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Spectral Broadening Effects on Pulsed-Source
Digital Holography

Steven A. Owens , Mark F. Spencer , and Glen P. Perram

Abstract— Using a pulsed configuration, a digital-holographic
system is setup in the off-axis image plane recording geometry,
and spectral broadening via pseudo-random bit sequence is
used to degrade the temporal coherence of the master-oscillator
laser. The associated effects on the signal-to-noise ratio are then
measured in terms of the ambiguity and coherence efficiencies.
It is found that the ambiguity efficiency, which is a function
of signal-reference pulse overlap, is not affected by the effects
of spectral broadening. The coherence efficiency, on the other
hand, is affected. As a result, the coherence efficiency, which is
a function of effective fringe visibility, is shown to be a valid
performance metric for pulsed-source digital holography.

Index Terms— Digital holography, spatial heterodyne, coherent
detection, coherence, signal-to-noise ratio, pulsed laser sources.

I. INTRODUCTION

FOR applications like long-range imaging, digital-
holographic systems interfere a scattered signal with a

strong reference to create a spatially modulated pattern known
as a hologram [1]. This hologram is recorded digitally and
processed computationally to estimate the complex-optical
field, which in terms of the amplitude and wrapped phase
contains information about the aberrations that exist along
the propagation path [2], [3], [4]. In turn, digital holography
robustly enables applications like long-range imaging [5], [6],
[7], [8], [9], [10].

With applications like long-range imaging in mind, there
are scenarios where the pathlength differences between the
scattered signal and strong reference exceed the coherence
length of the master-oscillator (MO) laser. These scenarios
lead to limitations in the utility of digital-holographic sys-
tems, especially when the temporal coherence of the MO
laser is degraded. To quantify these limitations, the signal-to-
noise ratio (SNR) can be used to characterize system perfor-
mance [11], [12]. In practice, there are several phenomena that
lead to SNR loss, which are accounted for using component
efficiencies that make up the total-system efficiency.

Recent experiments measured the total-system efficiency
in terms of component efficiencies for a digital-holographic
system in a continuous-wave (CW) configuration [13]. Here,
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it is assumed that both the scattered signal and the strong
reference are derived from the same MO laser. Follow-on
work then used the coherence efficiency to show that system
performance degrades rapidly when the path-length difference
between the scattered signal and strong reference exceeds
the coherence length of the MO laser [14], [15]. Practically
speaking, this outcome means that a CW configuration should
not be used in such scenarios.

In lieu of a CW configuration, a pulsed configuration can
be used to circumvent these aforementioned limitations. Here,
it is assumed that both the signal pulse and the reference
pulse are derived from the same MO laser. Recent experiments
showed that when changing from a CW configuration to a
pulsed configuration, the ambiguity efficiency needs to be
introduced into the analysis to properly characterize system
performance in terms of the SNR [16], [17]. In effect, the
ambiguity efficiency accounts for the SNR loss due to nonideal
signal-reference pulse overlap.

Of note, the experiments conducted in [16] used a
homodyne-pulsed setup, whereas the experiments conducted
in [17] used a heterodyne-pulsed setup. In the former, a
postamplification beam splitter is used to create the signal and
reference pulses from a single pulse train, whereas in the latter,
a preamplification beam splitter is used to create the signal
and reference pulses from two-independent pulse trains. As a
result, the heterodyne-pulsed setup increases applicability,
particularly for applications like long-range imaging. Such
a setup readily allows for greater effective ranges, since the
effective strengths of the signal and reference pulses can be set
within the dynamic range of the camera, and the timing of each
to be externally triggered to maximize signal-reference pulse
overlap. Regardless of applicability, [16] and [17] ultimately
showed that the total-system efficiency of both setups is con-
sistent with one another (i.e., no new component efficiencies
besides the ambiguity efficiency are required when switching
from a homodyne- to a heterodyne-pulsed setup).

Moving forward it is also beneficial to characterize system
performance as a function of degraded temporal coherence.
In general, the temporal coherence of the MO laser may be
degraded for either physics- or equipment-based reasons. Thus,
understanding the effects of degraded temporal coherence
helps in fully characterizing system performance in terms of
the SNR.

In this paper, a heterodyne-pulsed setup is used to charac-
terize the effects of degraded temporal coherence on pulsed-
source digital holography. Specifically, spectral broadening via
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pseudo-random bit sequence (PRBS) is used to degrade the
temporal coherence of the MO laser. The results show that
spectral broadening has no significant effect on the ambigu-
ity efficiency, which is a function of signal-reference pulse
overlap. However, the total-system efficiency is reduced in
accordance with the coherence efficiency, which is a function
of effective fringe visibility. While previously used to charac-
terize system performance for a CW configuration [16], [17],
this is the first time the coherence efficiency has been used
to characterize system performance for a pulsed configuration.
Therefore, the results presented in this paper are worth sharing
in the peer-reviewed literature, as they provide an increased
understanding of how degraded temporal coherence of the MO
laser can lead to SNR loss in pulsed-source digital holography.

In what follows, Section II describes the theory needed
to understand how spectral broadening via PRBS leads to
degraded temporal coherence, as well as the efficiencies appli-
cable to this paper. Section III then details the experiment,
including the data-collection and data-processing methodolo-
gies. The results are presented in Section IV in terms of the
ambiguity and coherence efficiencies. A conclusion follows in
Section V.

II. THEORY

This section provides the background theory needed to
interpret and analyze the results presented in Section IV. First,
the relevant elements of spectral broadening via PRBS are
introduced to provide insights into how the temporal coherence
of the MO laser is degraded. Then, an overview of the
applicable efficiencies, namely the ambiguity and coherence
efficiencies, is given.

A. Spectral Broadening via PRBS

Spectral broadening in this paper was achieved by phase
modulating a MO laser via PRBS. In practice, PRBS involves
a binary, randomly fluctuating electrical signal being driven
into a phase modulator. In turn, the phase of the complex-
optical field passing through the modulator is rapidly changed.
Three factors, set by the user, characterize PRBS: (1) the
pattern length, (2) the modulation frequency, and (3) the
amplitude [18].

PRBS is pseudo-random because the length of the binary,
or bit, sequence is finite before it repeats. This length, called
the pattern length, is denoted as 2n P RBS −1, where n P RBS is the
shift register length used to create the pattern. The larger the
n P RBS , the longer the sequence is before the pattern repeats.

The modulation frequency is the number of possible phase
changes per second. In practical terms, the temporal spacing
between each bit, or the bit period, is determined by the mod-
ulation frequency. Together, the pattern length and modulation
frequency drive the mode spacing in the phase-modulated
spectrum, 1νpms , of the complex-optical field [18]. In turn,

1νpms =
νP RBS

2n P RBS − 1
, (1)

where νP RBS is the modulation frequency. If n P RBS is suffi-
ciently large, the mode spacing will be such that the individual
modes are non-resolvable, and the spectral line shape of the
modulated laser source is broadened.

The amplitude of the PRBS signal, or peak-to-peak voltage,
determines the magnitude of the phase change, known as the
depth of modulation. This phase change leads to a change
in instantaneous frequency, 1νdm , of the complex-optical
field [18]. As such,

1νdm =
1

2π

dφ

dt
, (2)

where φ is the phase of the complex-optical field. With Eq. (2)
in mind, a voltage setting of particular importance is referred
to as the half-wave voltage. In general, the half-wave voltage
results in a depth of modulation of π , leading to the greatest
amount of broadening possible. Going beyond this depth of
modulation will cause the line shape to narrow until it returns
to the original line shape at a depth of modulation of 2π .

Introducing PRBS will cause the linewidth of the MO laser
to broaden with a sinc-squared line shape [19], [20]. The MO
laser used for this paper has a Lorentzian line shape when not
modulated by PRBS, resulting in a modulated line shape, G,
of the form

G (ν)= AL
1νL

(ν − ν0)
2
+

(
1νL

2

)2 + AS sinc2
(

ν − ν0

1νS

)
, (3)

where AL and AS are the amplitudes of the Lorentzian
and sinc-squared line shapes, respectively, 1νL and 1νS are
the widths of the Lorentzian and sinc-squared line shapes,
respectively, ν is the frequency, and ν0 is the center frequency
of the line shapes. Here, sinc (x) = 1 when x = 0 and
sinc (x) = sin (πx)

/
(πx) otherwise [21], [22].

Practically speaking, every phase modulator is different.
Therefore, it is more accurate to measure the modulated line
shapes and apply a fit using Eq. (3) than it is to estimate the
modulated line shapes using PRBS characteristics. Doing so
allows for the SNR loss to be measured as a function of (1)
sinc-squared null location, 1νS , related to PRBS frequency;
and (2) the ratio of the energy in the sinc-squared line shape
to the energy in the total line shape, or β, related to depth of
modulation. When β = 1, the laser source is fully modulated,
and the spectral-line shape is completely sinc-squared. Other-
wise, the laser source is only partially modulated and exhibits
both Lorentzian and sinc-squared line shapes.

B. Efficiencies

This paper utilizes the off-axis image plane recording geom-
etry (IPRG), creating a hologram in the image plane of a pupil
by interfering a strong, off-axis, diverging reference pulse with
a scattered, on-axis, converging signal pulse [2], [11]. The
power definition of the SNR for this recording geometry is
given by

SN R (x, y, τ ) = ηtot (x, y, τ )
4 q2

I
π

m̄s(x, y), (4)

where (x, y) are the estimated image-plane coordinates, τ

is the temporal delay between the centers of the reference
and signal pulses, ηtot is the total-system efficiency, qI is
the image-plane sampling quotient, and m̄S is the mean
number of signal photoelectrons generated by the signal pulse.
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Equation (4) assumes that the reference is sufficiently strong
such that the digital-holographic system is operating in a shot-
noise-limited regime [11], [23]. Any effects of the system not
operating in the shot-noise limit are then captured by ηtot .

The goal of this paper is to analyze system performance
in terms of the SNR as a function of degraded temporal
coherence. Therefore, it is of interest to look closely at ηtot ,
as it is comprised of component efficiencies that account for
SNR loss [13], [14], [16], [17]. Here,

ηtot (x, y, τ ) = ηernηsnl (x, y) ηpolηmodηamb (τ ) ηcoh (τ ) ,

(5)

where ηern is the excess-reference-noise efficiency, ηsnl is the
shot-noise-limit efficiency, ηpol is the polarization efficiency,
ηmod is the modulation efficiency, ηamb is the ambiguity
efficiency, and ηcoh is the coherence efficiency. The excess-
reference-noise, shot-noise-limit, polarization, and modulation
efficiencies are not dependent on the coherence of the pulses
used to create the hologram [13], [24]. Because of this, these
efficiencies are not of particular concern in this paper.

However, the ambiguity and coherence efficiencies are
fundamentally linked to the temporal coherence of the pulses
[16], [17], [25]. The ambiguity efficiency is derived from the
zero-Doppler cut of the ambiguity function [17], [26], [27],
such that

ηamb (τ ) =

〈∣∣∫∞
−∞ UR (x, y, t) U∗

S (x, y, t − τ) dt
∣∣2

〉
, (6)

where UR and US are normalized complex-optical fields of the
reference and signal pulses in the temporal domain, respec-
tively, t is time, ∗ denotes the complex conjugate, |·|

2 is the
square-magnitude operator, and ⟨·⟩ is the spatial average oper-
ator. The square-magnitude operator is necessary in Eq. (6),
as Eq. (4) uses the power definition of the SNR. On the other
hand, the spatial average operator is not required in Eq. (6),
but it is convenient to have spatially independent metrics when
cross-evaluating multiple digital-holographic systems.

The coherence efficiency is a function of the effective com-
plex degree of coherence, γe f f , via the following relationship
[14], [15]:

ηcoh (τ ) =
∣∣γe f f (τ )

∣∣2 (7)

Put another way, ηcoh is related to the square of the effective
fringe visibility. If the coherence length of the signal and
reference pulses are much longer than the integration time of
the imaging system and the pulses are identical, γe f f is equal
to the complex degree of coherence, γ , of the MO laser. By the
Wiener–Khinchin theorem, γe f f is then the inverse Fourier
transform of the normalized laser spectral line shape [28].

Building on the CW formulation contained in [14] and [15],
γe f f requires further calculation and will be dependent on the
specific pulse-generation process used in the experiment. For
the experiment described in Section III, signal and reference
pulses are independently carved out from a phase-modulated
MO laser, resulting in a heterodyne-pulsed configuration.
Therefore, the calculation of γe f f begins with carving out a
section of γ of the phase-modulated MO laser, such that

γS,R (t) = γ (t) TS,R (t) , (8)

Fig. 1. Experimental setup.

where γS and γR are analogous to the complex degrees of
coherence of the signal and reference pulses, respectively, and
TS and TR are the temporal profiles of the signal and reference
pulses, respectively. Both γ and TS,R equal unity at t = 0 and
are less otherwise. Note that Eq. (8) assumes any amplification
subsequent to pulse carving does not affect the complex degree
of coherence. Because the pulses may be delayed in relation
to one another, γe f f is found via the correlation of the square
roots of γR and γS , viz.

γe f f (τ ) =

∫
∞

−∞

√
γR (t)

√
γS (t − τ)dt. (9)

III. EXPERIMENT

The experimental setup is shown in Fig. 1. Using a mas-
ter oscillator power amplifier, or MOPA, configuration, two-
independent pulse trains were generated by a custom-built NP
Photonics Coherent High Energy Pulsed Fiber Laser System
[29]. In practice, other heterodyne-pulsed setups exist (e.g., via
Q-switching, mode locking, etc.) but the conclusions reached
in this paper hold for them as well. They also hold for
homodyne-pulsed setups, which use a single pulse train.

As shown in Fig. 1, a 1064 nm CW seed laser was used
as the MO laser to create a digital-holographic system in the
off-axis IPRG with a short-wave infrared (SWIR) camera The
output of the CW seed laser was passed through a fiber-
coupled phase modulator controlled by an external signal
generator. After the phase modulator, two-independent beam
trains were created by a beam splitter. Intensity modulators and
ytterbium-doped fiber amplifier stages were then used to carve
out and amplify two-independent pulse trains, respectively.
Both pulse trains operated at a 1 kHz repetition rate.

Pulse train 1 generated 8.8 ns reference pulses with an
average energy of 10 nJ, which exited the backend tip of a
2 m long polarization-maintaining, single-mode optical fiber.
The backend tip was coupled to an adjustable collimator
to maintain a nearly uniform energy distribution over the
focal-plane array (FPA) of the camera while ensuring enough
reference energy was captured. This collimator was placed off-
axis next to the imaging lens and tilted toward the camera.

Pulse train 2 produced 10 ns signal pulses with an average
energy of 10 µJ. These pulses were passed through a free-
space isolator, half-wave plate, and polarized beam splitter
(PBS) to control the energy of the signal pulses. The pulses
were then sent through a 20x beam expander, scattered off
a sheet of Labsphere Spectralon (i.e., a stationary, optically
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rough, extended object) with a vendor-specified 99% Lam-
bertian reflectivity. This reflected light was imaged onto the
camera via a 2.54 cm imaging lens. Of note, the object
and image distances of the imaging system were set such
that the measured image-plane sampling quotient, qI , was
3.35. By definition, qI represents the number of circular-pupil
diameters that can fit across the Fourier plane [2], [11].

The average energy of the pulses from both pulse trains
fluctuated ±16% pulse to pulse over a 6-hour time period,
much longer than what was required to collect any single
dataset. Therefore, the energy in each pulse train was consid-
ered stable. A Berkeley Nucleonics Corporation Model 577
Digital Delay/Pulse Generator was used to control the tem-
poral delay, τ , between the signal and reference pulses. This
pulse generator provided a minimum sampling resolution of
250 ps and a root-mean-squared jitter of 100 ps.

A Picosecond Pulse Labs Model 12020 Pulse/Pattern Gen-
erator was used to control the fiber-coupled phase modu-
lator. This pattern generator provided shift register lengths
of 5 ≤ n P RBS ≤ 31, modulation frequencies of 15 MHz ≤

νP RBS ≤ 1 GHz, and peak-to-peak voltages of 55 mV ≤

Vp−p ≤ 2.5 V. The fiber-coupled phase modulator restricted
the maximum Vp−p to 300 mV. Additionally, due to laser-
system constraints, these peak-to-peak voltages could not be
converted into their associated depths of phase modulation.
Therefore, β was measured from the phase-modulated CW
spectral line shapes and used as a proxy for the depth of
modulation.

For the camera, an Allied Vision Goldeye G-033 SWIR
TEC1 was used with a pixel-well depth of 25,000 photo-
electrons (pe) and a quantum efficiency of 77% at 1064 nm.
This camera had an unstable gain region for integration times
less than 25 µs. As a result, over a quarter of the pixel-well
depth was filled by dark-current noise, making dark-current
noise the dominant factor in the camera-noise variance, σ 2

n .
Overall, σ 2

n = 6, 486 pe2. Due to the unstable gain region,
both pulses were set to arrive at the FPA of the camera near
the 27 µs integration-time mark with a total frame-integration
time of 30 µs.

To avoid camera-pixel saturation while still maximizing
sensing, the mean number of photoelectrons generated by the
signal and reference at the camera, m̄Sand m̄ R respectively,
were set such that m̄S = 85 pe and m̄ R = 11, 121 pe.
Assuming Poisson statistics, where the mean equals the vari-
ance, these set values meant that the reference noise did not
dominate all other noise sources, as σ 2

n > 1
/

2m̄ R . Therefore,
the digital-holographic system used in this experiment was not
operating in the shot-noise-limited regime [11], [23]. However,
this outcome did not affect the ambiguity and coherence effi-
ciencies and is accounted for by other independent efficiencies
within the total-system efficiency [16], [17], [25].

A. Data-Collection Methodology

This experiment was performed in two separate parts.
The first part of the experiment focused on the ambiguity
efficiency. Three datasets were collected, each corresponding
to a different set of PRBS parameters. The first dataset was

used as a baseline; therefore, the PRBS generator was disabled.
Then, two datasets were taken with the following parameters:
(1) νP RBS = 15 MHz, Vp−p = 200 mV; and (2) νP RBS = 1
GHz, Vp−p = 75 mV. For these two datasets, the shift register
length was set to the maximum possible value, n P RBS = 31.
This choice guaranteed the minimal-mode spacing for all
PRBS frequencies [see Eq. (1)].

For each dataset, digital holograms were collected for
temporal delay values from τ = -6 ns to +6 ns in 1 ns
increments and from τ = -2 ns to +2 ns in 0.25 ns increments
to sufficiently sample both the wings and the peak of the
ambiguity efficiency curve. Two measurements were taken at
τ = 0 ns, one at the beginning of the overall data collection
period and one at the halfway mark, to ensure that the master
oscillator and amplification paths were performing consistently
for the entire dataset. For each increment of τ , the Labsphere
Spectralon sheet was rotated to generate 10 distinct speckle
realizations. For each speckle realization, 10 digital-hologram
frames were collected for a total of 100 digital-hologram
frames for each temporal pulse delay value. This was done for
averaging during data processing. Additionally, 10 reference-
only frames and 10 signal-only frames were collected for
each speckle realization during both τ = 0 ns measurements.
Reference-only and signal-only frames were unnecessary for
all temporal delay values because the energy of both pulse
trains was stable for each individual dataset. After all other
frames in the dataset were collected, 100 background frames
were collected so that the background and camera noise could
be appropriately accounted for during efficiency calculations.

After processing and analyzing the data from the first
part of the experiment (as described in Section III.B), the
data-collection methodology changed. Results from the first
experiment showed the ambiguity efficiency was not signifi-
cantly affected by the PRBS signal. However, the total-system
efficiency was affected uniformly by a constant multiplier.
Therefore, the coherence efficiency at a single value of τ was
sufficient to characterize the coherence efficiency for all pulse
delay values. As such, digital holograms were only taken at
τ = 0 ns for various modulation frequency and peak-to-peak
voltage pairings. Those pairings can be grouped as follows:

(1) a baseline for which PRBS was disabled;
(2) stepping from Vp−p = 100 mV to Vp−p = 300 mV

in 50 mV increments, with an additional collection at
Vp−p = 55 mV, while holding vP RBS = 100 MHz; and

(3) stepping from vP RBS = 15 MHz to vP RBS = 90 MHz
in 15 MHz increments, from vP RBS = 100 MHz to
vP RBS = 145 MHz in 15 MHz increments, and from
vP RBS = 200 MHz to vP RBS = 300 MHz in 50 MHz
increments while holding Vp−p = 200 mV.

The second grouping was collected to characterize the coher-
ence efficiency in terms of the depth of modulation. The third
grouping was collected to characterize the coherence efficiency
in terms of the modulation frequency. As with the first part
of the experiment, the shift register length was set such that
n P RBS = 31 for all pairings.

For each modulation frequency and peak-to-peak voltage
pairing, the digital-hologram collection process followed that
of the first part of this experiment (i.e., 10 speckle realizations,
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Fig. 2. An example of frame-demodulation process involving (a) a real–
valued, digital-hologram frame, (b) the associated square-magnitude of the
complex-valued Fourier plane, and (c) the associated square-magnitude of the
complex-valued image plane.

with 10 digital-hologram frames per speckle realization).
Additionally, 10 reference-only frames and 10 signal-only
frames were collected for each speckle realization for the
baseline. As a reminder, the energy of both pulse trains was
considered stable so reference-only and signal-only frames
were not necessary for each pairing. After data for all pairings
were collected, 100 background frames were collected so the
background and camera noise could be accounted for during
the calculations. All frames from both parts of the experiment
were imported to MATLAB for processing.

B. Data-Processing Methodology

To calculate the ambiguity and coherence efficiencies,
the collected digital-hologram frames were demodulated.
An example of this frame-demodulation process is shown in
Fig. 2.

The frame-demodulation process consisted of taking a
discrete inverse Fourier transform on a real-valued, digital-
hologram frame, as shown in Fig. 2(a), to obtain the associated
complex-valued Fourier plane, the square-magnitude of which
is shown in Fig. 2(b). In accordance with the off-axis IPRG [2],
[11], the Fourier plane contained four key terms:

(1) The signal field (the data in the top-right circular pupil),
(2) The complex-conjugate of the signal field (the data in

the bottom-left circular pupil),
(3) The local-oscillator-autocorrelation term (the non-

circularly symmetric data centered at DC), and
(4) The pupil-autocorrelation term (the circularly symmetric

data centered at DC).
With (1)-(4) in mind, a pupil-filter function was used to filter
the signal field. The filtered signal field was then centered
in the Fourier plane before a discrete Fourier transform was
applied to obtain the associated complex-valued image plane.
Finally, the square-magnitude was calculated in units of pe2,
to obtain a demodulated energy frame, as shown in Fig. 2(c).
This last step was done in accordance with the power def-
inition of the SNR [see Eq. (4)] and concluded the frame-
demodulation process.

All of the collected digital-hologram frames underwent
this frame-demodulation process individually. In turn, the
100 demodulated energy frames associated with a specific
pulse delay, τ , were averaged together to calculate the mean
demodulated energy at that τ . This process was repeated
for all pulse-delay values. The frame-demodulation process
and the mean demodulated energy calculation were repeated
for the collected reference-only, signal-only, and background
frames using the same pupil filter used for the digital-hologram
frames, ensuring that noise was appropriately accounted for
during the efficiency calculations. It is important to note that
averaging before the collected digital-holography frames were
demodulated would have effectively reduced the SNR, as there
was a piston phase mismatch introduced between the signal
and reference pulses on a frame-to-frame basis.

From the mean demodulated energy, the measured ambi-
guity efficiency, η′

amb, was computed using the following
relationships:

E ′

N (x, y) = E ′

D−S (x, y) + E ′

D−R (x, y) − E ′

D−B (x, y) ,

(10)
E ′

H (x, y, τ ) = E ′

D−H (x, y, τ ) − E ′

N (x, y) , (11)

η′
tot (τ ) =

〈
SN R′ (x, y, τ )

SN R (x, y)

〉
=

π

4 q2
I

〈
E ′

H (x, y, τ )
/

E ′

N (x, y)

m̄′

S (x, y) − m̄′

B (x, y)

〉
, (12)

and

η′

amb (τ ) =
η′

tot (τ )

η′
tot (0)

, (13)

where E ′

N is the measured noise energy; E ′

D−S , E ′

D−R , and
E ′

D−B are the measured signal, reference, and background
average energies after demodulation, respectively; E ′

H is the
measured hologram energy; E ′

D−H is the measured hologram
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average energy after demodulation, SN R′ is the measured
SNR; and m̄′

S and m̄′

B are the measured mean number of
signal and background photoelectrons generated, respectively.
Note that the substantial dark-current noise from the camera
is accounted for with m̄′

B and E ′

D−B and is removed, where
applicable, by background subtraction. It should also be noted
that the π

/
4 q2

I term in Eq. (12) is necessary to account for the
ratio of the pupil-filter area to the Fourier-plane area [2], [11].

The measured coherence efficiency, η′

coh , was calculated in
a similar fashion, such that

η′

coh (β, 1νS) =
η′

tot (β, 1νS)

η′
tot (0, 0)

, (14)

where β and 1νS were estimated from the phase-modulated
MO laser spectral line shapes [see Eq. (3)]. The phase-
modulated pulsed source spectral line shapes were not
used as accurately capturing such spectra was not possible
with the available equipment [17]. Therefore, some error
between the theoretical coherence efficiency, calculated using
Eqs. (7) and (9), and the measured coherence efficiency was
expected. Also, because all coherence efficiency measurements
were taken at τ = 0 ns, the dependence on τ was dropped from
Eq. (14).

IV. RESULTS AND DISCUSSION

The effects of spectral broadening on the ambiguity effi-
ciency were analyzed by systematically degrading the temporal
coherence of the MO laser, then calculating the resulting
ambiguity efficiencies using Eqs. (10)-(13). Comparison of
these measured ambiguity efficiencies showed that spectral
broadening via PRBS did not significantly affect the ambi-
guity efficiency. However, preliminary analysis showed that
degraded temporal coherence of the MO laser did reduce the
total-system efficiency in a nearly uniform manner. Therefore,
a deeper investigation was performed. This analysis showed
that the coherence efficiency was appropriate to characterize
these effects.

A. Ambiguity Efficiency Analysis

The phase-modulated MO laser line shapes associated with
the three datasets collected during the first part of this experi-
ment (see Section III.A) are shown in Fig. 3. These line shapes,
as well as all line shapes used in this paper, were measured
using a using a Thorlabs SA200-8B scanning Fabry-Perot
interferometer with a 7.5 MHz resolution. Alongside these line
shapes are the ambiguity efficiencies calculated using Eq. (13)
for the same three datasets.

As seen in Fig. 3(b), the ambiguity efficiencies follow the
same general shape regardless of modulation frequency or
peak-to-peak voltage. At first glance, this result is seemingly
in contradiction with the phase-modulated MO laser line
shapes shown in Fig. 3(a). In Fig. 3(a), the energy in the
peak is distributed to the wings as a function of amount of
temporal degradation. In other words, more broadening occurs
for greater values of νP RBS and Vp−p. This last point is most
readily visible for the νP RBS = 15 MHz, Vp−p = 200 mV
case, where the peak power is roughly 36% of the baseline

Fig. 3. Comparing the (a) phase-modulated MO laser line shapes and
(b) ambiguity efficiencies for the following νP RBS and Vp−p pairings:
νP RBS = 0 MHz, Vp−p = 0 mV (– ♦); νP RBS = 15 MHz, Vp−p = 200 mV
(−×); and νP RBS = 1 GHz, Vp−p = 75 mV (−•).

(νP RBS = 0 MHz, Vp−p = 0 mV) but has significantly more
energy in the wings.

The degradation of the MO laser seen in Fig. 3(a) may
bring about the expectation of system performance falling off
faster as the temporal delay between the pulses increases (i.e.,
a narrower ambiguity efficiency). However, this expectation
must be tempered by the heterodyne nature of the digital-
holographic system. By definition, the reference and signal
pulses of a heterodyne-pulsed setup have non-identical tem-
poral phase characteristics. This difference in temporal phase
determines the location of the hologram nulls [17]. As phase
modulation is introduced into each pulse independently, the
difference in temporal phase between the pulses changes as
function of time. Therefore, the hologram null locations are
also changing as a function of time, partially washing out the
recorded hologram fringes for all values of τ . Because this
is a uniform effect for all τ , the ambiguity efficiency was
not affected, and the results shown in Fig. 3(b) are not in
contradiction with the phase-modulated line shapes.

Another way to reach the same conclusion is to look at
the PRBS noise characteristics. Because n P RBS > 20, the
noise characteristics associated with the PRBS signals used in
this experiment were approximately Gaussian [30]. The mean
of a Gaussian-noise distribution is zero. Therefore, by using
the mean demodulated energy for the ambiguity-efficiency
calculations, the spectral variance of the individual hologram
frames was averaged out. This outcome, paired with the non-
deterministically correlated phase content of the reference and
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Fig. 4. Phase-modulated MO laser line shape (–) with a fitted line shape
(−×). The absolute percent error of the fit is plotted underneath.

signal pulses (a key feature of heterodyne-pulsed setups),
means that no change in the ambiguity efficiency should be
expected. Fig. 3(b) validates this claim.

It was concluded from Fig. 3 that degrading the temporal
coherence of the MO laser did not significantly affect the
ambiguity efficiency of a digital-holographic system with a
heterodyne-pulsed setup.

B. Coherence Efficiency Analysis

While the ambiguity efficiency was not significantly
changed as a function of degraded temporal coherence of the
MO laser, preliminary results showed that the total-system
efficiency was affected. Therefore, the coherence efficiency
was introduced to account for these effects. The coherence
efficiency was predicted using Eqs. (7)-(9) with an estimated
complex degree of coherence calculated from fitting the phase-
modulated MO laser line shape with Eq. (3). An example of
this fit is shown in Fig. 4.

To create the fitted line shape in Fig. 4, the Lorentzian fit
was given infinite weight near the center of the line shape and
the sinc-squared fit was given infinite weight in the wings.
These weights ensured that the unmodulated and modulated
sections, respectively, of the line shape were fit as accurately
as possible. Nonetheless, a narrow peak on the order of kHz
in width and centered on the origin was not captured well by
the Lorentzian fit. This narrow, poorly captured peak appeared
in all of the line-shape fits except the unmodulated baseline,
indicating there was a systematic, structured element unac-
counted for in the phase-modulated line shapes. However, the
percent error over this poorly captured peak was significantly
less than the error at the sinc-squared null locations and further
out in the wings. Note that a more-complicated line shape
was fit to the measured phase-modulated MO laser data to
account for this narrow peak, but the effect on the coherence
efficiency characterization was negligible. It should also be
noted that the kHz linewidth was orders of magnitude narrower
than the resolution of the Fabry-Perot interferometer used to
measure the spectra. With all three of these factors in mind,
this peak was ignored, and the summation of a Lorentzian and

Fig. 5. Measured coherence efficiency (- ♦) and associated uncertainty as
(a) vP RBS is held at 100 MHz and (b) Vp−p is held to 200 mV. In (a), the
theoretical coherence efficiency was calculated using the infinite weighting
method (−×) and without weights (−•). In (b), the theoretical curves were
calculated for the β-fit values (−×) and for β = 1 (−•).

sinc-squared line shape [see Eq. (3)] was simply used as the
fit equation.

From the fits, values for β and 1νS were calculated for use
during coherence efficiency characterization. The coherence
efficiency, as calculated using Eq. (14), is shown in Fig. 5.

For Fig. 5(a), a PRBS frequency of 100 MHz was held con-
stant as the input peak-to-peak voltage changed. This allowed
the coherence efficiency to be characterized as a function of the
depth of modulation using β as a stand-in variable. Alongside
the measured data curve are two theoretical curves calculated
using Eq. (7). One theoretical curve was generated using
the infinite-weighting method described for Fig. 4. The other
theoretical curve fit Eq. (3) directly to the phase-modulated
MO laser line shapes with no weighting method. As can
be seen in Fig. 5(a), the infinite-weighting method was the
more accurate method for β > 0.5 and followed the shape
of the measured curve relatively well over the same region.
The non-weighted theoretical curve was more accurate for
β < 0.4 and followed the measured curve shape well over
that region. However, neither theoretical curve predicted the
entire measured curve well. This outcome indicated that the
coherence efficiency, as presented in Eq. (7), is sensitive to
minor changes in the input and a slightly more accurate model
for the effective complex degree of coherence would lead to
a more accurate prediction.
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Fig. 5(b) shows the measured coherence efficiency as a
function of PRBS frequency while the input peak-to-peak
voltage was held at 200 mV. This input voltage was used
as it was near the half-wave voltage of the phase modulator.
Therefore, the sinc-squared portion of the phase-modulated
MO laser line shape was maximized, and the locations of the
sinc-squared nulls were as evident as possible. This outcome
allowed the coherence efficiency to be characterized as a
function of modulation frequency using 1νS as a stand-in
variable.

As with Fig. 5(a), two theoretical curves are presented
along with the measured data in Fig. 5(b). One theoreti-
cal curve used the β values calculated from the infinitely
weighted line fits and the other substituted those values with
β = 1 (i.e., assumed maximum modulation). Both theoretical
curves matched the shape of the measured data curve and
relatively matched the magnitude, although both predictions
were slightly greater. The β = 1 curve had lower magnitudes
at all modulation frequencies. This outcome was a positive
indication as an increased depth of modulation should, and
did, lead to a decrease in the theoretical coherence efficiency.

The higher-magnitude theoretical curves in
Figs. 5(a) and 5(b) were not unexpected. As mentioned
in Section III.B, the values for β and 1νS were calculated
from the fit equations for the phase-modulated MO laser line
shapes, not the phase-modulated pulsed source line shapes.
Recording phase-modulated pulsed spectra is non-trivial
and was not possible with the available equipment. Also,
from previous experiments [14], [15], it was known that the
fiber-amplifier stages used in this experiment significantly
changed the spectral line shape from that of the MO laser.
In practice, these stages introduced at least one additional
longitudinal mode. Therefore, accurate approximations for
the reference and signal spectral line shapes could not have
been made. Despite this shortcoming, relatively accurate
predicted coherence efficiency curves were produced. This
outcome indicated that the coherence efficiency, as detailed
in Section II, was valid and appropriate to characterize
the performance of a digital-holographic system with a
heterodyne-pulsed setup, particularly as a function of
degraded temporal coherence of the MO laser.

C. Discussion

While the motivation for this paper focused on the practi-
calities of using digital-holographic systems for applications
like long-range imaging, there is still a need to further charac-
terize the ambiguity efficiency in terms of degraded temporal
coherence. As such, future pulsed-source digital holography
experiments should look at the ambiguity efficiency as a
function of PRBS bit alignment.

If the bit sequences of the reference and signal pulses are
perfectly aligned, the ambiguity efficiency should be greater
than when the sequences are misaligned. There are two
potential experiments capable of analyzing this relationship.
One involves using the homodyne-pulsed configuration and
very accurate and precise path-length differences. On average,
this experiment should lead to a narrow spike in ambiguity
efficiency at τ = 0 ns with no other changes.

The second experiment involves fine-tuning the MO laser
phase modulation. With sufficient control, the bits of the
modulation sequence could be consistently overlapped as
desired. This experiment would lead to perfect bit overlap
at any desired amount of pulse overlap. It would also enable
measurement of the desired efficiencies when the bit sequence
of the pulses was exactly one bit off, two bits off, etc.

V. CONCLUSION

In this paper, spectral broadening via pseudo-random bit
sequence was used to degrade the temporal coherence of a
MO laser. This MO laser was then used to create a digital-
holographic system with a heterodyne-pulsed setup. The asso-
ciated effects on the SNR were measured in terms of the
ambiguity and coherence efficiencies. It was found that the
ambiguity efficiency, which is a function of signal-reference
pulse overlap, was not affected by the effects of spectral
broadening. The coherence efficiency, on the other hand, was
affected. As a result, the coherence efficiency, which is a
function of effective fringe visibility, was shown to be a valid
performance metric for pulsed-source digital holography.
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