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ODD-M3D: Object-Wise Dense Depth Estimation
for Monocular 3-D Object Detection

Chanyeong Park , Heegwang Kim , Junbo Jang , and Joonki Paik , Senior Member, IEEE

Abstract—Despite the significant benefits of low cost and scal-
ability associated with monocular 3D object detection, accurately
estimating depth from a single 2D image remains challenging due
to the typical ill-posed nature of the problem. To address this
issue, we propose a new method that improves depth estimation
accuracy by randomly sampling object-wise points instead of
relying on a single center point, which is a common practice
in conventional methods. To generate the object-wise multiple
reference points, we create a sampling space and obtain the
ground truth by moving them from the sampling space to
the object space. For this reason, the proposed approach is
named ODD-M3D, which stands for Object-wise Dense Depth
estimation for Monocular 3D object detection. In addition, we
conduct an ablation study comparing LiDAR-guided and random
sampling methods to identify the limitations of using point cloud
data for image-based 3D object detection tasks. The proposed
network achieved better performance by allowing for dense depth
estimation instead of sparse depth estimation, which is typical in
conventional networks.

Index Terms—Monocular 3D object detection, object detection,
convolutional neural network.

I. INTRODUCTION

TECHNOLOGIES such as autonomous driving systems
and indoor robot vision systems have gained significant

attention for their ability to facilitate intelligent perception
and safe movement in the surrounding environment with-
out human resources. In recent years, advances in these
technologies have emphasized the growing significance of
three-dimensional (3D) object detection. 3D object detection
is a crucial computer vision technology that has gained
significant attention due to its applications in autonomous
driving systems and indoor robot vision systems. Unlike
conventional two-dimensional (2D) object detection methods,
3D object detection can accurately predict the location, size,
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Fig. 1. Comparison of 3 different depth estimation methods. (a) Center
point for direct depth, (b) object height for Keypoint Depths, (c) the proposed
reference points and (d) the example of Reference Points projected into image
plane.

and orientation of objects in 3D scenes. While various sensors
such as RGB cameras, LiDAR, and radar have contributed to
the development of 3D object detection, monocular 3D object
detection, which utilizes a single RGB camera, has emerged
as a promising approach due to its cost-effectiveness and ease
of implementation. Monocular 3D object detection algorithms
typically extend well-known 2D object detection networks to
predict the 3D bounding box of objects in 2D RGB images.
However, a major challenge in monocular 3D object detection
is the estimation of lost 3D information from 2D images.
Most existing methods rely on sparsely predicted depth based
on the center points of objects, leading to inaccurate 3D
localization [1], [2], [3], [4], [5].

Accordingly, several methods leverage additional data to
alleviates the inaccurate depth estimation [6], [7], [8], [9]
in recent years. However, the sparsity of depth estimation,
the computational complexity and slow inference time for
monocular 3D object detection are still challenging. To address
this issue, we propose an approach to enhance the accuracy
of monocular camera-based 3D object detection networks by
replacing conventional sparse depth estimation with object-
wise dense depth estimation using point sampling. Main
contributions of our method involves:

1) Random point sampling and LiDAR-guided sampling:
We randomly sample points from the bounding box area
of each object and utilize point cloud data from a LiDAR
sensor to sample points around each object.
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2) Reference Point Depth Estimation: We propose a new
dense depth estimation method using pre-generated sam-
pled points.

3) The proposed method demonstrates superior
performance compared to other state-of-the-art
networks.

By leveraging both the center coordinate of the object and its
surrounding area, our method can estimate object-wise dense
depth, significantly improving the accuracy of 3D localization
in monocular 3D object detection.

II. RELATED WORK

Monocular camera-based 3D object detection networks have
been developed in several ways, based on whether additional
data is employed during the training stage. Among the monoc-
ular 3D object detection networks without using extra data
during training, CenterNet-style networks are the mainstream.
These one-stage keypoint-based anchor-free 2D detectors are
widely used [1]. Liu et al. referred to the difference between
the 2D and 3D center points, and proposed SMOKE which
regresses the keypoints based on the projected 3D center point
instead of using the 2D center point [2]. MonoPair utilizes
geometric information in a single 2D image by estimating
pair-wise geometrical constraints on surrounding objects [3].
MonoDLE estimates the offset between the center point of
the 2D bounding box and the projected 3D center point,
and then uses the IoU-oriented optimization method for 3D
size estimation [4]. MonoFlex considers geometric information
in a 2D image and leverages the height information of an
object to improve depth prediction accuracy. In contrast, prior
methods rely only on direct regression using the center point
of each object to estimate depth [5]. M3D-RPN, which is a
one-stage anchor-based detectors, uses only RPNs to perform
3D object detection without using other sub-networks [10].
By defining 2D and 3D anchors together, a region proposal
is generated by utilizing the correlation between 2D scale
and 3D depth as a prior. For better 3D bounding box
prediction, M3D-RPN generates a spatial-aware feature using
depth-aware convolution. GrooMeD-NMS (Non Maximum
Suppression) extracts 2D features and sets the best 3D box
candidates with differentiable NMS [11]. In the case of a two-
stage method, GS3D uses relatively accurate 2D candidates
to generate the self-supervised 3D guidance, because the
performance of the 2D detectors itself produces sufficiently
reliable resultsNMS [12]. In addition, GS3D generates 3D
features through inverse operations based on created 3D
guidance. MonoDIS separates the training process of 2D and
3D features to alleviate the negative effect on optimization
caused by the mismatch between 2D and 3D features [13].

On the other hand, several monocular 3D object detec-
tion methods that require prior knowledge in the form of
additional data, such as depth maps, point cloud data, and
shape information, have been the subject of active research.
A 2D image is obtained by projecting the 3D scene and
does not contain depth information. Therefore, using depth
information with a single 2D image is expected to improve the
accuracy in monocular 3D object detection tasks. To incorpo-
rate precise depth information during the training phase, an

auxiliary depth estimation network is developed. One approach
that uses depth information to train monocular 3D object
detection networks is the Pseudo-LiDAR method [6], which
converts a depth map into pseudo-LiDAR representation. The
depth map is first estimated by monocular depth estimation
network and then transformed into a pseudo-LiDAR point
cloud data. Next, 3D object detection is performed using
LiDAR-based detector. AM3D fuses the RGB features of 2D
images with pseudo-LiDAR point cloud data by using attention
mechanism as a gate function to amplify the flow of feature
information method [7]. Mono3DPLiDAR utilizes an instance
mask instead of a bounding box and improves the performance
of 3D object detection by reducing points that do not cor-
respond to objects in point cloud frustum [8]. PCT refines
the predictions by a confidence-aware localization boosting
mechanism and uses a global context encoding to solve the
problem of inaccurate localization of pseudo-LiDAR [14].
ForeSeE analyzes the data distribution of foreground and
background features and detects the 3D objects by separating
foreground and background using pseudo-LiDAR with the
analyzed distribution [15]. D4LCN is an example of depth
map-guided approach which employs depth maps to train a
monocular 3D object detection network [16]. Instead of relying
on a global kernel, the complete image is learned through
local information from each pixel and channel, as well as
depth maps. While pseudo-LiDAR-based 3D object detection
experiences degraded performance when converted point cloud
data acquired from monocular depth estimation network is
inaccurate, D4LCN can maintain a relatively consistent level
of 3D object detection performance even when the depth
estimation results are inaccurate. MonoGRNet pointed out that
existing methods do not focus on object localization, and
to solve this problem, MonoGRNet divides 3D localization
into several sub-tasks [9]. In addition, instance level depth
estimation is used to increase the accuracy of depth estimation.
CaDDN predicts the depth distribution and the feature extrac-
tion in parallel and uses the estimated depth distribution as a
frustum feature grid [17]. The frustum feature is then trans-
formed to voxel grid using the camera calibration parameter
to generate a 3D voxel feature volume. When performing 3D
object detection, CaDDN transforms the generated 3D voxel
feature to BEV (Birds Eye View) feature and utilize BEV-
based detector to detect the 3D objects. MonoPSR utilizes
LiDAR data in the learning process to perform instance-wise
3D reconstruction through shape and scale information of
objects [18]. MonoPSR estimates the 3D center point of the
object and utilizes the reconstructed instance point cloud data
to improve the 3D localization accuracy of monocular 3D
object detection. MonoRUn has the effect of better estimating
the shape of 3D objects and mitigating overfitting problem
with LiDAR supervision in the proposed monocular 3D object
detection network [19].

III. PROPOSED METHOD

A. Problem Statement

Monocular 3D object detection involves predicting the 3D
information of an object and generating its 3D bounding
box as output. To predict the 3D bounding box, we need to
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Fig. 2. The architecture of the proposed method. DLA-34 extracts feature maps from input 2D images. The extracted feature maps go through both baseline
and proposed reference point depth branch. LiDAR-guided and random sampling method are used to train reference point depth estimation branch (RefDEB).
Reference point depth is combined with direct depth and keypoint depth to obtain final depth with uncertainty-based soft ensemble.

determine the object’s position (x, y, z), dimensions (w, h, l),
and orientation (θ). However, due to the use of a monocular
camera, the z-axis, which corresponds to depth information, is
lost as the 3D scene is projected onto a 2D image plane.

f (h(u, v)) = (x, y, z), (1)

where f and h respectively represent a deep neural network and
image plane. When a monocular 3D object detection network
takes a 2D image as input and generates 3D bounding boxes
as output, the lack of depth information can lead to inaccurate
3D localization. To address this issue, additional information
is needed to compensate for the lack of depth information in
the 2D image. In our proposed method, we sample multiple
points based on the 3D bounding box of each object to predict
depth densely, in contrast to existing methods that only rely on
regression based on the object’s center point to predict depth.
As a result, our proposed method alleviates the mismatch
between the 2D image and 3D space by enabling object-wise
dense depth estimation.

As shown in Fig. 2, the architecture of the proposed method
involves using DLA-34 [20] extract feature maps from 2D
input images. The extracted feature maps then go through
two separate branches. The first branch estimates various 3D
information including heatmap, direct depth, keypoint depth,
orientation, and size. The second branch, which we propose,
is the reference point depth estimation branch, consisting of
dilated convolution and coordinate convolution. The objective
of this branch is to estimate the object-wise dense depth map
and output the depths of five reference points using obtained
depth map.

B. Architecture Overview

We propose the reference points depth branch, which can
densely estimate the depth based on the 3D bounding box
of each object using point random sampling. The baseline
network is the MonoFlex [5], a CenterNet-style monocular
3D object detection network, with DLA-34 [20], which has
the parameters of approximately 15.73M, serving as the

Fig. 3. Illustration of the offset.

backbone network. The deep features extracted from the back-
bone network then undergo processing through the proposed
Reference point Depth Estimation Branch (RefDEB) and 3D
branch, respectively. We constructed a 3D branch following
the baseline network, and the details are as follows. First,
the heatmap head predicts the 2D location of the center
point of each object and the class information of each object.
The predicted 2D center coordinate is used to obtain the 3D
center coordinate of the object. We estimate the offset between
the 2D and 3D center points based on the approximate 2D
center point. To create more explicit bounding boxes, this
offset is used to predict ten keypoints, including eight vertices
{k1, . . . , k8} of the bounding box and the top and bottom
center points {cbtm, ctop} as:

δkpts = kpts

S
−
⌊

C2d

S

⌋
,

kpts ∈ {c3d, cbtm, ctop, k1, . . . , k8
}
, (2)

S and C2d downsampling ratio between input image and the
output feature map of the network, and 2D center point. The
offsets between the keypoints, including the 3D center point of
the object c3d, and the 2D center coordinate c2d, are calculated
as shown in Figure 3. And, the loss function is defined as

Loffset =
∑
kpts

∣∣∣∣δ∗kpts −
(

kpts

S
− |c2d

S
|
)∣∣∣∣, (3)



PARK et al.: ODD-M3D 649

Algorithm 1 Reference Point Generation Using Random
Sampling

Input: The number of points n, 8 corner points {Ci}8i=1 and dimension
D = (w, h, l)
Output: Ground truth random sampling-based reference points P3D
1: Create an arbitrary sampling space S ← (w, h, l)
2: {PS

i }ni=1 ← Sample n points in S
3: {PD

i } ← {PS
i } × D

4: {PD
i }4i=1 ← select 4 points in {PD

i } and
corresponding {qi}4i=1 ∈ Ci

5: Transformation matrix X ← ((pD
i )T pD

i )−1(pD
i )T qi

6: Sampled points in object space O
PD

i ← PD
i × X

7: Points projected onto image plane I
PI

xy ← PROJECT(PO
3D)

8: P3D ← CONCATENATE(PI
xy, PO

z )

where δ∗ represent the ground truth offset of each kpts.
The uncertainty-based depth estimation method has become
popular in recent years, and many monocular 3D object detec-
tion networks have adopted this approach. In our proposed
network, we also use the Laplacian likelihood method to model
the uncertainty of all the depths we use, including one direct
depth, three geometry depths, and five reference points depths.
First, the direct depth represents the distance from the center
point of objects in the image to the camera as shown in
Figure 1(a), and the direct depth is calculated as:

zr = 1

σ zo
− 1, σ (x) = 1

1+ e−x
, (4)

zr, z0 and σ denote the absolute depth, network output and
the uncertainty. And, the keypoint depth denotes the depth
calculated using the height information of the predicted 3D
bounding box of objects, and the keypoint depth can simply
calculated as:

zkpt = f × H

h2d
, (5)

where zkpt, f , H, and h2d denote the keypoint depth, focal
length, estimated object height and pixel height, respectively.
The following loss function is defined as

Ldepth = λ
‖z∗ − z‖1

σpred
+ log

(
σpred

)
. (6)

The uncertainty and following depth can be calculated as
equation (4). The model is designed in such a way that when
the confidence of the predicted depth is low, the uncertainty
σpred increases. As a result, the loss value increases as can be
seen in the form of equation (6).

C. Reference Point Generation

The process of generating reference points using ran-
dom sampling is outlined in Algorithm 1. The algorithm is
described in detail as follows:

Sampling Space: Our proposed method aims to estimate
dense depth from a single 2D image by using various reference
points, instead of relying on only one center point. To sample
these reference points, we create a sampling space with the
same size as the 3D cuboid of each object and randomly

sample n points in this space, including the eight corner points
and two center points of the cuboid to account for boundary
effects. The range of n is set between 10 and 5500 as shown
in Table VI and VII.

Transformation Matrix: In this step, the reference points that
were generated in the sampling space need to be shifted to the
object space. Since both sampling and object spaces have the
same size and shape, the transformation matrix can be obtained
using the corner points of the corresponding 3D cuboid.
To obtain the transformation matrix, at least four points are
needed, and we choose any four points from the eight corner
points and two center points available. The procedure for
obtaining the transformation matrix X can be expressed as:⎡

⎢⎢⎣
p′1
p′2
p′3
p′4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

p1
p2
p3
p4

⎤
⎥⎥⎦X,

X = (PTP
)−1

PTP′, (7)

where P′ represents {p′1, . . . , p′4} the set of corner points in the
object space, and P represents {p1, . . . , p4} the set of corner
points in the sampling space. We obtain the matrix X using
the pseudo-inverse method. After obtaining the transformation
matrix, the reference points in the sampling space are shifted
to the object space and then projected onto the image plane.
The procedure for processing the sampled reference points on
the image plane using camera metrics is as follows:

P2D = K
[
R T

]
P3D (8)

where K represents the intrinsic matrix,
[
R T

]
the extrinsic

matrix, P2D the projected sampled reference points in 3D
space.

D. Reference Point Depth Estimation Branch (RefDEB)

We propose a branch of a neural network architecture, enti-
tled “Reference point Depth Estimation Branch (RefDEB)”,
that is trained to predict depth values for each object in an
image using ground truth values obtained in the previous
step. The training process for this branch involves predicting
the depth value for each object and comparing it with a
predefined ground truth mask to measure the accuracy of the
predicted depth values. Object-wise dense depth map and the
proposed the depth of reference points are shown in Fig. 5.
In RefDEB, depth is predicted densely for each object, and
the training process involves measuring the accuracy of the
predicted depth value against a predefined ground truth mask.
The RefDEB is composed of a dilated convolution and a
coordinate convolution, as shown in Fig. 4.

Due to the limited resolution of 2D images, occlusion
or object truncation can occur during the processing of 3D
scenes. To address these issues, a dilated convolution is
employed to capture more contextual information surrounding
the object. Additionally, since the ground truth values used
for training are obtained from sampled points, the model must
predict the depth values for all points within the 3D bounding
box of the object. Therefore, we use the coordinate convolution
to precisely predict the positional coordinates of the sampled
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Fig. 4. The architecture of baseline (left dashed box) and RefDEB (right
dashed box), which consists of coordinate convolution and dilated convolution
blocks.

Fig. 5. Reference point Depth Estimation Branch (RefDEB): (a) object-wise
dense depth map extracted from RefDEB and (b) the output of RefDEB that
involves five reference point depths averaging the two depth values located
on each diagonal line expressed as same color.

points for each object and obtain the corresponding depth
values. Consequently, we generate an object-wise dense depth
map, which is optimized using L1 loss during the training
process. The coordinate convolution technique concatenates
the x, y coordinate map to the input feature map and is
employed to predict the position of an image. Thus, we use
the coordinate convolution to obtain precise depth predictions
for the object-wise sampled points. The generated the object-
wise depth map is combined with the direct depth and
geometry depth to achieve more precise depth predictions. To
accomplish this, we calculate the depth of the eight vertices of
the bounding box and the depth corresponding to the upper and
lower center coordinates based on the generated object-wise
dense depth map. We then average the 10 depth values located
on each diagonal line as shown in Fig. 5. The resulting depth
of five reference points are then merged through the direct and
geometry depths using a soft ensemble method, which can be
expressed using the following equation:

zfinal =
(

9∑
i=1

zi

σi

)
/

(
9∑

i=1

1

σi

)
(9)

E. LiDAR-Guided Sampling

This section presents an analysis of the proposed network
utilizing the LiDAR-guided sampling technique. The RefDEB
is trained by sampling point cloud data, which enables to

Algorithm 2 Generating LiDAR-Guided Reference Points

Input: Reduced point cloud map Pi, 3D bounding box information B3D
Output: Ground truth LiDAR-guided reference points Pobj
1: for ((x1, y1, z1), ..., (xi, yi, zi)) ∈ Pi do
2: if (xi, yi, zi) in B3D then
3: Ixy ← PROJECT_TO_IMAGE(xi, yi, zi)
4: Pobj ← STACK(CONCATENATE (Ixy, zi))
5: end if
6: end for

perform advanced depth estimation. Point cloud data acquired
using a LiDAR sensor is characterized by precise depth
information. As a result, we expect that incorporation of point
cloud data in the learning process via sampling will enhance
the performance of object-wise dense depth estimation. To
use point cloud data in the learning process of the monocular
3D object detection network, we reduce the point cloud map
acquired by rotating 360 degrees to only include points present
in the same direction as the RGB image. We then exclude
other points because we only need points that exist in the 3D
bounding box of the object within the forward point cloud
map. The ground truth data for LiDAR-based sampled points
are obtained in the same manner as when obtaining ground
truth data for randomly sampled points. The ground truth
values of each LiDAR-based sampled point are obtained by
concatenating the z values of each point among the (x, y, z)
values of each point and the corresponding (u, v) image
plane obtained by processing each point. The algorithm for
generating ground truth of LiDAR-based sampled points is
described as shown in Algorithm 2:

The proposed network has been trained using the LiDAR-
based sampling method, and a performance comparison with
the random sampling method can be found in Table VIII of
the ablation study.

IV. EXPERIMENTAL RESULTS

Dataset. The KITTI 3D object detection dataset [31] is
utilized for training and evaluating the proposed network. The
dataset basically consists of 7, 481 train sets and 7, 518 test
sets. The train set is paired with images and the corresponding
annotation files, while the test set does not provide annotation
files. To evaluate the validation set, the training set is divided
into a train set of 3, 712 and a validation set of 3, 769,
following the approach used in previous studies [1], [2], [3],
[4], [5]. Moreover, the KITTI raw data, which consists of
multiple sequence images and is commonly used to train depth
map-based approaches, is also used. The data can be accessed
on the KITTI 3D official website. Inspired by other research
works [32], [33], we incorporate the KITTI raw data in the
training process and evaluate the trained model using the
test set provided on the official website. As the KITTI raw
dataset does not offer annotations, we create and use pseudo-
annotations using PV-RCNN [34], a LiDAR-based detector.

Evaluation metrics. We evaluated the object detection
capability of the proposed network on three classes: ‘Car’,
‘Pedestrian’, and ‘Cyclist’, using two evaluation metrics,
namely AP3D and APBEV . These metrics represent the average
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TABLE I
QUANTITATIVE RESULTS FOR CAR CLASS ON KITTI TEST SET, EVALUATED BY AP3D|R40 AND APBEV|R40 WITH IOU ≥ 0.7.

THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY

precision of the predicted 3D bounding box and the aver-
age precision of the results in the Bird’s Eye View map,
respectively. For the ‘Car’ category, we set the intersection
over union (IoU) threshold to 0.7, whereas for ‘Pedestrian’
and ‘Cyclist’, we set it to 0.5. We also evaluated the KITTI
3D dataset according to three levels of difficulty: ‘Easy’,
‘Moderate’, and ‘Hard’, which are defined based on the
object’s level of occlusion and translation.

Implementation details. The training of the proposed
method is performed on an RTX 2080Ti GPU. The model is
trained for a total of 100 epochs, and the initial learning rate
is set to 3e-4. AdamW optimizer is used during the training
process, and the learning rate is decayed at the 80th and 90th
epochs. The input image size is (384 × 1280 × 3), and the
DLA-34 backbone network produces a feature map of size
(96 × 320 × 256) with a down-sampling ratio of 4 (S = 4).
The deep features from this network are then fed into both the
3D branch and the proposed RefDEB for detection.

A. Quantitative Results

Table I presents a performance comparison between various
state-of-the-art (SOTA) models on the KITTI test set. The
dataset used to train the model and to evaluate the test set
is created using the KITTI raw dataset and pseudo-label
generation techniques. AP3D and APBEV are performance
evaluation metrics for 3D object detection that increase with
the accuracy of depth estimation, and the accuracy of depth
estimation is crucial for 3D object detection. The proposed
method achieved better results than recent SOTA models,

whether trained with additional data or not. To achieve more
accurate depth estimation, we proposed RefDEB to estimate
depth in a dense manner, whereas it was previously estimated
sparsely. As a result, the proposed method yields higher depth
estimation accuracy, leading to improve 3D localization accu-
racy, and thus achieves excellent performance in terms of AP3D

and APBEV . Notably, compared to MonoFlex [5], a baseline
network that employs the geometry-based depth estimation
method, the proposed method achieves a higher performance
of 4.88, 1.28, and 1.39 in ‘easy’, ‘moderate’, and ‘hard’
levels, respectively. Similarly, the proposed method achieves
improved performance compared to MonoRCNN [26] and
MonoRCNN++ [30], which use object height information.

Table II presents a performance comparison between var-
ious SOTA models using the KITTI validation set. For
evaluating the KITTI validation set, the proposed method is
trained on a dataset comprising 7, 481 samples, including
both the train and the validation sets. The table summarizes
the official performance results for several SOTA models
on the KITTI validation set, as reported in their respective
papers. The proposed method achieves higher performance
compared to the CenterNet-style methods such as SMOKE [2],
MonoPair [3], MonoDLE [4], and MonoFlex [5], including
CenterNet [1]. Notably, the proposed method achieves 1.5,
0.51, and 0.48 higher performance than MonoFlex in AP3D

with IoU ≥ 0.7 and 1.36, 0.34, and 0.38 higher than MonoFlex
in AP3D with IoU ≥ 0.5, and the performance difference is
greater in terms of IoU ≥ 0.5.

Table III presents the quantitative evaluation of the ‘Car’
category on the KITTI validation set using raw data, assessed
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TABLE II
QUANTITATIVE RESULTS FOR CAR CLASS ON KITTI VALIDATION SET, EVALUATED BY AP3D|R40 AND APBEV|R40 WITH IOU ≥ 0.7 AND IOU ≥ 0.5,

RESPECTIVELY. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY

TABLE III
QUANTITATIVE RESULTS FOR ‘CAR’ CLASS ON KITTI VALIDATION SET

USING RAW DATA COMPARED TO OTHER SOTA NETWORKS, EVALUATED

BY AP3D|R40 WITH IOU ≥ 0.5 AND 0.7. THE BEST AND SECOND BEST

RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY

TABLE IV
FOUR DIFFERENT RUNS FOR CAR CLASS ON KITTI TEST SET

by AP3D|R40 with IoU thresholds of 0.5 and 0.7. The proposed
method achieves 5, 3.73, and 5.28 higher performance than
MonoFlex in AP3D with IoU ≥ 0.7 and 8.43, 5.86, and
5.37 higher than MonoFlex in APBEV with IoU ≥ 0.7.
The results indicate that our proposed method outperforms
other state-of-the-art techniques when trained under identical
conditions with raw data.

In Table IV, we calculated the median outcomes in a
sequence of four different experiments for ‘Car’ class on
KITTI test set. Although there were variations across the
four tests, it is noteworthy that our method consistently
showed enhanced performance relative to other state-of-the-art
networks.

B. Qualitative Results

We conducted a qualitative evaluation as shown in Fig. 6.
We use the KITTI 3D validation set and compare the predicted
boxes of the proposed method and the baseline using both
2D and BEV images. The proposed method shows more

TABLE V
REFDEB ON/OFF TEST. THE BEST RESULT IS HIGHLIGHTED IN BOLD

sophisticated 3D localization in both 2D and BEV images,
which can be attributed to the improved depth estimation
method.

C. Ablation Study

1) RefDEB On/Off Test: Table V displays a comparative
analysis of the individual contributions of dilated convolution
and coordinate convolution in the proposed RefDEB tested on
KITTI validation set for ‘Car’ class. This is demonstrated by
toggling these components on and off. The performance of
baseline network, MonoFLEX, is represented by the results
obtained without utilizing either dilated or coordinate con-
volution. A marginal improvement in performance is noted
when each component is activated separately. However, the
optimal performance is attained when both dilated convo-
lution and coordinate convolution are used in conjunction.
In Section III-D, as mentioned earlier, dilated convolution is
employed to capture a broader range of contextual information
surrounding the object. Furthermore, coordinate convolution
is utilized to accurately predict the positional coordinates of
sampled points for each object and derive the corresponding
depth values. Consequently, the combination of dilated con-
volution and coordinate convolution is employed to acquire
accurate positional coordinates and depth values for object-
wise sampled points.

2) Pedestrian and Cyclist: Table VI shows the results of
an ablation study for the performance of the ‘Pedestrian’ and
‘Cyclist’ classes evaluated by other models and the proposed
method on the KITTI validation set. First, we retrained the
baseline network MonoFlex [5] under the same conditions as
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Fig. 6. The proposed method (right) and the baseline (left) are compared in terms of their predictions on both the image view and BEV, as shown in the
qualitative results. The predicted boxes are represented by green, while the ground truth boxes are in red.

TABLE VI
QUANTITATIVE RESULTS FOR ‘PEDESTRIAN’ AND ‘CYCLIST’ CLASS ON

KITTI VALIDATION SET, EVALUATED BY AP3D|R40 AND APBEV|R40 WITH

IOU ≥ 0.5. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED

IN BOLD AND UNDERLINE, RESPECTIVELY

the proposed method. The proposed method achieved signifi-
cantly higher performance for the ‘Pedestrian’ class, recording
4.06, 4.12, and 3.11 higher performance than the baseline,
and 1.35, 0.66, and 0.5 higher performance for the ‘Cyclist’
class. Additionally, the proposed method outperformed other
networks in terms of overall performance for ‘Cyclist’ class
and achieved the second-best performance for the ‘Pedestrian’
class.

3) The Number of Points: We conducted an ablation study
on the number of sampling points using the KITTI validation
set for ‘Car’ class. In Table VI We observed that performance
improved as the number of sampling points increased from
500 to 1000. However, we also observed that the performance
started to decrease at 2, 500 sampling points and decreased
significantly at 5, 500. We found that as the number of
sampling points increased, sampling various points in a narrow
space had an adverse effect on regularization. In addition,
for pedestrians, the performance is consistently favorable

TABLE VII
RESULTS OF ABLATION STUDY FOR VARYING NUMBER OF SAMPLED

POINTS. THE BEST RESULT IS HIGHLIGHTED IN BOLD

compared to the baseline network, with similar performance
observed at 500 and 2500 sampling points as shown in
Table VII. Notably, even at 5500 sampling points, our method
outperforms the baseline network. However, for cyclists, the
optimal performance is achieved at 1000 sampling points,
while the performance diminishes compared to the baseline
network at other sampling point counts. Therefore, when con-
sidering the car class, it is evident that utilizing 1000 sampling
points yields the optimal performance. Although the sampled
points may differ in size corresponding to the dimensions
(w, h, l) of the object in 3D space, the location difference of
sampling points may be closer when projected onto the image.
As points that differ in depth value in the actual 3D space are
projected onto the image, there is little difference in distance,
and we confirmed that performance decreases as the number
of sampling points increases.

4) LiDAR-Guided Sampling: Table VIII presents the
results of an ablation study comparing the performance
of baseline, random sampling, and LiDAR-based sampling
methods using the KITTI validation set. LiDAR-based
sampling methods are generally more accurate in terms of
depth estimation than random sampling methods as LiDAR
sensor provides accurate depth information. However, as
shown in Fig. 7(b), point cloud data tends to gather in the
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Fig. 7. LiDAR-guided sampling. (a) bounding box with ground truth center
point, (b) LiDAR-guided sampled points and (c) the predicted center point
trained by using LiDAR-guided sampling.

TABLE VIII
RESULTS OF ABLATION STUDY FOR COMPARING LIDAR-GUIDED AND

RANDOM SAMPLING METHODS. THE BEST RESULT

IS HIGHLIGHTED IN BOLD

TABLE IX
COMPARISON OF DIFFERENT DEPTH ESTIMATION METHODS.

THE BEST RESULT IS HIGHLIGHTED IN BOLD

outer parts of objects, which can result in object-wise dense
depth estimation regressing the depth value of the outer part
rather than the center point of the object, as shown in Fig. 7(c).
As a result, in table VIII, the LiDAR-based sampling method
outperforms the baseline but performs worse than the random
sampling method. Specifically, for the ‘Car’ class in the KITTI
validation set, the LiDAR-based method shows a 2.98, 1.89,
and 1.02 worse performance in AP3D compared to the random
sampling method.

5) Three Different Depth Estimation Methods: Table IX
provides a comparative analysis of three different depth
estimation methods using the KITTI 3D validation set.
Initially, the direct depth estimation method with uncertainty
outperformed the geometry depth estimation method with
uncertainty. Nevertheless, a notable boost in performance
emerged when both depth estimation methods were employed
concurrently. This shows that the combination of diverse depth
estimation techniques with uncertainty enhances the overall
accuracy of depth estimation. Moreover, when integrated into
the ensemble of depth estimation methods, the proposed
RefDEB demonstrated the highest level of performance. In
summary, it is clear that the object-wise dense depth estimation

method provides a more accurate estimation of depth com-
pared to the sparse depth estimation method.

V. CONCLUSION

We propose a monocular 3D object detection approach
based on dense depth estimation using object-wise sampling,
which allows for the substitution of the sparse depth estimation
method with a more precise dense depth estimation. We use
both random sampling and LiDAR-guided sampling methods
to estimate object-wise dense depth in the proposed approach.
We also propose a ground truth data generation method
using these two sampling methods. The random sampling
method defines an arbitrary sampling space and obtains ground
truth data using sampled points, while the LiDAR-guided
sampling method obtains ground truth data by reducing the
point cloud map according to the camera frontal view. Major
contribution of the proposed approach includes: i) significantly
improving the accuracy of monocular 3D object detection by
improving the accuracy of depth estimation, ii) addressing
some of the key limitations associated with sparse sampling
and a single center point, and iii) object-wise sampling and a
ground truth data generation method that leverages both ran-
dom and LiDAR-guided sampling. We conducted comparative
experiments using the LiDAR-guided sampling and random
sampling methods to analyze the limitations of applying point
cloud data to image-based 3D object detection tasks. To com-
pare and experiment with these methods, we performed several
experiments and demonstrated the superiority of our proposed
approach through various evaluation metrics. Looking ahead,
we believe that our approach holds significant potential for
improving the performance of monocular 3D object detection
systems in a wide range of real-world scenarios.
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