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Abstract—In recent years, advanced magnetic resonance imag-
ing (MRI) methods including as functional magnetic resonance
imaging (fMRI) and structural magnetic resonance imaging
(sMRI) have indicated an increase in the prevalence of neuropsy-
chiatric disorders. Data driven techniques along with medical
image analysis techniques, such as computer-assisted diagnosis,
can benefit from deep learning. With the use of artificial
intelligence (AI) and IoT-based intelligent approaches, it would be
convenient to make it easier for autistic children to adopt the new
atmospheres. In this study, we have tried to classify and represent
learning tasks of the most powerful deep learning network such
as Convolution Neural network (CNN) and Transfer Learning
algorithm for a combination of data from Autism Brain Imaging
Data Exchange (ABIDE I and ABIDE II) datasets. Due to
their four-dimensional nature (three spatial dimensions and
one temporal dimension), the rs-fMRI data can be used to
develop diagnostic biomarkers for brain dysfunction. ABIDE is
a global collaboration of scientists, as ABIDE-I and ABIDE-
II consists of 1112 rs-fMRI datasets comprising 573 typically
developing and 539 autism individuals, 1014 rs-fMRI containing
521 austistic and 593 typical control (TC) respectively, collected
from 17 different sites. Our proposed optimized version of CNN
achieved 81.56% accuracy. This outperforms prior conventional
approaches presented on the ABIDE I datasets.

Index Terms—Autism spectrum disorder, ASD, early age ASD,
gender base ASD, deep neural network, transfer learning.

I. INTRODUCTION

DATA analytics in Internet of things has evolved fast in
the recent few decade due to the tremendous input of

multimodality data. In Internet of medical things machine
learning-based analytical, data-driven models are increasingly
becoming more popular [1]. Due to the high complexity of
neural network contained in the human brain [2], There are
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innumerable cell types working in specific regions [3]. Brain
disorder occurs when a part of the brain stops responding to
brain activities which can be caused by malfunctioning of the
brain’s tissues and nerves. Brain diseases are mostly caused by
genealogical factors, environmental risks attenuating factors
that affect the working of specific brain region of nervous
system [4]. Lack of executive functions (EFs) is a common
cause of socio interactive and academic failure in children
and has been connected to a wide range of neurological and
developmental issues. Data-driven approaches have been used
to discover unique clusters of children with shared EF-related
issues and subsequently found brain structure features that
separate these data-driven groups [5]. Common brain diseases
include Alzheimer [6], brain cancer [7], schizophrenia [8], [9]
Autism [10], and psychiatric disorders [11], [12], [13] etc.

Alzheimer’s disease (AD) is characterized by brain cell
death, which eventually affects memory and thinking [6].
Between 30 and 60, early AD symptoms occur. Memory,
eyesight, problem-solving, and peanut butter tests are used to
detect AD.

Neuroanatomical cell growth, called tumor cells, causes
issues in solid skulls that enclose the brain [7]. Early symp-
toms of Brain Tumer (BT) include nausea, vomiting, headache,
bodily weakness, and memory issues. Early detection and
treatment of BT can save lives. Neurologic exams, CT scans,
MRIs, and Angiograms detect BT.

Schizophrenia impacts thinking, behaviour, and emotion.
Early illness symptoms may begin between 16-30 and con-
tinue a lifetime. Antipsychotics, psychosocial treatments, and
coordinated specialist care (CSC) help treat schizophrenia in
early stages [8], [9], [14].

Autism spectrum disorder (ASD) is a common brain disease
which affects many parts of the brain and causes neurological
and developmental disability in a child (12-18 months) that
can last throughout his life [10], [15]. ASD shows a large
number of symptoms which include learning disability, behav-
ioral disability, abnormal body posture and facial expressions
and poor eye contact etc. Neurological illnesses affect one
in six people and cost almost one trillion dollars to treat,
according to the American Brain Foundation [16]. Due to
brain intricacy, brain disease treatment is difficult. That’s
why brain disease research has been a broad field for last
20 years [17].
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ASD is one of the neurological disorder that is a
behavioural disease characterized by repetitive behaviour,
poor verbal interaction, Restricted and repetitive behaviours
(RRBs) [18], neurodevelopment that leads to permanent
impairment [19], [20]. ASD has increased rapidly during the
past three decades, matching the 1.7 percent rate of autism in
American children. Boys have four times more autism than
girls due to its rapid growth. Autism families have a 5–10%
chance of having another autistic child and 0.1% to 0.2%
of families without autistic children will have one (CDC,
1943-2004) [21], [22]. Physical inactivity and poor diet may
increase the risk of chronic non-communicable diseases like
ASD, they risk violence, injury, and abuse etc. Other childhood
vaccinations do not increase ASD risk (WHO, 2021) [23].
During the last decade’s neuroimaging research has shed light
on ASD’s neurobiology. The use of task-based functional
MRI has revealed aberrant activity in crucial regions involved
in social communication and RRBs in a number of studies.
fMRI detects blood oxygen and flow changes that result from
cerebral activity, a more active brain consumes more oxidizing,
so blood flow increases in the active area to meet this demand.

In recent years, fMRI is used to study brain development in
infants [2], [24], [25], [26], [27], [28]. rs-fMRI, gray matter
(GM), and white matter (WM) MRI [29] have been used
to diagnose brain abnormalities that cause ASD in several
studies. Alongside the rapid advancement of both medical
and computing technologies, there has been a corresponding
rise in the commercial and educational interest in the field of
healthcare. The Internet of Things enables computer systems
to monitor and evaluate the mental and physiological health of
users, including conditions such as ASD, Alzheimer’s disease,
and schizophrenia. When people and machines collaborate,
medical institutions may derive more benefit from the data they
collect [30], such as in the case of the autistic brain imaging
data exchange (ABIDE).

Since deep learning has been so effective in com-
puter vision, researchers have begun to explore how they
may apply it to neuroimaging [31], [32], [33], [34], [35],
[36], [37]. Standardized ASD tests are needed for clini-
cal approaches [38], [39], [40], [41] of diagnosis, which
adds time to the diagnostic process and costs more money
to treatment [24]. This research work uses IoT, Artificial
intelligence inspired transfer learning approaches to classify
neuro-imaging fMRI images in the favour of a supportive
environment for autistic youngsters to communicate easily
and in an adaptable manner [42], [43], [44]. Our study aims
to find an automatic early prediction tool for the detection
of ASD using convolutional neural network (CNNs) [45],
[46], [47], [48], [49], [50] as one of the most powerful deep
learning methods [51], [52], [53], [54], [55] and Transfer
Learning (TL) [11], [56], [57] to overcome the challenges of
a comprehensive dataset in the medical imaging domain based
on rs-fMRI data ABIDE I-II [58]. Following key gaps are
observed and properly catered:

• Early age ASD detected using ABIDE data set.
• Complete ABIDE_I and ABIDE_II dataset are used.
ASD is a broad research area where progress has been

made, but there is still much work to do. The most crucial

aspect of ASD treatment is an early diagnosis. ASD has
traditionally been diagnosed in young children by in-depth
interviews with clinicians and careful observation of their
behaviours [59], [60]. As a result, there is a pressing need to
lessen reliance on conventional diagnostic methods in order
to make an accurate diagnosis of this condition as early
as possible, ideally before the emergence of any behavioral
disorder signs. The contributions of our research work are
summarized below:

• We provide an automated detection method with high
confidence results.

• We develop a robust and generic method for quantitative
analysis of brain MRI using Convolution Neural Network
and Transfer Learning Approaches.

• The performance of transfer learning approaches with tra-
ditional ones are compared by analysis and experiments.

The prime purpose of this research article was to implement
deep neural network and transfer learning approaches to clas-
sify autistic individuals from typical control individuals using
ABIDE-I and ABIDE-II dataset. Collection and processing of
ABIDE-I & ABIDE-II dataset was one of the most difficult
and crucial part of this research work. Further the paper
continue below as Section II elaborates the literature review,
Section III explains about materials and methods, Section IV
gives description about results and discussion and Section V
concluded this discussion.

II. LITERATURE REVIEW

Yang et al. [18] reviews ASD categorization using classic
machine learning and deep learning approaches for imple-
mentation on ABIDE data. This study aimed to compare
brain networks between ASD and normally developing people
(TD). The correlation metric produced this result, Specificity
is 73.61% and accuracy is 69.43%.

Reference [61] proposes an rs-fMRI-based early age ASD
detection and classification methodology, for functional con-
nectivity features, they employed an MLP that had been
pretrained with a Variational Autoencoder (VAE), a less
complex form of recurrent neural networks. Proposed model
was evaluated using 10x10-fold cross-validation and achieved
78.12% accuracy.

ASD is being started diagnosed using video of infants aged
from six to thirty six months is presented in [62]. There are
2000 3-minute movies with experienced raters hand coding
these actions. The ML issue is approached in two stages. First
step, we build deep learning models to automatically identify
clinically important newborn behaviors in one-on-one interac-
tions with parents or doctors. (1) image-based model (2) facial
behavior feature-based model baseline findings are reported.
We get 70% accuracy for smiles, 68% for faces, 67% for
objects, and 53% for vocalizations. After identifying the most
relevant statistical behavioral characteristics and compensating
for class imbalance, we create a baseline ML classifier that
achieves an ASD diagnostic accuracy of 82%.

For young children with autism spectrum condition, early
diagnosis and intervention are critical [63]. This work, utilizing
eye-tracking data collected from children during free-viewing
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activities with natural visuals. Out of two machine learning
techniques, The first approach uses a generative model of
synthetic saccade patterns to feed a deep learning classifier
an approximation of a normal, non-ASD person’s baseline
scan-path. In the second method, a CNN or RNN is fed the
input picture along with fixation maps. Our research indicates
that the ASD prediction accuracy on the validation dataset is
67.23 percent and on the test dataset it is 62.1%.

Reference [64] uses scan path data from youngsters viewing
natural photos to automatically detect ASD. To begin, a
simulation environment of artificial motor imagery patterns
is used to mimic the baseline scan path of a person without
ASD and then input into a deep learning classifier. The second
method employs a convolutional neural network to process
images and fixation maps. Our validation dataset tests reveal
65.4% accuracy.

Machine learning models for autism classification are
trained and tested using the (ABIDE) database [65]. This
research proposes a multi input deep neural network autism
classification model. Generally deep learning models perform
outstandingly for ASD detection [66], [67]. Our model is
cross-validated using 1,038 real participants and 10,038 sam-
ples. We classify genuine data at 78.07% and augmented data
at 79.13%, 9% higher than previous results.

Sherkatghanad et al., 2020 [68] proposed a CNN architec-
ture for automated detection of ASD using CC400 functional
parcellation and ABIDE dataset. Preprocessing steps included
slice timing correction, correction for motion, and normaliza-
tion of voxel of MRI images that were passed through 400
filtered of different dimensions in CNN. The whole obtained
result from CNN was fed to multilayer perceptron to complete
the classification process which achieved accuracy of 70.22%.

According to the findings of this research [69], around 1.6%
of children aged 8 in the United States have autism spectrum
disorder. The use of automated diagnostic processes allows
for the early detection of ASDs. Uncovering multimodal
data correlations needs a multichannel deep attention neural
network (DANN). 809 individuals tested the multichannel
DANN model by using the ABIDE repository as their resource
(408 ASD patients and 401 typical development controls).
When compared to other machine learning models, our model
scored 0.732 points higher in a k-fold cross validation test.

Yang et al., 2019 [70] proposed a cross validation grid
search method to find optimal parameter for each classifier
to classify brain images data of ASD and TD (Typically
Developed) patients. They investigated four classifiers—
support vector machines with a Gaussian kernel, logistic
regression, Ridge, and ABIDE rs-fMRI data—and compared
their performance. Proposed system showed a slightly higher
accuracy 71.98% than previously obtained using deep learning
approaches that was 70%.

Gazzar et al., 2019 [48] used rsfMRI data taken from
ABIDE to classify brain images data of ASD patients. The
proposed method was able to achieve cross-validated accu-
racies of 68% with an average accuracy of 65.1%, which is
somewhat over the state-of-the-art median.

Aghdam et al., 2019 [71] used convolutional neural
networks (CNNs) with a classifier combination of dynamic

(mixing of experts) and static (basic Bayes) methods and
a transfer learning methodology. They were able to achieve
an approximate Accuracy of ∼0.67-0.7 on ABIDE-II dataset
using two Optimization techniques Adam & Adamax.

Thomas et al., 2020 [3] used 2,000 data points from
the ABIDE to train a 3D-CNN model using one of three
approaches: I each measure was fed into a separate 3D-CNN
(single-measurement models; SM-models); ii) the results from
all nine 3D-CNNs were pooled into a single output (multi-
model ensemble; MM-ensemble); or iii) Rajat used a single
3D-CNN to analyze.

Larger public neuroimaging sample sizes minimize
dimensionality [72]. Machine learning-based diagnostic cat-
egorization may not benefit from larger samples. ComBat
removes inter-site discrepancies in data distributions using
empirical Bayes. Using resting state fMRI functional connec-
tivity data, we differentiate Autism from healthy controls.

Table I shows the literature reviews covering data from
2018-2022. Search terms used for collecting articles were
“CNN bases image classification”, “MRI data processing for
brain diseases”, “Autism detection using MRI” etc.

III. METHODOLOGY

This section covers ABIDE datasets and then, the classi-
fiers utilized in this re-search work are explained. Different
researchers discuss their applications. Then all performance
indicators based on resources, early age, and performance are
measured. Performance indicators and evaluation criteria apply
to all data. This section concludes with the proposed research
methodology with detailed diagrams explanations.

A. Dataset

We collected data from Autism Brain Imaging Data
Exchange (ABIDE) to develop a dataset for further analysis.
ABIDE dataset has been used by many researchers to classify
ASD patients versus control subjects based on MRI scan
images. ABIDE-I consists of 1112 rs-fMRI datasets compris-
ing 573 typically developing and 539 autism individuals, while
ABIDE-II consists of 1014 re-fMRI dataset comprises of 521
autistic and 593 typical control individuals [75] collected from
17 different sites. Mentioned below in Table II.

Autism Brain Imaging Data Exchange I (ABIDE I) repre-
sents the first ABIDE release data [75]. ABIDE I involved 17
international sites that shared previously collected Functional
Magnetic Resonance Imaging (R-fMRI), anatomical and phe-
notypic data sets made available for data sharing with the
wider scientific community. This effort collected 1112 data
sets, including 539 from individuals with ASD and 573 from
typical controls (7–64 years, median 14.7 years across groups).
This total was released in August 2012.

ABIDE II was created to further expand the research field
of brain imaging role in ASD. To date, ABIDE II has collected
more than 1000 additional data sets with greater phenotypic
characterization, particularly in terms of core ASD measure-
ments and associated symptoms [75]. In addition, collections
contain longitudinal samples of data collected from 38 people
at times (1-4 years interval). ABIDE II has 19 websites—ten
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TABLE I
LITERATURE REVIEW SUMMARY TABLE

[3]

[72]

[73]

[74]

TABLE II
DESCRIPTION OF ABIDE-I AND ABIDE-II DATASET

founding institutions and seven additional members—donating
1114 data sets from 521 persons with ASD and 593 controls
(age range: 5-64 years).

B. Classifier

Classifier is a function or hypothesis which is used to
categorize the instances of a class by assigning them specific
labels. Instances are labelled using certain parameters and then
classifier categories them. These are the following classifiers
which are used in this research work.

In recent years, CNN models have quickly emerged
in medical data analysis, lesion segmentation, anatomi-
cal segmentation, and classification (Castro-Godinez et al.,
2020) [76], [77]. CNN is a deep learning method that gives
weights to picture features and separates them. CNNs require
less preparation than other classification techniques. CNNs
can learn filters/characteristics if trained. CNN uses filters to
capture spatial and temporal connections in images. Reusing
weights and decreasing parameters helps the architecture adapt
to the picture dataset. Thus, the network may learn image
complexity.

Transfer learning is a process which allows us to build
more accurate and precise models in less time period with less
data required. Using transfer learning, the model starts from
patterns instead of scratch. Transfer learning utilizes already
built models which are known as pre-trained models. Pre-
trained models are trained on large datasets. Thus, transfer
learning classifiers didn’t require more data and required less
time to train.

C. Proposed Methodology

Classifier Fundamentally, a research technique is a set of
procedures utilized to solve a problem. Each and every one of
the methods used in this research are laid out and explained in
detail here. An algorithm is provided that can classify datasets
into two groups and then make predictions based on that
information. Beginning with data collection and ending with
data classification for predictive modelling, the study process
was broken down into six distinct phases. Listed below are
descriptions of each phase.

Collecting the Abide dataset was a challenging task as the
online data repository is only accessible for Neuro Informatics
Tools and Resources Collaboratory (NITRC) members. Firstly,
applied for data access to NITRC through E-mail and sub-
mitted the thesis title, supervisor contact, problem statement
and research objectives. Luckily, upon success after a couple
of days that made us eligible to download available datasets.
Collected dataset was organized in three groups:

• ABIDE I
• ABIDE II
• ABIDE I+II
Each group was further manually organized based on

Resources and Age factors. Several methods have been tried
to decrease dimensionality in rs-fMRI data because of the
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Fig. 1. Proposed methodology for transfer learning.

spatiotemporal signal they include. In neuroimaging liter-
ature, brain sizes are commonly reduced by summarizing
the temporal domain while keeping three-dimensional spatial
dimensions. Several approaches extract time series properties.
Essentially, they may be broken down into methods that focus
on either temporal compression or spatial compression. Fig. 1
represents the proposed methodology for transfer learning
approaches.

IV. RESULTS AND DISCUSSION

This part of the study contains detailed results of CNN,
and transfer learning classifiers on all three datasets. This sec-
tion presents performance matrixes such as precision, recall,
accuracy, and F1-score for every classifier on each dataset.
Heat maps and accuracy graphs for each dataset are also
presented. In the last, discussion is stated for each classifier
on each dataset.

A. Performance Metrics

Evaluating a machine learning model is crucial to measuring
its performance. Machine learning model evaluation uses
several metrics. Choosing the most appropriate metrics is
important for fine-tuning a model based on its performance.
Detection of any disease is considered as binary classification
which categories our data as positive or negative results.
To measure the performance of CNN and Transfer learning
classification models following evaluation metrics are used.
The following terms are used to define additional metrics.

• True positive (TP): Actually positive (true truth), pre-
dicted to be positive (correctly classified).

• True negative (TN): Actual negative (basic truth), pre-
dicted as negative (correctly classified).

• False positive (FP): Actual negative (true truth), predicted
to be positive (in-correctly classified).

• False negative (FN): Actual positive (true truth), predicted
to be negative (in-correctly classified).

Using these metrics, we can further find Precision, Recall,
F1-score, Sensitivity and Accuracy. These are the commonly
used metrics in machine learning, deep learning, and transfer
learning classification problems. This enables researchers to
evaluate a classification algorithm from multiple perspectives.

B. Experimental Setup

This section contains results for both CNN and transfer
learning classifiers. This section has three parts. The first
part presents all CNN classifier’s results including precision,
recall, F1-score, accuracy, heat maps and accuracy graph of all
models. Second part contains results for all Transfer learning
classifiers the same as machine learning classifiers. The third
part compares results gathered from both CNN and Transfer
Learning algorithms.

C. Results for ABIDE-I

This section contains results for both CNN and transfer
learning classifiers. This section has three parts. The first
part presents all CNN classifier’s results including precision,
recall, F1-score, accuracy, heat maps and accuracy graph of all
models. Second part contains results for all Transfer learning
classifiers the same as machine learning classifiers. The third
part compares results gathered from both CNN and Transfer
Learning algorithms.

1. ABIDE-I Resource Based Analysis: This section contains
evaluation metrics, accuracy graph and heat map of
CNN. The performance of ASD classification based on
resources is illustrated in Fig. 2. a sampling dataset
containing subject data from four resources, children of
different ages were used to test results. Table III acquires
accuracy, sensitivity, and specificity results. Discussion
and comparative analysis shows our model performance
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Fig. 2. Classification accuracy of CNN and DTL-NN based on ABIDE-I resource labelled dataset.

TABLE III
CLASSIFICATION ACCURACY OF CONVOLUTION NEURAL NETWORK FOR ABIDE-I

TABLE IV
COMPARATIVE ANALYSIS WITH RESPECT TO CNN RESULTS ON ABIDE-I

[3]

TABLE V
COMPARATIVE ANALYSIS WITH RESPECT TO CNN RESULTS ON ABIDE-I

compared with other similar architectures. Our models
attained an average of 79.09% accuracy, 80.71% sen-
sitivity, and 78.71% specificity, which exceeded several
other state-of-the-art techniques in terms of performance
[3], [71], [78]. Models perform well on a larger training
dataset as compared to small datasets.

Our models attained an average of 79.09% accuracy, 80.71%
sensitivity, and 78.71% specificity, which exceeded several
other state-of-the-art techniques in terms of performance
[3], [71], [78]. Models perform well on a larger training
dataset as compared to small datasets.

a) Comparative Analysis: Table IV shows comparative
analysis with respect to ABIDE-I research work on con-
volution neural Network. By comparing the suggested
study to similar prior work, it becomes abundantly

evident that the proposed models are more effec-
tive than the prior work when it comes to learning
models.

2. ABIDE-I Complete: This section contains evaluation
metrics and accuracy graphs of complete ABIDE-I
dataset analysis regardless of Resources or early age.
Complete dataset contain 1112 images, after cleaning
missing and broken images we used 938 MRI scans.
The performance of ASD classification based on
resources is illustrated in Fig. 3. a sampling dataset con-
taining subject data from four resources, both genders
and of different ages was used to test results. Table V
shows the accuracy, sensitivity, and specificity results.
Discussion and comparative analysis shows our model
performance compared with other similar architectures.
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Fig. 3. Classification accuracy of CNN and DTL-NN based on complete ABIDE-I dataset.

TABLE VI
COMPARATIVE ANALYSIS WITH RESPECT TO CNN RESULTS ON ABIDE-I

Fig. 4. Classification accuracy of CNN and DTL-NN based on ABIDE-II resource labelled Dataset.

Our models achieved an average of 78.5% for accuracy,
79.5% for sensitivity, 79,5% for specificity which outper-
formed in results as compared to many other state of the art
techniques [3]. Transfer Learning models showed even better
accuracy as compared to CNN. Models perform well on a
larger training dataset as compared to small datasets.

a) Comparative Analysis: Table VI shows comparative
analysis with respect to ABIDE-I research work on
convolution neural Network. Proposed research work
is compared with previously done work of the same
nature which clearly shows that proposed models work
efficiently as compared to previously done work for
learning models.

D. Results for ABIDE-II

This section contains results for both CNN and transfer
learning classifiers for ABIDE_II dataset. The ABIDE_II
dataset was categorized further in two major groups based on
resources and age. Each set was analyzed separately to test
and compare results of both models.

1) ABIDE-II Resource Based Analysis: This section con-
tains evaluation metrics, accuracy graph and heat map of CNN.
The performance of ASD classification based on resources is
illustrated in Fig. 4. a sampling dataset containing subject data
from four resources, both genders and of different ages was
used to test results. Table VII contains accuracy, sensitivity,
and specificity results. Discussion and comparative analysis
shows our model performance compared with other similar
architectures.

ABIDE-II data download and labelling was a challenging
task. Each image was manually labelled and assigned a group.
Each group was tested separately to compare and analyze
results of each set. Four chosen resources contained the highest
number of images available and contained early age data. CNN
again outperformed the previous results and showed better
accuracy then other state of the art methods.

a) Comparative Analysis: Table VIII shows comparative
analysis with respect to ABIDE-II research work on
convolution neural Network. The proposed research
work is compared with the earlier work of the same
nature which clearly shows that the proposed model
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TABLE VII
CLASSIFICATION ACCURACY OF CNN AND DTL-NN BASED ON ABIDE-II RESOURCE DATASET

TABLE VIII
COMPARATIVE ANALYSIS WITH RESPECT TO CNN RESULTS ON ABIDE-II DATA RESOURCE

Fig. 5. Classification accuracy of CNN and DTL-NN based on complete ABIDE-II.

TABLE IX
CLASSIFICATION ACCURACY OF CONVOLUTION NEURAL NETWORK FOR ABIDE-II

TABLE X
CLASSIFICATION ACCURACY OF CONVOLUTION NEURAL NETWORK FOR ABIDE-II

works efficiently as compared to the work done earlier
for the learning model.

2) ABIDE-II Complete: This section includes evaluation
metrics and accuracy graphs for the entire ABIDE-II dataset
analysis, regardless of resource or early age. The performance
of ASD classification based on resources is illustrated in
Fig. 5. a sampling dataset containing subject data from four
resources and different ages was used to test results. Table IX
is listed with accuracy, sensitivity, and specificity. Discussion
and comparative analysis shows our model performance com-
pared with other similar architectures.

Our models achieved an average of 79.09% for accu-
racy, 80.71% for sensitivity, 78.71% for specificity which
outperformed in results as compared to many other state
of the art techniques ([3], [71], [78]). Models perform
well on a larger training dataset as compared to small
datasets.

a) Comparative Analysis: Table X shows a comparative
analysis with respect to ABIDE-II research work on
convolution neural Network. Proposed research work
is compared with previously done work of the same
nature which clearly shows that proposed models work
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Fig. 6. Classification accuracy of CNN and DTL-NN based on ABIDE-I+II Data.

TABLE XI
CLASSIFICATION ACCURACY OF CONVOLUTION NEURAL NETWORK FOR ABIDE-II

TABLE XII
COMPARATIVE ANALYSIS WITH RESPECT TO CNN RESULTS ON ABIDE-I+II

efficiently as compared to previously done work for
learning models.

E. Results for ABIDE - I + II

This section contains results for both CNN and transfer
learning classifiers on a combined dataset from Abide I and
II. The performance of ASD classification based on resources
is illustrated in Fig. 6. a sampling dataset containing subject
data from four resources, both genders and of different ages
was used to test results. Below Table XI contains accuracy,
sensitivity, and specificity results. Discussion and comparative
analysis shows our model performance compared with other
similar architectures.

Our models achieved an average of 79.09% for accu-
racy, 80.71% for sensitivity, 78.71% for specificity which
outperformed in results as compared to many other state of
the art techniques [3], [71], [78]. Models perform well on a
larger training dataset as compared to small datasets.

a) Comparative Analysis: Table XII contains a compara-
tive analysis with respect to the ABIDE-I+II research
work on Convolutional Neural Networks and Transfer
Learning. The proposed research work is compared with
the earlier work of the same nature which clearly shows
that the proposed models work efficiently as compared
to the work done earlier for the learning model.

b) Comparative Analysis: Below mentioned Table VIII, is
comparative analysis table with respect to ABIDE-II
research work on convolution neural Network. As com-
pared to previous studies of a similar kind, the presented

research demonstrates that the proposed model outper-
forms its predecessors in terms of learning efficiency.

V. CONCLUSION

The functional magnetic resonance imaging (fMRI)
approach is a modern medical imaging approach that has
greatly contributed to the identification and assessment of
neurological and neurodevelopmental difficulties. An opti-
mized version of convolution neural network turned out to
be a breakthrough for ASD classification tasks. Transfer
Learning classifiers achieved better results with ABIDE-I
81.7%, ABIDE-II 80.7%, ABIDE-I+II 82.31% of accuracy
on experimented datasets and outshines among compared
machine learning and deep learning ASD classification lit-
eratures. Our analysis is limited by the method utilised to
collect ABIDE data from 17 foreign clinical and research
sites. Another limitation is picture data availability. The dataset
has 851 subjects, which is significant. However, in order to
optimise the performance of deep learning algorithms, it is
advisable to augment the dataset by increasing its size. The
current focus of study lies on the early detection of autism,
with the aim of utilising tracking outcomes to enhance patient
well-being in both healthcare facilities and domestic settings
through the implementation of remote medical devices and
recommended treatment strategies. In future research, it is
recommended to focus on the development of an assistive
tool for individuals with autism, with the aim of improving
their overall well-being and enhancing their efficiency in daily
activities.
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APPENDIX

1. Accuracy: Accuracy is a fraction of, total number of
predictions a model predicts right and calculated using
below (1).

Accuracy = TN + TP

TP + TN + FP + FN
(1)

2. Precision: Precision is the fraction of relevant instances
among all recovered instances and calculated using
below (2).

Precision = TP

TP + FP
(2)

3. Sensitivity: Recall or positive class or sensitivity is the
fraction of related instances which are recovered and is
calculated using below (3).

Recall = TP

TP + FN
(3)

4. Specificity: Negative class recall is also called specificity
and is defined as the relationship between the negative
and functions of actual negative cases and is calculated
using below (4).

Recall = TN

TP + FN
(4)

5. F1 Score: It is a combination of precision and recall and
is calculated using below (5).

F1 − Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(5)
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