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Abstract— A technique of continuous shaping current wave-
form to suppress relaxation oscillations (ROs) of distributed
feedback (DFB) laser for a high-performance optic system is
demonstrated. To effectively suppress ROs, expressions for the
shaping current waveform are theoretically derived based on the
rate equations and different polynomials for the 3rd, 5th, and 8th

order Fourier basis functions are introduced. The convolutional
neural network (CNN) is employed to predict the multi-
parameter values that determine the results of the shaping input
current, which exempt from the difficult and time-consuming
process of parameter selection. Prior to training, preprocessing
of the data obtained from DFB laser forward simulation using
min-max normalization aims to improve the training efficiency
of the CNN. The shaping current signals obtained from the
CNN predicted parameters are put into the equivalent circuit
model for the DFB laser to verify the effectiveness of the shaping
current technique and CNN parameter optimization. Afterwards,
the shaping current waveform is verified in a time division
multiplex passive optical network (TDM-PON) utilizing the DFB
laser model as a directly modulated source achieving remarkable
performance with low cost. The results show that the high-order
continuous shaping current modulated technique can successfully
suppress the ROs and enhance the performance of the optic
system.
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I. INTRODUCTION

THE frequency selectivity of Bragg grating unique to
distributed feedback (DFB) laser makes it one of the

most effective methods for single longitudinal mode work
at present [1]. DFB lasers are attractive optical sources for
application in wavelength division multiplexing passive optical
network (WDM-PON) [2], orthogonal frequency division
multiplexing (OFDM) [3], and time division multiplexing
(TDM) PON [4] with dynamic single longitudinal mode,
narrow linewidth output, and good wavelength stability [5].
Therefore, an optical source with a smaller size, better quality,
higher efficiency, and longer life for optical communication
transmission systems has been researched for years to meet
the increasing communication speed and capacity.

The DFB laser typically transmits optical communication
information using either indirect or direct modulation. Indirect
modulation, also known as external modulation, means that
the laser is modulated by external equipment [6]. This
technique is relatively mature but high-cost. Compared with
external modulation, direct modulation has the advantages
of simple structure and the cost is cheap [7], [8]. The
disadvantage of direct modulation is that the output waveform
will produce relaxation oscillations (ROs). Such ROs would
cause serious distortion of the output waveform and limit the
rate of optical communication systems [9]. In order to break
through the limit of direct modulation, numerous techniques
for suppressing ROs have been suggested including light
injection [10], connecting an external electrical circuit to the
laser diode [11], and appropriately shaping the modulated
current waveform [12], etc.

Lucas Illing demonstrated a shaping current technique
that appropriately shapes the driving current of DFB lasers
to control the nonlinear internal degrees and optimize the
optical intensity [13]. For the purpose of obtaining the
relationship between photon density and modulation current,
Hoang Nam researched the rate equations for semiconductor
laser in a direct modulation mode [14]. Our research team
has proposed an improved equivalent circuit model for
DFB lasers considering the effects of parasitic parameters
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and non-radiative recombination, which can predict and
analyze the characteristics of DFB lasers [15]. Starting
from the equivalent circuit model, shaping piecewise step
current waveform [16] and continuously shaped injection
current [6] based on rate equations are raised to suppress
the ROs. The latter method overcomes the discontinuity of
the former. Nevertheless, due to involves many areas of
photonics, the determination of the shaping current parameters
is the key to judging the shaping results, which is still
a challenging inverse problem. The traditional numerical
method presumes a set of parameters based on the parameter
ranges to be inversed and compute the desired output
waveform. Afterwards, the calculated waveform is contrasted
with the target one and a set of parameters would be
output when achieving the target precision or the maximum
iteration. This method is limited by the iteration and has the
characteristics of large randomness and slow speed. In the
case of involving nonlinear processes, the traditional inverse
design typically adopts the simulated annealing method [17],
genetic algorithm [18], [19], gradient descent [20], etc.
However, these approaches are also restricted by the
iteration and usually need control equation when optimizing
parameters.

Due to the flexibility and high performance of artificial
neural networks (ANNs) [21], many research works have
been recently carried out in fast inverse design based on
optical models [22], [23], [24], [25]. Compared with ANN,
convolutional neural network (CNN) is a special neural
network that introduces convolution and pooling operations to
generate deep features, thereby enhancing the discrimination
and reducing the computational cost. CNN has been applied to
signal extraction [26] and analysis [27] in photonics, which is
faster and more accurate than traditional methods. The shaping
current technique can be mapped by the trained CNN and
further save the computing time of the control equation when
realizing the parameter optimization.

In this paper, in order to accelerate the process of shaping
current, an improved waveform based on rate equations
and Fourier basic function of higher order is demonstrated.
Initially, the characteristics of shaping current techniques
are simulated, so as to get a group of training samples.
Afterwards, a CNN model is trained to inversely approximate
the characteristics of the technique to achieve the parameter
optimization of shaping current inputs, while overcoming
the computational cost problem in inverse design. In the
combination of CNN and the DFB laser model, it can be
seen from the output power that the ROs caused by the
direct modulation are completely eliminated by injecting
the shaping current waveforms. Moreover, to verify the
proposed shaping current waveform, a time division multiplex
passive optical network (TDM-PON) by adopting the DFB
laser model as a directly modulated source is constructed.
After long-distance bidirectional signal mode fiber (SMF)
transmission, the Q-Factor and BER of the received signal
still meet the communication conditions. The results illustrate
that the shaping current with low cost and high reliability
can work effectively for increasing the communication rate
and bandwidth of TDM-PON. In this way, the performance

of the DFB laser is guaranteed, but also the TDM-PON is
optimized.

II. EXPRESSION OF HIGH-ORDER SHAPING
CURRENT FOR DFB LASERS

A. Derivation of High-Order Shaping Current Formula

The rate equations describe the close relationship between
the carrier density and photon density as shown in equations
(1) and (2) [13].

d N
dt

=
J0 + J (t)

α
− G(N (t), S(t))S(t) − γs N (t), (1)

d S (t)
dt

= −γc S (t) + 0G (N (t) , S (t)) S (t) , (2)

where G(S(t), N (t)) is the optical gain coefficient containing
nonlinear effects, J0 and J (t) are the bias and modulation
currents. α = eVact , and e is a charge of an electron. Vact is
the volume of the active region which is expressed as dWL.
d is the active layer thickness. W and L are the width and
length of the active area, respectively, and their values are
defined as 1. Γ is the field limiting factor, γc and γs are the
attenuation rate of N (t) and S(t), respectively.

Without modulation (J (t) = 0), the nonlinear gain around
the still operating point (S0, N0) is extended to the first order.

G (N , S) = G0 + Gn (N − N0) + G p (S − S0) . (3)

The stable state solution of the rate equations indicates the
varying of the N and S along the injected current. In the case
of dS/dt = dN/dt = 0, the (S0, N0) is substituted in (1) and (2).

G0S0 =
J0

ed
− γs N0, (4)

0G0 = γc. (5)

The current is defined as J + Jm = (J0 + J (t))/(γs N0ed)-1.
The dimensionless S(t) and N (t) are expressed as s(τ ) =

S(t)/S0 and n(τ ) = N (t)/N0 − 1. g = G/G0 is the
dimensionless gain i.e.

g (n, s) = 1 +
γn

Jγs
n −

γp

γc
(s − 1) , (6)

where γn and γp are the gain variations with the carrier
and photon density respectively. ωR =

√
γcγn + γsγp and

τ = tωR are the dimensionless angle frequency and time
relative to the relaxation oscillation angle. The dimensionless
rate equations are expressed as

dn
dτ

=
γs

ωR
(J + Jm − n − Jg (n, s) s) , (7)

ds
dτ

=
γcs
ωR

[
g (n, s) − 1

]
. (8)

The equation of expected s(τ ) is assumed as s (τ ) = ey(τ ).
The first-order differential equation for s is

ds
dτ

= ey(τ )
· y′ (τ ) . (9)

Combining equations (8) and (9), we can get the following
equation

n (τ ) =
Jγs

γnγc

[
y′ (τ ) ωR + γp (s − 1)

]
. (10)
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Combining (7) and (10), the injection current of the required
waveform can be expressed as

Jm =
Jω2

R
γnγc

[
y′′ (τ ) +

(
γp + γn

ωR
s +

γs

ωR

)
y′ (τ ) + (s − 1)

]
.

(11)

B. Equivalent Circuit Modeling for DFB Laser

An equivalent circuit model of the DFB laser is developed
based on the rate equations and simulates the dynamic
characteristics. It is assumed that the carrier density and
photon density in the cavity are uniform.

d N
dt

=
I j

α
− Rn (N ) − Rr (N ) − GS, (12)

d S
dt

= 0GS + 0β Rr (N ) −
S
τp

, (13)

where N and S represent carrier density and photon density.
I j is a time-dependent injected current. Rn(N ) and Rr (N )

denote the rate of non-radiative and radiation recombination
respectively. G is optical gain. Γ is the optical-confinement
factor. β represents the factor of spontaneous-emission. τp is
the photon lifetime.

The first portion on the behind of the (12) indicates the
ascension of N resulting from I j . The other parts indicate that
the non-radiative recombination and radiative recombination of
S lead to the decay of N . The first and second parts behind (13)
illustrate the increasing S resulting from G and the compound
coupling of spontaneous emission to laser mode. The last
section indicates the reduction of S because of optical loss.

The Rn(N ) and Rr (N ) can be expressed as

Rn (N ) = An1 N + An2 N 2
+ An3 N 3, (14)

Rr (N ) = Ar1 N + Ar2 N 2. (15)

It is necessary to learn about the Shockley relationship [28]
between N and the junction voltage to establish the DFB laser
model by using (12) and (13)

N = Ne

[
exp

(
V j

ηVT

)
− 1

]
. (16)

Substituting (16) into (12).

I j = Cd
dV j

dt
+ Ist + Ir + In, (17)

where Cd is the junction diffusion capacitance, In , Ir ,
and Ist are the different recombination currents. They can
be concretely expressed as Cd = αNeexp(V j /ηVT )/ηVT ,
In = αRn(N ), Ir = αRr (N ), and Ist = αGS.

Multiplying eVact on both sides of (13) and it can be
transformed to

Ist + β Ir =
Vph

Rph
+ C ph

dVph

dt
. (18)

The equivalent circuit model of DFB laser is constructed
from two standard circuit equations (17) and (18). The Vph
obtained by these two equations is not an actual observable
quantity, but it can be expressed as Vph = sVact VT . There is

Fig. 1. Graph of DFB laser model which contains parasitical circuit, electrical
circuit, and optical circuit.

Fig. 2. Optical output power versus time from the DFB laser’s equivalent
circuit model.

also a certain relationship between the output power and Vph ,
i.e.

P = θVph, (19)

where θ is the angle of emergence.
Therefore, the correlation between s and P is stated as

P = θVact VT s. (20)

The correlation between Jm and the output power is
expressed as

Jm =
Jω2

R
γnγc

[
y′′ (τ ) +

(
γp + γn

ωR

P
θVact VT

+
γs

ωR

)
y′ (τ )

+
P

θVact VT
− 1

]
. (21)

As shown in Fig. 1, the DFB laser equivalent circuit model
consists of parasitic, electrical, and optical circuits, which
considers the effect of parasitic parameters and non-radiative
recombination. The equivalent circuit model is established
based on rate equations, which can give the output power by
injecting the current. The DFB laser is simulated and analyzed
by PSpice and the simulation results can well simulate the
output characteristics of the DFB laser. At present, the most
prominent problem we face when using the direct modulation
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TABLE I
PARAMETER VALUES FOR THE DFB LASER

technique is that the output waveform will produce ROs.
The output power in Fig. 2 can be obtained by injecting the
ideal step current that the high level is 10 mA and the low
level is -10 mA into the constructed DFB laser. The power
contains ROs that are spike pulses with random changes in
amplitude, pulse width, and interval. ROs appear at transient
changes in current caused by resonance-like phenomena
and limit the transmission rate of optical communication
systems.

C. Selection of Desired Waveforms

The photon density is expressed by s(τ ) = ey(τ ). The output
waveform is selected in the form of approximating rectangular
pulse, and we split it into two symmetric parts. To be specific,
the output waveform will perform the sup and sdown . The
high-order Fourier series approach is employed to restrict the
expected waveform for easier realizing stable near-rectangular
results. The basis function y(τ ) is given by

y (τ ) = p (x) +

[ N∑
k=1

bk sin (kπ f (x))

]4

, (22)

where x = τ /T . T is the time period to complete the rising
and falling edges. The f-function f (x) = (a+1)x /(ax+1) is
introduced to obtain shorter transition time in the process of
rising and falling by fewer basis functions, where a = 2. There
are several conditions that the p-function needs to satisfy in
Table II.

At x = 0 and x = 1, the first, second, and third derivatives
of the p-equation are 0 to ensure that the first derivative of Jm
is 0. Furthermore, a physically reasonable requirement is that
the total shaping current (3 + J + Jm ≥ 0) into the laser must
be nonnegative all the time.

On the basis of conditions in Table II, the rising and falling
edges of the output waveform are restricted from different p-
equations. Eq. (23) is substituted into s(τ ) = ey(τ ) to gain the
desired waveform of the rising edge, while Eq. (24) is taken
into s(τ ) = ey(τ ) that can get the desired waveform of the

TABLE II
CONSTRAINTS OF P-EQUATION

TABLE III
PARAMETER VALUES FOR THE EQUATION

TABLE IV
THE TRANSITION TIMES IN RISING AND FALLING EDGES

falling edge.

p (x) = (−20x7
+70x6

−84x5
+35x4) ln

s (0)

s (T0)
+ ln [s (T0)] ,

(23)

p (x) = (−20x7
+70x6

− 84x5
+ 35x4) ln

s (T1)

s (0)
+ ln [s (0)] .

(24)

Third-order continuous shaping current means that the order
of the Fourier basis function is 3rd-order, when N = 3,

y (τ ) = p (x) +

[∑3
k=1 bk sin (kπ f (x))

]4
. Here, bk ensures

that the waveform s(τ ) = ey(τ ) is the desired output waveform
and is a constant to be determined. Similarly, the same is true
for the 5th and 8th-order continuous shaping current. Therefore,
the determination of bk is paramount for the construction of
shaping current waveforms. Table IV displays the transition
times for the rising and falling edges in the different shaping
currents. With the increasing order of Fourier series, the
shaping current can be done more accurately and the shaping
process in the rising and falling edges can be accelerated.

III. PARAMETER SELECTION BASED ON
CONVOLUTIONAL NEURAL NETWORK

The objective of training CNN is to produce the parameters
bk and the total shaping current waveform according to the
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Fig. 3. Structure diagram of convolutional neural network.

desired output waveform. The 3rd, 5th, and 8th-order datasets
are gathered by varying the parameter bk , then calculating
the total shaping current and desired output waveform. And
these datasets are randomly split into training, validation, and
test sets in the ratio of 0.85:0.05:0.1. In the 3rd-order data
set, the parameter bk is randomly selected in the ranges of
b1 = [0.1:0.3], b2 = [0.1:0.25], and b3 = [0.01:0.04]. The
parameter ranges for the 5th-order dataset are the same as
previous five orders in the 8th-order. In the 8th order dataset,
the ranges of parameter bk is b1 = [0.1:0.3], b2 = [0.1:0.2],
b3 = [0.03:0.06], b4 = [0.01:0.03], b5 = [0.005:0.015], b6 =

[0.005:0.015], b7 = [0.002:0.008], and b8 = [0.001:0.005].

A. Architecture Design of Convolutional Neural Network

To obtain the neural network that can predict the
properties of shaping current techniques with high accuracy,
a CNN with data preprocessing, convolutional layers, pooling
layers, and fully connected layers is constructed, as shown
in Fig. 3.

The convolutional layer is responsible to scan the desired
output waveforms (each waveform is sampled as 200 dots)
for the presence or absence of particular features by the filter.
According to the definition of convolution, it has two very
important properties: local connection and weight sharing,
which reduce the parameters of the convolutional layer and
enhance the training efficiency. The size of the filter in the
convolution layer is 1 × 3.

Generally, the pooling layer is optionally followed convolu-
tional layer to decrease the number of features, so as to further
reduce the number of training parameters and the overfitting
degree. It also can maintain the invariance of scale and shift
to a large extent. Although some information is obviously lost
in this layer, CNN models are still successful.

Mean pooling and maximum pooling are two common
pooling functions. Mean pooling is generally the average of

the activity values of all neurons in the region [29].

yd
m,n =

1∣∣Rd
m,n

∣∣ ∑
i∈Rd

m,n

xi . (25)

Maximum pooling refers to selecting the maximum activity
value of all neurons in a region as the representation in this
region.

yd
m.n = max

i∈Rd
m,n

xi . (26)

where xi is the activity value of each neuron in the region
Rd

k . We adopt the maximum pooling, since it can reduce the
deviation of the estimated mean caused by the parameter error
of the convolutional layer compared with the average pooling.
In this tutorial, the max-pooling layer follows each convolution
layer. The stride is set on 1 and 2 for all the convolution and
max-pooling layers respectively, and zero-padding is applied
to them.

Three fully connected layers are put in the end to summarize
the features extracted from the previous layers and output
the final results. The previous two fully connected layers
have 1024 and 2048 neurons respectively. The output layers
have 203, 205, and 208 neurons respectively, when predicting
the characteristics of 3rd, 5th, and 8th-order shaping current
techniques. And the output layer is responsible for outputting
shaping currents and parameters. The RELU (Rectified Linear
Unit) activation function is adopted in the convolution and
fully connected layers to alleviate the vanishing gradient
problem and accelerate the convergence rate of gradient
descent.

B. The Evaluation of Convolutional Neural Network

The performance of CNN is evaluated by MSE (mean
square error, i.e., the difference between the predicted values
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TABLE V
THE MSES BETWEEN THE THEORETICAL AND PREDICTED PARAMETERS

of CNN and the theoretical ones), which can be defined as

M SE =

N∑
i=1

(yi − y′

i )

N

2

, (27)

where yi is the i th theoretical value, y′

i is the i th predicted
value. N is the number of one batch, which is defined
as 2, 048.

The closer the MSE is to 0, the closer the predicted value of
the CNN is to the theoretical value. Fig. 4 illustrates the MSEs
of the rising and falling edges for the training and validation
sets on the 3rd, 5th, and 8th-order data sets. To clearly observe
the value of MSE, only the value for the 5000 previous epochs
is shown in Fig. 4. The final MSEs of the three training sets can
converge to 10−3, 10−2, and 10−1 respectively, which means
the predicted values of shaping current and parameters would
be close to the theoretical ones.

IV. PREDICT AND VERIFY THE PARAMETER
OF SHAPING CURRENT WAVEFORM

Our shaping current waveform obtained from predicted
parameters is demonstrated on the DFB laser model, whose
results illustrate the suppression of ROs by the shaping current.
The shaping current waveform and DFB model are simulated
in TDM-PON. The performance of the system is also analyzed
based on Q-factor and BER.

A. Parameter Selection of Shaping Current Waveform
by CNN

The CNN model is designed to address the problem
of parameter selection in the continuous shaping current
waveform. After training, the performance and accuracy of
CNN are objectively verified by the MSEs of the test sets.
To intuitively prove the ability of CNN in predicting the
parameters of shaping current waveform, two hundred sets
of samples are randomly selected from the test sets of 3rd,
5th, and 8th-order data sets (different from the training and
validation datasets).

Fig. 4. Validation performance of the CNN models based on shaping
current technique. (a) In the rising edge, the MSE of 3rd-order data between
the theoretical and approximated values. (b) In the falling edge, the MSE
of 3rd-order data between the theoretical and approximated values. (c) In
the rising edge, the MSE of 5th-order data between the theoretical and
approximated values. (d) In the falling edge, the MSE of 5th-order data
between the theoretical and approximated values. (e) In the rising edge, the
MSE of 8th-order data between the theoretical and approximated values.
(f) In the falling edge, the MSE of 8th-order data between the theoretical
and approximated values.

To verify the consistency of the predicted parameters
by CNN and theoretical parameters, we calculate the MSE
between them. As can be seen from Table V, the MSE is very
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TABLE VI
THE COMPARISONS BETWEEN THE THEORETICAL

AND PREDICTED PARAMETERS

close to 0 which demonstrates the performance of CNN is
significant.

To further determine the prediction performance of CNN,
we randomly select a sample from the test set of 3rd,
5th, and 8th-order datasets respectively and inject them into
CNN to obtain the corresponding parameters and shaping
currents. Table VI lists the comparison between the predicted
parameters of CNN and the theoretical values. V1 is the
theoretical parameter, and V2 is the predicted value of CNN.
Error is the absolute error between V1 and V2. As can be
seen from Table VI, the absolute error between V1 and V2 is
small, which indicates that the parameters predicted by CNN
are precise.

The theoretical shaping current waveforms and the ones
predicted by CNN which correspond to the parameters in
Table VI are shown in Fig. 5. In these figures, each point
represents the value of shaping current predicted by CNN,
and the black line represents the theoretical one. Comparative
results of the shaping current waveforms demonstrate that the
predicted values can match well with the theoretical ones.
It can be seen that CNN can achieve a high-precision capturing
of the complete relationship among the parameters, the desired
output waveform, and the injection current.

A set of 8th-order desired output waveform (different from
train, validation, and test sets) is put into CNN to further
illustrate the validity of CNN. The predicted values of param-
eters bk are [0.282147, 0.18342, 0.05874, 0.02106, 0.00559,
0.00552, 0.00484, 0.00135], and the calculated shaping current
from these parameters is shown in Fig. 7.

B. Verify the Waveform by the Equivalent Circuit Model

In order to illustrate the effectiveness of our proposed
method, the unmodulated current and the shaping current
waveform are put into the DFB laser model. Since the

Fig. 5. The comparison of shaping current waveform between the theoretical
and the obtained from CNN predicted parameters. (a), (c), and (e) In the
rising edge, the 3rd, 5th, and 8th-order theoretical and approximated values.
(b), (d), and (f) In the falling edge, the 3rd, 5th, and 8th-order theoretical and
approximated values.

powerful ability of CNN to predict the parameters, the shaping
currents of rising and falling edges are calculated based on the
predicted parameters in Table VI and are integrated, as shown
in Fig. 6 (a), (c), and (e). And then, the entire currents are
injected into the DFB laser.

The output power in Fig. 2 resulting from the unmodulated
current has obvious nonlinear distortion. The ROs are caused
by the interaction between the optical field and carrier density,
which will cause distortion in the output light pulse and
degrade the quality of the optical spectrum in the output.
Though the precarious state can eventually get stable, the
transmitted information and communication performance will
be interfered. By comparison, the black curves in Fig. 6. (b),
(d), and (f) illustrate the output power obtained by injecting the
continuous shaping current waveforms in Fig. 6 (a), (c), and (e)
into the DFB laser model, and the ROs are almost suppressed.
The shaping current can be used in communication system to
enhance the performance when the constructed DFB laser is
used as transmitter.

The shaping current calculated from [0.282147, 0.18342,
0.05874, 0.02106, 0.00559, 0.00552, 0.00484, 0.00135] is
shown in Fig. 7 (a). The output power in Fig. 7(b) can be
obtained by injecting the shaping current in Fig. 7(a) into the
DFB laser, and it can be seen from the figure that the current
can effectively suppress the ROs.
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Fig. 6. The graph of the results under shaped currents. (a) The 3rd-order
approximated shaping current. (b) The power resulted from the 3rd-order
shaping current. (c) The 5th-order approximated shaping current. (d) The
power resulted from the 5th-order shaping current. (e) The 8th-order
approximated shaping current. (f) The power resulted from the 8th-order
shaping current.

We can conclude that the proposed shaping current wave-
forms can perfectly suppress the ROs generated during the
direct modulation of semiconductor lasers and further improve

Fig. 7. The 8th-order shaping current and output power of DFB laser. (a) The
shaping current is calculated from predicted parameters. (b) The output power
by injecting current in (a) to DFB laser.

Fig. 8. Electrical and optical domain waveforms of the modulated
signal. (a) The electrical domain waveform. (b) The optical domain
waveform.

the modulation characteristics. The parameter selection by
CNN can further promote the development of shaping current
waveforms, and it has the advantages of simplicity, speed, and
low consumption. Therefore, the method is significant for a
laser to improve output efficiency.

C. Application of the Shaping Current Waveform and the
DFB Laser Model in TDM-PON

The DFB laser model at 1,550 nm is used for an optical
source at the downstream transmission of TDM-PON, and the
whole simulation architecture is shown in Fig. 9. The data
signal is the shaping current values obtained from predicted
parameters by CNN, as shown in Fig. 6 (a), (c), and (e). Take
8th-order shaping current for example, the modulated signal
in the previous three cycles of electrical and optical domain
waveforms are shown in Fig. 8.
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Fig. 9. Schematic diagram of TDM-PON system.

TABLE VII
TIME DELAY OF TDM NETWORK AT THE TRANSMISSION RATE OF 5GBPS

To confirm the effectiveness of the proposed method, a step
current waveform is injected into laser which is used as
the light source for the communication system. Besides, the
optical output power in Fig. 6 (f) is added 10% Gaussian
noise to reproduce the influence of laser’s noise and serves as
the input power in the downstream link to verify the system
performance. Four channels from the DFB laser model source
are followed by a certain time delay (as shown in Table VII)
to transmit the information in a specific time slot and then fed
into a 1 × 4 power combiner.

After 10-80 km transmission in the bidirectional SMF, the
signal is detected by four pin detectors via a 4 × 1 fork.
Then the optical signals are converted into electrical signals.
The target signals are filtered with noise immunity via low-
pass Bessel filters. To recover the timing information from
a data stream of high-speed serial link, the clock recovery
components are connected to the transmitter and receiver
section, respectively. Moreover, the recovered signals are
transmitted to the BER analyzer for analysis. For upstream
transmission, the continuous wave (CW) lasers are used for
optical sources.

To distinguish the downstream and upstream channels,
an optical delay of 1 is adopted in upstream transmission.
For verifying the effectiveness of the DFB laser model and
the shaping current waveforms, we only analyze the results

Fig. 10. Transmission distances versus BER for the downstream link.

of the downstream channel. At the data rate of 5Gbps, the
amplitude modulation is used in the downstream transmission
and the light source in the link is direct modulation DFB laser.
In the downlink, the −3dB bandwidth of laser is about 12GHz,
and the bandwidth of PIN photodiode is set to 12GHz. The
Q-factor and minimum BER values of the received signals are
analyzed to evaluate the performance of the system. To ensure
the quality of the received signal, the Q-factor should be
greater than 6 and the BER should be smaller than 10−9.
The results of received Q-Factors from the BER analyzer can
be seen in Fig. 11. Obviously, increasing the length of SMF
reduces the Q-Factor.

The BER values under the different light source signals are
shown in Fig. 10. When the power with noise serves as the
input power of the downstream link, the BER value is bigger
than the optical power (which is generated from different
shaping current) without noise act as the input power, but the
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Fig. 11. Transmission distances versus Q factor for the downstream link.

BER value is still smaller than injecting the step current into
the laser.

As can be seen from Fig. 11, the Q factor increases
continuously with the increasing order of the shaping current.
When the optical output power with noise serves as the input
power of downstream link, the Q factor is lower than the
optical power (which resulted from different shaping current)
without noise acts as the input power and it is bigger than
injecting step current to the laser. Such behavior is expected
since suppressing ROs in the laser output power can improve
the system performance, while adding noise to the power can
reduce the system performance. Meanwhile, increasing the
order of the shaping current can accelerate the shaping process
and further improve the system performance.

The selection of the parameters for this study are several
parameters in the shaping current waveform that have the
paramount influence on suppressing the DFB laser ROs.
Furthermore, we accelerate the shaping process to reach
the ideal current which can increase the performance of
the TDM-PON.

V. CONCLUSION

In this tutorial, a novel shaping current waveform based
on rate equations for suppressing the ROs of DFB lasers
is proposed. The trained CNN is successfully applied to
the complicated parameter optimization of 3rd, 5th, and 8th-
order shaping current techniques. With the normalization of
the input data, the proposed CNN works well in predicting
the parameters. The analysis of parameters and shaping
current predicted from CNN model shows that the trained
model provides powerful computing ability in inversely
simulating the shaping current technique behavior. Compared
with injecting step current, the injection of shaping current
waveforms obtained from CNN predicted parameters into the
constructed DFB laser model can effectively suppress ROs
in the output optical power. A TDM-PON utilizing the DFB
laser model as the directly-modulated source is designed. The
results demonstrate that the shaping current with low cost and
high reliability can work powerfully for long-reach TDM-PON

transmission system. Importantly, the performance of the DFB
laser model and TDM-PON can be improved by increasing the
order of shaping current, which can be very promising for the
DFB laser and optical communication system.

The proposed technique has been applied in the simulation
system. Potentially future study is considering the noise in
the rate equations and applying the proposed method in the
practical communication system.
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