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“Blinks 1in the Dark”: Blink Estimation With
Domain Adversarial Training (BEAT) Network

Seonghun Hong, Yonggyu Kim, and Taejung Park

Abstract—Blink detection plays an important role in
many human-computer interaction applications for consumers.
Unfortunately, deep neural network-based blink detection meth-
ods are not only susceptible to poor lighting conditions, but also
the deep learning model is prone to bias due to the imbalance
in the dataset distribution. To solve these problems, we pro-
pose Blink Estimation with Domain Adversarial Training (BEAT)
network, which robustly detects blinks in unseen out-of-sample
images captured even under poor lighting conditions by extract-
ing domain-invariant features. BEAT network is inspired by the
domain-adversarial neural network (DANN) but improved with
several improvements including a lambda scheduler to stabilize
adversarial training and a gradient decay layer to prevent the
discriminative loss from overwhelming the classification loss. As
a result, BEAT achieves faster and more accurate blink detec-
tion performances than other domain generalization methods for
unseen target domains. In particular, BEAT’s feature extractor
model achieves state-of-the-art performance in terms of AUPR on
popular benchmark datasets. Also, we suggest a practical optimal
threshold for blink detection based on our insights gained from
our experiments for consumer applications.

Index Terms—Blink detection, domain generalization, gaze
estimation.

I. INTRODUCTION

LINK detection is an essential task in various human
Bcomputer interaction (HCI) scenarios such as gaze
estimation, deception detection [2], driver fatigue detec-
tion [3], face anti-spoofing [4], and dry eye syndrome
recovery [5]. For these applications, researchers have been
working to improve the performance of eye blink detec-
tion [6], [7], [8], [9]. Some of these methods, for exam-
ple, [10], [11] have been reported to work well in real-world
environments.

Nevertheless, some limitations due to racial differences,
lighting, data imbalance, etc. in publicly available training
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datasets are not sufficiently considered in the previous stud-
ies and impede the practical application of blink detection.
Those limitations become more severe when test or target
datasets have different distributions - for example, different
races and lighting conditions. In real-world applications, it is
very likely that practitioners will have different racial distri-
butions in the images between the training dataset and the
test (target) dataset. This problem becomes more evident in
target countries or regions with homogeneous ethnic groups.
Also, lighting conditions can be stringent for some specific
applications where lighting needs to be reduced in order not
to disturb the user. Target images captured in these environ-
ments tend to be darker than images from publicly available
training datasets.

Another issue that has not been fully addressed is data
imbalance in the blink datasets. This means that most blink
data sets have significantly more open-eye images than closed-
eye images. As a consequence, deep learning models can be
skewed to one side because the samples corresponding to the
two classes do not exist evenly.

To address the mentioned issues, we propose and discuss
several strategies in this paper. For the racial bias and poor
lighting conditions in datasets, we apply domain generaliza-
tion based on domain adversarial training scheme. “Domain”
in this context indicates a group of similar image distribution
(i.e., races, bright and dark lighting conditions, various back-
grounds). Thus, each set of image data with similar racial
distribution or lighting condition forms a “domain”. The main
goal of domain generalization is to detect blinks correctly and
not be confused with unnecessary domain information (racial
bias or different lighting conditions). Also, we suggest a prac-
tical guideline to determine threshold from our experiments to
mitigate the data imbalance issue.

To implement the mentioned strategies, we present a base-
line network (i.e., a feature extractor) that outperforms the
latest results on public eye blink datasets. Based on the base-
line network, we design three versions of Blink Estimation
with Domain Adversarial Training (BEAT) networks, which
can generalize unseen domains using adversarial training and
the KL divergence loss to implement the mentioned strategies.
To stabilize adversarial training, we design and apply a gra-
dient regularization method to BEAT. Figure 1 visualizes the
generalization result of BEAT using the t-SNE method [1].
Without the domain generalization, the features from an
unseen target domain (highlighted in blue) are distributed in a
separative cluster from source domains on the left. Since the
BEAT network extracts domain-agnostic features, the feature
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Feature maps of the trained distributions without domain generalization (left) and with BEAT network (right), visualized by the t-SNE method [1].

S1, S2, and S3 represent source domains for training, and T indicates the target domain for classification. After applying BEAT, we can see that the different

colors (domains) come together to be less separable and the other symbols (O
(for example, using a hyperplane). This means that BEAT can better classify

for open and x for closed) move away from each other to be more separable
open/closed states without being confused by various images from different

domains (i.e., different ethnic distributions, lighting conditions, backgrounds, etc.).

map on the right shows that the features of the target domain
appear indistinguishable with those of source domains in an
aggregated cluster.

Our contributions can be summarized as follows.

1) Performance: Our baseline network (i.e., the feature
extractor) outperforms the latest results on the RT-BENE [10]
dataset, which is the de facto standard for eye blink detection.
For instance, our baseline network performs 1.57% higher in
the AUPR (area under precision-recall curve) and is 2.86 times
faster than the latest method [12] (Table V).

2) Optimal Thresholds on Data-Imbalaced Blink Datasets:
As blink datasets are highly imbalanced, we discuss appropri-
ate evaluation metrics. Based on the discussion, we propose
optimal thresholds that maximize the Fl-score for binary
classification for imbalanced datasets. Furthermore, we also
propose and discuss how to find the optimal sampling rate
according to the optimal threshold for various cases.

3) Domain Generalization for Real Applications: We pro-
pose a domain adversarial training method for domain gen-
eralization using a gradient decay layer which enables stable
adversarial training. The results show that our domain gener-
alization method improves binary classification performances
in the AUROC (area under receiver operating characteristic
curve) and the AUPR by 2.99% and 50.24% in the Eyeblink8
target domain, 7.21% and 4.47% in the BID target domain,
and 2.14% and 23.76% in the RT-BENE target domain,
respectively.!

II. BACKGROUND

Blink detection is usually implemented independently prior
to gaze estimation as a natural design choice. This is
important in the appearance-based gaze estimation methods
[13], [14], [15] which are based on the deep neural networks
(DNNs) because they predict gaze positions even when the

lYou can watch the video of the blink detection test results:
https://youtu.be/m7b1Fsu8m4w.

Fig. 2. Left: gaze direction control electric wheelchair for the disabled. Gaze
estimation is based on an appearance-based method. Right: control screen
of the wheelchair. The user determines the direction and movement of the
powered wheelchair by staring at the arrow. Courtesy of Jachyun Kim.

user closes the eyes or they fail to recognize eyes correctly on
the face images. Therefore, one of the important roles of the
blink detection stage is to avoid unreliable outputs in the gaze
estimation stage as a fail-safe. For example, Fig. 2 shows an
electric wheelchair controlled by gaze estimation developed
for people with disabilities who can only move their eyes
and cannot operate control sticks with their arms and hands.
If blink detection does not work correctly, users run a seri-
ous risk from unreliable gaze predictions when they close
their eyes (e.g., sudden random changes in gaze position). In
this wheelchair application, we have found that previous blink
detection methods easily fail in backlit or very dim lighting
conditions. Therefore, we need a robust way to predict blinks
in backlit or very dark environments.

Another interesting consumer application for blink detection
is indoor golf driving ranges (Fig. 3). Some novice golfers
tend to involuntarily blink during the swing motion or at the
moment of impact, resulting in unsatisfactory results. As a

2Beyond this, we need a reliable method to estimate gaze position in these
situations for the powered wheelchair, which is beyond the scope of this paper.
For focused discussion, this paper only describes how to reliably detect blinks
in backlit or very dim lighting conditions.
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Fig. 3. Left: our lab environment simulating a typical indoor golf driv-
ing range where our dataset (BID) has been prepared (Section IV). Right:
schematic diagram of the lab environment. Lighting and camera positioning
lead to dark, backlit face images as shown in Fig. 4.

Fig. 4. Samples from our BID dataset, captured from the lab environment
shown in Fig. 3.

natural consequence, indoor golf application developers want
their systems to be able to check the condition of the golfer’s
eyes during the swing motion and provide useful feedback.
The problem is that lights are usually installed on the ceiling
to illuminate downward, and a camera is installed on the floor
to capture the golfer’s face upward as shown in Fig. 3, so the
face images captured by the camera are very dark (Fig. 4).
Additional upward lighting is generally prohibited so as not to
obstruct the golfer’s vision. As we will present later, previous
methods do not effectively detect blinks in these backlit face
images, so we need a practical way to address this issue.

Some consumer applications may rely on blink detection
to prevent catastrophic accidents. For example, car or truck
drivers who drive long distances are often exposed to fatal
risks due to fatigue, and reliable blink detection is required
while driving in low light conditions. In general, in prior stud-
ies, infrared (IR) light sources are often adopted to capture the
driver’s faces or eyes in dark lighting conditions, since IR illu-
mination does not obstruct the driver’s vision when driving at
night [3], [16]. Typically, the IR light source is installed near
the driver’s face along with the camera. However, applying IR
illumination to the human eye can introduce some complica-
tions. First, some studies [17], [18], [19], [20] report that IR
illumination near the eye can harm the eyes. Second, we can-
not directly estimate eye states from IR face images based on
deep neural network models trained with regular RGB images.
Since most public and private datasets are in RGB format, the
ability to detect blinks in IR images can be severely limited.
Finally, IR cameras and lights are less accessible and less
common to the average consumers than RGB cameras, limiting
their application.

Taken together, those discussed applications have common
points. First, eye blink detection in backlit or very dark envi-
ronments has various useful consumer applications, and failing
to detect blinks could lead to catastrophic hazards for some
cases. Second, additional directional lights directed toward
the user’s face should be avoided so as not to obstruct the
user’s view. Finally, consumer-level RGB cameras may be
preferred over IR devices for some economic and medical
reasons. On the other hand, it is not ideal if the system
is only good at detecting blinks in dark conditions and
not accurately in brighter environments. Therefore, a reliable
system that detects blinks regardless of lighting conditions is
needed.

As mentioned, the appearance-based gaze estimation tech-
nique adopts a deep neural network approach, and the eye
blink estimation step is usually applied before the gaze estima-
tion step. Considering that both steps have many possibilities
to share useful information between neural networks, it would
be natural to choose deep neural networks (DNNs) to imple-
ment effective blink estimation that meets all the requirements
discussed so far.

The recent great success of artificial intelligence (AI) comes
from the fact that rich public data sets are easily accessible on
which DNNs can be trained. However, we need to overcome
the following issues with datasets for training and testing for
blink estimation.

Different Brightness Levels in Datasets: Most publicly
available datasets have human faces in normal lighting con-
ditions. As a result, when generic DNNs are trained on those
public datasets with normal brightness levels, they do not
readily detect blinks in test images captured in dim lighting
conditions.

Racial Bias in Datasets: In real-world consumer applica-
tions, it is very likely that practitioners will have different
racial distributions in the images between the training dataset
and the test (target) dataset. This problem becomes more evi-
dent in target countries or regions with homogeneous ethnic
groups.

Data Imbalance for Classification: Most blink datasets
have significantly more open-eye images than closed-eye
images. As a consequence, deep learning models can be
skewed to one side because the samples corresponding to the
two classes do not exist evenly.

To address the mentioned issues, we propose and discuss
several strategies in this paper. For the racial bias and poor
lighting conditions in datasets, we apply domain generaliza-
tion based on the domain adversarial training scheme. Another
possible approach would be to adjust the brightness level of
dark images first and then to address racial bias by apply-
ing domain generalization separately. This means additional
procedures for image processing are required (i.e., “two-step”
approach). Also, simply increasing the brightness of a dark
image tends to introduce image noise that degrades the classi-
fication performance. We avoid this two-step approach to solve
both problems in the single-domain generalization scheme and
make our method suitable for mobile applications. Also, we
suggest a practical guideline to determine threshold from our
experiments to mitigate the data imbalance issue.
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III. RELATED WORKS
A. Blink Detection

Eye blink images can be captured by either a near-infrared
(IR) camera or a regular RGB camera for blink detection.
When capturing IR images, the IR camera and IR light source
are typically placed close to the human eye to capture high-
resolution images and provide better performance even in poor
external lighting conditions. However, as discussed earlier, not
only are IR cameras expensive, but IR sources are also claimed
to cause eye damage due to the close distance between the
light source and the eye in [17], [18], [19], [20]. Therefore,
consumer-grade RGB cameras have a higher potential for safe
blink detection.

Blink detection methods can also be divided into two
categories, one exploits multiple image sequences from a
video stream, and the other analyzes only a single image.
In general, single-frame-based methods are reported to have
faster processing times and lower computational costs in [21].
Some blink detection studies based on multiple-frame-based
methods employ LSTM and RNN models to exploit fea-
tures across time series [11], [22], [23]. On the other hand,
some studies focus on classical image processing techniques
without relying on deep learning approaches to blink detec-
tion. Some methods extract and classify eye regions using
classical image processing techniques including SIFT and
HOG to detect blinks [24], [25]. Others determine the degree
of eye closure based on eye aspect ratio (EAR) using eye
landmarks [26], [27]. Unfortunately, those approaches tend
to be vulnerable to changes in face angle or skin color.
Also, since the extracted eye landmarks are different for
each person, different thresholds are required for each person.
Recently, interest in CNN-based blink detection techniques
that can utilize rich eye image datasets is increasing [10], [21],
[28], [29], [30]. Researchers have proposed various CNN-
based methods, such as a two-way approach that splits the
input images into two streams to extract feature for eye
detection [29], and a curriculum-learning-based approach [12].

In this paper, we design a CNN-based model that can
detect eye blinks in a single image, inspired by [10] and
other recent studies. Based on the single-frame approach, our
model provides a fast interference rate that can be suitable
for mobile devices and high blink detection performance in
various environments.

B. Data Imbalance

Data imbalance occurs when there are large differences in
the amount of data between classes. One of the common
issues with blink detection is that there are often far less
images with eyes closed than with eyes open. Such imbal-
anced datasets cause neural networks to be biased towards the
prevalent (majority) class [31], [32]. Thabtah et al. [33] also
have shown that evaluation measures such as precision and
recall change with data imbalance. One approach to addressing
data imbalance is preprocessing, usually with undersampling
or oversampling applied [34]. The undersampling task removes
some majority class samples to balance, but runs the risk of
losing information about the majority class. On the contrary,

the oversampling task increases the number of minority class
samples to balance by synthesizing new samples or augment-
ing existing ones. Some literature including [35], [36] argues
that oversampling provides a more accurate classification than
undersampling based on experiments. However, we have found
that oversampling does not always work in our cases, as we
will discuss in a later section. Researchers also have worked
on how to determine practical thresholds for binary classifica-
tion problems with data imbalance. Provost [37] discuss the
intricacies involved in classifying imbalanced datasets and sug-
gests adjusting the output threshold. To analyze the intricacies
associated with classifiers, data imbalances, and thresholds,
various approaches have been proposed, including the ROC
convex hull method [38] and cost curves [39].

In this paper, we present our approach to find an optimal
threshold and test results in both undersampling and oversam-
pling using multiple imbalance ratios for blink detection as a
binary classification problem.

C. Domain Generalization

In machine learning, researchers and practitioners frequently
encounter domain shifts, defined as the difference in distri-
butions between training and test datasets. To address the
domain shift problems, two methods are usually applied:
domain adaptation and domain generalization. The domain
adaptation method trains models to reduce domain shifts
by learning the distribution difference between source and
target domains. While the domain adaptation method uses
both the source and target domains, the domain generaliza-
tion method uses only the source domain to generalize the
target domain, which may be out-of-distribution. Therefore,
when obtaining information on the target domain is impossi-
ble or too expensive, the domain generalization approach is
preferred. Common strategies for the domain generalization
problem include data augmentation, domain alignment, meta-
learning, and ensemble learning method [40]. Among them,
we apply data augmentation and domain alignment method
to our blink detection for domain generalization. The data
augmentation method is commonly used as a way to avoid
overfitting and improve generalization performance. For image
data, datasets are usually augmented using image transforma-
tion methods, including random flips, rotations, and brightness
and contrast modifications. However, while image transfor-
mations help to enrich datasets with different brightness or
skin tones, they cannot create reasonable variations for some
meaningful features, including individual eye shapes and skin
textures. Recent approaches for domain alignment aim to align
domains by reducing means and variances of distributions of
transformed features among domains [41]; considering KL
divergence [42], [43]; or applying adversarial learning [44],
[45], [46]. In particular, domain adversarial training is a
min-max game that the discriminator is optimized to dis-
tinguish between domains while feature extractor model is
trained to extract domain-agnostic features which interferes the
discriminator from differentiating domains. Some researches
expand domain adversarial training for multi-source domain
[47], [48]. Other studies report that if domain labels and class
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TABLE I
OVERVIEW OF DATASET SPLITS

Dataset Blink Train Valid Test Total Ratio
Open 103,684 41208 60,694 218,548 2095
REBENE  0ced 4440 1286 3388 10432 |
UnitvEves  OPen 10,000 10,000 10,000 30,000 1
YEYES  Closed 10,000 10,000 10,000 30,000 1
BID Open 5089 2329 2321 9739 151
Closed 3,447 1,630 1,353 6430 1
. Open 24485 8454 10286 43225 3951
Eyeblink8 0 ced 426 291 377 1,094 1

labels are not independent of each other, the classification
performance may decrease in domain adversarial training [49].
AFLAC network can learn domain invariance features without
interfering classification task [48].

Inspired by the AFLAC network, we use an adversarial
network to train our model, but add regularization terms
to reduce the effect of discriminator loss on classification
performance.

IV. EYE BLINK DATASETS

Deep neural networks usually need as many datasets as pos-
sible to guarantee performance. For a fair comparison, we
select RT-BENE [10], UnityEyes [50], and Eyeblink8 [51]
as experimental datasets. We also prepare and use a dataset
(“Blinks in the Dark” or BID), extracted from video clips of
golfers’ eye blink moments in a golf driving range under poor
lighting conditions (Figure 3 and 4). We chose the golf driv-
ing range as the data collection site because it allows us to
simulate real-world situations more safely than other candi-
date situations (e.g., blinking while driving a car at night or
maneuvering an electric wheelchair based on gaze estimation).
Although BID has been collected in the context of an indoor
golf driving range, we believe our dataset can be applied to
other contexts and applications for blink detection.

A. Dataset Details

1) RT-BENE: Cortacero et al. [10] have created RT-BENE
dataset by extracting and labelling the eye blink regions from
RT-GENE dataset [52] which was originally prepared for
gaze estimation task. RT-BENE collected 17 subjects with-
out glasses, excluding subjects who wore glasses in RT-GENE.
The collected images have been categorized into open, closed,
and uncertain for the 17 subjects. We apply same data split
criteria as [10] in our experiments. As in [10], we ignore the
data from subject 6 and images tagged with uncertain for same
comparison. We present the details of dataset splits (i.e., train
set, validation set, and test set) in Table 1.

2) UnityEyes: Wood et al. [50] have proposed a synthetic
method to create training data for appearance-based gaze esti-
mation using a game engine (a.k.a UnityEyes). Since this
approach is designed for gaze estimation, it cannot directly
generate images with closed eyes. To overcome this limitation,
we reverse engineered UnityEyes execution file to generate
images with closed eyes. In our configuration, we set the
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camera angles to have random values from O to 30 degrees.
We apply random eyeball pitch angle from 5 to 20 degree to
generate eye images with open and from 40 to 45 degree to
generate eye images with closed, respectively. Also, we syn-
thesize eye images with uncertain tag by applying random
eyeball pitch angle from 30 to 40 degree. Since UnityEyes
generates images that the eyeball is located in center, we crop
60 x 36 pixel size box area around center including eye and
eyebrow.

3) Eyeblink8: Eyeblink8 [51] is a dataset with 70,992
frames and 640x480 resolution which capture people sitting
and behaving naturally in front of the camera. Because the
images have been captured under natural condition, number
of the eyes closed images is very small compared to num-
ber of frames with the eyes open, as shown in Table 1. Also,
Fogelton and Benesova [53] have pointed out that Eyeblink8
dataset may include labeling mistakes. Therefore, We prepro-
cess the eye images in Eyeblink8 dataset again, using same
method as our BID dataset preprocessing. We selected videos
of 1, 3, 8, 10 based on the folder name. Each data was taken
with each different subject. And we prepare them into 60x36
pixel size eye images using MediaPipe and the face normal-
ization method in [54]. A total of 44,319 cut out images
are labeled and classified into 43,225 open images and 1,094
closed images.

4) Our Dataset [Blinks in the Dark (BID)]: The gaze esti-
mation performance for blurred or dark images tends to be
poor [55]. From this it is reasonable to assume that blink detec-
tion performance also tends to deteriorate in blurry or dark
images in general. As discussed, the ability to detect blinks in
dark images is directly related to user safety for some appli-
cations (e.g., drowsy driving detection at night). Therefore, it
is necessary to guarantee the performance of blink estimation
even in a dark environment or backlight.

In order to measure the performance change in dark images,
we have collected our dataset, Blinks in the Dark (BID), with
a relatively long distance between the camera and the face in
an indoor golf driving range (Figure 3). Our target subjects
consist of 11 males and 2 females in total, with minimum
of 21 and maximum of 39 years old, and the average age
of the subjects is 29. There are 4 people who wear glasses.
All target subjects are Asian except one female Caucasian.
This means that the BID dataset has a significant racial bias
(12:1), which commonly occurs in the distribution of users
in some East Asian countries. We have collected eye images
according to various face angles and actions based on three
scenarios in which the subject turns their head and blinks dif-
ferently during a golf swing. First, the subjects turned their
heads with their eyes open. Second, the same subjects turned
their heads with their eyes closed. Finally, the same subjects
blinked three times without turning their heads. Among the
subjects 1 to 13, we excluded subject 7 from the training set
and test set due to poor image quality (see Table VI). We
recorded video with 1440x 1080 resolution and 50 frames per
second (FPS). The distance between the face and the camera
is larger than 1 meter. After the recording, we extracted face
landmarks and 6 landmarks corresponding to each eye using
MediaPipe [56]. We used the normalization method proposed
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Fig. 5. Density functions for sharpness and brightness of the four datasets.
TABLE II
MEANS (it) AND STANDARD DEVIATIONS (o) OF BRIGHTNESS
AND SHARPNESS FOR THE FOUR DATASETS

Dataset . Ifrightnesz ; “iharpneiss
BID 0.08602  0.03117 2545 42.69
UnityEyes  0.5859 0.1596 2427 180.8
RT-BENE  0.4787  0.09020 36.90 28.28
Eyeblink8§  0.4740  0.03062 100.6  64.19

by Zhang et al. [54], because the eye images have various
features according to face yaw and pitch. This normalization
method provides canonical eye images by removing various
parameters, including head rotation and eye-to-camera dis-
tance.> We made a box containing 6 landmarks that represent
the eyes, and crop the face image with vertically and horizon-
tally x 1.5 scaled region. Then we resized cropped image into
60x36 pixel size. We used both eyes by flipping right eye
image to left.

B. Statistics of Datasets

The four datasets have very diverse characteristics, includ-
ing skin color, brightness, and sharpness (Figure 6). In order to
measure the brightness of the image, we convert RGB image
into HSV image and get brightness value of image by aver-
aging brightness value of all pixels in image. In order to get
sharpness value, we convert RGB image into gray image and
pass through the Laplacian filter which makes lines in the
image to be emphasized. After passing through the filter, we
get sharpness value by calculating variance of all pixel val-
ues. Table I summarizes the mean and standard deviation
of brightness and sharpness for each dataset. Figure 5 shows
the density functions for brightness and sharpness of each
dataset. Mean brightness and mean sharpness are highest in
the UnityEyes dataset and lowest in the BID dataset. This is
because the BID dataset has been captured with backlighting
in an indoor environment, while the UnityEyes dataset has
been synthesized and rendered under ideal light conditions
using a game engine. The RT-BENE and Eyeblink8 datasets
have higher mean brightness than the BID dataset because
they have been collected in natural real-world environments.
However, mean sharpness of the RT-BENE dataset is lower

3please check the normalized eye from 0:11 in

https://youtu.be/ABjrD6sFB_U.

images

Closed

Open

Domain

Fig. 6. Images from the datasets. Top to bottom: RT-BENE, UnityEyes,
Eyeblink8, BID, BID with improved brightness. The last row is shown here
for reference only and is not used for training and testing.

than that of Eyeblink8 and UnityEyes datasets. This is because
the RT-BENE dataset has been captured at a longer camera and
subject distance as described in [10].

Table I lists the number and proportion of open and closed
eye images for each dataset. As shown in Table I, Eyeblink8
is the most imbalanced (39.51:1) dataset and UnityEyes is the
most balanced (1:1) dataset.

V. METHOD

Our goal is to improve the overall performance of blink
estimation in the target (test) domain, which has a dif-
ferent distribution than the source (training) domains. To
perform a reliable classification operation on an unseen target
domain, a feature extractor need to extract domain-invariant
features that do not contribute to distinguishing individual
domains. To this end, we propose Blink Estimation with
domain Adversarial Training network (BEAT), a model that
can improve performance on unseen target blink datasets.
BEAT network is inspired from DANN [57] and AFLAC [48]
network. Although Akuzawa et al. [48] argue that domain
adversarial training can affect classifier performance where
each domain is not independent, we find that domain adversar-
ial training can help actually learn domain invariant features.
From our observations, we combine the ideas from DANN and
AFLAC in BEAT. As depicted in Figure 7, BEAT consists of a
feature extractor, a blink classifier, and a domain discriminator
which can be mathematically formulated as

f=F(I:6) ()
¢ =C(f;0¢) (2)
d = D(f; 6d) (3)
where I € R%0*36x3 is an eye image from source domain S;

F is the feature extractor with parameter 6y; C is the blink
classifier with 6.; and D is the domain discriminator with 6.
The feature extractor model extracts a feature vector f € R36
that is applied as input to the classifier (C) and the discrim-
inator (D). ¢ represents the ground truth values for the eye
condition (0 for open, 1 for closed). ¢ € [0, 1] is the output of
the classifier representing the probabilities of blink states for
the input eye images. d = [dj, ..., dy] denotes the domain
labels as a one-hot vector and N is the number of domains.
d= [c?l, ey d;v] represents the probabilities for each domain
to which the image belongs.
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Fig. 7. BEAT network is designed to learn necessary information (i.e., blinks) and to forget unnecessary domain-specific information (i.e., lighting conditions,
racial bias, etc.). For this purpose, BEAT network has a main blink classifier branch and a domain discriminator branch. The main blink classifier branch
learns how to correctly classify blinks. The domain discriminator branch, on the other hand, first learns how to correctly classify domains, then passes the
negative values of the learned gradients and some other values to the feature extractor in backpropagation. As a result, the entire BEAT network can learn
domain-independent eye features to robustly classify blinks regardless of the various domains.

A. Optimization

1) Classification Loss: Since the blink datasets are highly
imbalanced, we adopt the focal loss

L0;S) = —Eqcaps[a(l —¢) clogé
+ A-a)(&) (1-0log(1-¢)] @

where ¢ is the classifier output and c is the ground truth classi-
fication label. The classifier and the feature extractor minimize
this loss to distinguish open eye and closed eye images. We
use hyperparmeters o = 0.5 and y = 2 for all experiments.

2) Adversarial Loss: In order to extract domain invariant
features, we apply the domain adversarial training method
proposed by [57]. The key idea of domain adversarial train-
ing is that the discriminator and the feature extractor play a
zero-sum game. The role of the discriminator is to separate
features according to different domains. On the contrary, the
feature extractor is optimized not to extract domain discrimi-
nating features. For the discriminator loss, we adopt the cross
entropy loss as

N
La(0;8) = —Eqcap~s y_ dilogd; ©)
i=1

~

where d; represents the probability of each domain, d; can
be 0 or 1, indicating whether it is an image from domain i.
The discriminator is trained to distinguish domains well by
minimizing Equation (5), and the feature extractor is trained
to extract domain invariant features by maximizing the same
equation. This allows the model to ignore information not rele-
vant to the main classification task and improve generalization
performance.

3) KL-Divergence Loss: Akuzawa et al. [48] have proposed
a domain generalization method using the KL-divergence.
Inspired by this, we adopt the KL-divergence loss as

L0 S) = Eqc.ar-sDie (), d) ©)

where p(d|c) denotes the conditional probability of domain
label d at a given classification label ¢. Akuzawa et al. [48]
have proved that when entropy H (d) and entropy H(p(d|c))
are equal, it is the worst case where the discriminator does
not distinguish well between domains. Because the feature

extractor should not discriminate domains, it is trained to
minimize the KL-divergence loss, reducing the distribution
difference between d and p(d|c). AFLAC in [48] uses only
the KL-divergence loss, but BEAT network linearly combines
the adversarial loss and the KL-divergence loss.

4) Objective Functions: The objective functions are

éc = 9.(‘66) (7)

éd = (ﬁd) (8)
04

b = , (Le — AaagvLla + Mk LkL) ®)
’f

where Aq4q, 1S a hyperparameter for adversarial training and
Akr is for the KL-divergence loss. In Equation (8), the dis-
criminator is optimized to minimize the discriminator loss,
while the feature extractor is optimized to maximize the
discriminator loss in Equation (9).

B. Feature Extractor Details

The dilated convolution operation [58] has the advantage of
extending the receptive field without lowering the resolution of
the input image [58], [59]. Chen and Shi [59] have constructed
a network (DilatedNet) based on the dilated convolution to
extract features robust to eye shape changes in gaze estimation
tasks. Inspired by this, we set the DilatedNet as a baseline
model for the feature extractor.

The vanilla DilatedNet consists of a convolution stage and a
dilated convolution stage. The original convolution stage has
four convolution layers. To reduce computation, we modify
the first and last convolution layers to depth-wise convolution
layers. In the dilated convolution stage, we use four dilated
convolution layers identical to the configurations in [59]. Also,
we change dilated rate to (2,3), (2,3), (2,4), (2,4) due to the
size difference of the input image. See Table III for details.

C. Blink Classifier Details

The blink classifier predicts the blink probability from the
extracted features. The architecture details of blink classifier is
described in Table IV. Batch normalization, leakyReLU, and
dropout layers are added between layers. The last layer is the
sigmoid function that calculates the blink probability.
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TABLE III
FEATURE EXTRACTOR ARCHITECTURE

Type Filier Shape (dilastit:r? ) i pxurvghipec
Pre-stage Conv 3 x3x64 1 36 X 60 x 3
Depthwise Conv 3x3 1 36 x 60 x 64
Convolution
Stage Conv 3 x3x64 1 36 X 60 x 64
Maxpool 2x2 2 36 x 60 x 64
Conv 3 x3x128 1 18 x 30 x 64
Depthwise Conv 3x3 1 18 x 30 x 128
Pre-stage Conv 3x3x64 1 18 x 30 x 128
Dilated Dilated Conv 3x3x64 (2;) 18 x 30 x 64
Co‘lsvt‘,;g‘eﬁ"“ Dilated Conv 3 x 3 x 64 (2%3) 14 x 24 x 64
Dilated Conv 3 x 3 x 128 (2? 4 10 x 18 x 64
Dilated Conv 3 x 3 x 128 (2}4) 6 x 10 x 128
FC layer 512 x 36 2Xx2x128
TABLE IV
CLASSIFIER ARCHITECTURE
Type Filter Shape Input Shape
FC layer 1 36 x 36 1x1x36
Batch Normalization - -
LeakyReLU - -
Dropout - -
FC layer 2 36 x 12 1x1x36
Batch Normalization - -
LeakyReLU - -
Dropout - -
FC layer 3 12 x1 I1x1x1
Sigmoid Activation Function I1x1x1

D. Domain Discriminator Details

The domain discriminator predicts which domain the input
image is from. A domain’s ground truth is labeled in a one-
hot vector. The last layer of the discriminator is the softmax
function that predicts which domain the image will most
likely belong to when there are multiple domains. We have
found the optimal values of A,s and Agz as 0.01 and 1,
respectively, through hyperparameter tuning experiments (see
Table XI and XII).

1) Lambda Scheduler (Sc): We use a scheduler for Aggy,
based on Ganin et al.’s findings [57] that the scheduler makes
the feature extractor less sensitive to noisy datasets during the
early training epochs. A4, is defined as

Aadv(k) = Ao ( (10)

_— -1
1 4 exp (—ok) >
where k denotes the number of epochs. The scheduler changes
the Aygy value from O to A,. As shown in Table XI, the best
AUPR are achieved when A,q, is 0.01. We have applied o =
0.5 and A9 = 0.01 for the experiments.

2) Gradient Decay (GD) Layer: As we have experimented
with different values for A,q, listed in Table XI, we have found
that classification performance degrades as A4, increases. We
discover that if the model is trained with excessive discrimi-
native loss, the classification loss plays little role in training,
which degrades classification performance. To prevent the dis-
criminative loss from overwhelming the classification loss,
we adopt a gradient decay layer that regularizes the gradi-
ent values transferred from the discriminator to the feature

extractor as
exp(‘;—‘;) —1
exp(‘;—‘;) +1

where ¢ is a scale factor, dr is the gradient of the last layer of
the feature extractor, and 8, is the gradient of the first layer of
the discriminator connected to the feature extractor. The gra-
dient decay layer (Equation (11)) converges the gradient (&f)
to the scale factor %t at infinity (§; — F00). Note that the
gradient decay layer is similar to the fanh function and the
gradient decay layer prevents the gradient values from diver-
gence. Given that the adversarial training tends to be unstable
due to unbounded gradients, we believe that our gradient reg-
ularization improves the stability of the adversarial training.
We use the scale factor ¢ = 4 for the experiments.

5 =1 (11)

VI. EXPERIMENTS

We test the ideas discussed so far to choose the best
configuration with the smallest classification loss. For our
experiments, we use one RTX 2070Ti GPU, taking an average
of 5 hours per experiment. During training, the batch size is
set to 256 and the Adam optimizer (8; = 0.9, B2 = 0.999) is
used. We adopt a warm-up cosine annealing scheduler with a
learning rate value between 10~% and 10~%. For loss functions,
we apply the cross entropy loss for the domain discriminator
and the focal loss for the blink classifier with a label smoothing
value of 0.1.

A. Interpretation of Experiment Results

The tables in this section summarize the main experiment
results measured based on the test dataset shown in Table VI.
Since the test dataset is statistically independent from the train-
ing and validation datasets, the results presented in this section
can be considered as the results of a statistically rigorous case
study.

Table X shows the performance comparison of our blink
detection method. Each column of Table X lists the results
with three training datasets (source domains) and one test
dataset (target domain). For example, the title in the second
column “Dg, D, Dy — Dg” means that we have trained on
the source datasets, Dg, Dg, and Dy, and tested our method on
the target dataset, Dg. As you can see in Table X, the three
versions of the BEAT network are superior in most cases,
except where the UnityEyes dataset Dy is the target domain.
However, since the UnityEyes dataset is a synthetic dataset
created by a game engine for training purposes only, it is not
practical to use this dataset as target or test data.
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BEAT Network

Frame : 304

Screenshot of test results. The baseline network (left) fails to detect blinks, but the BEAT network (right) detects blinks successfully based on dark

original images. Normalized eye images shown below are brightened for comparison only and not applied as test or train information. Red image frames
around the normalized images indicate successful predictions and white frames represent failures. The numbers above the boxes represent the expected blink
probabilities. Check out the supplemental video clip (https://youtu.be/ABjrD6sFB_U) for more details.

TABLE V
BASELINE COMPARISON RESULTS. FPS REFERS TO THE NUMBER
OF INFERENCED IMAGE FRAMES PER SECOND

TABLE VI
DETAILS OF SUBJECT ALLOCATIONS FOR REAL DATASETS

Domain Train Valid Test
Model Precision  Recall ~AUROC  AUPR FPS
BID 2,5,6,9, 10, 12 1, 4,8 3,11, 13
Dé‘;ifii‘rf;lzl}i‘&sg‘l‘g;'e 0664 0791  NA 0774 205
: RT-BENE 1,2,3,4,7,8,9,10 5,12,13,14 0, 11, 15, 16
ResNet18
Al-Hindawi et al. (2022) NA NA 0993 0921 1023 Byeblink8 1.3 10 3
ResNet50 07511 07615 09789 08311 34.02
MobileNetv2 08786 07928 09912 09001 3822
DenseNet121 0.7880  0.8359 09883  0.8915 15.16 ) )
T RE— 0502 0892 09913 09277 51 comparison, which do not depend on threshold values. As
enseNe + Ensemble . . 19913 . . . . . .
shown in Table V, our design (DilatedNet) scores the high-
DilatedNet [58] [our approach] 0.9577 0.8022 0.9890 0.9355 2929

The third column (Dg, Dy, D — Dpg) in Table X shows
the performance of our method when our network was trained
by those images from good lighting conditions (Dg, Dy, D)
and independently tested for classification of blinks in images
from dark lighting condition (Dp). As shown in the third col-
umn, our method successfully detects blinks with the highest
AUROC and AUPR under dark lighting conditions (Fig. 4
and 8).

B. Baseline Models for Feature Extractor

In order to evaluate and determine the most suitable
baseline model of the feature extractor in BEAT, it is
necessary to compare different structures based on one
common data set. For this purpose, we use the RT-
BENE dataset for training and evaluation. Table V lists the
comparison results for our DilatedNet-based model [58],
ResNet50 [60], MobileNetv2 [61], DenseNetl21 [62] and
DenseNet121 with ensemble models [10]. For unbiased com-
parison with other reported methods, pretrained weights from
the ImageNet dataset are applied to ResNet, MobileNetv2, and
DenseNet121. Table VI shows the RT-BENE subjects that we
have assigned for fair comparison with [10].

To measure the precision and recall in the experiments, we
set the threshold to 0.5. However, the threshold of 0.5 may
not be a proper choice because the datasets are imbal-
anced. Therefore, we choose the AUROC and the AUPR for

est in the AUPR and achieves the fastest inference speed,
which is highly demanded in mobile applications. For more
details, our DilatedNet-based design is approximately 28.4%
better in precision, 6.38% in recall, and 18.6% in the AUPR
and 12.8 times faster than [10]. The model proposed by [12]
is also compared equally with ours using only the augmen-
tation method without the curriculum learning for unbiased
comparison. As a result, our DilatedNet-based design scores
1.57% higher in the AUPR than [12]. Even though they have
used a better GPU (NVIDIA Titan V), our inference speed is
2.86 times faster. Based on the results, we claim that our fea-
ture extractor achieves state-of-the-art performance in terms of
AUPR and higher inference speed on the RT-BENE dataset.
1) Undersampling Test: To deal with the class imbalance,
we have tried the undersampling technique [63] on our feature
extractor using a random subset of the majority class at the
ratios of 1:1, 1:5, 1:10, and 1:15 for the RT-BENE dataset.
Table VII summarizes the results according to the undersam-
pling ratios. Note that the unsampled ratio of closed-eye to
open-eye images in the original RT-BENE datasets is 1:23.
As shown in Table VII, recall increases as the sampling
ratio approaches to 1:1, and precision increases as the sam-
pling ratio (open to closed) increases. Note that the unsampled
case scores highest on both the AUROC and the AUPR. We
guess that this is because the model loses some important
information that would contribute to classification performance
due to the major class samples removed during undersampling.
2) Oversampling Test: We have tried two oversampling
methods to increase the samples of the minor class. One is



590 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 69, NO. 3, AUGUST 2023

TABLE VII
UNDERSAMPLING TEST RESULTS IN VARIOUS MEASURES ACCORDING
TO SAMPLING RATIOS, 1:1, 1:5, 1:10, 1:15, AND 1:23

TABLE IX
OPTIMAL THRESHOLDS, PRECISIONS, RECALLS, AND F1-SCORES
ACCORDING TO SAMPLING RATIOS

Sampling Ratio Precision  Recall F1-Score AUROC  AUPR Sampling ratio Optimal threshold  Precision  Recall  F1-Score
1:1 0.3840 0.9348 0.5444 0.9791 0.8316 1:1 0.7852 0.7828 0.7255 0.7531
1:5 0.7449 0.8731 0.8039 0.9830 09113 1:5 0.6884 0.9299 0.7952 0.8573
1:10 0.6927 0.8881 0.7783 09872  0.9157 1:10 0.6848 0.9355 0.7966 0.8605
1:15 0.7988 0.8530 0.8250 0.9853  0.9122 1:15 0.6052 0.9168 0.7869 0.8469
1:23 (unsampled) 0.9577 0.8022 0.8731 0.9890  0.9355 1:23 (unsampled) 0.4589 0.9307 0.8409 0.8835
TABLE VIII

OVERSAMPLING TEST RESULTS IN VARIOUS MEASURES
ACCORDING TO OVERSAMPLING METHODS

Method Precision  Recall AUROC  AUPR

No oversampling 0.9577 0.8022 0.9890 0.9355
Data synthesis 0.9108 0.7653 0.9911 0.9152

Transformation 0.7334 0.8158 0.9833 0.8608

to synthesize new samples, and the other is to transform the
existing samples in the minor class. The first method utilizes
the customized UnityEyes software [50] to generate closed-eye
images. Since the original software cannot create closed-eye
images, we have reverse-engineered the software. The second
method transforms the images in the minor class to produce
other images with varying brightness, contrast, translation,
scale, rotation, iso-noise, and motion blur.

Table VIII shows the results of the oversampling test
using our feature extractor. All oversampled (i.e., augmented)
datasets have lower AUPR values than the raw dataset.

3) Optimal Threshold: Through the undersampling and
oversampling tests, we have learned that neither approach
always helps to improve binary classification performance.
One of the important assumptions we have to consider for
the tests is that the precision and recall in Table VII and VIII
are based on a threshold of 0.5, which may not be suitable for
imbalanced classes. Therefore, we define an optimal thresh-
old T based on the Fl-score for varying sampling ratios in
practical blink estimation applications as follows:

T= T[FlScore(T)]

| 2 x Precision(T) x Recall(T)
" 1| Precision(T) + Recall(T)

12)

where T is a threshold.

We find that the optimal threshold value for the raw RT-
BENE dataset is 0.4598 from Equation (12) (see Table IX).
The recalculated evaluation metrics based on the optimal
threshold for precision, recall, and Fl-score are 0.9307,
0.8409, and 0.8835, respectively. As shown in Table IX, the
optimal threshold increases the Fl-score and reduces the
difference between precision and recall.

C. Domain Generalization Performance of BEAT

We evaluate the domain generalization performance of
BEAT by selecting one domain dataset as a target domain
and other datasets as source domains. We train the BEAT
network with adversarial lambda scheduler (BEAT+Sc) and
the BEAT network with scheduler and gradient decay layer
(BEAT+Sc+GD). For comparison, the baseline network with-
out adversarial training, DANN [57] and AFLAC [48] are also
evaluated. Table X shows that the BEAT+Sc+GD network
achieves better AUROC and AUPR values than the baseline
network for all target and source domain combinations, except
when the UnityEyes dataset is the target domain. To be more
specific, the BEAT+Sc+GD network improves the AUROC
and the AUPR by 2.99% and 50.24% on the Eyeblink8,
7.21% and 4.47% on the BID, and 2.14% and 23.76% on
the RT-BENE, respectively.

It is interesting to find that the baseline network scores
higher in the AUROC and AUPR than other networks includ-
ing DANN and AFLAC when the UnityEyes dataset is set
as the target domain. The results demonstrate that decision
boundary created by RT-BENE, BID, and Eyeblink8 datasets
can discriminate between open and closed eye images well,
even though there is no domain adversarial training which
makes domain invariant features.

From the results, we speculate that, since the UnityEyes
images have little noise (and therefore less domain-specific
information), the model trained on other (source) datasets can
easily detect eye shape features from the (target) UnityEyes
dataset without adversarial training. However, the last column
(i.e., Dg, D, D — Dy) describes a scenario that seldom
happens because Dy (UnityEyes) is for training, not testing,
as discussed.

In summary, as shown in Table X, our BEAT+Sc+GD per-
forms better than other methods, except in rare cases where
synthetic datasets are tested as targets.

D. Hyperparameter Tuning

1) Adversarial Parameter: In order to find an optimal
value for the adversarial parameter, 1,4 in Equation (9), we
have trained the BEAT network without applying the KL-
divergence loss. In this configuration, the feature extractor
considers only classification and adversarial losses and is
equivalent to the DANN network. We have tried with A,4, =
0.001, 0.01, 0.1, 1, 10 under the same conditions depicted in
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TABLE X
DOMAIN GENERALIZATION RESULTS FOR COMBINATIONS OF FOUR DATASETS (RT-BENE, UNITYEYES, BID, EYEBLINKS8). SC: LAMBDA
SCHEDULER, GD: GRADIENT DECAY LAYER, BID: Dp, RT-BENE: Dg, UNITYEYES: Dy, EYEBLINKS: Df

S—>T Dr,Dp,Dy - Dg Dgr,Dy,Dg - Dp Dp,Dy,Dg —Dr Dgr,Dp,Drg — Dy

Metrics AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Baseline 0.9669 0.5983 0.8261 0.7587 0.9563 0.6254 0.9901 0.9912

DANN 0.9955 0.8686 0.8490 0.7130 0.9604 0.6885 0.9741 0.9748

AFLAC 0.9955 0.8527 0.8762 0.7793 0.9695 0.7307 0.9958 0.9961

BEAT [ours] 0.9953 0.8266 0.8298 0.7190 0.9759 0.7703 0.9957 0.9966

BEAT + Sc [ours] 0.9960 0.8780 0.9060 0.7889 0.9615 0.7508 0.9849 0.9879

BEAT + Sc + GD [ours] 0.9958 0.8989 0.8857 0.7926 0.9768 0.7740 0.9743 0.9802
TABLE XI

AUPR VALUES ACHIEVED ACCORDING TO A4, FOR EACH
TARGET DOMAIN: Dg, Dp, Dg, AND Dy

Aadv Dg Dp Dr Dy Avg.
10 03771  0.7621 0.6086  0.9835  0.6828
1 0.6539  0.7119 0.5906 0.9749 0.7328
0.1 0.7773  0.7023 03766  0.9427  0.6997
0.01 0.8686 0.7130  0.6885  0.9748  0.8112
0.001 0.8132 0.6897 0.5038 09732 0.7450
TABLE XII

AUPR VALUES ACHIEVED ACCORDING TO Ak, FOR EACH
TARGET DOMAIN: Dg, Dp, Dg, AND Dy

AKL Dg Dp Dr Dy Avg.
10 0.7842  0.7561  0.7365 0.9893  0.8165
1 0.8527 0.7793  0.7307  0.9961  0.8397
0.1 0.8270  0.7567 0.7254 0.9881  0.8243
0.01  0.7957 0.7662  0.7701  0.9947  0.8317

Table 1. As a result, we have found that A,4, = 0.01 performs
the best (see Table XI).

2) KL-Divergence Parameter: We also have tested to find
an optimal Ak, in Equation (9). To evaluate the effect of Agz
more accurately, we have trained the BEAT network by opti-
mizing the feature extractor without the adversarial loss, using
the RT-BENE, BID, and UnityEyes datasets as source domains
and the Eyeblink8 dataset as target domain. We have evalu-
ated the performances by changing Ag; = 0.01, 0.1, 1, 10 and
achieved the highest average AUPR with Ag;, = 1 as shown
in Table XII.

E. Ablation Study

1) Lambda Scheduler: We have conducted an ablation
study for the lambda scheduler (Sc). Note that the results in
the sixth row (BEAT) of Table X are based on a constant
radv = 0.01 without the lambda scheduler. We have evalu-
ated the performances of the lambda scheduler by changing
Aady from O to 0.01, which are shown in the seventh row
(BEAT+Sc). Although the intended purpose of the scheduler
is to stabilize gradients, the results show that the lambda sched-
uler even improves the AUROC and the AUPR in some target

domain datasets - by 0.07% and 6.22% on the Eyeblink§,
and 9.18% and 9.72% on the BID, respectively. However, the
scheduler degenerates the AUROC and the AUPR by 1.48%
and 2.53% on the RT-BENE dataset, and 1.08% and 0.87%
on the UnityEyes dataset, respectively.

2) Gradient Decay Layer: We also have conducted another
ablation test to find the effect of the gradient decay (GD)
layer described in Equation (11). As shown in the eighth row
(BEAT-+Sc+GD) of Table X, the BEAT4Sc+GD combina-
tion performs better in AUPR than the BEAT+Sc combination
by 2.38% in the Eyeblink8, 0.47% in the BID, and 3.09%
in the RT-BENE target dataset, except the UnityEyes dataset.
The results prove that the gradient decay layer can also help
to improve the generalization performance.

VII. CONCLUSION

Our network for Blink Estimation with domain Adversarial
Training (BEAT) robustly detects eye blinks on unseen out-of-
sample images captured even under poor lighting conditions in
a variety of consumer applications. BEAT can generalize var-
ious domains by extracting domain-invariant features through
adversarial training and the KL divergence loss. We also add
a gradient decay layer which regularizes gradients for stable
domain adversarial training. Based on the experiments, We
conclude that our approach achieves better performances than
DANN [57] and AFLAC [48] for unseen target domains.

The proposed feature extractor based on DilatedNet applied
to BEAT achieves state-of-the-art performance in terms of
AUPR and high inference speed on the RT-BENE dataset. We
also experimentally determine the optimal threshold applicable
to the RT-BENE [10] dataset.

Based on the improved classification performance and infer-
ence efficiency, we believe BEAT is suitable for a wide
variety of consumer applications where robust blink detection
is required to ensure critical safety even on mobile devices.
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