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Fig. 1. Top: GenoREC maps data and task specifications (A) to appropriate visualizations. In this figure, the knowledge-based 
recommendation (B) shows the component-wise model of GenoREC and the subsequent decisions made at each step. Based 
on the recommendation model, GenoREC generates and recommends an appropriate visualization to the user (C). Through the 
recommendation, GenoREC allows the user to avoid a wide range of similar but sub-optimal visualization options (D) given the data 
and task. Bottom: An overview of GenoREC’s system components and their interactions to generate output visualizations. 

Abstract—Interpretation of genomics data is critically reliant on the application of a wide range of visualization tools. A large number of 
visualization techniques for genomics data and different analysis tasks pose a significant challenge for analysts: which visualization 
technique is most likely to help them generate insights into their data? Since genomics analysts typically have limited training in data 
visualization, their choices are often based on trial and error or guided by technical details, such as data formats that a specific tool can 
load. This approach prevents them from making effective visualization choices for the many combinations of data types and analysis 
questions they encounter in their work. Visualization recommendation systems assist non-experts in creating data visualization by 
recommending appropriate visualizations based on the data and task characteristics. However, existing visualization recommendation 
systems are not designed to handle domain-specific problems. To address these challenges, we designed GenoREC, a novel visualization 
recommendation system for genomics. GenoREC enables genomics analysts to select effective visualizations based on a description 
of their data and analysis tasks. Here, we present the recommendation model that uses a knowledge-based method for choosing 
appropriate visualizations and a web application that enables analysts to input their requirements, explore recommended visualizations, 
and export them for their usage. Furthermore, we present the results of two user studies demonstrating that GenoREC recommends 
visualizations that are both accepted by domain experts and suited to address the given genomics analysis problem. All supplemental 
materials are available at https://osf.io/y73pt/. 

Index Terms—genomics, visualization, recommendation systems, data, tasks 

1 INTRODUCTION

The almost ubiquitous availability of genomic data has revolutionized epigenomic data, researchers can improve our understanding of 
research in biology and medicine. By interpreting genomic and the genetic causes and mechanisms that underlie common and rare 

diseases. Visualization, as an efficient approach for data exploration 
and knowledge communication, plays a central role in the analysis of 
genomic data. A large number of visualization techniques and tools 

• Aditeya Pandey and Michelle A. Borkin are with Northeastern have been developed over the years to meet the wide variety of analysis University, MA, US. E-mail: {pandey.ad,m.borkin}@northeastern.edu. 
requirements in the field of genomics [38]. 

• Sehi L’Yi, Qianwen Wang, and Nils Gehlenborg are with Harvard Medical 
School,MA, US. E-mail: {sehi lyi,qianwen wang,nils}@hms.harvard.edu. To succeed in the visual analysis of genomics data, a genomics analyst 

or a domain user who may not be trained in data visualization, must 
carefully select suitable visualizations based on data characteristics and 
analysis tasks. Currently, genomics analysts use visualizations based on 
their prior experience or use out-of-the-box visualizations generated by 
popular genome browsers [19, 24]. In many cases, these visualizations 
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do not consider appropriate visualization best practices, results from 
empirical studies, or theoretical guidance. For example, a widely used vi-
sualization technique in genomics, Circos [23], uses a radial layout with 
length or position channels that represent quantitative features, which is 
found to be inaccurate and inefficient in data interpretation [54]. Another 
example is the lack of effective multi-scale designs (e.g., overviews 
and detail views) in commonly used genome browser tools as survey 
results on genomics tools show [27]. These all can result in ineffective 
and, in many cases, wrong visual design [12, 52]. These and many other 
limitations of common, as well as specialized visualization approaches 
in genomics, indicate a need for better visualization guidance. 

Given the importance of choosing suitable visualizations, 
visualization researchers have contributed many visualization 
recommendation systems, spanning general to domain-specific 
systems [11, 16, 25, 31, 37, 45, 56, 57]. Existing visualization recommen-
dation systems suggest a data visualization primarily based on the data, 
and in very few cases, they also consider the user’s tasks [45]. These 
systems allow data analysts who are not experts in visualization design to 
focus on the analysis of data and offload the work of visualization design 
to an algorithm. While these systems have demonstrated success, they 
are typically designed only for common visualization types, such as bar 
charts, line charts, and scatter plots, and cannot be applied to scenarios 
which require complex or domain-specific visual encodings. Genomics 
visualization is unique and challenging for a number of reasons: First, 
the design space of genomics visualizations [38] is different from a taxon-
omy of general visualization [4], including some unique combinations of 
visualizations that are rarely used in other fields, such as radial overview 
visualizations and complex glyph encodings for gene structures. Second, 
analyzing large-scale genomic data requires multiple coordinated views, 
but existing visualization recommendation systems focus on single-view 
visualizations. Finally, the analysis tasks in genomics are domain-
specific and not considered in other visualization recommendations. 

To address these issues, we designed and developed GenoREC, a 
novel recommendation system for interactive genomic data visualiza-
tions based on specifications about data and tasks. The core contribution 
of GenoREC is a knowledge-based recommendation model, consisting 
of a set of decision rules that we summarized based on empirical knowl-
edge and published visualization practices. As shown in Figure 1B, the 
recommendation of individual visualizations is decomposed into six 
design components based on the taxonomy proposed by Nusrat et al. [38]. 
For each component, we enumerate the design space and craft rules to 
describe the design decisions. In addition to the recommendation model, 
we contribute a web application that allows genomics data analysts to 
describe their data and task specifications and explore the corresponding 
recommended visualizations. The output of GenoREC is a specification 
for Gosling [29], a grammar-based genomics visualization toolkit. The 
specification can be used by genomics analysts to customize the rec-
ommended visualization for the further use. In this work, we primarily 
focus on the evaluation of GenoREC’s recommendation model. The 
results of our user study demonstrate that GenoREC’s recommendations 
are helpful for analysts working in the space of genomics data analysis. 

2 RELATED WORK

Visualization Recommendation System Types: Kaur and 
Owonibi [18] found that visualization recommendation systems 
are designed to take into account four considerations: data characteris-
tics, task orientation, domain knowledge, and user preference. (1) Data 
Characteristics deals with the identification of visual encoding corre-
sponding to the data type of attributes. Mackinlay’s APT system [30] 
was one of the first systems that implemented automatic mapping from 
data characteristics to 2D graphics or charts. Polaris (i.e., the research 
prototype of Tabealu) [50] used APT’s mapping of data characteristics 
to visual encoding to facilitate the recommendation of visualization. 
The concept of automatic mapping of data variables to visualization was 
further extended by the Sage system [44] which included support for 
more types of visual encoding. More recently, systems like Voyager [56] 
and Draco [35] were also developed to facilitate data-based visualization 
recommendations. Draco contributes a technique to learn recommen-
dation knowledge from existing empirical studies. (2) Task Oriented 

recommendations factor in a user’s intentions behind visualizing data 
as the main criteria for recommending visualizations. The current 
task-oriented recommendation systems support domain-independent 
low-level analytical tasks, such as compare and summarize [5, 45, 48]. 
(3) Domain Knowledge imposes further restrictions on the results of the 
recommendation system as the domain expert may prefer a visualization 
that is more familiar or widely accepted within their domain. GEViT-
Rec [10] focuses on the domain of epidemiology and recommends a 
visually coherent combination of charts by inferring a data source graph 
and mapping that to a set of view templates. (4) User Preference relates 
to factoring end users’ preference in the recommendation system output. 
For example, Draco [35] has a method to factor user preference in the 
form of user-defined constraints. GenoREC factors in data, task, and 
domain-specific guidelines for recommending visualizations. 

Visualization Recommendation Methods: Visualization recommen-
dation systems can be categorized based on their recommendation 
method: data-driven and knowledge-based. Data-driven systems recom-
mend visualizations for the given input data by learning from a large num-
ber of visualization examples. A variety of machine learning models have 
been employed to learn from a collection of examples, including neural 
networks [11, 16], reinforcement learning [62], and decision trees [25]. 
For example, VizML [16] uses a neural network to learn visualization 
design choices from a large corpus (106) of datasets paired with visual-
izations. Table2charts [62] employs a reinforcement learning framework 
to learn step-by-step visualization constructions from a large corpus of 
tables paired with charts. Knowledge-based systems, on the other hand, 
recommend visualizations by following a set of expert-defined rules and 
constraints, making the rules more interpretable compared to data-driven 
approaches [58]. These rules are usually formalized based on the proper-
ties of data (e.g., trends or outliers) and the effectiveness of visual encod-
ings [31,34,56,57]. For example, the “Show Me” feature of Tableau [31] 
provides automatic mark selection based on the data properties type, 
role, and interpretation. Voyager [56] and Voyager2 [57] rank encodings 
based on a set of perceptual effectiveness metrics. The multivariate 
network (MVN) wizard [37] recommends visualizations based on a rank-
ing generated by visualization experts. Beyond the recommendation of 
visual representations, there is also work on the recommendation of lay-
outs for multi-view visualizations. For example, Kristiansen et al. [22] 
present an approach that allows semantic alignment of multiple views 
based on the content of visualizations, such as visual channels used. 

Even though data-driven recommendation systems have demonstrated 
reasonable performance, they usually require many high-quality exam-
ples, which are generally not available for domain-specific problems. 
Knowledge-based recommendation systems can remedy this problem 
as it is possible to develop a recommendation model by using existing 
knowledge and best practices from the information visualization field 
and domain theory. GenoREC uses a knowledge-based visualization rec-
ommendation model based on a survey of genomics visualizations [38] 
combined with design principles in visualization literature [9,30,33,36]. 

Genomic Data Visualization Resources: There are several resources 
that can assist genomics analysts in choosing an appropriate visualiza-
tion technique. Nusrat et al. [38] surveyed over a hundred genomics 
visualization tools and proposed a taxonomy for genomic visualization 
based on datasets, visual encodings, and tasks. The paper [38] serves as 
a theoretical resource for analysts to decide an appropriate visualization 
technique. GenoCAT [13] and awesome-genome-visualization [3] are 
databases of existing genomic data visualization tools and techniques. 
They are valuable resources for analysts who want to identify relevant 
techniques to visualize data. However, these galleries are exploratory 
and do not prescribe or suggest visualization designs to the users. In 
the case of genomics, exploratory tools may have limited use because 
the experts often lack formal training to judge if the suggested options 
are adequate visualizations. The proposed GenoREC system overcomes 
this challenge by recommending visualization designs that are accurate 
from a visualization theory standpoint and appropriate for the given data 
and task requirements. 
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Fig. 2. Visual overview of a genome and genomic features: point, 
segment, sparse, and contiguous. 

3 GENOME-MAPPED DATA AND TASKS

This section provides an overview of the genome-mapped datasets [53] 
and tasks with abstractions to support discussions throughout the paper. 

Nomenclature of Genome-Mapped Data: The human genome is a 
hierarchical structure. As illustrated in Fig. 2, a genome consists of one 
or multiple chromosomes. For functional purposes, chromosomes are 
subdivided into smaller regions. These regions are called genes (feature 
sets or features). At the lowest level of hierarchy, genomes are composed 
of building blocks called nucleotides (A, C, G, and T). The hierarchical 
structure makes it possible to measure data at different granularities 
(extent). Data can be recorded at the individual nucleotide level. This 
granularity is commonly known as the point granularity (e.g., single 
nucleotide polymorphisms, or SNP, that covers only one nucleotide). 
In other cases, data can be measured at a gene level, which leads to 
a segment granularity dataset (e.g., genes whose protein-coding 
regions cover more than one nucleotide). In addition to granularity, 
the density of information also varies for genomes. In some experi-
ments, data is recorded for each nucleotide, thus leading to a contiguous 
data density (e.g., DNA conservation scores, which are generally 
available for each position in of a genome). While in other cases, the 
data may be sparse (e.g., genes that only cover a relatively small 
proportion of the genome), leading to empty and missing values. One 
of the most distinctive features of genome datasets is that they can also 
include network-based data and spatially mapped data. Network data in 
genomes generally represent connectivity between distant regions of a 
genome (e.g., physical interactions between different locations in the 
folded genome), or it may represent connectivitybetweentwodifferent 
genomes (e.g., synteny [33]). The type of data recorded for genome, 
also called expression levels, can be three main abstract types: quanti-
tative , categorical and text . In genomics, textual annotations 
(e.g., “BRCA2” gene) are important, and therefore they are distinguished 
from categorical data and are visualized as textual representations. More 
information on parallels between features in genomics data and other 
domain data (e.g., geospatial data) can be found in a survey paper [38]. 

Visual Analytics Tasks for Genome-Mapped Data: Genomics 
researchers perform analytical tasks with data visualizations to explore 
genomic features and answer critical domain questions. A review of 
genomics visualization tasks can be found in the survey by Nusrat et 
al. [38]. Through a thematic analysis of the tasks in the survey using the 
multi-level task typology of Brehmer & Munzner [6], we categorized 
genomics analysis tasks into three low-level query tasks. (1) Identify: 
Analysts are interested in analyzing features in a genomic region of 
interest to read a specific feature value. For example, navigate to a gene 
A and check its expression level. (2) Compare: In this task, analysts 
want to compare features located in multiple genomic regions. For 
example, compare the gene expression level between gene A and gene 
B. (3) Overview: In this task, analysts want to look at a larger genomic 
region or a whole genome to get an overview of the attributes of a feature 
set and look for interesting patterns such as outliers, clusters or trends 
to identify regions for further exploration. For example, analysts want 
to identify regions with many mutations. The tasks and data introduced 
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Fig. 3. Progression of GenoREC’s recommendation. In A, user has 
specified a BED file and a VCF file with categorical data and GenoREC 
recommends linear and circular layouts. In B, user adds a BIGWIG file 
with quantitative data and GenoREC switches to a linear recommendation. 

in this section play a critical role in design of the GenoREC system. 

4 USE-CASE SCENARIO

In this section, we present a use-case scenario to illustrate how GenoREC 
enables analysts to find appropriate visualization recommendations. 
This scenario is also presented in the supplementary video. 

Ada is a genomics researcher working at a cancer research institute. 
Ada wants to develop a visualization that can help her analyze genetic 
data obtained from three different files [53]: a BED (Browser Extensible 
Data) file, a VCF (Variant Call Format) file, and a BIGWIG (Big 
Wiggle) file. The BED1 file stores the location of genes that are linked 
with certain diseases. The VCF1 file stores structural variant events of 
a cancer patient. The BIGWIG1 file, stores protein interactions with 
DNA. Ada wants to compare the quantitative values of the BIGWIG 
file between different regions and try to understand if there are specific 
genetic features in BED1 and VCF1 tracks that are contributing to the 
measurement of the BIGWIG file. 

Ada first tries to visualize the data with conventional genomics 
visualization tools, such as UCSC Genome Browser [19], IGV 
Browser [43], and WashU Epigenome Browser [24]. Although these 
tools can create visuals for specific data types, she is unable to use 
a single tool to look at all her data and, most importantly, easily 
combine different file types to perform an integrated analysis. Ada 
consequently needs to spend a lot of time working across tools and 
make compromises on her analyses. Moreover, these tools are tightly 
coupled with the default visualization technique, and Ada would like 
to explore alternatives and easily customize her visualizations. Finally, 
the tools do not take Ada’s task into consideration, so there is a great 
burden on her to be familiar with design guidelines to identify the best 
encoding. Without guidance on tasks, Ada can choose a misleading 
visualization [52]. Given these limitations of existing tools, Ada decides 
to instead try GenoREC to get a recommendation for a visualization 
that supports her requirements and steers her towards the final plots. 
1. Describing Data and Exploring Recommendations: When Ada 
launches the GenoREC application, she is presented with a data and task 
specification panel, as shown in Fig. 4 (Left). The data description panel 
allows Ada to specify the type of data she wants to analyze by using 
six standard genomics file formats (i.e., BIGWIG, BED, BEDPE, SEG, 
VCF, and COOLER) [53] (Fig. 4A). Based on her requirements, Ada se-
lects a BED and a VCF file. GenoREC adds two cards (i.e., “BED1” and 
“VCF1”) to the user interface (Fig. 4B). Next, for each file, Ada configures 
the input fields based on data characteristics of the input files. For exam-
ple, for “BED1” file, she selects “1 Categorical.” The remaining input 
options for the “BED1” file, such as “Feature Extent,” “Feature Density,” 
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Fig. 4. User Interface of GenoREC. The interface consists of two main panels. Left : a domain-centric data and task elicitation interface. The data 
and task specification panel contains two parts data description and tasks. Right : a visualization gallery that displays recommends visualizations. 

and “Connection,” are automatically defined by the system based on the 
file format. After the selection, Ada notices that the system recommends 
her two tracks stacked in a linear and circular layout (Fig. 3A). The 
recommended visualizations allow Ada to see an overview of the genetic 
features from the two files. These features are visually aligned in the same 
genomic axis to help her analyze the features concurrently. Next, Ada 
adds a BIGWIG file description. The updated recommendation removes 
the circular layout recommendation and shows two linear tracks. The 
first option uses a bar mark for the quantitative data and the second option 
uses a line mark for the same data (Fig. 3B). Ada finds both visualizations 
useful because they support looking up high and low values of the BIG-
WIG file and analyzing genes in the corresponding BED and VCF tracks. 
2. Choosing the Task Description: In addition to data, Ada also 
chooses her analysis task. GenoREC supports three tasks: “Analyze a 
Region of Interest in the Genome” (Identify), “Compare Data Between 
Two Genomic Regions” (Compare), and “Explore the Genomic Build” 
(Overview) (see Sect. 3). Ada selects the comparison task based on the 
sample task example shown in Fig. 4C. 
3. Analyzing the Final Recommendation: Based on the data and task 
description of Ada, GenoREC recommends a set of visualization options. 
Ada also notices that the recommended visualizations are distinct from 
the previous stage shown in Fig. 3B. The updated recommendation takes 
into consideration the tasks. Therefore, the genome track is split into 
two views, and there is a track that supports the selection of a genomic 
region in the views, as shown in Fig. 4D. Ada appreciates the split view 
because she can compare two regions to each other without manually 
navigating between them. 
4. Exporting and Customizing the Recommendation: After analyz-
ing the visualization output, Ada decides to export the second option 
as a Gosling spec. Ada prefers the line chart over the bar chart because it 
provides a familiar representation of contiguous quantitative data. Ada 
uses the spec file and customizes the color scale in Gosling [29] and 
uses this final visualization for further analysis. 

5 GENOREC DESIGN GOALS

GenoREC was developed through an iterative design process. We first 
analyzed existing literature in recommendation systems and genomics 

visualization, including genomics visualization tasks (Sect. 3), to 
identify an initial set of system design goals. Next, we conducted a 
formative study with five domain experts and solicited feedback from 
the experts on the recommendation output, user interface, and system 
workflow (Sect. 7.1). During these studies, we also interviewed the 
experts to understand their genomics visualization authoring process 
and current challenges. None of these experts are authors of this paper. 
Combining the input from experts and using common design suggestions 
from prior work for general recommender systems [2, 42, 51] and 
visualization recommendation systems [37, 56, 57], we identified the 
following goals to guide further development of GenoREC. 

G1 Recommend Domain-Specific Visualizations: The recom-
mended visualization should be familiar to users in the genomics field. 
Swearingen and Sinha [51] found that familiar output increases trust 
within the recommendation model. During the interviews, the experts 
also emphasized that recommendations should be familiar and easy 
to understand. Genomics visualizations have unique characteristics 
that differentiate them from common visualizations outside genomics. 
For instance, it is a general practice to arrange data attributes available 
in genomics datasets as parallel tracks. Experts noted that it might 
require additional effort to understand and communicate the results of 
an unfamiliar visualization technique or design. 

G2 Use Visualization Best Practices and Domain-Knowledge: The 
system should consider best practices from visualization design and the 
domain to recommend the visualization. A core principle for existing 
visualization recommendation systems is mapping the data and, in some 
cases, task requirements to effective visualization designs [35,37,45,56]. 
Therefore, the system should leverage the knowledge generated by the 
visualization community through empirical and theoretical research to 
build rules that guide the recommendation of visualizations. In addition 
to the general visualization guidelines, the system should also consider 
domain-specific knowledge for the recommendation. For example, 
heatmaps are common in genomics [20, 41, 43], but, it is known that 
the color channel is not optimal for displaying quantitative values [9]. 
Therefore, the system should ensure that domain practices are not 
eliminated from the recommendation. 

G3 Support Common File Formats and Tasks for Recommenda-
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tion: The system should support common file formats and tasks that 
are used for the analysis of genomics data. We discuss the BED, VCF 
and BIGWIG file formats in Sect. 4. Experts noted that the ability to 
specify data requirements in file formats they are familiar with could 
reduce the learning curve associated with the system. Therefore, the 
system should support file formats that support the common data types 
and structure available in genomics. 

G4 Encourage Fine-Tuning and Iteration of the Recommendation: 
The recommendation system should enable users to steer the recom-
mendation progressively. Users may come to a recommendation system 
when they are not sure what they want, and they need assistance to find an 
item of interest [42]. Therefore, they may need methods to interact with 
recommendation inputs in a flexible way and update them until they find 
an item of interest. To support flexible updates, we also need the interface 
to support a quick turnaround time in showing the recommended outputs. 
Therefore, the design of the system should take into account that users 
will change between different data and task inputs and analyze the change 
in the visualization recommendation output based on the inputs [57]. 

G5 Recommend Design Variations: Alternative designs of the same 
data should be recommended to analysts. The design space of genomics 
visualization is large, and often users may only have familiarity with a 
small subset of visualizations within the larger design space. Therefore, 
we see it as an opportunity for the system to recommend design alter-
natives to users whenever it is possible. Options can improve the trust 
in the system and may also lead to serendipitous discoveries, which may 
also lead to a positive attitude towards a recommendation system [21]. 

6 GENOREC
We contribute GenoREC, a novel visualization recommendation system 
for the analysis of genomics data. A summary of the GenoREC system 
design and overview of the recommendation workflow is presented in 
Fig. 1 (Bottom). GenoREC consists of a front-end user interface which 
allows users to specify their input requirements to the system and browse 
the recommended visualizations. The system also contains a back-end 
recommendation model that generates visualization recommendations 
(“GenoREC Model”). The back-end recommendation model of the 
GenoREC system generates design configurations for appropriate 
visualizations given the user input. The two compiler modules: “Input 
Compiler” and “Output Compiler” of the system are responsible 
for orchestrating the exchange of information between the front-end 
and back-end. A key design aspect of GenoREC is its modular 
architecture. This ensures that individual components are easy to 
update without affecting other system modules. 

GenoREC’s user interface is implemented in JavaScript, HTML, and 
CSS. The back-end recommendation model is published as a standalone 
JavaScript library on NPM. For rendering recommendation, GenoREC 
uses Gosling, a grammar-based visualization toolkit for genomics [29]. 

6.1 GenoREC’s Recommendation Model
GenoREC’s knowledge-based recommendation model [2] recommends 
domain-specific visualizations (G1) based on visualization theory and 
best practices from the genomics domain (G2). The model is built 
on guidelines which map domain-specific input requirements to an 
appropriate output visualization. In this section, we first present the 
input and output space of GenoREC’s model. Next, we present the 
recommendation knowledge used by GenoREC. Finally, we describe 
the algorithm which allows the system to use the recommendation 
knowledge to generate the visualizations. 

6.1.1 Recommendation Input and Output Space 
Input: The data input into GenoREC Fig. 1A is divided into four 
categories: the assembly build, data type (quantitative, categorical, and 
text), feature set (feature extent and density), and connection. In addition, 
the recommendation model also expects the tasks (identify, compare, 
overview) as inputs. The data and task input are discussed in Sect. 3. 

Output: GenoREC’s model breaks down the recommendation task 
into six intermediate steps: Encoding, Alignment, Layout, Partition, 
Arrangement, and Interactivity. Each of these six components contains 

a set of possible output options as shown in Fig. 1B. One of the main 
contributions of GenoREC is the use of sequential order to better 
reflect the dependencies between these components. To determine the 
current order of components, we reviewed the genomics visualization 
taxonomy [38]. For each part of the taxonomy, we determined precursor 
steps. For example, we noticed that it was not possible to recommend 
an orthogonal “Arrangement”, if the “Layout” of the tracks were 
circular . This exercise allowed us to develop the sequence and led 
to the creation of the sequential model. The sequential order of com-
ponents ensures that the GenoREC system can accurately recommend 
visualizations. Here, we provide an overview of each component in the 
order GenoREC’s recommendation model determines them: 
C1: Encoding: The encoding component identifies the visual mark and 
channel pair to encode attributes in a genomics dataset. In genomics 
visualizations, there are four visual marks: point, line, rectangle (“rect”), 
and text. There are also four channels: position, length, saturation, and 
hue [36]. The full list of combinations of marks and channels supported 
in GenoREC are visually depicted in Fig. 1B. 
C2: Alignment: The alignment component identifies if the encodings 
from the Encoding component (C1) can be stacked or overlayed . 
Stacked alignment applies encodings to individual tracks and then 
vertically stacks them. Here, a track refers to a unit visualization that 
corresponds to common visualization types [4]. We use this as the 
default option since this is the most frequent alignment in genomics 
visualizations [27]. Fig. 3A shows an example of stacked alignment 
where BED1 and VCF1 files are shown as two separate tracks that are 
vertically stacked. The overlayed alignment, on the other hand, merges 
encodings into a single track. 
C3: Layout: This component selects the layout to display a track in 
the genomics visualization. GenoREC supports three layouts: linear , 
circular , and space-filling (e.g., the Hilbert curve [14]). 
C4: Partition: The partition component decides whether the 
chromosomes should be displayed in a contiguous track, where 
chromosomes are placed end-to-end, or in a segregated manner, 
where each chromosome is independently displayed as a separate track. 
Partition happens at a track level, so if a visualization has multiple 
tracks, GenoREC determines the division of each track. 
C5: Arrangement: This component is responsible for selecting the ar-
rangement of multiple “views”. In this paper, a view refers to a combina-
tion of one or multiple tracks. For example, Fig 3B represents two views, 
each of which consists of two tracks from two data files. The main differ-
ence between arrangement and partition is that arrangement is applied 
between views instead of between tracks. In GenoREC, views that have 
linear tracks (C3) can be arranged as parallel , adjacent , or orthog-
onal . The orthogonal arrangement allows the creation of adjacency 
matrices for visualizing genomics data with a complete network con-
nection between two sequences. Whereas, if views have circular layout 
(C3), GenoREC only permits parallel and adjacent arrangements. 
C6: Interactivity: This component is responsible for identifying proper 
interaction patterns for genomics visualization. GenoREC supports 
two interaction patterns: coordinated interaction and focus+context, 
as shown in Fig. 1B. In the coordinated interaction pattern, all the tracks 
within a view have coordinated zooming and panning interactions. The 
focus+context pattern allows users to focus on a specific portion of the 
genome while maintaining the context of the genome location. 

6.1.2 Recommendation Knowledge 
This section presents the main design guidelines that shape the recom-
mendation for GenoREC. Additionally, we also discuss how GenoREC 
uses best practices and domain-knowledge in combination (G2). 
R1: Identify Effective Channels Given the Data and Tasks: The 
selection of channels depends on the attribute types, and low-level an-
alytical tasks users want to perform with the visualization. The results of 
experimental studies by Clevland & McGill [9] and Heer & Bostock [15] 
led to a ranking of visual channels in terms of their accuracy to identify 
and compare quantitative data. Based on the results, GenoREC maps 
quantitative values using position and length channels. Additionally, 
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GenoREC also allows mapping quantitative values of color saturation 
channel for an overview task. In overview tasks, users are looking for 
patterns, not individual values, and color saturation can show variation 
in data for pattern search. For categorical attributes, GenoREC uses cate-
gorical color schemes based on the ranking proposed by Mackinlay [30]. 
R2: Choose Alignment Based on File Type and Encoding: GenoREC 
supports overlayed alignments for genomics visualizations with 
multiple tracks only if the tracks are from the same file. They must 
be from the same file because overlaying tracks from different files 
can lead to occlusion due to the superposition of multiple marks at the 
same location [28]. Even if the tracks are from the same file, GenoREC 
only supports overlaying position and color channels because they can 
co-exist without causing occlusion. Based on this rule, if a visualization 
has two tracks with position channels and one track with a color channel, 
GenoREC will combine the first position channel with the color channel, 
which will lead to stacked and overlayed tracks. 
R3: Select Layout Based on Encoding and Tasks: In GenoREC, 
layouts are selected based on the input data and task descriptions, and 
the visual encoding set in the encoding component. In a comparative 
study with both linear and circular layouts, Waldner et al. [54] found 
that length and position channels make it easier to identify and compare 
visual representations in linear layouts. This study recommends linear 
layouts when length and position are used in the encoding component 
for identifying and comparing tasks. In overview tasks, where the user’s 
goal is to look for trends and patterns, GenoREC recommends both 
circular layouts and linear layouts. 
R4: Decide Arrangement Based on Layout and Inter-Connectivity 
Data: For inter-connectivity data, GenoREC suggests parallel or or-
thogonal arrangements in linear layouts. Selection between parallel 
and orthogonal arrangements depends on the type of network data. For 
dense networks, GenoREC recommends orthogonal arrangements, and 
in other cases, GenoREC recommends parallel arrangements. For circu-
lar layouts, GenoREC recommends adjacent arrangements when there is 
a network connection, which is one of the most common use cases with 
circular layouts in the domain [23, 33]. Meyer et al. [33] used a circular 
adjacent layout for visualizing interconnection between different parts of 
a sequence. The adjacent circular arrangement allows the analyst to look 
at overall connections between sequences in a space-efficient manner. 

GenoREC gives preference to empirically backed design guidelines. 
However, when there is a lack of empirical results, GenoREC factors 
the genomics-specific knowledge for the recommendation (G2.). For 
example, GenoREC recommends color saturation (R1) encoding used 
for commonly used heatmap visualizations [20, 41, 43], for overview 
task because there is no conclusive evidence that negates the use of color 
saturation encoding for overview. 

6.1.3 Recommendation Algorithm 
Representation of Recommendation Knowledge: The knowledge for 
recommendation is represented and stored as a decision matrix [47] in 
GenoREC’s model. For each component (C1–C6) in Sect. 6.1.1 there is 
a distinct decision matrix. In Fig. 5, we show the decision matrix for the 
Encoding component (C1). The rows in the matrix represent all the pos-
sible output options. The columns in the matrix represent input factors 
that affect the output selection. Finally, the cells in the matrix represent if 
the corresponding output (row) can support the corresponding input item 
(column). GenoREC encodes the relationship between input and output 
as a binary value. A cell with a dark circle (i.e., ) represents a value 1 
which means the output is supported by the corresponding input column, 
and vice versa. For example, in the “Quant.” column (Fig. 5), all the 
cells corresponding to position (e.g., “Point”), length (e.g., “Rect”), and 
saturation (i.e., “Saturation”) have a value of 1. However, since the hue 
channel is not used to represent quantitative data, all cells corresponding 
to the hue channel have a value of −1 (i.e., empty cells). Representing 
recommendation knowledge as binary-valued features allows GenoREC 
to use a similarity computation technique to rank the output of each 
component (C1–C6) and use the ranking for recommendation. 

Similarity Computation: GenoREC computes the similarity between 
the input and all the output items in the product matrix using a cosine 
similarity metric [8]. The cosine similarity score expects two vectors 
of equal size and generates a score in the range of [−1,1]. GenoREC’s 
algorithm generates an input vector for each recommendation 
component based on the features given in the column headers of the 
decision matrix. Next, it scores the similarity of this input vector with 
all rows of the decision matrix. A higher cosine similarity score closer 
to 1 means that the two vectors are more similar while a lower score 
closer to −1 means the two vectors are dissimilar. These scores are used 
for ranking in our recommendation system, i.e., GenoREC recommends 
the output item with the highest score. 

Recommendation walk through: In Fig. 6, we show the steps in 
GenoREC’s recommendation algorithm with the help of data and 
analysis task discussed in Sect. 4. 
C1: Encoding: GenoREC visually encodes each data attribute in the 
input data. For example, in Fig. 6A, GenoREC recommends “Rect + 
Interval” with a hue channel for the “BED1” file because the feature 
set is a segment and the data attribute is categorical. GenoREC assigns 
a consistent colorblind-safe color palette for each categorical attribute. 
For the “BIGWIG1” file, GenoREC recommends both a bar chart (i.e., 
“Rect”) and a line chart (i.e., “Line”) based on the decision matrix since 
the file stores point-based contiguous quantitative values (i.e., “Point,” 
“Contiguous,” and “Quant.”) (Fig. 5). The recommendation of multiple 
outputs at each component allows GenoREC to recommend design 
variations to satisfy the design goal (G5). After the recommendation, 
GenoREC uses Cartesian product to determine all the possible output 
options using the top scored recommendation. 
C2: Alignment: GenoREC uses the visual encoding and file type 
information to determine the alignment of the encodings. Due to the 
cartesian product, this component has two sets of visualization options 
in Fig. 6B. In this example, all the visual encodings come from different 
sources and have different features. Therefore, GenoREC recommends 
a “Stacked” alignment of visual encodings. The stacking order of visual 
encoding is consistent to the order of selected files. Fig. 6 illustrates a 
case where the user selects the “BED” file first and then “VCF,” followed 
by “BIGWIG”. Therefore, the BED file is placed on the top and others 
are below it. All the tracks in this component are aligned automatically 
based on reference genomes. 
C3: Layout: GenoREC determines the layout based on the encoding, 
alignment, and tasks. The space-filling (e.g., the Hilbert curve [14]) 
layout can only show a single track. The circular layout is not conducive 
for comparing quantitative data in the BIGWIG file [54]. Therefore, 
GenoREC recommends only the linear layout (Fig. 6C). 
C4: Partition: GenoREC determines the partition primarily based on 
the user’s task. In this example, to facilitate comparison, GenoREC rec-
ommends the “Contiguous” partition, which means that chromosomes 
are positioned end-to-end in the visualization. 
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C5: Arrangement: GenoREC identifies arrangement based on the 
existence of network data, layout (C3), and tasks. In the current example, 
GenoREC’s decision is based on the comparison task. A single-view 
visualization can be difficult to compare two regions in the genomes, 
especially if they are distant, e.g., Chromosome 1 and Chromosome 
18. To reduce the need for manual panning and zooming interaction, 
GenoREC recommends two windows to compare any two regions 
within the genome. 
C6: Interactivity: GenoREC currently recommends interaction based 
on the visualization arrangement and tasks. In this example, GenoREC 
suggests “Focus+Context” interaction because it allows users to see a 
focused region in the genome, which is vital for local comparison tasks. 

6.2 GenoREC User Interface
GenoREC’s user interface is divided into two panels: data and task 
descriptions (Fig.4 Left) and recommendation (Fig. 4 Right). 
Data Description and Tasks: In line with the domain goal G3, 
GenoREC’s UI allows users to specify domain-specific data (BIGWIG, 
BED, BEDPE, SEG, VCF, and COOLER) [1, 53] and tasks [38] to the 
system. The data and tasks are introduced and discussed in Sect. 3. Each 
data description card (Fig. 4B) in GenoREC has six input fields: Assem-
bly Build (coordinate system 1), Assembly Build (coordinate system 2), 
Quantitative, Categorical, Text (number and type of data attributes), Fea-
ture Extent (point or segment feature set), Feature Density (sparse or con-
tiguous feature set), and Connection (the connection between sequences). 
GenoREC’s abstract data description technique provides a flexible way 
for users to configure their data input. Through this interface, analysts 
can try many different combinations of data input and see the recommen-
dations without going through the data collection and processing pipeline. 
To ensure analysts choose the tasks correctly, GenoREC includes an 
example task that communicates to the user when they should choose the 
particular task and a visual description for additional feedback (Fig. 4C). 
Recommendation: The recommended visualizations are shown as a 
gallery in the visualization panel of the GenoREC interface (Fig. 4 
Right). The gallery-based interface supports easy comparison of the rec-
ommended options [26]. The recommended visualizations are updated 
when users add or modify the data or task specifications which enables 
quick inspection of many different visualization options (G4). Addition-
ally, users can export a Gosling [29] JSON specification and directly 
load its online editor to customize the visualization further if desired. 

7 GENOREC EVALUATION

GenoREC was evaluated in a two-phase user study. First, we 
gathered qualitative feedback from domain experts (i.e., people 
who have experience in genomics and visualization) to validate the 
recommendation output and the user interface design. Second, we 
conducted a quantitative evaluation where we measured the utility 
of GenoREC’s recommendation given a set of data and analysis task 
combinations. The Harvard Institutional Review Board determined that 
these studies did not require research approval under federal regulations. 

All participants were volunteers, and they were recruited through 
advertisements on various Slack teams in the computational biology and 
genomics communities and Twitter. Study materials from both studies, 
including the stimuli, tasks, and data analysis code, are included in the 
Supplemental Material and on OSF (https://osf.io/y73pt/). 

7.1 Formative Study with Domain Experts
In this preliminary qualitative study, we sought to answer the question: 
“Does the output from the recommendation system match experts’ 
expectations?” A clear answer to this question is important because 
it validates the recommendation rules applied by GenoREC, and its 
subsequent implementation is valid. This feedback helped us refine 
GenoREC’s design goals (Sect. 5) and improve the user interface and 
the system’s overall workflow. 

Participants and Procedure: For the formative study, we recruited 
five domain experts. The participants had worked at the intersection 
of genomics and visualization with experience ranging from 8–20 years. 
The study was designed as a semi-structured interview and it lasted an 
hour. In the study, we presented participants with three different data 
analysis scenarios in the form of a short paragraph of text. For example, 
“given a set of BED files with human and mouse genome, identify regions 
where the data is highly conserved”. Participants were asked to describe 
an appropriate visualization for each scenario. Then, they were asked 
to use GenoREC and comment on the accuracy of the recommended 
visualization. As the last part of the study at the end of the interview, 
participants were encouraged to provide feedback on the user interface. 

Findings: All responses were analyzed by open coding and thematic 
analysis. From this analysis of participants’ responses, we learned that 
most participants found GenoREC’s recommendations accurate and 
only required minor modifications for the scenarios included in the study. 
This feedback led to the export feature in GenoREC’s user interface. 
One participant expected the visualizations to include additional 
biological contexts such as gene annotation track and ideogram plots 
that provide a summary of chromosomes coupled with genomic 
location information [40]. Therefore, we added an option to add a 
gene annotation track and ideograms to the visualization in GenoREC. 
Another participant asked for an additional interactive component as 
a tabular view in the GenoREC interface that enables a faster lookup 
of gene location. Since we mainly focused on the recommendation 
of visual representations in the GenoREC interface, it is not included. 
However, we plan to add the feature to further enable effective visual 
exploration of genomics data. Finally, GenoREC’s user interface was 
well-received, and participants understood the data and task descriptions. 
One participant stated that it is possible to further abstract the 
domain-specific file inputs. But, we decided to keep data descriptions in 
domain-specific terminology because other participants found it helpful. 

7.2 Quantitative Evaluation with Genomics Analysts
In the second part of the study, executed after feedback from the 
qualitative study, we conducted a controlled within-subject quantitative 
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study to measure the difference in utility between GenoREC’s 
top-ranked visualizations and mid-ranked visualizations for a given 
set of datasets and analysis tasks. While the qualitative study gave us 
feedback on the accuracy of the recommendation, we still wanted to 
evaluate if the recommendation would be useful for a broader group 
of people working in genomics. Since GenoREC’s recommendation 
model considers best practices from visualization research and domain 
knowledge based on common data features and tasks, we hypothesized 
that participants will find GenoREC’s top-ranked recommendation to 
be more useful than a mid-ranked visualization. 

We collected datasets from multiple sources that lead to diverse data 
descriptions in the study. For contiguous quantitative values, we used 
multiple samples of ChiP-seq data [61]. For sparse quantitative and 
nominal values, we used various datasets including GWAS catalog [7], 
gene annotations [17], and somatic structural variants [49]. We also 
used the structural variants data to represent connectivity information 
within genomic locations. 

This experimental design was chosen instead of a direct comparison to 
another recommendation system as there is no other system available for 
direct comparison. For example, existing generalized recommendation 
algorithms evaluated by Zeng et al. [60] do not consider domain-specific 
aspects such as layout and arrangement. The autoplot feature of 
ggBio [59], which is the closest alternative to GenoREC, does not 
support interactive visualizations or task-based recommendations. 

We developed a separate web application for this study because 
some features of the GenoREC app, such as the task description (e.g., 
Fig. 4C), could have revealed the expected output and affected the 
results. Participants were shown one visualization at a time. To compare 
responses across tasks and participants, we used a Likert scale-based 
response format. 

Participants: We recruited 13 participants (P1–P13) with three 
participants who identified as female and ten who identified as male. 
Anyone who had experience with genomics data analysis was qualified 
to participate in the study. Participant experience in genomics ranged 
from 6 months to 18 years, with an average experience of 4 years. 

Evaluation Scenarios and Stimuli: There were a total of nine data and 
task scenarios (Scenario 1–9) in the study. The scenarios are designed to 
provide a comprehensive coverage of three factors: features, attributes, 
and tasks. For example, in Scenario 1, the feature combinations are 
point and sparse with no connection, the attribute used is categorical, 
and it is an identify task. We ensured that the scenarios cover all feature 
types (point, segment, contiguous, sparse, and network) and attributes 
(quantitative, categorical, and text) at least once. Finally, we ensured 
that tasks were balanced among identify, compare, and overview. 

To create the stimuli for the study, we used GenoREC to generate 
and score all possible visualizations that can be rendered by Gosling 
for the data and tasks of a given scenario. From that list, we selected 
the visualization with the top score (“GenoREC stimulus”) and the 
visualization that is assigned with the score closest to the median of 
the score distribution (“alternate stimulus”). If GenoREC recommends 
multiple top and median ranked visualizations with the same score, we 
randomly select one of them as a stimulus. 

Procedure: The study was conducted synchronously online. We 
arranged a 30-minute evaluation session with each participant via 
Zoom. The sessions were not recorded. In the first ∼5 minutes of the 
session, the interviewer asked participants about their experience with 
genomics data and explained the study setup by demonstrating the web 
application. After the introduction and demonstration of the application, 
the interviewer requested the participant to open the web app and share 
their screen so that the interviewer could follow the progress and answer 
any questions. Each scenario in the study had a data and task description. 
Example data and task description for Scenario 1 is the following: 

Data: File Format: VCF, Attributes: 1 Categorical, Extent: Point, 
Density: Sparse, Connection: No 

Task: Navigate to the window chr19: 20,000,000–chr19: 80,000,000 
and characterize the distribution of the categorical variable, i.e. similar 
values or distinct values. 

Along with the description, the participant saw one of the two 
visualization options at a time. In each scenario, the data and 
task description remained the same for both visualization options. 
Participants were asked to perform the task with the visualization and 
then answer the following question: “I would use this visualization for 
the analysis of the data given the task description.” The responses were 
recorded on a 1–5 scale as shown in Fig. 7. The stimuli shown in the 
scenarios were randomized to account for any learning effect. During 
the study, participants were not required to provide feedback, but many 
participants followed a think-aloud method where they explained the 
reason behind their ratings. We recorded this feedback as transcribed 
notes and used it for further analysis of the responses. 

Data Analysis and Results: To summarize participants’ rating 
responses, we plot the combined and scenario-wise distribution of re-
sponses for both GenoREC and alternate stimuli using box plots (Fig. 7). 
We find that the median score is higher for GenoREC’s combined 
responses (median = 4) than for the alternate stimuli (median = 3). 
Additionally, the interquartile range (IQR = 1; Q1 = 4, Q3 = 5) of 
GenoREC is less dispersed than the alternate stimuli’s interquartile 
range (IQR = 2; Q1 = 2, Q3 = 4). The median and interquartile 
responses for all participants combined are shown in Fig. 7. We conclude 
that (1) participants found GenoREC’s top recommendation more useful 
than an alternate stimulus in most cases and (2) participants are less 
confident with the rating of the alternate stimulus, which led to a more 
dispersed interquartile range (IQR = 2; Q1 = 2, Q3 = 4). We used the 
non-parametric the Wilcoxon signed-rank test [55] to measure if the 
scenario-wise median difference in responses varies between GenoREC 
and alternate stimulus. To handle multiple comparisons, we used a 
Bonferroni corrected p-value of 0.0055. As illustrated in Fig. 7, for 
Scenarios 1, 2, 6, and 8, GenoREC’s responses are significantly higher 
than alternate stimulus responses with p<0.0055 for the Wilcoxon test. 

Scenarios for which GenoREC’s recommendation performed 
better: Scenario 1 (p =0.0018) and Scenario 8 (p =0.0021) have the 
strongest signal for GenoREC’s stimuli among all the scenarios. We 
used the qualitative feedback from the participants to understand why 
did GenoREC perform better than the alternate stimulus? In Scenario 
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1, we compared a linear layout with a focus+context (GenoREC) to 
a circular layout (alternate) in an identify task (as described in the 
“Procedure” description). We learned that some analysts did not like the 
circular layout from the participant feedback. Multiple participants (P5, 
P6, P7, and P10) explicitly noted that they do not prefer to use circular 
layouts. P7 mentioned that they generally avoid using circular layouts 
for their genomics visualization. An additional reason for preferring 
GenoREC’s recommendation was the focus+context interaction. The 
focus+context interaction simplified the task of navigating to a specific 
genome region. For Scenario 8, GenoREC recommended a visualization 
stacked alignment, and the alternate recommendation overlayed the 
tracks into a single view. Participants found the overlayed tracks 
overwhelming and did not add any benefits to the stacked layout. 

Scenarios for which GenoREC’s recommendation did not perform 
better: For Scenario 3 (p=0.08) and Scenario 7 (p=0.35), we did not 
find a large difference between the GenoREC and the alternate stimuli. 
For Scenario 3, we observed that participants found both GenoREC 
(median = 5) and alternate stimulus (median = 4) useful. In this sce-
nario, participants were asked to perform an overview task (look for 
patterns) using a linear track with contiguous partition (GenoREC’s 
stimulus) and a circular track with segregated partition, i.e., one circle 
per chromosome (alternate stimulus). P2 mentioned that a circular seg-
regated layout allowed them to see more granular data, which supported 
them in searching visual patterns. The most surprising results came from 
scenario 7, where the interquartile range of GenoREC (IQR=2, Q1=2, 
Q3 =4) was less than the alternate stimulus (IQR=2, Q1 =3, Q3=5) 
based on the summary. In this scenario, GenoREC presented two circular 
tracks stacked (similar to Fig. 3A Option 2), and participants had to per-
form a correlation task. We expected participants would use an overview 
strategy. However, they preferred to interact with the tracks and zoom 
into specific regions of the circular tracks. As discussed in the feedback 
from Scenario 1, circular tracks are not effective for tasks in which users 
have to focus on a local region. Based on this result, we learned that 
users could solve correlation tasks through an overview or a region-based 
focus approach. Therefore, GenoREC’s model should provide users with 
features that allow them to focus on specific regions for correlation tasks. 

Summary: The results from the quantitative evaluation show that 
GenoREC’s recommendations are rated higher than the alternate recom-
mendation. The qualitative feedback indicated that circular layouts do 
not work well with tasks requiring navigation with zooming and panning. 
Additionally, users liked the focus+context recommendation because it 
simplifies navigation to specific regions in the genome. Since our goal 
was to execute a study of reasonable duration for participation (∼30 min-
utes), we could not exhaustively evaluate all the possible data and task 
combinations. A small sample size of 13 participants is a limitation of the 
study. However, due to the specialized nature of the domain, it is a chal-
lenge to conduct the study with a larger number of participants. Finally, 
since we mainly used subjective responses from participants, additional 
follow-up studies would be required to validate objective aspects of the 
recommendation model (e.g., validating actual coverage of the design 
space). However, given the lack of ground truth data and the unavailabil-
ity of comparable recommendation systems or algorithms, our evaluation 
methodology of using subjective responses from domain users presents a 
practical way of assessing visualization recommendations for genomics. 

8 DISCUSSION

Generalizability of GenoREC’s Recommendation Model: We 
present a sequential recommendation model for genomics visualization. 
To develop the sequential model, we broke down visualization techniques 
in genomics into multiple components (e.g., encoding, layout) and added 
order to them (Sect. 6.1.1). We believe the sequential method can be 
applied in other domains and visualization techniques. For example, 
tree visualizations can be decomposed into three components based on 
a visualization taxonomy [46]: “Representation” (explicit, implicit, hy-
brid), “Alignment” (parallel, radial, free), and “Dimensionality” (2D,3D, 
hybrid). To apply the sequential model, tree visualization experts can 
determine the dependencies between components, such as whether “Rep-
resentation” of tree visualizations should be determined before “Dimen-

sionality”. After ordering the components, domain experts can systemat-
ically curate recommendation knowledge for each component and create 
a sequential recommendation model for tree visualizations. However, the 
sequential model may not apply universally across all domains and visu-
alization techniques. For instance, applying this method to infographics 
can be challenging because they offer a lot of design freedom that it is 
challenging to identify its design space. This makes it difficult to decom-
pose visualization into smaller components, restricting the use of the se-
quential model. Despite its application limitations, we believe using a se-
quential model can simplify the process of designing a knowledge-based 
recommendation model for domains and visualization techniques where 
it is possible to break down visualization into components and apply or-
der to them. Therefore, we anticipate to see it adopted more in the future. 

Updating and Extending GenoREC’s Recommendation Model: We 
can update GenoREC’s recommendation model by changing each com-
ponent’s output items and decision factors. For example, to introduce 
a new glyph encoding in the Encoding component (C1), we need to add 
a new row to the decision matrix (Fig. 5). Adding additional decision 
factors is also trivial and requires the addition of a new column to the 
decision matrix of each component. For instance, if we want to factor in 
user preferences for recommended encodings, we can add a new column 
in the decision matrix, which stores the relationship between encoding 
output and the user-preference factor. Component-level changes in 
GenoREC are straightforward as they do not affect other aspects of the 
model. However, extending the recommendation model to handle a new 
component could be challenging. Adding a new component requires 
careful analysis of its dependencies with all the other components, 
which can be a complex if done post-hoc. Therefore, we recommend that 
researchers err on the side of inclusion when identifying the components 
to be used with GenoREC’s recommendation approach. 

Future Work: Currently, GenoREC’s model is accessible through 
the user interface. In the future, we plan to package the model into 
a library that can be accessed programmatically and embedded into 
tools like Gos [32] that enables the generation of Gosling specifications 
through Python, e.g., in Jupyter Notebooks. In this context, it will also 
be possible to generate visualizations based on actual data files rather 
than descriptions of the files. Furthermore, with the ability to read data, 
many additional features can be included, such as optimal color scale 
based on data, or coordinating color scales across similar attributes 
in separate tracks as recommended by Qu and Hullman [39]. Another 
interesting direction of future work would be to consider user preference 
in GenoREC’s recommendation model. Currently, we do not have user 
preference data for genomics visualizations. However, with the adoption 
of GenoREC, we can get more information on visualizations that users 
prefer, which can be used in the recommendation model for ranking the 
output. Finally, in the future, we intend to explain the recommendation 
to the users. Through explanation, we would justify the reason behind 
a recommendation to answer questions the domain users may have, i.e. 
“Why was a linear layout recommended over a circular layout?” 

9 CONCLUSION

Analysis of genomics data continues to be the backbone for many 
critical biomedical inventions and discoveries. Genomics data analysts 
heavily rely on visualization techniques for data interpretation, which 
will be made more efficient through the support provided by GenoREC 
in constructing appropriate interactive visualizations. Our design and 
algorithm can be extended to create other domain-specific visualization 
recommendations, where the visualization and task taxonomy have 
been well defined. Ultimately, our work offers critical guidance for 
visualization researchers who want to develop similar recommendation 
systems in other domains. 
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