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Abstract—A combination of cloud-based deep learning (DL)
algorithms with portable/wearable (P/W) devices has been
developed as a smart heath care system to support automatic
cardiac arrhythmias (CAs) classification using electrocardiogra-
phy (ECG). However, long-term and continuous ECG monitoring
is challenging because of limitations of batteries and transmis-
sion bandwidth of P/W devices while incorporated with consumer
electronics (CE). A feasible approach to address this challenge
is to decrease sampling rates. However, low sampling rates
lead to low-resolution signals that hinder the CAs classifica-
tion performance. In this study, we propose a DL-based ECG
signal super-resolution framework (called SRECG) to enhance
low-resolution ECG signals by jointly considering the accuracies
when applied to the DL-based high-resolution multiclass classi-
fier (HMC) of CAs. In our experiments, we downsampled the
ECG signals from the CPSC2018 dataset and evaluated their
HMC accuracies with and without the SRECG. Experimental
results show that SRECG can well improve the HMC accura-
cies as compared to traditional interpolation methods. Moreover,
approximately half of the CAs classification accuracies of HMC
were maintained within the enhanced ECG signals by SRECG.
The promising results confirm that SRECG can be suitably used
to enhance low-resolution ECG signals from P/W devices with
CE to improve their cloud-based HMC performances.
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I. INTRODUCTION

ONSUMER technologies have changed the world, espe-

cially in healthcare, where traditional medicine has been
pushed to transform into telemedicine, connected-health, e-
health, mobile-health, and smart health [1]. Through the
growth of portable/wearable (P/W) devices, smart healthcare
systems enable medical doctors to not only collect patient data
without worrying about the physical distance in between, but
also to implement instant treatment remotely [2]. Moreover,
P/W devices make it possible to continuously monitor the
health conditions of a patient and collect relevant data. This
data is helpful in alerting medical professionals to critical con-
ditions and implement medical actions and is valuable for
providing new medical insights for further research.

Cardiac arrhythmias (CAs) are harbingers of cardiovascu-
lar diseases that are life-threatening to human beings [3]. A
typical assessment tool relies mainly on electrocardiography
(ECG) signals that record the electrical activity of the heart.
ECG is a noninvasive and inexpensive method that is clinically
applied to monitor heart functionality [4], [5], [6]. The diagno-
sis of CAs is based on wave-like features, such as the P wave,
QRS complex, and T wave, of ECG signals. Medical doctors
can manually examine the ECG features to evaluate the occur-
rence of CAs. The entire examination process for a long-term
ECG record is time consuming and tedious. Therefore, it is
essential to develop an automatic CAs classification system to
support clinical diagnosis.

Several studies have developed cloud-based CAs monitor-
ing systems that combine cloud services and advanced deep
learning (DL) models for smart healthcare systems. These
CAs monitoring systems collect ECG using P/W devices and
convey heavy processing to cloud DL engines for further
CAs classification [7], [8]. For a P/W device incorporated
with consumer electronics (CE), long-term monitoring of CAs
requires continuous sampling and interpretation of user data,
which may lead to unacceptable power consumption. Factors
such as the monitoring source, sampling frequency, electronic
components, and transmission protocols affect the power effi-
ciency of a P/W device. Reducing the monitoring sources
and sampling frequency are two compromises for reducing
power consumption. The latter has been extensively studied
because at high sampling frequencies, up to 90% of power
consumption of health monitoring systems is due to data
sampling [9], [10], [11].
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Various power efficiency strategies have been applied to
automatic CAs classification systems to enable long-term
health monitoring services [10], [11], [12]. Maji et al. proposed
an adaptive power management approach to classify critical
and non-critical signals before further DL-based ECG classi-
fication [13]. Hierarchical classification models can efficiently
reduce power consumption [13]. Furthermore, they employed
typical data augmentation approaches, including SMOTE and
BIRCH [14], [15], to improve performance in terms of power
consumption [13]. Biagetti et al. proposed a low-cost wire-
less system to transmit the acquired surface electromyographic
and ECG signals through a 2.4 GHz radio link based on the
IEEE 802.15.4 physical layer [16]. This system can be com-
bined with different mobile and wearable devices to support
low-cost and low-power health-monitoring systems [16]. Raj
proposed a tuned twin support vector machine (SVM) classi-
fier using particle swarm optimization to classify 16 categories
of ECG signals on benchmarked Physionet data, which was
four times faster than the standard SVM and showed enhanced
performance when implemented on the Internet of Things
platform [17].

Despite these strategies, the reduction in monitoring sources
is still a typical and direct approach to saving energy, for
example, reducing the recording of ECG sources from a
full 12-lead ECG signal to a single lead [18], [19]. In our
previous studies, we provided an empirical discussion over
a 12-lead source to select the most suitable single-lead ECG
source for DL-based CAs classification [20]. Another approach
is to decrease the sampling rate of the P/W device, which
is an efficient approach for reducing power consumption.
However, in general, a lower sampling frequency is accompa-
nied by a reduction in information, which is, low resolution.
Low-resolution signals can cause degradation of CAs classifi-
cation. For example, several important ECG characteristics are
degraded in low-frequency signals, which may decrease the
ability of the monitoring system to detect CAs automatically.
Although there are studies regarding the sampling frequency
of ECG, most are related to the association of heart rate vari-
ability, which is widely used as a noninvasive marker of the
autonomic nervous system [21], [22].

A few existing studies have aimed to develop low-
resolution automatic CAs classification. Sidek et al. proposed
interpolation-based signal enhancement approaches, involving
piecewise cubic Hermite interpolation and piecewise cubic
spline interpolation, to increase the quality of signals and clas-
sification accuracy at a lower sampling frequency [23]. The
CAs detection accuracy using the interpolation-based enhance-
ment approach could reach ~99%, whereas without signal
enhancement, it only reaches ~97% [23]. Mathews et al.
proposed a DL-based CAs classification framework using a
Restricted Boltzmann Machine and deep belief networks to
improve the classification abilities at lower sampling rates,
where a range of sampling frequencies from 72 Hz to 360 Hz
was explored [24]. The experimental results validated the DL
approach for low-resolution CAs classification [24]. However,
these previous studies did not investigate automatic CAs
classification at very low sampling rates, while several stud-
ies have developed P/W-based monitoring systems with an
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extremely low sampling frequency to support other long-term
healthcare services, such as daily activity recognition and fall
detection [10], [25].

To alleviate the loss of information at very low sampling
frequencies, image super-resolution (SR) may serve as a viable
solution to enhance low-resolution ECG signals for automatic
CAs classification. Image SR has recently become a popular
and well-studied area of interest [26], [27], [28]. The idea is
to reconstruct the target information from the low-resolution
data. The primary goal of image SR is to recover data from
compressed or low-quality signals to facilitate better signal
resolution for subsequent tasks. In particular, image SR has
long been an important subject of image processing tech-
niques in computer vision that aim to recover high-resolution
images from low-resolution images, which in turn is a chal-
lenging task owing to its mathematically ill-posed nature [29],
[30], [31], [32]. The rapid development of DL techniques
in recent years has also driven researchers to tackle image
SR tasks. In general, DL-based SR algorithms have three
different components: (1) network architectures, such as con-
volutional layers, residual connections, recursive layers, and
up-sampling layers [33], [34], [35]; (2) design of loss func-
tions, such as pixel, perceptual, or adversarial losses [31],
[36], [37]; and (3) learning principles and strategies [38],
[39], [40], [41]. Some SR algorithms have reached the cur-
rent state-of-the-art performance [42], [43], proving useful for
improving other vision tasks [29], [30], [31], [32]. Task-driven
SR can significantly enhance the accuracy of an object detector
on low-resolution images, thus creating a positive impact on
vision recognition [30]. Similarly, in signal processing, audio
SR refers to the task of increasing the sampling rate for a
given low-resolution (i.e., low-sampling rate) audio. Motivated
by recent advances in learning-based algorithms for speech
recognition [44], [45], [46], music generation [47], [48], and
other areas [49], significant progress has been made in audio
SR via the introduction of DL. The key advantage here is
that one is allowed to directly model raw signals in the time
domain [47], [50], [51], [52], and effectively capture long-term
dependencies [53].

Although SR has had a leaping success in human vision
tasks, to the best of our knowledge, no prior studies have
attempted to apply the SR technique to ECG signals for
automatic CAs classification. In this paper, we proposed and
investigated a novel DL-based ECG signal SR framework
(SRECG) as a processor. This framework is expected to help
automatic CAs classification tackle the challenges of low-
resolution ECG for P/W devices and achieve better accuracy.
The proposed SRECG enhances low-resolution ECG signals
with composite training loss in the cloud and, in turn, yields
better utilization for the DL-based high-resolution multiclass
classifier (HMC) of CAs. As shown in Fig. 1, compared to the
typical workflow of a smart healthcare system, when employ-
ing SRECG as a computing processor, the ECG signals can be
sampled at extremely low frequencies to reduce both energy
consumption and data size for data transmission. The proces-
sor and HMC are both in the cloud; therefore, their computing
power consumption is separated from that of a P/W device.
Furthermore, we comprehensively analyzed and explored the
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Fig. 1. Comparison of DL Workflows of Smart Healthcare System for a
P/W Device. (a) Typical workflow. (b) The proposed workflow based on the
proposed SRECG.

impact of sampling frequencies on the DL-based CAs clas-
sification of 12 different lead sources of the ECG signals. It
would be beneficial to develop reliable DL-based CAs clas-
sification models for smart healthcare systems using P/W
devices.

The main contribution of this work is threefold: (1) it is the
first work that investigates the ECG signals in the CAs clas-
sifier among different leads and sampling frequencies, which
clearly shows the information loss with resolution reduction
of ECG signals sampled from 500 to 1 Hz; (2) our SRECG
framework enhances the CAs classification accuracies of HMC
when using low-resolution ECG signals from a P/W device at
low sampling frequency to resolve its energy consumption and
transmission issue with CE; (3) training SRECG with com-
posite loss can recover CAs classification accuracies of HMC
better than using only single loss. We believe the proposed
SRECG framework could be readily adapted for commercial
applications in ECG diagnostics, where data storage is an
important consideration.

II. MATERIALS AND METHODS

In this study, we attempted to enhance the ECG signals
from 12 different lead sources at low sampling frequencies.
Therefore, the open-source training dataset, benchmarked DL
model, and categorical metric for performance evaluation are
all from CPSC2018, which is a worldwide automatic ECG
CAs classification competition [54].

A. CPSC2018 Open-Source Dataset

Detailed information on the CPSC2018 ECG database can
be found in [54] by Liu et al. In comparison to the source of
the publicly available ECG database with only 2-lead ECG sig-
nals of 48 recordings for most previous CAs prediction studies,
such as the MIT-BIH Arrhythmia Database [55], [56], it con-
tains 12-lead ECG signals of 6,877 recordings with different

durations from seconds to minutes and a label of nine cate-
gories, including a normal type and eight abnormal CAs: AF,
left bundle branch block (LBBB), right bundle branch block
(RBBB), first-degree atrioventricular block (I-AVB), prema-
ture atrial contraction (PAC), premature ventricular contraction
(PVC), ST-segment elevation (STE), and ST-segment depres-
sion (STD). Of the 6,877 recordings, 476 received more than
one CA-type label. To simulate the measurements of ECG sig-
nals from different lead sources at a low sampling frequency,
the CPSC2018 open-source ECG dataset with a single CAs
label (6,401 out of 6,877 recordings) was downsampled from
500 Hz to 250, 125, 100, 50, 25, 10, 5, 2, and 1 Hz, and the
signals of different lead sources were extracted from 12-lead
signals separately.

The down-sampling approach was employed to obtain
low-resolution signals of different lead sources from high-
resolution signals to explore the effects of different res-
olutions on the CAs classification performance. The low-
resolution signals are gathered by taking an integer factor
extitn, which refers to the skipping number of sequential
units of time to collect the signal. In this study, n =
1, 3, 4, 9, 19, 49, 99, 249, and 499 is applied to the
CPSC2018 dataset to obtain sampling frequencies: 250, 125,
100, 50, 25, 10, 5, 2, and 1 Hz. To compensate for the unequal
length of recordings, we simply applied zero padding before
any recording that was shorter than the required length of max-
imum time of the whole CPSC2018 dataset. There was no
preprocessing for the recordings.

B. CPSC2018 Open-Source Benchmarked DL Network

Our previous model architecture, winning CPSC2018, was
selected as the reference model to create our HMCs and
test the CAs classification performances at different sampling
frequencies [20]. It was built on a combined architecture of
five CNN blocks, followed by a bidirectional gated recur-
rent unit (GRU), an attention layer [57], [58], and a fully
connected layer (see Fig. 2). In our architecture, each CNN
block contained two convolution layers that were followed
by a convolution-pooling layer, which is a convolution-based
pooling layer, to reduce the number of parameters and com-
putation in the network and to control overfitting [59]. All
convolution layers share the same kernel number of 12 and
kernel size of three, except for the five convolution-pooling
layers with kernel sizes of 24, 24, 24, 24, and 48, sequentially.
Furthermore, between these CNN blocks and other indepen-
dent layers, including the one between the last CNN block
and the bidirectional GRU layer, 20% of their connections
were randomly dropped. Batch normalization was also used to
adjust and rescale the results from the attention layer, which
is a special mechanism proposed to generate importance-
weighting vectors [60]. LeakyReLU activation functions were
used in each layer other than the fully connected layer, where
a sigmoid activation function was used [61]. This architecture
was built using the Keras package supported by TensorFlow
in GPUs [62], [63]. The model has 28,035 trainable parame-
ters to ensure it is compact enough to explore the statistical
relations using limited computing resources [20].
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Fig. 2.  Architecture of CPSC2018 benchmarked DL network (denoted by
the function fjyqge). Layers and blocks are specified in rectangle boxes; “x5”
indicates that five CNN blocks are tandem connected before being connected
to the bidirectional GRU layer. The output layer at the bottom contains the
probabilities predicted by the model for each of the nine types of the CAs
classification. The type with the highest probability is the type predicted by
the model for the input of an ECG signal.

C. Performance Evaluation

1) Fl-score
Fl-score is an evaluation metric that considers both
Precision and Recall by:

Precision x Recall

F1 — score =2 x — , @9)
Precision 4+ Recall
o TP
Precision = ——, 2)
TP + FP
TP
Recall = ——, 3)
TP + FN

where true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) are defined by

TP; = |{(xi, y)lyi=fix) =1, 1 <i <N}|, )
FP; = |{(xi, y)yi=0and fi(x) =1, 1 <i <N}|, (5
TN; = [{, yolyi =f) =0, 1 <i <N}, ©6)

FNj = |{(xi, y)|yi=1and f;(x;)) =0, 1 <i <N}

. (D

where (x;, y;) is the input and label of the ith sample out
of N samples, along with the prediction from a C-categorical
classifier f = (fi,...fj,..., fc) € {0, 1}C; each categorical
prediction f; is binary-valued, and | - | measures the cardinality
of a set. The overall Fl-score can be derived by averaging the
F1-scores of all categories.

2) Predictive Power Recovery
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To quantify the recovery of the CAs classification accura-
cies of the HMC by its high-resolution ECG input with the
enhanced low-resolution ECG input, a new evaluation metric
called predictive power recovery (PPR) is defined as follows:

PPR = M, (8)

Cp—Cy

where Cp and Cyn are the Fl-scores of the DL models as
positive and negative controls, respectively, in the CAs clas-
sification trained at high-resolution and low-resolution ECG
signals, respectively. Er is the Fl-score of the HMC with
an enhanced low-resolution ECG input. Ideally, the relation
0 < Cn < Er < Cp < 1 is expected to hold, such that
0 < PPR < 1. However, cases exist in which the relation fails
(see Fig. 7), and the corresponding discussions can be found
in Experimental Results.

3) 10-fold Cross-validation Procedure of Machine Learning

The data were randomly divided into 10 equal parts to set
up an 8-1-1 training, validation, and test scheme for machine
learning. Under such data splitting, the model was trained
for 100 epochs (which refers to one complete cycle feeding
training dataset) to generate 100 models (one model at each
epoch), and the model with the best performance on the val-
idation set was selected as the best model for this training
process. Subsequently, the best model was used to compute
the Fl-score on the test set. The procedure was repeated 10
times to complete a 10-fold training; thus, the 10 best mod-
els were selected for each fold. The median Fl-score for the
overall and each CAs label, including the normal type, for
the 10 test sets was calculated using the Scikit-learn pack-
age [64]. The training process was implemented using the
ADAM optimizer [65].

D. Traditional Spline Interpolation for Up-Sampling

Spline interpolation is a useful technique for enhancing
low-resolution ECG signals from low sampling frequencies.
Originally, spline was a term for curves bent to pass through
a number of existing data points.

Spline interpolation is realized by a special type of inter-
polation that fits many piecewise low-degree polynomials
between local data pairs, for example, fitting two polynomials
between each of the pairs of three points, instead of fitting a
single degree-three polynomial to all of them. Therefore, the
oscillation at the edges of an interval can be reduced using
low-degree polynomials for interpolation. In the numerical
analysis, the spline interpolation curves are defined by a set
of polynomials {g;} with y = g;(x) satisfying two data pairs
(xi—1,Yyi—1) and (x;,y;), and i = 1, 2,..., n. There are n
polynomials and n + 1 knots in this case: the first polynomial
ends at (xp, yo), and the last polynomial ends at (x,, y,).

E. Proposed SRECG

Instead of using traditional spline interpolations to enhance
the low-resolution ECG signals, we propose an SR-based
method called SRECG, as shown in Fig. 3. The SRECG
is modified from a well-known architecture, SRResNet [66]
to have one convolution layer and 16 residual blocks [67],
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Fig. 3.  Architecture of SRECG (denoted by the function f). XL is the
low-resolution ECG signals input, and f(xL) is the model output as the
enhanced ECG signals. Layers and blocks are specified by the rectangles;
“x 16” indicates that 16 residual blocks are tandem connected before joining
the convolution layer.

each of which contains two convolution layers with resid-
ual connections, followed by four convolution layers for
both up-sampling and signal reconstruction. All convolu-
tion layers share the same kernel size of 16 and kernel
number of 64, except for the last two up-sampling convo-
lution layers with kernel numbers of 320 (for five times
up-sampling) and 128 (for two times up-sampling), respec-
tively. In the residual blocks, batch normalizations were also
used to adjust and rescale the input from the two convolution
layers (downsampling layers were not applied). LeakyReLU
activation functions were applied between convolution layers
before they were connected to the residual blocks and within
up-sampling. Finally, batch normalization is used in the con-
volution layer following the residual blocks. This architecture
was built using the Keras package supported by TensorFlow
in GPUs [62], [63].

In Fig. 4, the low-resolution ECG data are fed into
this architecture for training under the same 10-fold cross-
validation procedure. Throughout the training process, the
model attempts to reconstruct an enhanced ECG from a low-
resolution signal. In contrast to the conventional SR task,
which merely increases the resolution of an imaging system
by minimizing the signal mean square error (MSE) differ-
ence, we intended to combine the CAs classification results of
another DL-based judge model, which is, HMC, for assistance.
Considering this goal, a special loss function was designed

to simultaneously optimize the ECG signal reconstruction
and predictability for CAs classification, wherein the final
enhanced output is subsequently fed into the HMC for CAs
judgment. Notably, the HMC was independently pre-trained
with high-resolution ECG signals using the same 10-fold
cross-validation scheme. The customized joint loss Ly for the
SRECG is defined as follows:

LJ@’ y’/z\v Z) = VLR@» Y) + (1 - V)LC@ Z)7 Y € [07 1]7 (9)

where Lg denotes the MSE regression loss between the high-
resolution ECG signals extity and the enhanced ones y:

| M
Lr(.y) = A—lg@-—yiﬂ (10)
where M denotes the total number of maximum time steps
of y and y. The categorical cross-entropy (CCE) loss L¢
measures the difference between the true labels of HMC
z = (z1,...,zc) € [0,1]€ and that of predictions 7 =
@i, ....2c) € (0,11€ by

C
LeG ) =—) % log@), (11)

k=1

In our model, we let z = fjudge(¥) and Z = fiuqge (V) serve as
the CAs probabilities using a (fixed) HMC fj, ¢, such that the
SR loss

L]@? y) = L](Ty\v Vs ﬁudge@vfj"udge(y))s (12)

is determined once the enhanced ECG signals y are generated.
It is also understood that all the above losses are averaged
over the sample numbers for normalization during the actual
implementation.

III. EXPERIMENTAL RESULTS

A. Impacts of Sampling Frequency on DL-Based CAs
Classification

A range of sampling frequencies from 500 to 1 Hz of ECG
signals from 12 different lead sources was tested to explore
the impact of sampling frequency on the DL-based multiclass
CAs classifier in Fig. 2 under the 10-fold cross-validation pro-
cedure (see Fig. 5). In our preliminary results of ECG among
different leads and sampling frequencies, it was observed that
the 25 Hz sampling frequency lost most of the information
for the overall CAs classification, which was in contrast to the
case of the 250 Hz sampling frequency that preserved the most
information. Based on this observation, we applied the tradi-
tional spline interpolation method and the proposed SRECG
model to enhance 25 Hz input to improve its Fl-score of
HMC, trained at 250 Hz.

B. Effects of Traditional Spline Interpolation Methods

Four representative traditional spline interpolation methods
were demonstrated for 1-dimensional signals: spline interpo-
lation using polynomials of degree zero (Ip), degree one (1),
degree two (Ip), and degree three (I3). Table I shows the com-
parison of median overall F1-scores of CAs classification from
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Flowchart of the proposed SRECG for enhancing low-resolution ECG data. The SRECG f receiving the low-resolution ECG data X% as input

generates enhanced ECG prediction f XLy as output by considering the joint loss Ly combining the regression loss Lr and the CAs classification loss L¢ in
Equation (1). The detailed structures of DL-based CAs classification model and SRECG are depicted in Figs. 2 and 3, respectively.
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Fig. 5. Predictive power changes of DL-based multiclass CAs classifiers

trained at downsampled ECG data. 12 lines with different colors represent
the median overall Fl-scores on the 10-fold tests of the CAs classification
model in Fig. 2, which are trained at ECG data of different lead sources,
sampled at different frequencies (500, 250, 125, 100, 50, 25, 10, 5, 2, 1 Hz).

the Cy (trained at 25 Hz), Cp (trained at 250 Hz), and HMC
(trained at 250 Hz ECG) with spline-interpolated input from
25 Hz. Under different ECG lead sources, we observed that
none of the interpolations Fl-scores surpassed Cy. Figure 6
shows the signal reconstruction performance. The ECG wave-
forms of a lead II heartbeat demonstrated that I; had better
reconstruction ability, resulting in the lowest MSE of 1.11%
and the highest Pearson correlation coefficient (R) of 72.12%,
in contrast to Ip (MSE:3.71%; R:24.55%), 1, (MSE:1.26%;
R:71.74%), and Iz (MSE:1.32%; R:70.73%).

From Table I and Fig. 6, we derived the observation that
although traditional spline interpolations obtained good ECG
signal reconstructions, CAs classifications (via Fl-scores)
were better preserved by the SRECG model (see Cy in
Table II), which indicates that traditional spline interpolation
does not recover sufficient CAs information during ECG signal
enhancement.

C. Joint Effects of Two Different Training Losses for
SRECG: Reconstruction and Classification

The composite loss function of the SRECG in Equation (9)
was designed to simultaneously optimize two distinct objec-
tives: CCE for CAs classification and MSE for signal recon-
struction. Therefore, the ratio of the two losses can be
weighted by a constant y € [0, 1]. We demonstrate three repre-
sentative loss conditions in Equation (9): pure regression loss
(LRr), pure classification loss (Lc), and half-mixture joint loss
(Ly) by y =1, 0, and 1/2, respectively.

Table II shows the comparison of the median overall F1-
scores of Cn (trained at 25 Hz), Cp (trained at 250 Hz), and
the HMC, trained at 250 Hz ECG, with SRECG enhanced
input from 25 Hz by various losses.

Under different ECG lead sources, the highest Fl-scores
in the most enhanced CAs classification tasks were achieved
under Lj, with the exception of V1, V2, and V3. In Fig. 6, the
ECG waveforms of a lead II heartbeat show that: (1) L has
better reconstruction power with the lowest MSE (0.14%) and
highest R (97.10%); (2) ECG signals enhanced by Lc may
not present a clear reconstruction capability (MSE:35.05%;
R:-2.72%) and resemble ECG signals. Such enhancements
derived higher F1-scores than those obtained by Lr (Table II),
suggesting that the comprehension of machines can some-
times be beyond human intuition. (3) ECG signals enhanced
by Lj share the characteristics of those enhanced by Lr and
Lc (MSE:5.40%; R:50.49%). Thus, Lc may work as a con-
straint as both a penalty and incentive, restraining SRECG
from overfitting and concentrating on crucial latent features.
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Fig. 6. Enhanced ECG signals visualization of different spline interpolation degrees and SRECG losses. Representative ECG waveforms of a lead II heartbeat
of 1-second lapse with (a) four spline interpolation degrees: Iy, 11, I, I3, and (b) three losses: LR, Lc, Lj. The horizontal axis has the unit of time and
the vertical axis indicates the ECG amplitude. Their MSEs and Rs of one second duration are also indicated in the subtitles to show the corresponding

reconstruction quality.

TABLE I
MEDIAN OVERALL F1-SCORES (%) OF HMCS TRAINED AT 250 HZ WITH DIFFERENT LEADS AND SPLINE INTERPOLATION DEGREES

Leads / degrees Cn Io I I I3 Cr
1 61 56 47 43 39 73
b4 61 57 47 29 24 71
1 52 50 45 36 31 65

aVR 63 56 41 38 36 75
aVlL 49 49 42 38 36 64
aVF 57 56 52 35 29 70
Vi 61 59 50 45 42 69
V2 55 34 32 23 18 71
V3 61 33 22 18 16 73
V4 63 39 20 13 12 74
Vs 62 45 18 14 12 76
V6 62 53 31 26 22 75

The bold numbers indicate the highest scores close to their Cp.

Cn: negative control (trained at 25 Hz), Io: degree zero spline interpolation, I;:
degree one spline interpolation, I,: degree two spline interpolation, I3: degree three
spline interpolation, Cp: positive control (trained at 250 Hz).

D. PPRs in CAs Classification With SRECG by Joint Loss

The previous Fl-scores (Table II) demonstrated that, in
most cases, SRECG by Lj can increase the CAs classifica-
tion accuracy of HMC (trained at 250 Hz) from low-resolution
ECG signals (25 Hz). Therefore, another experiment with Ly
was conducted to further investigate the enhancement behav-
ior of CAs classification accuracy, with PPR as a new metric
for different ECG lead sources and CAs. The results in Fig. 7
show that the median PPR can reach up to overall 58%, yet
variations across different leads and CAs exist. To visualize the
median PPRs among the different leads and CAs, we labeled
the median PPRs with color gradients based on their values.
The colors from blue to green correspond to the median PPR

values from high to low, and the black and red colors indicate
anomalous median PPR values. The white color indicates the
median PPR value that is not applicable (n/a) because its Cp,
Cy, and ER are all zero.

From the color labeling in Fig. 7, it is noted that: (1) lead
aVR, V4, V5, and V6 are shown to have great potential in the
recovery of overall CAs classification accuracy (median PPR
ranging from to 56-58%); (2) in contrast, lead V3 has the
lowest median overall PPR:16%; (3) the recovery capability
of different CAs is also observed to vary from lead to lead,
for example, STE could be well recovered in lead I, II, III,
aVR, V2, V3, V5, and V6 (median PPR > 50%), but not in
aVF, V1, and V4 (median PPR < 50%). However, there are
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Fig. 7. Median PPRs (%) of HMCs trained at 250 Hz with SRECG by Lj. Blue labels and green labels indicate relatively high and low median PPR values,
respectively. Black labels indicate median PPR values greater than or equal to 100%. Red labels indicate negative median PPR values (<0%). The white label
indicates the median PPR value that is not applicable (n/a) because its Cp, CN, and ER are all zero.

TABLE 11
MEDIAN OVERALL F1-SCORES (%) OF HMCSs TRAINED AT 250 Hz WITH
DIFFERENT LEADS AND SRECG LOSSES

Leads / losses Cn Lr Lc L; Cr
1 61 60 65 66 73
Vi 61 64 64 66 71

Vi 52 51 56 58 65
aVR 63 68 71 71 75
aVL 49 48 55 56 64
aVF 57 59 61 62 70

Vi 61 62 65 64 69

V2 55 62 64 61 71

V3 61 65 67 65 73

V4 63 65 65 68 74

Vs 62 65 70 70 76

V6 62 57 69 69 75

The bold numbers indicate the highest scores close to their Cp.

Cn: negative control (trained at 25 Hz), Lr: SRECG by pure regression
loss, Lc: SRECG by pure classification loss Ly: SRECG by half-mixture
joint loss, Cp: positive control (trained at 250 Hz).

six anomalies (median PPR < 0% or median PPR > 100%)
in Fig. 7, which in turn indicates that the F1-scores of HMCs
with SRECG-enhanced ECG input are worse than those of Cy
(median PPR < 0%) or better than Cp (median PPR > 100%).
This leads us to wonder if the enhanced signals may have
unexpected predictive power changes for verifying the CAs.

E. Wilcoxon Signed-Rank Test for Four PPR Anomalies in
CAs Classification With SRECG by Joint Loss

Conventionally, in statistics, a Wilcoxon signed-rank test is
used to confirm that two sampled populations share significant
differences if their p-value is less than 0.05. Therefore, the
above six anomalies were subjected to the Wilcoxon signed-
rank test in comparison to their Cx or Cp, which are the
10-fold test Fl-scores of low-resolution multiclass CAs clas-
sifiers trained at 25 Hz ECG signals (median PPR < 0%) or
250 Hz ECG signals (median PPR > 100%). However, we
found that none of the anomalies passed the criteria (p-value
< 0.05); therefore, we cannot assert that there are significant

differences compared with Cy or Cp. Thus, we could not con-
clude that there were unexpected predictive power changes
for verifying CAs in these six anomalies. Although the case
of LBBB in lead V1 is still intriguing with a large increase
(median PPR:131%), the main reason was no significant differ-
ence between Cy and Cp such that Cp — Cn ~ 0 which led to
an enlarged value in PPR= gf‘,‘:&’l‘] according to its definition.

Therefore, its increment of PPR is not valid.

IV. DISCUSSION

CE play an important role in smart healthcare to improve
the quality of life. P/W devices incorporated with CE used
for medical purposes have provided simple ways to moni-
tor the health conditions of consumers in daily life, such as
bracelets and wrist gadgets [68]. Several studies related to
smart healthcare systems have utilized such devices to sup-
port visually impaired individuals and prevent falls in the
elderly [69], [70], [71]. In addition, these devices can pro-
vide long-term physiological signal monitoring for clinical
diagnosis and evaluation, such as electroencephalogram [72],
ECG [73], [74], [75], and near-infrared spectroscopy [76].

Collectively, the combination of cloud-based DL algorithms
with P/W devices is becoming a trend in smart healthcare
systems. However, there are certain limits tied to the current
capability of the hardware, such as battery life and computing
power, for ECG long-term monitoring systems implemented
in CE. With respect to the limitation on energy consump-
tion, it is understood that more power is required when a
higher frequency is used to record ECG signals [9], [10], [11].
Therefore, in this study, we attempted to alleviate this problem
by recovering the predictive power of the HMC with a low
sampling frequency input via the proposed DL-based SRECG
framework, which is a novel SR-based method. The proposed
SRECG is designed for P/W devices with the cloud-based
workflow of a smart healthcare system (see Fig. 1).

For a conventional SR task, the loss function is typically
only regression loss Lgr, whereas our experiments indicated
that enhancements by Lr alone did not suffice to improve the
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CAs classification accuracies of the HMCs. As a result, it is
viable to introduce the concept of teacher—student learning by
including the CCE loss using the judge model’s predictions,
which are from a well-pretrained HMC for CAs classifica-
tion [77]. Correspondingly, the experimental results showed
that our joint loss Ly obtained better performance on CAs clas-
sification (via Fl-scores) in most of the ECG lead sources,
with a few exceptions for leads V1, V2, and V3 (Table II).
Moreover, the predictive power in the models of lead V5
trained at 250 Hz sampled ECG signals achieved up to 58%
of their median overall PPR in the classifications of 25 Hz
sampled ECG signals (see Fig. 7). It is interesting that the
best reconstructed ECG signals (with the lowest MSEs and
highest Rs) did not have the highest F1-scores when apply-
ing to HMCs for CAs classification. A possible reason for
this is that the proposed model combining reconstruction and
classification tasks pays more attention to reconstructing the
features or signals that could help in ECG classification. In
other words, the proposed approach is limited to processing
fine-grained ECG signals that are relatively ineffective for clas-
sification tasks. Therefore, it could reach the highest model
Fl-scores without holding the lowest MSEs and the highest
Rs. A similar phenomenon occurs in the field of automatic
speech recognition (ASR) in a noisy environment [78], [79],
[80]. They pointed out that removing background noise using
speech enhancement models can improve signal quality, but
it often degrades ASR performance. This is because the dis-
tortion caused by speech enhancement often deteriorates the
ASR performance.

Clinically, DL-based ECG diagnosis of CAs has shown its
feasibility and significance in improving diagnosis accuracy
compared to that of general physicians and cardiologists [81],
[82]. Different leads of ECG signals provide different ECG
features for physicians and cardiologists to recognize specific
types of arrhythmia [83], [84], [85], [86], [87]. Our experi-
mental results in Fig. 7 show that lead V6 obtained the highest
and standout median PPR of 98% in LBBB among all leads,
which concurs with the clinically known LBBB diagnosis cri-
teria by distinguishing QRS complex morphology at leads I,
aVL, V1, V2, V5, and V6 [83]. In contrast, lead aVR also
demonstrated the highest and distinguished median PPR of
81% in PVC, similar to lead V4 in STD (median PPR:70%)
and lead V6 in AF (median PPR:67%). These observations
suggest that the subtle ECG features hidden in leads aVR,
V4, and V6 may serve as important judging criteria for DL
models to distinguish PVC, STD, and AF, instead of human
eyes.

Although the results demonstrated the capability to recover
the predictive power of HMC trained at high-resolution ECG
signals (250 Hz) with low-resolution input (25 Hz) by our
SRECG, it becomes more challenging when trying to recover
from even lower-resolution signals (< 25 Hz) to higher-
resolution signals (> 250 Hz). Our method requires more vali-
dation on various types of datasets, for example, noisy datasets
collected by embedded devices, to verify the prediction stabil-
ity and effectiveness in practical situations. In the absence of
a systematic evaluation approach and the lack of standardized
datasets, it is difficult to address these limitations at the

present stage. We consider these obstacles as part of our future
study.

On the other hand, with the increasing concern about
medical data privacy issues [88], it is necessary to propose
encryption methods to make the data undistinguishable to sat-
isfy the requirements of new privacy-preservation regulations,
for example, GDPR [89]. In Fig. 6, we accidentally found that
the ECG signals enhanced by the classification loss L¢ and
joint loss Ly can generate undistinguishable ECG waveforms
while improving the predictive power for CAs classification
(Table II), which may provide an alternative way to encrypt
ECG data.

As machine learning and DL methods continue to advance
and become user-friendly via P/W, the role of ECG will
gradually open as a physiological information container.
Subsequently, a DL model can be used at the right time to
extract information from the container for ignored or unat-
tended predictions such as gender and age [90]. Therefore, it
is promising to expect ECG to provide more diagnostic power
in many upcoming applications on P/W devices.

V. CONCLUSION

To support automatic clinical diagnosis and long-term smart
healthcare services on P/W devices while incorporated with
CE, this work develops a novel DL-based SRECG as a cloud
processor to enhance low-resolution ECG signals sampled
from low frequency for CAs classification of HMC to achieve
better accuracy. In future work, we will not only further inves-
tigate the effect of training SRECG with compound loss using
different lead sources and their combinations but also explore
different preprocessing methods for SRECG. Since DL-based
diagnosis of ECG signals has great potential in deciphering
other physiological conditions, it is worth applying SRECG
for P/W devices in other diagnostic criteria of healthcare, such
as mortality and heart failure, in addition to CAs.
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