proven its efficiency on an analytical per-
formance scale regarding attack detection accuracy, training
time, etc [21]. Blockchain and DL-based solutions are also
regarded as the best choice for threat detection in IoT. Authors
have proposed a threat detection scheme based upon the
core concepts of the Gated Recurrent Unit (GRU) and Deep
Variational Auto Encoder (DVAE) technique. The proposed
actively proves its efficiency against potential adversaries [22].
In [23], the authors used Multi-Layer Perceptron (MLP) and
Natural Language Processing (NLP) to discriminate between
crucial and non-crucial posts on the dark web. Another intru-
sion detection approach, capable of detecting the presence of
cyber threats in IoT, is presented [24]. The model is based
on Convolutional Neural Network (CNN) classifier and is
trained on the BoT-IoT dataset. CNN is also employed in
another threat detection scheme proposed in [25], The model is
specifically designed for botnet attacks, zero-day attacks, and
DDoS attacks. The initial training of the proposed model is
performed at the MQTT-IoT-IDS2020 dataset, and the run time
performance is evaluated in terms of accuracy, precision, and
Recall. CNN is integrated to design another anomaly detection
framework purely designed to investigate suspicious entities
over the network. The model is evaluated in comparison with
some relevant security solutions on a performance scale of
threat detection accuracy [26]. The authors of [27] designed
an ensembled model consist of naı̈ve bayes, QDA, and ID3
classifiers and achieved 95.10% accuracy. Further, in [28], the
authors used federated learning based NIDS namely SecFed-
NIDS to protect IoT networks from poisoning attacks. The
authors achieved detection accuracy of 97.03% under CICIDS-
2018 dataset. Another intrusion detection scheme using an
ensemble approach consisting of ET, RF, and DNN is proposed
in [29] to combat threats in IoT and Fog environments.
BoT-IoT, IoTID20, NSL-KDD, and CICIDS-2018 datasets are
used for a thorough evaluation of the model. The system

Fig. 1: Network Model.

significantly proves its effectiveness by achieving 98.21%
accuracy on CICIDS-2018 dataset. The existing literature is
summarized in Table I.

III. METHODOLOGY

A. Network Model

SDN is considered as a well-established method for building
integrated networks in recent years. Its architecture separates
the data planes and control planes, allowing simplicity and
flexibility. Furthermore, in traditional networks, each router
in the network can only perceive the network’s local state.
The lack of a full overview of the whole network makes
it challenging to construct a potentially powerful defensive
mechanism against cyber threats. SDN, on the other hand, pro-
vides a global network perspective and centralized control ca-
pabilities, making network statistics easier to obtain. In SDN,
the control plane manages routing choices, data transfers, and
traffic monitoring via application techniques. The data plane
incorporates many CE devices, such as intelligent devices,
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Fig. 2: Proposed Detection Scheme.

sensors, and other wireless technologies. The proposed Cu-
BLSTM detection model is placed in the control plane for the
following reasons; First and foremost, it is entirely adaptable
and therefore capable of changing functionality. Secondly, it
may extend numerous networks into its DP and give flexible
solutions between linked CE devices and SDN control through
an open-flow switch. Thirdly, the control plane has an SDN
controller that can govern the whole network as the controller
serves as a central decision-maker and a significant source of
centralized control intelligence. CE and SDN’s combination
provides a simple network traffic monitoring solution for
detecting assaults and suspicious activities. SDN offers a
global network view of all the devices and the network. The
combination of SDN with CE proposes a suitable method
for monitoring network traffic to detect attacks, threats, and
unwanted occurrences. Hence, SDN offers a bright future for
the CE network. Fig 1 depicts the network model.

B. Proposed DL-driven BLSTM-based framework

A DL-driven Intelligent framework for threat detection in
the CE network is provided, incorporating Cu-BLSTM. A low-
cost, versatile, and powerful detection module is designed to
detect threats across CE networks. Fig 2 depicts a compre-
hensive workflow of the proposed acquisition module. Cu-
BSLTM consists of two layers with 200 and 100 neurons.
In addition, we added one dense layer with 30 neurons.
The proposed work utilized Relu as the activation function
(AF) for all levels except the output layer. SoftMax, on the
other hand, is employed in the output layer. The Categorical
Crossentropy (CC-E) is used as a loss function (LF). Tests
are run up to 10 epochs with 64 batch sizes to acquire
effective findings. We utilized Cuda-enabled versions for GPU
processing for an enhanced performance. Furthermore, the
authors used the Keras framework, which is the foundation
for Python TensorFlow. Cuda is a GPU-enhanced library that
enables repeated readings, resulting in quicker multiplication
of matrices. Moreover, we have used Cu-DNN and Cu-GRU

as comparison models that have been trained and evaluated in
the same environment. Cu-DNN consists of four dense layers
with 100, 75, 50 and 30 neurons, respectively. Further, Cu-
GRU comprises four layers of GRU with neurons of 500, 400,
300, and 100, respectively, with one dense layer of 03 neurons.

C. Cu-BLSTM

The proposed work used the Cu-BLSTM model for ef-
fective and timely threat detection in smart CE networks.
An Artificial Neural Network (ANN) type called Recurrent
Neural Networks (RNN) offers much promise for learning
from earlier time steps [12]. RNN utilizes Back Propagation
Through Time to constantly learn from previous timesteps.
Standard RNN cannot perform better when timesteps overlap.
The RNN employs feedback loops and links hidden units to
preserve information over time. It can take consecutive inputs
of any length and produce fixed-length outputs because of
such features. The back-propagation causes error signals to
disappear or explode, causing weights to fluctuate, resulting
in poor system performance and gradient vanishing problems.
Analysts focused on Long-Short-Term Memory (LSTM), as
LSTM blocks can save information for a long time. RNN
with LSTM blocks was designed to solve this issue. However,
to address the shortcomings of the LSTM model, researchers
improved it and is known as BLSTM. By traversing time steps
both forward and backward, BLSTM makes the best use of
the data. To generate two layers side by side, the architecture
copies the first recurrent network. The input is sent to the first
layer in its original form, while the second layer receives a
copy that has been reversed. Complete detail of the BLSTM
is given by the authors in [30]. The following are the transition
functions for Cu-BLSTM gates:

−→
Mt = α(

−−→
Wm ∗ [

−−→
Ht−1,

−→
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Where
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Algorithm 1 Cu-BLSTM detection framework

1: Input: Dataset= DT
2: Output: Normal→ 0, Attack1→ 1, Attack2→ 2, and

so on.
3: Split DT in to DTtrain and DTtest

4: for each layer of BLSTM do
5: DT ′

train = DTtrain pre-proceessing
6: BLSTMTmodel = Train BLSTM model using

DT ′
train

7: end for
8: DT ′

test = DTtest pre-processing
9: while True do

10: Predictattacktype→ BLSTMTmodel(DT ′
test)

11: if predict value = 0 then
12: Return Normal
13: else
14: Return attack type
15: end if
16: end while

As we used the softmax function in the output layer for
multi-class classification. It is calculated by using equation
11. Further, the working of the proposed detection framework
is shown in Algorithm 1.

J =
eJ∑K

j=1 e
zj

(11)

IV. EXPERIMENTAL SETUP AND EVALUATION METRICS

The proposed model is trained using the Python version
”Python 3.8” and using Keras. In addition, to enable com-
parable processing, the PC server is coupled with TensorFlow
and the GPU-based package. The test was carried out using an
Intel Core i7-7700 HQ CPU with a 2.80 GHz processor, along
with a RAM 0f 16 GB, and a 6 GB, 1060 GPU. The proposed
IDS is evaluated using CICIDS-2018 [31]. The dataset consist
of one benign class along with various classes of attacks,
i.e., Brute-force (XSS), DDoS, DoS, SSH, etc. However, in
this work, we used seven classes of the dataset. Further, we
pre-processed the dataset by using various techniques. First,
we deleted all lines with empty values and non-numerics
since they may have an impact on the performance of the
test model. Since DL algorithms primarily handle numerical
data, we used the label encoder, i.e., sklearn, to transform
any non-numerical values into numerical values. Furthermore,
one hot encoding is done on the output label since segment
order may affect model performance, resulting in unforeseen
effects. Data normalization is also carried out to improve
model performance. For this purpose, we utilized the MinMax
scalar function. Finally, we divided the dataset into 70%
training and 30% testing data. The proposed model perfor-
mance is evaluated using standard evaluation metrics such as
accuracy (ACC), precision (PN), recall (RL), and F1-Score
(FS). Furthermore, confusion matrix is used to obtain values
for real positive (TP), true negative (TN), false positive (FP),
Matthew’s correlation coefficient (MCC), false negative (FN),

Fig. 3: Confusion matrix of Cu-BLSTM

and true negative transaction (TN) (FOR). The mathematical
formulas are: ACC = TP+TN

TP+TN+FP+FN) ; RL = TP
TP+FN ;

PN = TP
TP+FP ; FS = 2(TP )

2(TP+FP+FN) .

A. Results and Discussion

This scientific study employed 10-fold cross-validation, and
the findings are displayed in Table II to explicitly demonstrate
unbiased outcomes. For a better understanding, each fold’s
results are shown in this section. The confusion matrix depicts
the model’s performance in the test data set. Data that is
binary or multi-category. It is advantageous to assess the
receiver’s operational element’s accuracy, precision, memory,
and curve (ROC). The confusion matrix of the proposed model
is depicted in Fig 3. The figure is evident that the proposed
model identifies all five classes properly.

Further, the ROC curve corrects the given data so that
positive and negative positive values may be compared. The
extent of segregation is mostly determined by the success of
various class division issues, as demonstrated by the ROC.
The ROC curve structure is located between the TP and FP
levels. Fig 4 depicts the ROC of the proposed Cu-BLSTM
model, demonstrating the efficiency of the proposed model.
The authors further provided the ACC, PN, RL, and FS of
the CU-BLSTM model along with the baseline techniques.
The detection accuracy reveals the Cu-BLSTM efficiency and
performance. Fig 5 depicts the ACC, PN, RL, and FS of all
three models. The proposed model achieved 99.57% ACC with
99.62% PN. Further, the proposed model is having FS and
RL of 99.23% and 99.39% respectively. The figure is evident
that the proposed Cu-BLSTM model outclassed the baseline
models. We have further provided the per-class accuracy of
all three models in Table III respectively. Other performance
assessment methodologies, such as FP rate, FO rate, FD rate,
and FN rate are also studied to properly evaluate the proposed
model. Fig 6 demonstrates that our proposed model has values
of 0.0033, 0.0022, 0.0033, and 0.0029 percent for the FP
rate, FN rate, FD rate, and FO rate. Furthermore, Cu-GRU
outperforms Cu-DNN in terms of such metrics. For a thorough
assessment, we have further calculated the TPR, TNR, and
MCC. These values are obtained using the uncertainty matrix
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TABLE II: 10-Fold Results

Parameter Models 1 2 3 4 5 6 7 8 9 10

ACC (%)
BLSTM 99.43 99.41 99.63 99.52 99.74 99.67 99.80 99.46 99.49 99.56
DNN 98.59 98.53 98.90 99.21 98.81 99.1 98.81 99.42 99.23 98.86
GRU 98.59 98.81 99.10 99.42 99.26 99.29 99.12 98.89 98.82 98.33

RL (%)
BLSTM 99.90 99.89 99.21 99.18 99.23 99.85 99.12 99.14 99.10 99.16
DNN 98.59 98.52 98.43 98.52 98.21 98.30 99.14 99.65 99.14 99.16
GRU 98.94 99.25 99.03 99.17 99.15 98.99 99.21 98.96 98.90 97.56

PN (%)
BLSTM 99.82 99.65 99.51 99.62 99.23 99.46 99.69 99.83 99.89 99.91
DNN 98.95 99.25 98.31 98.23 98.29 98.56 98.64 98.79 99.25 99.65
GRU 98.89 99.05 98.59 99.10 99.21 99.35 99.26 99.19 99.14 99.29

FS (%)
BLSTM 99.20 99.28 99.15 98.81 99.14 99.29 99.05 99.56 99.21 99.69
DNN 98.69 98.51 98.56 98.86 99.12 98.87 98.64 98.93 99.12 98.71
GRU 98.72 98.83 98.97 99.15 99.49 99.11 98.98 98.96 98.89 98.34

Fig. 4: ROC of Cu-BLSTM

TABLE III: Per-class ACC of Cu-BLSTM against baseline
models

Models BLSTM (%) DNN (%) GRU(%)
Normal 100 100 100

XSS 99.87 99.13 98.65
Infiltration 99.26 98.76 99.12

SSH-Patator 99.65 98.16 98.36
DoS-Hulk 99.10 98.65 98.70

DoS-Slowloris 99.68 98.73 98.71
DoS-Goldeneye 99.49 98.21 98.46

for comprehensive analysis. The proposed model, i.e., Cu-
BLSTM yielded improved outcomes than Cu-DNN and Cu-
GRU. Fig 7 depicts the performance of these models, where
it is clear that the proposed model achieved values of 99.15,
99.34, and 99.31 percent respectively, thus proving the efficacy
of the proposed model. Furthermore, we have provided the
testing time of the proposed model in Fig 8. We did not
considered the training time as it is mostly done offline. Fig
8 depicts the speed efficiency of the Cu-BLSTM and baseline
models. The Cu-BLSTM model achieved a testing time of
only 17.40 ms. On the other hand, Cu-DNN is having a better
testing time of 25.2 ms than Cu-GRU. Finally, the performance
of the proposed Cu-BSLTM model is compared with recent

Fig. 5: Overall comparison of Cu-BLSTM against baseline
models

Fig. 6: Overall FPR, FNR, FDR, and FOR of Cu-BLSTM
against baseline models

threat detection techniques from existing literature [27], [28],
and [29], to validate its efficiency. The comparison is made
in terms of ACC and the details are provided in Table IV.
The table is evident that the proposed model outperformed
the existing detection techniques, hence proving its efficiency.
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Fig. 7: Overall TPR, TNR and MCC of Cu-BLSTM against
baseline models

Fig. 8: Overall Speed Efficiency of Cu-BLSTM against base-
line models

TABLE IV: Comparison of Cu-BLSTM with existing literature

Ref Year Model Dataset ACC (%)
Prop 2022 Cu-BLSTM CICIDS-2018 99.57
[27] 2022 Ensembled model CICIDS-2018 95.10
[28] 2022 SecFedNIDS CICIDS-2018 97.03
[29] 2022 Ensemble approach CICIDS-2018 98.21

V. CONCLUSION

In this article, to protect consumer electronics network,
we proposed an intelligent intrusion detection system based
on software-defined networking-orchestrated deep learning ap-
proach. Specifically, software-defined networking architecture
was integrated with consumer electronics network to handle its
distributed architecture and heterogeneous consumer electronic
devices. Then, an IDS based on cuda-enabled bidirectional
long short-term memory was proposed and deployed at control
plane to enhance threat detection mechanism. We proved
the effectiveness of the proposed IDS in terms of accuracy,
precision and speed efficiency through experimental evaluation

on the CICIDS-2018 dataset. We also compared the perfor-
mance of the proposed IDS against some recent state-of-the-
art technique. In the future we aim to train the model on
different datasets to further improve intrusion detection in such
networks. Finally, we endorse DL-based Intelligent models for
efficient threat detection in next-generation smart consumer
electronic networks.

REFERENCES

[1] C. K. Wu, C. -T. Cheng, Y. Uwate, G. Chen, S. Mumtaz and K. F.
Tsang (2022), ”State-of-the-Art and Research Opportunities for Next-
Generation Consumer Electronics,” in IEEE Transactions on Consumer
Electronics, doi: 10.1109/TCE.2022.3232478.

[2] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey
of existing approaches, IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp.
32593306, 4th Quart., 2018.

[3] Statista. (2022, July 28). Consumer Electronics. In
Statista, Electronics. Retrieved 14:57, July 28, 2022, from
https://www.statista.com/outlook/dmo/ecommerce/electronics/consumer-
electronics/worldwide

[4] Al Razib, M., Javeed, D., Khan, M. T., Alkanhel, R., & Muthanna, M. S.
A. (2022). Cyber Threats Detection in Smart Environments Using SDN-
Enabled DNN-LSTM Hybrid Framework. IEEE Access, 10, 53015-
53026.

[5] Yamauchi, M., Ohsita, Y., Murata, M., Ueda, K., & Kato, Y. (2020).
Anomaly detection in smart home operation from user behaviors and
home conditions. IEEE Transactions on Consumer Electronics, 66(2),
183-192.

[6] Javeed, D., Gao, T., & Khan, M. T. (2021). SDN-enabled hybrid DL-
driven framework for the detection of emerging cyber threats in IoT.
Electronics, 10(8), 918.

[7] K. Kalkan, G. Gur, and F. Alagoz, ”Defense mechanisms against ddos
attacks in sdn environment”, IEEE Communications Magazine, vol. 55,
no. 9, pp. 175–179, 2017.

[8] L. N. Tidjon, M. Frappier, and A. Mammar, ”Intrusion detection
systems: A cross-domain overview,” IEEE Communications Surveys &
Tutorials, 2019.

[9] Prabhakar, G. A., Basel, B., Dutta, A., & Rao, C. V. R. (2023). Multi-
channel CNN-BLSTM Architecture for Speech Emotion Recognition
System by Fusion of Magnitude and Phase Spectral Features using
DCCA for Consumer Applications. IEEE Transactions on Consumer
Electronics.

[10] R. Kumar, P. Kumar, A. Kumar, A. A. Franklin and A. Jolfaei,
”Blockchain and Deep Learning for Cyber Threat-Hunting in Software-
Defined Industrial IoT,” 2022 IEEE International Conference on Com-
munications Workshops (ICC Workshops), 2022, pp. 776-781, doi:
10.1109/ICCWorkshops53468.2022.9814706.

[11] Javeed, D., Gao, T., Khan, M. T., & Ahmad, I. (2021). A Hybrid Deep
Learning-Driven SDN Enabled Mechanism for Secure Communication
in Internet of Things (IoT). Sensors, 21(14), 4884

[12] Saurabh, Kumar, et al. ”LBDMIDS: LSTM Based Deep Learning Model
for Intrusion Detection Systems for IoT Networks.” 2022 IEEE World
AI IoT Congress (AIIoT). IEEE, 2022.

[13] Jindal, Anish, et al. ”SeDaTiVe: SDN-enabled deep learning architecture
for network traffic control in vehicular cyber-physical systems.” IEEE
network 32.6 (2018): 66-73.

[14] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. Arco, and R. Doriguzzi-
Corin, “Hybrid SDN evolution: A comprehensive survey of the state-of-
the-art,” Comput. Netw., vol. 192, Jun. 2021, Art. no. 107981.

[15] Ren, Xiaodong, et al. ”Adaptive recovery mechanism for SDN con-
trollers in Edge-Cloud supported FinTech applications.” IEEE Internet
of Things Journal (2021).

[16] J. Cui, M. Wang, Y. Luo, and H. Zhong, “DDoS detection and defense
mechanism based on cognitive-inspired computing in SDN,” Future
Gener. Comput. Syst., vol. 97, pp. 275283, Aug. 2019.

[17] X.-H. Nguyen, X.-D. Nguyen, H.-H. Huynh and K.-H. Le, ”Realguard:
A lightweight network intrusion detection system for IoT gateways”,
Sensors, vol. 22, no. 2, pp. 432, Jan. 2022.

[18] Otoum, Y., Liu, D., & Nayak, A. (2022). DL-IDS: a deep learning–based
intrusion detection framework for securing IoT. Transactions on Emerg-
ing Telecommunications Technologies, 33(3), e3803.

[19] R. Ahmad, I. Alsmadi, W. Alhamdani et al., “A comprehensive deep
learning benchmark for IoT IDS,” vol. 114, pp. 102588, 2022.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3277856

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

[20] N. Moustafa, E. Adi, B. Turnbull, and J. Hu, “A new threat intelligence
scheme for safeguarding industry 4.0 systems,” IEEE Access, vol. 6, pp.
32910–32924, 2018.

[21] M. A. Almaiah, A. Ali, F. Hajjej et al., “A Lightweight Hybrid Deep
Learning Privacy Preserving Model for FC-Based Industrial Internet of
Medical Things,” vol. 22, no. 6, pp. 2112, 2022.

[22] Kumar, P., Kumar, R., Gupta, G. P., Tripathi, R., & Srivastava, G. (2022).
P2tif: A blockchain and deep learning framework for privacy-preserved
threat intelligence in industrial iot. IEEE Transactions on Industrial
Informatics, 18(9), 6358-6367.

[23] M. Kadoguchi, S. Hayashi, M. Hashimoto, and A. Otsuka, “Exploring
the dark web for cyber threat intelligence using machine leaning,”
in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI), Jul. 2019, pp.
200–202.

[24] L. Yang, and A. J. a. p. a. Shami, “A Transfer Learning and Optimized
CNN Based Intrusion Detection System for Internet of Vehicles,” 2022.

[25] I. Ullah, and Q. H. J. I. A. Mahmoud, “Design and development of a
deep learning-based model for anomaly detection in IoT networks,” vol.
9, pp. 103906-103926, 2021.

[26] A. Anand, S. Rani, D. Anand et al., “An efficient CNN-based deep
learning model to detect malware attacks (CNN-DMA) in 5G-IoT
healthcare applications,” vol. 21, no. 19, pp. 6346, 2021.

[27] Lalduhsaka, R., Nilutpol Bora, and Ajoy Kumar Khan. ”Anomaly-Based
Intrusion Detection Using Machine Learning: An Ensemble Approach.”
International Journal of Information Security and Privacy (IJISP) 16.1
(2022): 1-15.

[28] Zhang, Zhao, et al. ”SecFedNIDS: Robust defense for poisoning attack
against federated learning-based network intrusion detection system.”
Future Generation Computer Systems 134 (2022): 154-169.

[29] de Souza, Cristiano Antonio, Carlos Becker Westphall, and Renato
Bobsin Machado. ”Two-step ensemble approach for intrusion detection
and identification in IoT and fog computing environments.” Computers
& Electrical Engineering 98 (2022): 107694.

[30] Javeed, D., Gao, T., Khan, M. T., & Shoukat, D. (2022). A hybrid in-
telligent framework to combat sophisticated threats in secure industries.
Sensors, 22(4), 1582.

[31] Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward
generating a new intrusion detection dataset and intrusion traffic char-
acterization. ICISSp, 1, 108-116.

Danish Javeed is currently pursuing the Ph.D. de-
gree in Software Engineering, specializing in Infor-
mation Security with the Software College, North-
eastern University, China under the prestigious fel-
lowship of Ministry of Education funded by the
Government of China. He got his M.E degree
in Computer Applied Technology from Changchun
University of Science and Technology, China, under
the same fellowship in 2020. He is also working on
various research projects with researchers from LUT
School of Engineering Science, LUT University,

Lappeenranta, Finland. He has many research contributions in the area of
Deep Learning, Cybersecurity, Intrusion Detection and Prevention System,
the Internet of Things, Software-defined Networking and Edge Computing.
He has authored or coauthored over 10+ publications in high-ranked journals
and conferences. He is also an IEEE Student Member.

Muhammad Shahid Saeed is currently pursuing
the Ph.D. degree in Software Engineering, with
Dalian University of Technology, PR China, under
the prestigious fellowship of Ministry of Education
funded by the Government of China. He is also
working on various projects in collaboration with
researchers from Northeastern University, China and
LUT University, Lappeenranta, Finland. He has
many research contributions in the area of the Inter-
net of Things, Industry 4.0, and Intrusion Detection
System.

Ijaz Ahmad is currently pursuing the Ph.D. at
China’s Shenzhen Institute of Advanced Technology
(Siat) on pattern recognition and intelligent systems,
under the ANSO Scholarship. He has over 15 publi-
cations in highly ranked journals and conferences.
His research interests include Intrusion Detection
and Prevention in the Internet of Things and Deep
Learning.

Prabhat Kumar received his Ph.D. degree in In-
formation Technology, National Institute of Tech-
nology Raipur, Raipur, India, under the prestigious
fellowship of Ministry of Human Resource and
Development (MHRD) funded by the Government
of India in 2022. Thereafter, he worked with Indian
Institute of Technology Hyderabad, India as a Post-
Doctoral Researcher under project ”Development of
Indian Telecommunication Security Assurance Re-
quirements for IoT devices”. He is currently working
as Post-Doctoral Researcher with the Department of

Software Engineering, LUT School of Engineering Science, LUT University,
Lappeenranta, Finland. He has many research contributions in the area of
Machine Learning, Deep Learning, Federated Learning, Big Data Analytics,
Cybersecurity, Blockchain, Cloud Computing, Internet of Things and Software
Defined Networking. He has authored or coauthored over 35+ publications in
high-ranked journals and conferences, including 13+ IEEE TRANSACTIONS
paper. One of his Ph.D. publication was recognized as a top cited article
by WILEY in 2020-21. He is IEEE Consumer Technology Society (CTSoc)
Technical Committee member in Machine learning, Deep learning, and AI in
Consumer Electronics. He is also an IEEE Member.

Alireza Jolfaei is an Associate Professor of Net-
working and Cyber Security in the College of Sci-
ence and Engineering at Flinders University, Ade-
laide, Australia. He is a Senior Member of the
IEEE and a Distinguished Speaker of the ACM. His
main research interest is in Cyber-Physical Systems
Security. He has published over 100 papers, which
appeared in peer-reviewed journals, conference pro-
ceedings, and books. Before Flinders University, he
has been a faculty member with Macquarie Univer-
sity, Federation University, and Temple University

in Philadelphia, PA, USA. He received the prestigious IEEE Australian
council award for his research paper published in the IEEE Transactions on
Information Forensics and Security. Dr. Jolfaei is the IEEE Consumer Tech-
nology Publication Board member and the Editor-in-Chief of the Consumer
Technology Society World Newsletter. He has served as the Regional Chair
of the IEEE Technology and Engineering Management Society’s Membership
Development and Activities for Australia. He has served as a program coChair,
a track Chair, a session Chair, and a Technical Program Committee member,
for major conferences, including IEEE TrustCom and IEEE ICCCN.

Muhammad Tahir is currently working as an As-
sistant Professor in the Department of Engineering
& Computer Science, NUML (Faisalabad Campus),
Pakistan. He received his Ph.D. in Information &
Communication Engineering from Changchun Uni-
versity of Science and Technology, PR China. His
research interests include the Internet of Things, In-
formation and Signal Processing, Underwater Wire-
less Communication using EM waves and Energy
Optimization in WSNs.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3277856

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


