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Abstract— In this paper, we demonstrate ultra-fast millimeter
wave beam steering with settling times below 50 ps. A phased
array antenna with two elements is employed to realize beam
steering. The phased array feeder is implemented with a recently
introduced time delay line that provides, at the same time,
an ultra-fast tunability, broadband operation, and continuous
tuning. Our implementation is used to perform symbol-by-symbol
steering. In our demonstration, the beam direction is
switched between two sequentially transmitted symbols toward
two receivers placed 30° apart. We show the successful
symbol-by-symbol steering for data streams as fast as 10 GBd.
The suggested scheme shows that the ultra-fast beam steering
is becoming practical and might ultimately enable novel high
bit-rate multiple access schemes.

Index Terms— Ultra-fast beam steering, millimeter wave
communication, microwave photonics, radio access network.

I. INTRODUCTION

TO MEET the relentlessly growing bandwidth of wireless
communication, moving carrier frequencies towards mil-

limeter wave (mmW) is a promising path [1]–[3]. However,
higher carrier frequencies experience higher free space path
loss [4], increasing the total losses of the wireless link.
This drawback can be compensated by using phased array
antennas (PAAs) [5]. Besides providing higher reach and
reduced crosstalk [6], PAAs enable beam steering in order to
direct the energy to multiple users. Non-mechanical and thus
fast beam steering is achieved by implementing active feeder
networks (FNs) in front of the PAAs [7]. The FNs create and
delay copies of the signal using true-time delays (TTDs). If the
elements used to delay the signals are not ideal, beam squint
will occur, i.e. different frequencies will be steered in different
directions.

Millimeter wave PAA systems call for a large fractional
bandwidth which makes implementation of TTDs in
electronics difficult. Conversely, microwave photonics (MWP)
where the signal processing is done relying on photonic
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technologies rather than electronics offers ample bandwidth.
Several MWP PAA architectures have been proposed
lately. Such devices could be based on spatial light modul-
ators (SLM) [8]–[12], ring-resonators [13]–[18], switched
delays [19], [20], semiconductor optical amplifier
(SOA) [21], [22], gratings [17], [23]–[29], dispersive
fibers [30]–[35] and tunable phase shifters [36]. While all
these devices are optimized for specific applications, none
provide large bandwidth, continuous tuneability, and low
settling times as needed for ultra-fast beam steering.

In this paper, we demonstrate an ultra-fast beam steering
concept relying on microwave photonics processing. The delay
lines in the FN are based on a novel microwave photonics
true-time delay scheme called Complementary Phase Shifted
Spectra (CPSS) which we recently published in [37]. The
advantages of ultra-fast beam steering are demonstrated with
a proof-of-concept mmW radio-access network leveraging
symbol-by-symbol steering. This technique enables highly
flexible bandwidth allocation. Thanks to that, the cost and
power consumption of the receiver electronics can be strongly
reduced. The demonstration is performed for a transmitting
antenna array but the same concept could be applied to receiv-
ing arrays in a similar way. Moreover, the proposed solution
can be fully integrated on photonics platforms as it only relies
on standard components such as couplers, waveguides, and
phase modulators.

This paper is organized as follows. A short review on
the main challenges in next generation mmW communication
systems is provided in Section II. In Section III, we detailed
the architecture of our ultra-fast beam steering scheme. The
proof of concept demonstration with beam steering between
10 GBd symbols is described in Section IV. Finally, we draw
our conclusions in Section V.

II. CHALLENGES IN MILLIMETER WAVE

COMMUNICATIONS

The use of mmW carrier frequencies for communication
links brings a number of challenges that will be discussed in
this section.

A. Free Space Propagation Losses
Increasing the carrier frequency comes at the price of higher

free space path losses [4]. The power budget in a wireless link
can be derived from the Friis formula [38]

Pout − Pin = L + Gt + Gr + F S P L, (1)

where Pin and Pout are the input and output power
of the transmitting and receiving antenna, respectively,
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TABLE I

LOSSES FOR A 60 GHz LINK

Fig. 1. Principle of phased array antenna (PAA). In the feeder network of the
PAA, the input signal is first split into n copies. Each of the copies is delayed
with an appropriate value �t such that the interferences after radiation point
towards the desired direction θ [39].

while L corresponds to the link losses. Gt and Gr are the
gain of the transmitting and receiving antennas, respectively,
whereas F S P L is the free space path loss defined as

F S P L = −20 · log10

(
4π · d · f

c

)
, (2)

where f , d and c are the carrier frequency, the distance
between the antennas, and the speed of light in the prop-
agation medium, respectively. Combining the FSPL and the
atmospheric losses provides a good estimate for the required
specification of the various components in the link. Assuming
an attenuation of 17 dB/km for 50 mm/s rain [6], the total
transmission losses for a 60 GHz system are reported in Table I
for different distances. The losses are as high as 103 dB for a
50 m link. Doubling the distance further increases the losses
by 7 dB.

To overcome these high losses the power margin Pout − Pin

from Eq. (1) should be maximized. This can be achieved by
increasing the transmitted power and reducing the minimum
power required in the receiver. More importantly, high direc-
tivity antennas have to be implemented in order to focus the
beam, i.e. increasing Gt and Gr in Eq. (1).

B. Point-to-Multipoint

To support point to multipoint transmission, directive beams
from high gain antennas have to be steerable in order to
combine both high reach and spatial flexibility. PAAs with
active FNs are a solution to this challenge [40]. PAAs are
realized by driving n tunable time delay elements with an
equally split source signal [39], see Fig. 1. It can be deducted
from Fig. 1 that two adjacent antennas require a time delay
difference�t = −x/c = − sin θ · d/c, where c represents the
speed of light [7]. The propagation direction can be controlled
by adjusting the signal delay �t in each radiating antenna
element [39].

Fig. 2. PAA feeder based on a TTD approximated by phase shifters.
(a) Array element consisting of a phase modulator, a combiner and a
photodiode that down-converts the optical signals into an RF signal before
being fed to the antenna. (b) The TTD delay approximated by phase shifters
features an ideal power frequency response (left) without any loss compared
to its ideal counterpart. Yet the phase response (solid lines in right plot) shows
errors when compared to the ideal TTD (dashed lines). This will lead to a
beam squint in the PAA [39].

III. ULTRA-FAST BEAM STEERING

To enable broadband ultra-fast symbol-by-symbol beam
steering, a PAA is needed in which each antenna in the feeder
network (FN) requires a well-defined TTD. An ideal TDD pro-
vides a frequency independent unitary power response and
a linear phase response. Varying the delay value changes
the slope of the phase response [37]. In practical systems,
TTDs are approximated by various methods. In order to
compare various TTDs implementations, we have performed
simulations [39]. Our study provides a simple metric to
assess the performances of FNs with the various TTDs. Here,
we highlight the two most relevant approaches from [39]
enabling ultra-fast steering.

A. Array Feeder Based on Phase Shifters

FNs can be built by replacing the TTDs in each of the
antenna elements with phase shifters [41]. When approxi-
mating TTD with phase shifters, the phase response as a
function of frequency is constant instead of linear [37]. Due to
this approximation, beam squint will occur. Different spectral
components will be steered in different directions.

An element of a MWP PAA based on a phase shifter is
schematically depicted in Fig. 2(a). Here, the phase shifters
are placed on the input port carrying the data laser. The phase
shift will delay the beating of the reference and data signal
in the photodiode. Fig. 2(b) shows that the power frequency
response is perfectly constant across all frequencies. The phase
response corresponds to a constant phase offset applied to all
frequencies equally, Fig. 2(b). In the frequency band of the
signal (shaded area in Fig. 2(b)), the phase error is directly
proportional to the fractional bandwidth, i.e. a system with a
fractional bandwidth of e.g. 25% will have a phase error of
up to 25% for �t = T . This error needs to be compared to
the ideal TTD phase response - see dashed lines in Fig. 2(b) -
and will lead to beam squint.
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Fig. 3. Ultra-fast tunable TTD based on complementary phase shifted
spectra (CPSS). The input signal is first split into two complementary spectra
using a delay interferometer (DI). Before being recombined, one of the signals
is phase shifted by an optical phase modulator. The result is an almost ideal
phase response [37].

Fig. 4. PAA feeder using CPSS-SCT. (a) An array element based on the
CPSS-SCT scheme is built by applying the CPSS scheme on the laser carrying
data and, in parallel, adjusting the phase of the reference laser by another phase
shifter. (b) The power response (left) shows variations of about 1.5 dB in the
bandwidth of interest while tuning the delay. The phase response (solid lines)
is close to the ideal TDD response (dashed lines) for a designed fractional
bandwidth of 25% (shaded area) [39].

B. Array Feeder Based on CPSS-SCT

In this section we describe a FN based on tunable delay units
providing ultra-fast, broadband, and continuous tuning [37].
The technique called complementary phase shifted
spectra (CPSS) imitates an ideal TTD. The principle of CPSS
time delay can be understood with the help of Fig. 3. In this
figure we plot the amplitude and phase response as well the
phasors of a signal at various stages of the TTD element. First,
the input signal is spectrally split using a delay interferometer
into two complementary spectra (CS), see the phase and
frequency responses at the upper and lower arms behind
the delay interferometer. Secondly, one of the CS receives
an additional phase shift from a phase modulator. When
the two CS are recombined one obtains a phase frequency
response close to the ideal phase response of the ideal TTD.

Such a CPSS delay element can be arranged into a
PAA feeder by combining the CPSS signal with a reference
laser, see Fig. 4(a). Once both lasers are combined they are
directly sent to the photodiode, generating the microwave
signals.

Fig. 5. Simulated 3 dB supported range. The curves show for various
array sizes (various colors), the area in which the gain flatness is better than
3 dB for a particular fractional bandwidth and steering angle. FN based on
CPSS-SCT (solid curves) provides larger steering range compare to phase
shifter (dashed lines) in all cases. For an exemplary V-band communication
link using frequencies from 54 to 64 GHz (17% fractional bandwidth)
CPSS-SCT provides steering up to 120° while phase shifter FNs are limited
to 85° [39].

To improve the performance of the scheme, the
CPSS scheme can be combined with a separate phase
tuning of the reference laser [39]. This can be obtained
by adding a phase-modulator to the reference laser. This
so-called separate carrier tuning (SCT) [42], [43] technique
allows to add an offset phase to each PAA elements. While
the CPSS gives the possibility to control the slope of the
phase response, the SCT adds and offset so that the unit can
be operated at higher frequencies. The resulting power and
phase frequency responses are plotted in Fig. 4(b) for a filter
optimized with a fractional bandwidth of 25% (shaded area).
The phase response in the shaded area is close to ideal
(dashed lines) which mean that beam squint should not occur.

C. Scheme Comparison

To assess PAA FN based on either phase-shifters or
CPSS-SCT tuning we compare the 3 dB supported range [39]
for both implementation and for various array sizes. We define
the 3 dB supported range as the range within which beam
steering for a given fractional bandwidth can be achieved with
a gain flatness better than 3 dB. The dashed lines correspond
to a PAA based on simple phase shifters (Fig. 2) while the
solid lines corresponds to a PAA FN relying on CPSS-SCT
(Fig. 5).

For a PAA with 16×16 elements (green curves) providing a
gain of 24 dB, CPSS-SCT allows a steering range of 120° for a
fractional bandwidth up to 17%. A PAA FN relying on simple
phase shifters would only support a steering range of 85°.

In our ultra-fast beam steering demonstration we use
CPSS without SCT. This simplification has been done in
order to demonstrate both ultra-fast steering and CPSS with
on-the-shelf components. This will not reduce the functionality
but only come at the expense of the steering range [39].
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Fig. 6. Impact of roll off factor on CPSS-SCT array feeders performances. The simulations are performed for a 16×16 element array at a carrier frequency
of 35 GHz. The black dashed line corresponds to the 10 Gbit/s experiment with a fractional bandwidth of 29% as discussed further below. It can be see that
increasing the roll-off factor decreases the steering range. This can be interpreted by the fact that increasing the roll-off factor increases the bandwidth of the
signal.

Fig. 7. Concept of mmW RAN based on ultra-fast beam steering. The central office (CO) in (a) sends time division multiplexed (TDM) data frames to
multiple users via a remote antenna unit (RAU). The radio-over-fibre (RoF) signal is shown in (b). The RAU (c) uses the steering control signal sent from
the CO to steer the time slots of the symbol based TDM signal to different directions, acting as a spatial demultiplexer. The user equipment (UE) is based
on an RF front end that down-converts the signal to baseband. A low pass filter (LPF) is implemented to reduce the noise level. In the receiver of the UE,
low cost analog-to-digital converters (ADC) and digital signal processors (DSP) can be used as the UE only receives signals during its predefined time slot.
If a 10 Gbit/s TDM is demultiplexed to 3 users, the UEs will only require 3.3 Gbit/s receivers. To prevent transmission outage if the line-of-sight condition
is lost, multiple BS have to covers the same area. This also increases further the available bandwidth per area while inter-cell-interferences are prevented by
the directed beams.

Another analysis of the CPSS-SCT array feeder is per-
formed in Fig. 6. It shows how the roll-off factor of a squared
root raised cosine filter in the transmitted signal impacts the
performance of a communication link based on a 16×16 array
at 35 GHz. The simulations are performed in time domain
by transmitting for each data point 1 million symbols. The
receiver has been implemented with a matched filter and the
corresponding roll-off factor. The results show that the smaller
the roll-off, the better. This is due to the fact that larger roll-off
factors require a larger bandwidth.

IV. DEMONTRATION OF ULTRA-FAST BEAM STEERING

Subsequently, we demonstrate ultrafast beam-steering in
an access network scenario by performing symbol-by-symbol
beam steering. Symbol-by-symbol beam steering is a kind
of time space division multiplexing and provides two main
advantages. First, it enables beamforming in the remote phased
array antenna (PAA) which extends the reach of the link.
Second, the data rate received by the end-user is linearly
reduced by the number of user equipment (UE). Therefore, the
hardware complexity and cost is strongly reduced and can rely
on cheaper receiver (Rx) electronics. Ultra-fast beam steering

is achieved based on microwave photonics as explained in the
previous section. For the sake of simplicity, we will confine
ourselves to a PAA FN with only 2 antennas and to a CPSS
implementation without a SCT-scheme. This will only limit
the tuning range but not degrade the functionality.

A. RAN Leveraging Symbol-by-Symbol Steering

Our proposed TSDM based MWP radio access
network (RAN) implementation is depicted in Fig. 7 [44].
A transmitter located in the central office generates a radio-
over-fiber (RoF) data signal and a steering control (SC) signal,
see Fig. 7(a). The spectrum of the RoF signal is displayed
in Fig. 7(b). The desired microwave carrier frequency fRF
corresponds to the frequency difference between a reference
and a carrier laser, f1 and f2 respectively [5]. The data for the
different UEs and the SC signals are generated by a digital
signal processor (DSP) within the transmitter. The CO needs
to know the exact position of the UEs in order to steer the
signals correctly in the remote antenna unit (RAU) of the BS.
This information could be provided actively by the UEs or
measured in the RAU using direction of arrival (DoA) in a
duplex implementation of our concept.
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Fig. 8. Experimental setup. An AWG generates two signals; a CPSS drive signal (a) and a PRBS15 NRZ TDM signal (b) which is encoded onto a carrier.
The amplified carrier is combined with the reference line and fed to the remote antenna unit (RAU). In the RAU the signal is split into two paths, one is
guided through the CPSS tuneable true time delay (c) and the second through a fixed time delay (TD) line (d). The TD compensates the path difference
between the two arms. Finally, the photodiodes (PD) 1 and 2 generate the 35 GHz RF carrier through photonic mixing. (e) and (f) show exemplary eye
diagrams of the received signal at the two users. They demonstrate the symbol-by-symbol switching capacity.

The RAUs, Fig. 7(c), are built using a MWP PAA with
ultra-fast tunable delay line elements (CPSS). The SC is
transmitted to the RAU on a separate optical channel. The
time delays for each element of the PAA are set in the feeder
network of the RAU using the SC signal.

As depicted in Fig. 7(d), the UEs require first an RF front
end to down-convert the wireless signals. A low pass filter
is included to reduce the bandwidth of the signal. The signal
processing can be performed in a low-cost receiver as the UEs
only receive during their assigned time slots.

As with other mmW RAN schemes, the transmission from
the BS to the UEs works well with line-of-sight (LoS)
conditions. If the LoS is interrupted by obstacles or simply
because the users turning around, the transmission will be
reduced. A solution to this problem was already proposed [45].
It relies on a multihop relaying where multiple BS covers the
same area. In Fig. 7, this is exemplarily realized with BS on
both side of the river. Increasing the BS density also increase
the available bandwidth per area while inter-cell-interferences
are prevented by the directed beams.

B. Experimental Setup

We experimentally demonstrate ultra-fast beam steering
using the setup depicted in Fig. 8. The architecture of the
proposed system consists mainly of two parts, a RoF trans-
mitter and a PAA in the RAU with two antennas. A 10 Gbit/s
TDM data signal is generated by an arbitrary waveform
generator (AWG M8195A). A root-raised cosine pulse shape
with a roll-off of 0.8 is used. The data modulates the intensity
of a cw laser with frequency f2 by means of an external
lithium niobate (LiNbO3) Mach-Zehnder modulator. The
output of the modulator is combined with a second laser of
frequency f1. The two laser carriers are separated with a
frequency difference corresponding to the desired millimeter
wave carrier, i.e. fRF = f2 – f1 = 35 GHz. The optical
spectrum is shown in Fig. 7(b). The phase fluctuations between
the two free running lasers are not impacting the results

Fig. 9. The 2×1 array of the RAU is made of two custom designed Vivaldi
antennas. (a) Picture of the Vivaldi antenna used for the experimental demon-
stration. The antennas are designed to support frequencies from 30 to 40 GHz.
(b) Antennas arranged in a 2×1 array with an antenna spacing of λ.

as this first proof-of-concept is realized with on-off-keying
signal.

At the RAU, the combined signal is split and fed to a
2×1 array feeder. On antenna 1, a CPSS filter is used to
tune the delay based on the control signal it receives directly
from the AWG. The control signal for this proof-of-concept
demonstration is transmitted through a RF cable rather than
through a parallel optical channel as proposed in Fig. 7.
However, proper calibration to synchronize the data and the
control signal is required. On the path to antenna 2, a fixed
time delay (TD) line is used to compensate any length differ-
ence between the two paths to the two antennas. In both paths,
the out-of-band noise mainly from the EDFAs is removed by
an optical band-pass filter. The photonic mixing of the two
lasers at the two 40 GHz photodetectors (PDs) from Albis
Opto generate the 35 GHz RF-signal. RF amplifiers are used
to boost the electrical signals form the PDs to the required
10 dBm. Finally, the electrical signals are fed to two specially
designed Vivaldi antennas, see Fig. 9. At the UEs, two horn
antennas separated by 30° receive the RF signals, which are
analyzed using a real-time oscilloscope (DSO-X 96204Q).

For the system to function properly, synchronization of
the signals on the paths to the two transmitter antennas and
the steering control is critical. The steering control signal
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Fig. 10. Experimental results. (a) Time signal measured at user 1 and 2 for 8-symbol frame steering. The inset shows a zoom in on the transition between
the users. It can be seen how at UE2 the UE 2 dominates whereas the signal form UE1 is diminished and the other way round in UE 1. (b) Transmission
of a 10 Gbit/s TSDM signal with 5 Gbit/s for UE 1 and 5 Gbit/s capacity for UE2. It is shown how the quality factor vs OSNR (of the RoF signal) for
symbol-by-symbol for UE 1, with either a 10 or a 5 GHz receiver bandwidth is similar. The good match between the curves shows that a reducing the receiver
bandwidth does not decrease the signal quality. In both cases the 5 GBit/s of UE 1 is received. (c) Quality factor for symbol-by-symbol steering for distances
up to 5 m. The quality decreases with higher distance due to higher losses.

of inset Fig. 8(a) must be synchronized with the transmitted
signal shown in the inset Fig. 8(b) to enforce steering only
at the symbol transitions rather than in the middle of the
symbol. After the CPSS modules, the signal (c) is an overlap
of a delayed and an undelayed copy. The second signal for
antenna 2, inset (d), is synchronized to that of antenna 1 using
the fixed time delay (TD). Then, the PAA transmits (c) and (d)
to the two UEs. The received eye diagrams are depicted
by insets (e) and (f). These eye diagrams show the case of
symbol-by-symbol steering as evidenced by their complemen-
tary nature. When one antenna receives a symbol, the second
receives nothing. This way, the effective data rate is reduced
to 5 Gbit/s corresponding to a 50% RZ signal.

C. Results

For reference, we first measured the steering capability
of our implementation with frame based TDM sequence.
A 10 Gbit/s signal on a 35 GHz carrier is steered to deliver
8-symbol frames to the users. Fig. 10(a) shows the received
signal for the two UEs. The white and gray backgrounds
show the time slots where either only User 1 (white slots)
or User 2 (gray slots) receives the signal. The inset shows
a sample of the transition where the beam is steered from
User 1 to 2. The slight cross talk seen in case of User 2
is due to angular misalignment which can be avoided. The
power suppression between the users is of about 6 dB between
User 1 and 2. This could be largely improved by using an array
with more antennas.

Further, we investigated the performances of our scheme
using symbol-by-symbol steering. Fig. 10(b) shows the quality
factor Q2 [dB] at UE 1 for two different receiver bandwidths
while the transmitter transmits 10 Gbit/s. The black curve
corresponds to a 10 Gbit/s RX and the red curve to a 5 Gbit/s
Rx. The good match between the curves shows that receivers
with lower bandwidths (5 GHz instead of 10 GHz) can be
used without degradation of the signal quality. The small inset
in Fig. 10(b) depicts the eye diagram after the 5 GBit/s Rx.
Fig. 10(c) shows how the Q2 [dB] gradually degrades when the
transmission distance is increased to 5 m. The reach limitations
are due to the low gain offered by the 2×1 phased array.

V. CONCLUSION

We have introduced and demonstrated an ultra-fast beam
steering scheme capable of symbol-by-symbol steering
at 10 GBd. The settling time of the system while changing
the steering angle is therefore below 50 ps. Such high steering
speed are achieve using a microwave photonics approach to
generated and delay the signals of the phased array antenna.

Our setup was exemplary used in a millimeter wave radio
access network based on a new multiplexing scheme. Beside
the reduced costs of the user equipment, our scheme also
has the potential to increase the reach and in addition to reduce
the inter-cell interference of the radio access network. Both
advantages are provided by the beamforming taking place in
the remote antenna unit.

The setup demonstrated in this paper could also be used
in a receiving array to provide the same flexible bandwidth
allocation advantages to a duplex system. Moreover, our
demonstration focuses on communication links but other appli-
cations such as tracking or scanning could also benefit from
ultra-fast beam steering.
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