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Abstract— In the modern era of artificial intelligence, increas-
ingly sophisticated artificial neural networks (ANNs) are imple-
mented, which pose challenges in terms of execution speed and
power consumption. To tackle this problem, recent research
on reduced-precision ANNs opened the possibility to exploit
analog hardware for neuromorphic acceleration. In this scenario,
photonic-electronic engines are emerging as a short-medium term
solution to exploit the high speed and inherent parallelism of
optics for linear computations needed in ANN, while resorting
to electronic circuitry for signal conditioning and memory stor-
age. In this paper we introduce a precision-scalable integrated
Photonic-Electronic Multiply-Accumulate Neuron (PEMAN).
The proposed device relies on (i) an analog photonic engine
to perform reduced-precision multiplications at high speed and
low power, and (ii) an electronic front-end for accumulation and
application of the nonlinear activation function by means of a
nonlinear encoding in the analog-to-digital converter (ADC). The
device has been numerically validated through cosimulations to
perform multiply-accumulate operations (MAC). Simulations are
based on the iSiPP50G SOI process for the photonic engine
and a commercial 28 nm CMOS process for the electronic
front-end. The PEMAN exhibits a multiplication accuracy of
6.1 ENOB up to 10 GMAC/s, while it can perform computations
up to 56 GMAC/s with a reduced accuracy down to 2.1 ENOB.
The device can trade off speed and power consumption with res-
olution, significantly outperforming its analog electronics coun-
terparts both in terms of speed and energy consumption. With
respect to other photonic ANNs, the PEMAN has comparable
speed and energy consumption with a higher resolution, while
outperforming them by a hundredfold in the fan-in, which opens
the possibility to accelerate more complex networks.

Index Terms— Photonic-electronic codesign, photonic neural
networks, photonic analog computing, neural network accelera-
tor, reduced precision computing.

I. INTRODUCTION

NOWADAYS machine learning technology is pervasively
used for a wide range of applications including image
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classification, speech recognition and language translation,
decision making, web searches, content filtering on social net-
works, recommendations on e-commerce websites [1]. Deep
learning is one of the fastest-growing machine learning meth-
ods, exploiting multi-layered artificial neural networks (ANNs)
implemented in digital electronics for processing large data
sets, combining and analysing vast amounts of information
quickly without the need of explicit instructions [2]. The
spreading of artificial intelligence (AI)-driven systems for
an increasing number of applications is testified by the fact
that the computing power required to train state-of-the-art
AI doubled every 3.4 months since 2012 [3]. Notable deep
learning milestones include ResNet winning the ImageNet
challenge in 2015 by reaching a super-human level of accuracy
in object recognition [4], and GPT-3, the largest AI model up
to date, capable of producing high quality human-like writings
thanks to an over-100-billion parameter ANN trained over a
large part of the internet [5].

These results have been achieved thanks to increasingly
sophisticated ANNs and training algorithms, and leveraging
a very large amount of computing power. Indeed, general
purpose graphical processing units (GPGPUs) have been iden-
tified as particularly suitable for implementing the parallel
computing tasks typical of ANNs, and contributed signif-
icantly to their current success in real application scenar-
ios [6]. Recently, field-programmable gate arrays (FPGAs)
and digital or mixed-signal application-specific integrated
circuits (ASICs) [7]–[9] have been specifically designed to
implement ANN computations, improving both speed and
energy efficiency for learning tasks. To this aim, these novel
electronic solutions focus on advanced numerical represen-
tations and memory architectures suitable for high-speed
matrix multiplications, and on a very high bidirectional
off-chip bandwidth (exceeding 1 Tb/s) to enable model
and data parallelism. Compact and energy-efficient neuro-
morphic hardware is indeed of paramount importance due
to the high power dissipation of large neural network
models, reaching several KWh during both training and
inference [10]–[12].

Driven by the research on low-precision computing for
ANNs, analog engines (e.g., based on memristors [13])
are promising as neuromorphic accelerators. The aim is to
avoid the quadratic growth of the linear ANN computations
(i.e., vector-matrix multiplications) as a function of the neural
network layer size. Indeed, analog hardware, though more
expensive than digital solutions, can be used to parallelize the
linear computations.
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In this scenario, photonic solutions show a great poten-
tial to realize analog low-power high-throughput accelerators
for machine learning [14]–[16]. Photonic implementations
typically exploit free-space optics, such as the diffractive
architectures that make use of micromachined lenses [17],
or integrated optics, e.g., the coherent solutions based on
Mach-Zehnder interferometer meshes [18], [19]. Despite many
research efforts, all-optical approaches must still overcome
several challenges before their practical exploitation. The
issues concern the large-scale integration and control of many
photonic devices (comprising light sources) and the lack of
suitable photonic nonlinearities for the activation function. The
latter appears to be the main limitation towards truly deep
photonic neural networks [20]. While some interesting works
on optical nonlinearities are emerging [21]–[24], photonics at
this state of development is promising in the short-medium
term mainly to implement the linear computations required
in ANNs, used in combination with electronic circuitry, thus
realizing hybrid photonic-electronic accelerators.

The DEAP (Digital Electronics and Analog Photonics),
proposed in [25], is an example of such photonic-electronic
neuromorphic cores derived from the broadcast-and-weight
architecture [26]. It is a wavelength division multiplexing
(WDM)-based optical network that relies on double bus ring
resonators connected to a balanced photodetector to perform
bipolar multiplications. Another example of these hybrid
devices is represented by the photonic tensor core proposed
in [27]. This architecture exploits a phase change material to
implement photonic memory elements used to record multipli-
cands. In both solutions, the multiplication results are encoded
in the amplitude of a photocurrent after photodetection. Even
though these solutions provide a sound system-level photonic-
electronic architecture, an in-depth codesign of the photonic
and electronic circuits towards the integration of both parts
has still to be properly tackled.

Building upon the preliminary results reported in [28],
in this paper we present the photonic-electronic multiply-
accumulate neuron (PEMAN). It is a reduced-precision
integrated photonic-electronic device based on a multiply-
accumulate (MAC) processor with an ADC-embedded
nonlinearity, suited to accelerate ANNs based on memory-
less layers [29]. The PEMAN photonic engine exploits
two Mach-Zehnder modulators and a balanced photodetec-
tor to perform high-speed bipolar multiplications. The elec-
tronic front-end comprises an accumulation capacitance and a
loop-unrolled successive approximation register (SAR) ADC.
This last element applies the nonlinearity of interest within
the analog to digital conversion. This architecture is able to
trade off speed with multiplication accuracy. In this work we
focus on how the accelerator performance is affected by the
non-idealities of the photonic linear engine, which represents
the most critical part of the PEMAN. Due to the reduced
precision and the relaxation on the operating frequency after
the accumulation, the analog front-end is briefly presented
with the aim to estimate the power consumption of the overall
photonic-electronic device.

The remainder of this paper is structured as follows: after a
background on ANN, precision-scalable and analog computing

reported in Sec. II, in Sec. III we present the integrated
photonic-electronic neuron. Sec. III-B analyzes the perfor-
mance of the components and of the full photonic engine
through circuit-based simulations, while Sec. V discusses
speed, resolution, and energy consumption of the designed
photonic-electronic device and compares it with analog elec-
tronic neuromorphic engines. Sec. VI concludes the paper.

II. BACKGROUND

After recalling the main operations involved in ANN
computation, this section focuses on the rationale behind
reduced-precision computing for neuromorphic applications,
and on the problem of interfacing analog computing to digital
memories, with an emphasis on the relevant metrics.

ANNs are a class of machine learning methods vaguely
inspired by biological neurons. An ANN is a collection of
elementary units, called neurons, arranged in layers. Neurons
can be connected either to all or to only a part of the
neurons in adjacent layers, thus forming either fully-connected
or sparsely-connected layers, respectively. In ANN models,
the stimulus of a neuron is computed by adding all the
input values, each one multiplied by a proper weight, which
corresponds to a MAC operation. Finally, a nonlinear function
(called activation) is applied to the accumulation result. The
computations involved in an ANN layer composed of M
neurons fed by a previous layer with N neurons are formalized
as follows:

Oi = f (

N∑

n=1

wi,n · xn + θi ) (1)

where Oi , (i ∈ 1, . . . , M) is the output of the i -th neuron of
the layer, xn , (n ∈ 1, . . . , N) is the output of the n-th neuron
of the previous layer feeding the current layer, wi,n is the
weight from the n-th neuron of the previous layer and the
i -th neuron of the current layer, θi is the i -th neuron bias term,
and f (·) is the nonlinear activation function. The building
blocks of an ANN are therefore three:

1) a linear part, performing the MAC operations;
2) a nonlinear part, which applies the nonlinear function to

the result of MAC operations;
3) a memory element, storing the neuron output in order

to be utilized in the successive layers.
While weights wi,n are normally bipolar, positive-only

inputs xn are widely used in neuromorphic applications since
many nonlinear functions f (·) (i.e., the sigmoid, the softplus,
and the rectified linear unit or ReLU) have positive-only
outputs [4].

A. Reduced-Precision Computing in ANN

The most computationally intensive and time consum-
ing workload in ANNs is constituted by the linear part,
i.e., by MAC operations. This is because MAC operations
in an ANN layer, described by Eq. 1, grow as O(M N),
while the computations in the nonlinear part grow only as
O(M) [29]. For this reason GPGPUs, particularly suited
to perform vector-matrix multiplications, have enabled the
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effective use of deep ANNs with thousands or even millions
of neurons per layer [6].

In recent years, many research activities have been per-
formed to reduce the complexity of ANN computations, for
instance to apply ANN in safety-critical applications, where
results should be obtained with low latency [30], or to exploit
hardware-constrained devices. Several hardware and software
solutions are indeed emerging in order to meet these low com-
puting capacity constraints. The main goal of software solu-
tions is to develop ANNs that, relying on simpler arithmetics,
require less memory, while exhibiting negligible accuracy
losses. For instance, ANNs have been pruned by removing
less relevant connections, parameters have been normalized,
and optimizations have been performed in dataflows to reduce
data movement and storage [31]. Furthermore, works on
reduced-precision computing have demonstrated the possibil-
ity to avoid the cumbersome floating point (FP) arithmetic by
exploiting a small number of bits to represent ANN parameters
with nearly negligible accuracy loss in several edge node
applications [32]. These works report ANNs with parameters
encoded with ≤ 8 bits [33] down to 1 bit in binary neural
networks [34]. Based on the research activities in the field of
reduced-precision ANNs, state-of-the-art GPGPUs implement
dedicated hardware to perform integer operations (down to
1 bit) in order to reduce the power consumption and latency
of ANNs [35]. Moreover, a new class of devices has recently
emerged: precision-scalable MAC architectures [36]. These
digital electronic architectures are designed to accelerate MAC
operations in ANNs, making it possible to choose the number
of bits used in computations, typically in three configurations:
either 8, 4 or 2 bits of resolution. A lower precision results
in higher speed and energy efficiency, making it possible to
trade off speed and power efficiency with bit resolution.

In this scenario, analog hardware is gaining momentum
to implement neuromorphic accelerators exploiting physical
properties of circuits [37]. These analog engines aim to
circumvent the quadratic growth in computational time asso-
ciated with the number of neurons per layer, at the expense
of more complex hardware [38], [39]. Analog electronics
mainly exploits fundamental circuit laws and device properties
(e.g., current sum in a circuit node) to perform MAC opera-
tions [40], [41]. A remarkable class of electronic neuromorphic
devices are memristor crossbar arrays, also known as resis-
tive RAMs (ReRAMs) [13]. However, ReRAM-based engines
(being inherently resistive) suffer from high power dissipation
issues, and lack reliable process standards and accurate models
for simulation frameworks.

In the roadmap towards low power and high density MAC
engines, neuromorphic photonics promise to bring sub-fJ per
MAC power efficiency with high compactness, while relying
on an inherently parallel hardware that reduces the complexity
growth [42]. Nevertheless, several challenges must be tackled
to enable effective all-optical approaches for neuromorphic
hardware, including the efficient large-scale integration of
many active and passive devices, and the reduction of losses
and impairments, which may cause a significant accuracy
drop (up to 70% in Mach-Zehnder-based coherent approaches)
[43], [44]. While considerable effort is put to overcome these

issues [18], [45], [46], photonic analog processors are also
emerging within hybrid photonic-electronic accelerators, being
particularly suited to perform high-speed MAC operations for
reduced-precision ANNs [14], [25].

B. Resolution and Metrics for Analog Engines

Analog signals can be represented by a set of continuous
values, while digital ones can be represented by a set of
discrete values. However, analog computing cannot express
continuously variable quantities, i.e., with arbitrarily high
resolution, because of noise and distortions introduced by
the analog hardware. This indeed limits the resolution of
the analog system, i.e., the minimum distance between two
distinguishable values. For any noise distribution, the standard
deviation σ provides an estimate of the noise interval, namely
the spreading of the values around the expected value.

As currently there is no established analog memory, infor-
mation needs to be digitized in order to be stored. For this
reason, the use of the “number of bits” is an appropriate
metric to define the resolution of a photonic or electronic
analog system, as it provides the bits needed to manage and
store the information. To this aim the effective number of
bits (ENOB) can be estimated, taking into account both noise
and distortions.

Digital hardware makes use of floating point operations
per second (i.e., FLOPS) to evaluate the computational speed.
Systems based on reduced precision, such as analog engines,
cannot be directly compared to electronic engines based on
a floating point arithmetic. Once a given arithmetic precision
has been chosen, an appropriate metric for reduced-precision
systems is the MAC/s, which quantifies the speed at which
MAC operations are carried out. Another metric that cannot
be used for analog computing is the bit error rate (BER),
assessing the number of altered bits in digital communications;
instead, for analog systems ENOB is relevant. Moreover, the
energy efficiency of analog processors has to be properly
normalized over the kind of operation performed, i.e., Joule
per MAC (J/MAC).

III. THE INTEGRATED PHOTONIC ELECTRONIC NEURON

This section introduces the PEMAN, an integrated photonic-
electronic precision-scalable MAC architecture with ADC
embedded nonlinearity. The device has been codesigned in
order to exploit the strengths of both photonic and electronic
domains to perform the computations needed in neuromor-
phic applications. In particular, as depicted in Fig. 1, the
PEMAN leverages: (i) an analog photonic engine to carry
out reduced-precision multiplications at high speed and low
power, and (ii) an electronic front-end to accumulate the
multiplication results and compute the nonlinear function. The
nonlinearity is inherently computed within the ADC, removing
the need of a shared Look Up Table (LUT) as in [47]. The
PEMAN performs all the operations required in a neuron. Its
output is stored in the digital domain by design and can be
exploited by the same device to implement neurons in the
same or successive layers without scalability issues.
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Fig. 1. The PEMAN schematic composed of: (i) an analog photonic engine that performs high speed multiplications, (ii) an analog electronic front-end to
perform signal conditioning and accumulation, and (iii) an analog-to-digital converter with embedded nonlinearity.

A. Working Principle

The photonic engine relies on two cascaded travelling
wave (TW) Mach-Zehnder modulators (MZM) to act on the
intensity of an incoming lightwave and perform dot product
multiplications. The first one is a 1 × 1 MZM able to impress
input values in the range [0, 1], the second one is a 1×2 MZM
connected to a balanced photodetector (PD) able to encode
both positive and negative weights within the range [−1, 1].
The choice of encoding input x within [0, 1] fits well with the
operation of the first MZM, which modulates the intensity of
the incoming lightwave in a range from 0 (suppression state)
to 1 (all-pass state); the unity-limited range can be overcome
by a simple scaling of inputs and output.

The photocurrent generated by the balanced PD represents
the multiplication result. The accumulation is then carried out
after the opto-electronic conversion by charging (or discharg-
ing) a capacitor, thus implementing the MAC operation. The
capacitor voltage is reset every N + 1 accumulations of the
results of the N input-weight multiplications and of the bias
term θi , as shown in Eq. 1. The capacitor is connected to a
differential amplifier, needed to drive the subsequent ADC.
During the reset phase, the amplifier input is disconnected,
the ADC samples the capacitor voltage, and subsequently
the capacitor is reset to zero. The ADC has been designed
with a nonlinear coding that allows inherently applying the
neuron nonlinearity within the sampling operation, as detailed
in Sec. III-B.

Differently from a transimpedance amplifier (TIA)-based
photoreceiver, the integrating front-end accumulates in the
analog domain the results of several operations before sam-
pling, hence relaxing the ADC bandwidth specifications,
In particular, sampling every N +1 operations allows the ADC
rate to be N + 1 times lower than the MAC rate. This is a
critical aspect to reduce the ADC power consumption and to
increase the achievable ENOB (typically quite low for high-
speed ADC, e.g., ∼ 2 for ADC operating at ≥ 5 GSa/s [48]).

The photonic engine has been emulated using imec
iSiPP50G platform [49], while the electronic front-end has
been designed using a commercial 28 nm CMOS process. The
entire PEMAN system has been validated through cosimula-
tions using Lumerical Interconnect and Cadence Spectre for
the photonic and electrical domain, respectively.

B. Electronic Analog Front-End

The electronic analog front-end implements the second
part of the MAC operations, i.e., the accumulation, followed

Fig. 2. Timing diagram of the PEMAN. a) A single frame of the MAC
operation and the following analog-to-digital conversion. b) Time-interleaved
operations of the proposed architecture.

by the analog-to-digital conversion embedding the activation
function. A single frame of the MAC operations performed
by the PEMAN is depicted in Fig. 2(a). The results of N
consecutive multiplications (wi,n · xn) plus the bias term θi ,
each of them associated to a time slot of length TM AC , are
accumulated on the Accumulation Capacitor CA shown in
Fig. 1. Index n represents the multiplication step during the
accumulation, while index i represents the computed output,
i.e., the i -th overall PEMAN operation. After the (N + 1)-th
TM AC , i.e., after TACC , a transition of a digital signal com-
mands the sampling of the amplifier output voltage Vout by
the ADC. To finalize these operations, a time TS is needed for
the amplifier to reach a stable state after the last accumulation
(M ACi,N+1 in Fig. 2). Finally, the ADC, within a conversion
time TC , converts the result of the sampling operation into
the digital code Dout,i , then stored in a memory. During this
conversion phase N L Fi , the nonlinear function is also applied.
The sum of the accumulation time, the sampling period and
the conversion time determines the time needed for a whole
PEMAN operation, TP E M AN .

The proposed architecture offers the possibility to
time-interleave part of the operations of the analog front-end,
thus allowing a lower TP E M AN and a higher computational
speed, without penalizing the electronic performance. In par-
ticular, once the correct reset of the accumulation capacitor
and the proper sampling of the amplifier output voltage Vout,i

are guaranteed, the following accumulation ACCi+1 can start,
while the ADC is still converting the result of the previous
sampling phase Si . With this approach, the conversion time
of the ADC could be as long as the accumulation time
TACC without introducing penalties on the PEMAN speed.
The overall TP E M AN period is then equal to the sum of
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Fig. 3. Schematic view of the SAR ADC implementing the sigmoid function
of the PEMAN.

the accumulation time TACC = (N + 1)TM AC and the
sampling period TS . It is worth noting that a larger number
of accumulations relaxes the design of both the differential
amplifier and the ADC. Compared to the minimum achievable
TP E M AN ∼ TACC , the only overhead introduced by the
proposed solution is TS , which cannot be avoided in any
electronic front-end to allow the correct settling before the
analog-to-digital conversion. Nevertheless, the larger is N , the
lower is the impact of the sampling period on the PEMAN
speed. Similarly, a large number of accumulations allows an
extended conversion time for the ADC.

The maximum number of accumulations allowed by the
PEMAN is related to the maximum photodiode current, the
accumulation capacitor CA , its maximum voltage swing VC ,
and the integration time. For the sake of simplicity, let us
consider an integration time equal to TM AC and a photodiode
current constant during the whole period TACC . Considering
the maximum photodiode current, as in the case of maximum
input xn and maximum weight wi,n , we will obtain the
worst-case estimate of the maximum number of accumu-
lations. The minimum value of the accumulation capacitor
CA is given by the parallel of the photodiodes’ parasitic
capacitances, which could be as low as few hundreds of femto-
farads as in monolithically-integrated solutions [50], and the
switch parasitic capacitances. Due to the non-linearity of these
capacitances, a large VC swing may cause severe harmonic
distortions. For this reason, additional linear capacitors (Metal-
Insulator-Metal or Metal-Oxide-Metal capacitors, typically
present in current commercial CMOS processes) with capaci-
tances of the order of picofarads or tens of picofarads can be
added in parallel, increasing the overall value of CA and the
linearity of the analog front-end, with relatively small impact
on the area occupation. Consequently, the voltage headroom
of VC is mainly limited by the supply voltage of the front-end,
which is close to 1 V in modern CMOS processes. Therefore,
we considered a value of CA = 20 pF and VC,max = 0.5 V (the
maximum voltage swing of VC is half of the supply voltage).
Anticipating some values obtained from the numerical simula-
tions described in Sec. IV-B, a maximum photodiode current
of 1 mA and a TM AC of 50 ps, corresponding to half period
at 10 GHz, are here used to estimate the maximum number
of accumulations N ∼ (VC,maxCA)/(Imax TM AC ) ∼ 200.
Notably, with other parameters unaltered, this value increases
linearly with the MAC rate. Considering the high speed of the

Fig. 4. DC input-output characteristic of the 6 bit, 1.4 GS/s, SAR ADC
resembling the sigmoid function, obtained by means of Cadence Spectre
electrical simulations.

photonic operations (tens of GHz) and a flexible range of N
from few tens to hundreds, the sampling frequency of the ADC
is on the order of 100 MS/s - 1 GS/s. Given the constraints of
speed and resolution, a feasible and energy efficient solution is
represented by the Successive Approximation Register (SAR)
converter, depicted in Fig. 3. In particular, a loop unrolled
topology [51] has been chosen due to the improved feedback
delay, which guarantees a higher sampling rate compared to
the conventional SAR topology. The fully-differential architec-
ture brings several advantages in terms of improved linearity,
common-mode noise rejection, and SAR algorithm efficiency.
For this reason, the ADC is preceded by the differential ampli-
fier that converts the unipolar voltage VC into the differential
voltage Vout . The presence of N0 different comparators, where
N0 is the nominal resolution, allows the intrinsic speed-up of
the chosen topology by removing the digital delay to store
each comparison result, as well as the comparator reset time.
At the same time, it has some unavoidable drawbacks, namely
an increase of area consumption, and the need of additional
hardware overhead for the offset calibration.

The nonlinear function of the neuron is embedded inside the
capacitive DAC of the SAR converter. Instead of employing
the typical binary weighting, an ad-hoc weighting strategy
has been developed, obtaining a sigmoid transfer function,
as shown in Fig. 4. The system has been designed with a
standard 28 nm bulk CMOS process, with a nominal resolution
of 6 bit and a max sampling frequency of 1.4 GS/s, and simu-
lated by means of Cadence Spectre. The non-linear encoding
requires additional logical circuitry, which slightly increases
the delay time of the critical path, and the number of capacitors
and switches, if the weighting and thus the nonlinear function
needs to be flexibly reprogrammed. Nevertheless, it is possible
to keep the total capacitance of the DAC (and consequently
the area and the power consumption of the ADC) sufficiently
low by exploiting parallel connections of several capacitors at
the same depth level of the algorithm.

IV. THE PHOTONIC LINEAR ENGINE

The PEMAN optical engine has been simulated on
a commercial silicon photonic platform, namely Imec
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Fig. 5. The Lumerical INTERCONNECT simulation setup encompassing: input and weight MZMs (Green), the driving electronics (Blue) and balanced
photodetector (Red).

iSiPP50G [49]. This section details the photonic engine and
reports the results of numerical simulations performed to val-
idate its performance. The first part focuses on the simulation
setup, the second part presents the validation of the whole
photonic engine.

A. Analog Photonic Engine Simulation Setting

The simulations for the analog photonic engine were per-
formed in the Lumerical INTERCONNECT environment. The
Lumerical simulative setup is depicted in Fig. 5, consisting of a
CW laser, waveguides, TW MZMs and two PDs. All elements
are compact models from the imec iSiPP50G library with the
exception of the CW laser, which is a customized model.

The MZMs have the following characteristics:
2.5 mm-long electro-optic phase shifters, Vπ = 3.6 V,
and a free spectral range of 14.5 nm. In all simulations, the
phase shifters are driven in a push-pull configuration within
the range [0, Vπ ]. The MZMs are unbalanced in order to
match the driving voltage ends with the representation ends:
the minimum (maximum) value is encoded by applying a
null (Vπ ) voltage to the upper arm and a Vπ (null) voltage
in the lower arm of the MZM. Regarding the 1 × 2 MZM,
to obtain 0 both arms are driven with Vπ/2, thus resulting in
a theoretically null current at the balanced PD. To simulate
the 1 × 2 weighting TW MZM, two 1 × 1 were used instead,
identical to the input one, connected with a 1 × 2 multimode
interferometer (MMI) as no built-in TW MZM with two
outputs is present in the library. This is depicted by the
right-most green rectangle in Fig. 5.

The iSiPP50G does not provide a built-in model for a
balanced photodetector. As represented in the red rectangle of
Fig. 5. To simulate the behaviour of a balanced PD, two PDs
were instantiated and their output photocurrent subtracted. The
following noise sources have been taken into account in the
simulations: −150 dB/Hz laser relative intensity noise (RIN),
1 MHz laser linewidth, thermal noise (Temperature 300 K),
dark current and shot noise in the PD. TW phase shifters allow
taking into account the related delays and distortions.

B. PEMAN Validation

In this section we discuss the simulations carried out to
evaluate the photonic engine composed by the CW laser,
a 1×1 MZM, a 1×2 MZM and the balanced PD. An equivalent
noise interval has been derived by means of random-valued
multiplications, aimed to assess the ENOB of the photonic
circuit. Sec. II-B discussed the derivation of ENOB from
the noise standard deviation. Using the same rationale the
multiplication error standard deviation has been used to com-
pute an equivalent noise interval (equal to 6σ ) taking into
account distortions and bandwidth limitations, thus evaluating
the system resolution.

Simulations have been performed at first as a function
of multiplication frequency (from 1 GHz to 56 GHz) to
evaluate the impact of the MZM finite bandwidth on the
ENOB. These simulations have been carried out at a fixed
laser power of 10 dBm. Subsequently, simulations aimed to
assess the influence of the laser power on the ENOB are
reported, varying the input power from 0.05 mW (-13 dBm) to
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Fig. 6. PEMAN accuracy in ENOB as a function of the MAC rate.

10 mW (10 dBm) at a constant multiplication rate of 10 GHz.
The PEMAN resolution has been thus evaluated performing
dot product multiplications on a dataset of random-valued
input-weight pairs. The dataset has been produced using
the Python library NumPy, thus generating values in the
range [0, 1] for x and values in the range [−1, 1] for w,
both rounded at the third decimal. The obtained values have
been translated into the corresponding MZM voltage values
by means of a nonlinear coding based on the modulator
non-linear characteristic as resulting from static simulations.
The simulation output returns the multiplication results as
time-dependent photocurrent waveforms. The waveforms have
been analyzed to extract the standard deviation σ relative to the
multiplication error. These simulations have been performed
with the same settings of the above, using a sampling rate
equals to 256 points per period.

Fig. 6 reports the ENOB as a function of the MAC rate
with a dataset of 1024 multiplications at a constant input laser
power of 10 dBm. It shows a constant ENOB of 6.1 up to
10 GHz, while it decreases down to 2.1 at 56 GHz. The
low-frequency plateau and the subsequent decay in the ENOB
reflect the fact that the system resolution is noise-limited up to
10 GHz, while at higher frequencies it is bandwidth-limited.

Fig. 7 shows the ENOB as a function of the input laser
power. These simulations were carried on a dataset of 256 ran-
dom multiplications, a fixed MAC rate of 10 GHz, and all other
parameters unchanged. The ENOB grows from 4.3 to 6.1 for
increasing input laser power. An input power increase of
23 dB causes an ENOB increment of 1.8, lower than the
maximum value of 3.8 achievable through the signal-to-noise
ratio increase (SNR), according to the SNR-ENOB relation in
noise limited scenarios [52]. This is due to the fact that an
increased power causes higher distortions.

The results obtained on the overall PEMAN architecture are
consistent with the performance of its basic MZM elements,
developed for digital communications. In particular, they show
that the PEMAN can trade off not only speed with resolution,
but also power consumption with resolution. Moreover, the
found ENOB are in line with the performance of similar
devices found in the recent literature [53], [54].

Fig. 7. PEMAN accuracy in ENOB at as a function of the CW laser power.

Concerning the maximum number of MAC operations that
can be accumulated, this number can be derived from the
maximum photocurrent produced by the device, found to be
1 mA. This value is achieved when both input xn and weight
wi,n are equal to 1, the MAC rate is 10 GMAC/s, and the
laser power is set at 10 dBm. In order to have a voltage
variation ≤ 0.1 V on the accumulation capacitor VC , so that
the bias point of the photodiodes is not significantly altered,
the PEMAN can accumulate ∼ 200 multiplications.

V. DISCUSSION

In this section we discuss the obtained results, focusing
on the PEMAN performance and physical implementation.
We aim to position the proposed photonic-electronic neuron
among the current solutions based on analog electronics.
An in-depth discussion on the design and benchmarking of
neural network models compliant with photonic accelerators,
including the PEMAN, can be found in [55].

Table I reports a comparison in terms of speed, resolution,
energy consumption, footprint efficiency, and neuron fan-in
of PEMAN (operating at different MAC rates) with four
analog photonic and four analog electronic neuromorphic
engines (HICANN [58], NeuroGrid [59], SpiNNaker [60],
and TrueNorth [61]). Among the photonic neuromorphic
engines reported in literature, we have chosen two archi-
tectures implementing fully-connected layers, and two spik-
ing photonic neural networks (SPNN). The first one is the
electro-absorption modulator (EAM) coherent linear neuron
(COLN) [16], implementing a high-speed and compact linear
neuron by means of EAM, while the second one is the semi-
conductor optical amplifiers (SOA) PNN [24], that exploits
SOAs and a WDM encoding to perform synaptic operations
(weighting and nonlinearity). The latter architectures are the
resonant tunneling diode (RTD) SPNN [56], based on RTD
excitable lasers to emulate spiking neurons, and the Izhike-
vich (IZK) inspired SPNN [57], built upon optoelectronic
spiking neurons consisting of transistors and vertical cavity
lasers. In some cases, photonic solutions in Table I show
additional values between brackets, referring to projected
estimates.
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TABLE I

COMPARISON OF PEMAN WITH ANALOG PHOTONIC AND ELECTRONIC SOLUTIONS IN TERMS OF SPEED, RESOLUTION, ENERGY
CONSUMPTION, FOOTPRINT EFFICIENCY, AND NEURON FAN-IN. NUMBER BETWEEN BRACKETS ARE

PROJECTED VALUES, DERIVED VALUES ARE PRECEDED BY A ≈

The PEMAN has the potential to outperform its analog elec-
tronics counterparts by several orders of magnitude in terms
of speed per core, while being competitive with the photonic
implementations both in speed and resolution. The remarked
difference in speed between the photonic and the electronic
solutions is due the fact that electronic chips have privileged a
distributed computation strategy. In the latter, an high number
of operations is reached through the deployment of a large
number processors, in the thousands range, characterized by
high resolution (ENOB) and a very low speed, ranging in the
hundreds or tens of Hz.

To derive the energy consumption, the PEMAN is consid-
ered with an input laser power of 10 dBm and the electronic
ADC working at its maximum speed of 1.4 GS/s. In these con-
ditions, the power consumption of every element is as follows:
81 mW for the laser source [42], < 1 mW for the balanced
PD, and 13 mW for the front-end electronics (amplifier and
ADC). The major contribution to the power budget comes from
the MZMs driving circuitry, accounting for 180 mW per high
speed DAC [62], and 400 mW per RF amplifier [63]–[65].
The energy consumption for the analog electronic solutions
has been evaluated by dividing the dissipated power by the
number of basic elements (i.e., neurons) and by the MAC
speed per processing core. To deal with photonic solutions,
Table I provides an additional column for the photonic section
energy consumption, which considers just the energy to run
the optical elements and to charge and discharge the equivalent
capacity of the MZM EO phase shifters, and excludes the
energy dissipated by the analog front-end, ADC, RF drivers,
and DAC, which is not typically reported. Moreover, the power
dissipated by the neuron synaptic weights is not considered in
the two SPNNs. The PEMAN outperforms all engines apart
from the TrueNorth, EAM COLN, and RTD SPNN, the latter
two being significantly constrained in terms of resolution and
fan-in, as detailed in the following.

The footprint efficiency is a metric introduced in [42]
and is evaluated as MAC speed per wafer area usage
(GMAC/s/mm2). The PEMAN achieves a median value for
this metric, which changes significantly among the considered
architectures, as it strongly depends on the integration platform

(CMOS, InP, SOI) and on the basic element (EAMs, MZMs,
transistors).

The last metric assessed in this comparison is the fan-
in, i.e., the maximum number of inputs that a neuron can
elaborate. This is an important aspect, representing the ability
to implement large neural networks. The PEMAN outperforms
all the photonic engines by two order of magnitudes, reaching
values similar to the electronic ones.

The adopted opto-electronic approach overcomes the main
electronic bottleneck caused by the dynamic power exponen-
tially growing with the clock speed [66], trading off speed and
resolution. It can reach MAC rates exceeding 50 GMAC/s
while reducing the energy per MAC operation, as the static
power scales down with speed. At higher MAC rates the
drawback is a reduced resolution in terms of ENOB due
to the finite bandwidth of the MZM elements. As reported
in Sec. III-B, rates below 10 GMAC/s are not convenient,
as there is no resolution improvement, while the energy per
MAC increases due to the static power consumption.

The computed power consumption accounts also for the
nonlinear function computation. By applying the nonlinearity
while sampling, the system avoids: (i) an additional DRAM
read/write, (ii) the nonlinearity computation (typically 10 arith-
metic operations), saving 76 pJ every time the ADC samples,
according to the energy cost of DRAM read/write 5 pJ/bit and
floating point operation 0.1 pJ/bit [67].

VI. CONCLUSION

In this paper, we propose and numerically assess the per-
formance of a precision-scalable integrated photonic-electronic
multiply-accumulate neuron (PEMAN) intended for neuromor-
phic acceleration at low power, able to trade off speed and
accuracy. The hybrid device implements the high speed mul-
tiplication stage in the optical domain, while embedding the
nonlinear activation function in the analog-to-digital conver-
sion process in the electronic domain. The numerical simula-
tions have been performed considering Imec iSiPP50G silicon
photonic platform for the implementation of the optical part
and a standard 28 nm CMOS process for the electronic front-
end. Photonic-electronic co-simulations show that the PEMAN
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has the potential to largely outperform analog electronic equiv-
alent solutions, in particular in terms of power consumption
at large operating frequencies in excess of 10 GMAC/s and
up to 56 GMAC/s, where a very low power consumption of
22 pJ/MAC is achieved. In addition, the PEMAN can flexibly
adapt its operation balancing speed and accuracy needs. This
power analysis accounts for all the elements, encomprising the
laser, the analog electronic front-end, the DACs and the RF
drivers. The PEMAN proves to be competitive also with other
photonic solutions, particularly in terms of resolution and fan-
in (by a hundredfold on the latter), enabling the possibility
to accelerate more complex ANN models. Moreover, with its
output in the digital domain by design, neurons in the same
or successive layers can be fed without scalability issues.

The choice of a silicon photonics platform for implementing
the integrated optical engine has been made envisioning an
all-silicon implementation of the PEMAN, ideally using a
common platform for the photonic and electronic sections. The
technological platforms used for the implementation clearly
have deep and complex techno-economic implications in terms
of form factors and CAPEX/OPEX of the ANN. Limiting
the considerations to the ANN power efficiency, which is the
key aspect discussed in the paper, future works will focus
on the driving circuitry and consider alternative platforms
for implementing the photonic and the electronic parts. For
example, the InP monolithic integration platform can be
a promising candidate, providing all the required photonic
building blocks including the laser source. Also, alternative
electronic technologies like the finFET platforms, can be
investigated, having the potential to improve speed and power
efficiency of the PEMAN.
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