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Abstract— Gallium phosphide (GaP) is an important optical
material due to its visible wavelength band gap and high
refractive index. However, the bandgap of the thermodynamically
stable zinc blende GaP is indirect, but wurtzite (WZ) structure
GaP is direct bandgap. In this work, we demonstrate high-quality
and dense GaP vertical nanopillar (NP) array directly on Si (111)
substrates through selective area epitaxy (SAE) by MOCVD for
the first time, through systemic studies of the effect of TMGa flow
rate, growth temperature, and V/III ratio. Uniform GaP NPs are
grown over a patterned 400 µm × 400 µm area with 97.5% yield.
Arrays of GaP vertical p-i-n NP diodes are demonstrated with a
ideality factor and rectification ratio of 3.7 and 103, respectively.
With the high yield of hexagonal structure and electrically proven
device quality of GaP NPs through this growth method, this
work represents a significant step in achieving GaP NP based
optoelectronic devices, such as micro-LEDs emitting in the green
wavelength range.

Index Terms— Gallium phosphide, selective area epitaxy,
nanopillar, nanowire, MOCVD.

I. INTRODUCTION

THE vapor-liquid-solid (VLS) mechanism has been used
to grow nanowires (NWs) for decades due to its precise

control of high crystal quality growth for many III-V semi-
conductor NWs [1], [2]. Nonetheless, it is not always desir-
able for VLS grown NWs to be monolithically integrated in
conventional silicon (Si) based technology, because the metal
particle used for VLS growth could be incorporated as an
unintentional impurity dopant in Si and induce deep levels that
degrade device properties by trapping electrons and holes [3].
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An alternative technique to grow NWs without the usage
of metal nanoparticle catalysts is the selective-area-epitaxy
(SAE) method [4]–[6]. Fig. 1a illustrates the typical growth
steps of SAE. In this NW growth mechanism, the location
and size of NW are defined by lithographically patterned and
wet/dry etched openings of the amorphous thin film mask,
such as silicon dioxide (SiO2) or silicon nitride (SiNx), which
are deposited on top of a single crystal substrate [7]. When
gaseous sources are introduced to the mask patterned substrate
under specific conditions (growth temperature, pressure, molar
flow rate of the precursors, V/III ratio, etc.), single crystal
NWs can be selectively grown only in the exposed regions. It is
known that III-V NWs are preferentially grown in <111>A
or <111>B directions, and vertically aligned array of III-V
NWs can be formed on top of the (111)A or (111)B III-V
substrates [8]. In addition, heteroepitaxial growth of III-V SAE
NWs on top of Si (111) substrates enables direct integration
of III-V-based high-mobility and direct bandgap optoelectronic
devices on the conventional Si platform [9], [10].

Among the III-V compound semiconductors, gallium phos-
phide (GaP) is one of the promising optical materials due to its
unique bandgap that falls in the visible range at 2.26 eV, and a
high refractive index of 3.37 [11], [12]. In addition, its thermo-
optical coefficient and mechanical properties in comparison to
materials with a similar transmission range, enables GaP to be
applied to flexible optical devices that can perform in harsh
weather conditions [12]. Recently, the growth of GaP NWs on
several substrates using a variety of NW growth methods have
been reported [13]–[20]. GaP NWs most frequently studied
are the homoepitaxially growing NWs on top of GaP (111)B
substrates via the VLS mechanism using gold catalysts [14],
[17], [18], [21], [22] GaP NWs have also been heteroepitaxi-
ally synthesized on top of Si (111) [13], [16], [20] and Si (100)
substrates [18] using the VLS method. Moreover, the GaP SAE
NW shell growth on Indium Phosphide (InP) core NWs grown
on InP (111)B substrate has also been reported [15]. However,
SAE growth of GaP NWs directly on Si (111) substrates are
not well reported yet.

In this work, we demonstrate dense, ordered, and uniform
GaP NW array grown on Si (111) substrates by MOCVD
via the SAE mechanism for the first time. Note that we use
nanowire (NW) and nanopillar (NP) interchangeably hereafter
due to different definitions in the community, but all NW
or NP dimensions are described. The effects of TMGa flow
rate, growth temperature, and III/V ratio are systematically
studied and a 97.5% yield of GaP NPs is achieved. In addition,
Si and Zn doping are introduced to form GaP p-n and p-i-n
vertical NPs. Finally, GaP NP vertical diodes are fabricated
and electrically characterized.
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Fig. 1. (a) Schematic of the SAE growth of NP on a SiO2 patterned
Si substrate. The gaseous sources are introduced to the lithographically
defined SiO2/Si substrate and the vertical NP is grown on the specific
opened region. (b-d) Schematic illustration of the sequence of gas flow and
growth temperature during GaP NP growth with varying (b) TMGa flow rate,
(c) growth temperature and (d) PH3 flow rate.

II. EXPERIMENTAL METHODS

GaP NPs were grown on SiO2 patterned Si (111) substrates,
provided by Imec. Specifically, 20 nm of SiO2 were deposited
onto the Si (111) surface and 10 × 10 arrays of circles of
100 nm diameter and 300 nm pitch were patterned by a
proprietary method. Before loading, the substrate was etched
with 1:50 HF:H2O solution to ensure the removal of the native
oxide in the openings for growth. Note that patterning methods
do not significantly impact the growth quality, but removing
the native oxide completely is critical. The patterned substrates
were then loaded into a Aixtron Close Coupled Shower-
head MOCVD chamber set at 100 mbar of growth pressure.
Trimethyl gallium (TMGa) and phosphine (PH3) were used as
group-III and group-V precursors, respectively. Since GaP NPs
are preferentially grown along the <111>B direction, [16] the
substrates of NPs require the selection of the (111)B-oriented
surface (group-V terminated surface) to achieve vertically
aligned NPs; while on the (111)A-oriented surface (group-III
terminated surface), III-V NPs grow along three tilted direction
(19.5◦ from the surface) [1], [8], [10]. However, unlike III-V
materials, Si does not have surface polarity; therefore, the
surface of Si has to be modulated as (111)B-oriented in
order to control the direction of NPs [8], [10]. To achieve
group-V terminated surface on the Si(111) substrate, 50 sccm
(2.2 × 10−3 mol/min) of PH3 was introduced during the
ramping up/native oxide desorption step (750 ◦C for 10 min).
After the desorption/annealing step, the gas flow rate of PH3
was adjusted to the specific NP growth condition and the
chamber temperature was reduced to the NP growth temper-
ature. TMGa source was only introduced into the chamber
when the system reached the growth temperature necessary to
grow GaP NPs. Following the NP growth, TMGa source was
immediately cut off while PH3 flow was maintained to prevent
the evaporation of phosphorous in the grown NPs until the
chamber temperature cooled down to 300 ◦C.

III. RESULTS AND DISCUSSION

A. Effect of TMGa Flow Rate

To achieve high-quality MOCVD-grown GaP NPs on Si
substrates, the effect of TMGa gas flow rate on the yield and

Fig. 2. SEM images of four different types of nanostructures that appeared
in the GaP NP growth study. Top view is shown in the left panel and the
corresponding 30◦ tilted image is shown in right panel.

morphologies of GaP NPs was first studied. The flow rate of
TMGa was varied from 3.4 × 10−7 to 2.7 × 10−6 mol/min,
while the PH3 gas flow was fixed at 9.82 × 10−4 mol/min
(Fig. 1b), corresponding to a V/III ratio from 364 to 2890. The
growth temperature was ramped down and fixed at 660◦C after
annealing under PH3 at 750◦C for 10 mins. As shown by the
top-view and 30◦ tilted SEM images in Fig. 2, the TMGa
flow rate modulation resulted in GaP nanostructures with
four different types of topography. The first type of structure
(indicated as “A” in Fig. 2) is a vertically grown nanopillar
with a perfect symmetric hexagonal top flat surface surrounded
by six {1-10} sidewalls. The second one is a nano-pillar struc-
ture with a pinched-off top surface with unequal asymmetric
sidewalls (“B” in Fig. 2). The third one is a bulky nano-pillar
with random shapes (“C” in Fig. 2). The last one (labeled as
“D” in Fig. 2) is a hexagonally bounded nanostructures with
three {-1-10} top facets and six short vertical {1-10} side
facets. Because the morphology and uniformity of NPs are
critical to the NP based device properties, the yield of NPs
was calculated by counting the number of vertically grown
perfect hexagonal surfaced NP (Type A) for this study. A set
of representative SEM images of NPs grown under different
TMGa flow rates are shown in Fig. 3a–d, and the average NP
height and Type A nanopillar yield as a function of TMGa
flow rate are plotted in Fig. 3e. When the TMGa flow rate was
high (2.7 × 10−6 mol/min), only Type C and D nanostructures
were observed (Fig. 3a). Vertical NPs of Type A and B started
to appear (Fig. 3b), when the TMGa flow rate decreased to
1.0 × 10−6 mol/min. As the TMGa flow was further reduced
to 7.1 × 10−7 mol/min (Fig.3c), the percentage of Type A
NP greatly increased to as high as 90%, without showing
any Type C and D undesirable nanostructures. After the gas
flow of TMGa was reduced (4.8 × 10−7 mol/min), the yield
of Type A NP decreased again and void holes without any
growths appeared due to the lack of nucleation of materials
(Fig. 3d). The height of the hexagonal NP decreased by
reducing the TMGa gas flow rate, because the amount of
the group III source determines the growth rate of NP under
the fixed group-V flow condition. Type D nanostructured NPs
have also been reported in GaAs SAE NP growth studies
previously, [23]–[27] and was attributed to the different growth
rates between the (111)B and (110) planes, which are functions
of temperature and V/III ratio [28]. At a higher growth
temperature and a low V/III ratio, the growth rate of the
(111)B surface is much faster than that of the (110) planes,
and the pinched tetrahedral with three {-1-10} top facets and
six {1-10} short side facets of type D structure is favored [23].
However, when the V/III ratio is increased, the growth rate of
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Fig. 3. 30◦ tilted SEM images of GaP NPs under TMGa flow rate of
(a) 2.7 × 10−6, (b) 1.7 × 10−6, (c) 7.1 × 10−7, and (d) 4.8 × 10−7 mol/min.
Scale bars represent 400 nm. (e) Plot of average height (left axis) and yield
(right axis) of hexagonal NPs (Type A) as a function of TMGa flow rate in
μmol/min.

Fig. 4. 30◦ tilted SEM images of GaP NPs under the growth temperature
of (a) 600, (b) 620, (c) 660, and (d) 680 ◦C. Scale bars: 400 nm. (e) Plot of
the average height and yield of hexagonal NPs as a function of the growth
temperature.

{-1-10} facets increases so that the vertical NP occupied by
six {1-10} side facets with a flat hexagonal (111)B surface
NP (Type A) can be grown [23].

B. Effect of NP Growth Temperature

We then studied the dependence of the growth yield and
morphologies of GaP NPs on the growth temperature under a
fixed gas flow rate of TMGa (7.1 × 10−7 mol/min) and PH3
(9.82 × 10−4 mol/min) by varying growth temperatures rang-
ing from 600 ◦C to 680 ◦C (Fig. 1c). Fig. 4a–d shows the 30◦
tilted SEM images of NPs grown at 600, 620, 660, and 680 ◦C,
respectively. The average height and yield of the hexagonal
NPs as a function of growth temperature (600–680 ◦C) are
plotted in Fig. 4e. The average height of NPs steadily increased
from 24.3 nm to 152.4 nm when growth temperature increased
from 600 to 680 ◦C because of the increment of adatom
diffusion length with increasing temperature [29]. In addition,
it was observed that the diameters of NPs grown at lower
temperatures are larger than the those at higher temperatures
(up to 660 ◦C). It can be concluded that the increase of the
NP height with respect to the growth temperature is consistent
with the preferential NP grow laterally rather than axially
at lower growth temperatures [30]. In this respect, the yield
of NPs increased up to ∼90 % as the growth temperature
increased to 660 ◦C, because the lateral overgrowth, which
induces different crystal structures, [29] is only prevalent at
lower temperatures. However, when the growth temperature
was further increased to 680 ◦C, the yield of type A NP
dramatically decreased again because the tetrahedral nanos-
tructure preferentially appears at a higher temperature and
under a certain fixed gas source flown condition [23], [24].

Fig. 5. 30◦ tilted SEM images of GaP NPs under the four different V/III
ratios of (a) 1,000, (b) 1,380, (c) 1,820, and (d) 2,660, with a 400 nm scale
bar. (e) Plot of the average height and yield of the GaP NPs as a function of
the V/III ratio.

C. Effect of V/III Ratio

The contribution of the V/III ratio of the GaP SAE NP
growth was investigated by modulating the flow rate of the
group-V source from 7.14 × 10−4 to 1.9 × 10−3 mol/min
while fixing the group-III flow rate at 7.1 × 10−7 mol/min
to achieve 1,000 to 2,660 of the V/III ratios and the growth
temperature at 660 ◦C (Fig. 1d). The SEM images shown in
Fig. 5a–d are the GaP SAE NPs grown under the V/III ratios
of 1,000, 1,380, 1,820, and 2,660, respectively. The average
height and yield of the hexagonal NP are shown in Fig. 5e.
Under the low PH3 flow rate (Fig. 5a), void holes without
any material growth were observed because the nucleation
probability of NP was decreased. Type D nanostructures also
appeared under this low V/III ratio condition. When the V/III
ratio was increased to 1,380, Type D nanostructure disappeared
and the high yield (∼90 %) of the hexagonal NP was achieved.
However, further increment of the V/III ratio induced radial
growth so that the percentage of Type A NP was decreased
again [31]. The height of NP increased from 78.7 nm to
291.7 nm when the V/III ratio was increased.

D. XRD Measurements of GaP SAE NPs

Based on the above systemic studies of GaP NP growth
on TMGa flow rate, growth temperature, and V/III ratio,
it was determined that a high yield of the hexagonal (Type D)
GaP NPs can be achieved at 660 ◦C growth temperature,
7.1 × 10−7 mol/min TMGa flow rate, 9.82 × 10−4 mol/min
PH3 flow rate, and 1380 V/III ratio. It is well known that
the III-P materials are in cubic zinc blend (ZB) structure in
bulk, whereas the III-nitrides are in hexagonal wurtzite (WZ)
structure. However, the crystal structure of the III-V mate-
rials can be changed when they are grown in NW via
the VLS/SAE mechanism so that either a ZB, WZ, or an
intermixing of the ZB and WZ structured III-V NWs can
be achieved [32]. This modulation of the crystal structure
is interesting, especially in GaP material, because the WZ
structured GaP has a direct band gap between 2.18 and
2.25 eV, [18], [33] which is desirable for a green-yellow
range of LEDs [14] and solar water splitting devices, [17]
while the ZB GaP has 2.97 eV of indirect band gap [33].
Recently, the growth of WZ structured III-V NWs have been
reported [8], [14], [29], [31], [32], [34]–[41]. The realization
of WZ NWs were experimentally verified but the mechanism
of selecting a crystal structure while NW is grown are still
controversial [41]. However, a common factor that promotes
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Fig. 6. Top view and 30◦ tilted view SEM images of the p-n axial junction
GaP NP grown on an n-Si (111) substrate.

Fig. 7. XRD curves measured from the GaP NPs on Si(111) sample shown
in Fig. 6. The peak is aligned based on the Si (333) peak from the substrate.

the realization of WZ structured NW is the suppression of the
lateral overgrowth, because the ZB structure has the lowest
surface energy at {1-11} side facets of the hexagonal NW [31].
On the other hand, the nucleation on side {1-100} facets of
WZ NW is difficult so that the hexagonal WZ NWs tend
to grow more vertically with less lateral overgrowth [39].
Consequently, it can be inferred that GaP NWs grown under
the optimized growth condition would form a WZ structure.
With the purpose of fabricating an array of GaP SAE NPs
based photodetector, GaP SAE NPs were successfully grown
on a larger area (400 μm × 400 μm) with denser openings
(opening holes of 100 nm in diameter with a 200 nm distance)
and a 97.25% yield of the hexagonal NPs uniformly on all
the patterns. The SEM images of GaP NPs are shown in
Fig. 6 with an average diameter of 103 nm and 3.8 nm standard
deviation. To verify the crystal structure of GaP NPs, the NP
lattice parameter was determined by XRD, and the results are
shown in Fig. 7. The peak was aligned based on the Si (333)
peak detected from the substrate. Relatively broad GaP(0003)
and GaP(0001) peaks were observed and 6.3016 Å of the
c-lattice parameter was obtained, consistent with that of WZ
GaP. In addition, room temperature photoluminescence (PL)
characterization was conducted on the GaP NPs. As shown in
Fig. S1, the PL spectra exhibits a board peak at around 1.96 eV.
The peak matches with the predicted inter-band transition,
�9v to �8c, and the results of other reported WZ GaP, [14]
suggesting GaP nanopillars grown might be in WZ structure.
Note that because of the broad peaks attributed to GaP in
both XRD and PL, there is uncertainty in assigning the GaP
NP crystal structure to pure WZ or a mixture of ZB and WZ.
Further characterization including absorption spectroscopy and
transmission electron microscopy (TEM) needs to be carried
out to confirm the WZ structure.

E. Arrays of GaP SAE NP Axial pn Junction Diode

To examine the electrical qualities of these NPs, an array
of GaP NP diodes were fabricated with on an n-type Si (111)
substrate. To achieve an axial p-n junction NP, disilane (Si2H6)

Fig. 8. (a) Schematic of the array of the fabricated p-n junction GaP NP
diode. (b) I-V curves of the p-n junction GaP NP diode. The inset shows the
semilogarithmic plot of the I-V curve.

Fig. 9. (a) Schematic of the array of the p-i-n junction GaP NP diode. (b) I-V
curves of the p-i-n junction GaP NP diode (solid blue line) and p-n junction
GaP NP diode (solid red line). The inset shows the semilogarithmic plot of
the I-V curve. The diameter, distance, and height of the NP were 100 nm,
250 nm, and 900 nm, respectively.

and dimethyl zinc (DMZn) were introduced sequentially as
n-type and p-type dopant sources, respectively, while TMGa
and PH3 were supplied constantly during the entire NP growth
period. The detailed growth condition is listed in the sup-
porting information. The height of each n and p segment of
NP was estimated at approximately 260 nm each because the
n- and p-type dopants were introduced for the same amount
of time. After the SAE growth, planarization process with
benzocyclobutene (BCB) was conducted and followed by RIE
etching to reveal the NP top for contact. Then, a Ti/Au
(10 nm/140 nm) metal contact was deposited on top of the
exposed area of the NP, and a layer of Ti/Au (20 nm/100 nm)
was deposited on the back of the n-type Si substrate (Fig. S2).

The I-V characteristics of the GaP NP diodes are shown as
Fig. 8. A well-defined rectifying I-V characteristic is observed
with a turn-on voltage of 1.5 V. The inset of Fig. 8b shows
the semilogarithmic plot of the I-V curve. A relatively high
estimated ideality factor of 7 was extracted from the slope
of the semilogarithmic I-V curve and a relatively low on/off
ratio of 10 was detected at ± 2.5 voltage due to high leakage
current in the negative-bias region. The high ideality factor
and leakage current could be attributed to the carrier tunneling
across the junction in the GaP NP, [42] especially with high
doping concentration of the n and p-NPs.

To reduce the leakage current and ideality factor of the
highly doped GaP NP, an un-doped intrinsic GaP segment
was introduced between the n-type and p-type GaP NPs
(Fig. S3). The growth conditions were identical to the GaP p-n
NPs, except no doping source was introduced during intrinsic
section growth. The length of the n, i, and p segments of the
GaP NP is estimated to be 300 nm each based on the growth
time. Then, the same diode fabrication process was performed
on the NPs to produce GaP p-i-n vertical diodes (Fig. 9a).

Fig. 9b shows the I-V characteristics of p-n and p-i-n
GaP NP diodes. Similar to the p-n diode, the p-i-n diode
demonstrates a rectifying I-V characteristic with a 1.3 V turn-
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on voltage. In contrast, an ideality factor of 3.7 was extracted
(inset of Fig. 9b), which is much lower compared to the
value of p-n NPs. The on/off ratio of the p-i-n diode was
also greater by two orders of magnitude than the pn diode.
These improvements suggest the severe carrier tunneling at
the narrow depletion region of the GaP p-n NP was reduced
by the intrinsic segment of the NP. The large ideality factor
(> 2) may be caused by the structural defects, such as stacking
faults, within the nanopillars or the surface states induced by
RIE damages during the fabrication process of the NP diode.
We believe that the ideality factor of a diode is expected to be
further reduced by passivating the NP surface with an oxide
layer before performing the BCB RIE process.

IV. CONCLUSION

In conclusion, we have demonstrated high-quality and dense
GaP nanopillar array on the Si (111) substrate through SAE
MOCVD growth for the first time. Four type GaP nanopillars
were observed after the SAE growth and among them, the
pure WZ structure GaP nanopillar (type A in the paper) is
desired due to its direct bandgap property. Then, the effect
of TMGa flow rate, growth temperature and III/V ratio are
studied in detail to determine the recipe with best yield.
Under high TMGa flow rate, GaP nanopillars with undesired
random shapes (type C) and hexagonally bounded nanos-
tructures with three top facets (type D) are mostly grown.
In addition, the vertical NP growth rate and the yield are
found to increase with the growth temperature due to the
increment of adatom diffusion length. Finally, the optimization
of III/V ratio is conducted and a 97.5% yield of the hexagonal
GaP NPs is achieved with the 660 ◦C growth temperature,
7.1 × 10-7 mol/min TMGa flow rate, and 1380 V/III ratio.
The XRD and PL measurement suggests the GaP nanopillars
are in WZ structure. Finally, the Si and Zn doping are intro-
duced during the growth to fabricate GaP p-n and p-i-n vertical
NP diodes. A rectifying I-V behavior with 1.3 V turn-on
voltage, 3.5 ideality factor and ∼ 103 on/off ratio is observed
in the GaP p-i-n diode. With the high yield of hexagonal
structure and electrically proven device quality of GaP NPs
though this growth method, we believe this work represents a
significant step in achieving GaP vertical NP optical devices,
such as the promising green light micro LEDs.
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