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Online Projector Deblurring Using a Convolutional Neural Network
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Fig. 1. The proposed projeclor deblurring technique compensates movie contents for defocus blur artifacts using a deep neural network
for dynamic projection mapping. The left and middle images show the target images (top) as well as the projected results of the target
images (middle) and of the compensation images (bottom) that were computed by the proposed network. The projection surface was
(a) translated from far (in focus) to near (out of focus) or (b) rotated from 0 degrees (in focus) to 45 degrees (out of focus) along the yaw
axis by using a robotic arm shown in the right image. We observed that the details of the target images were preserved in the projected
results of the proposed technique but were missing in the projected results of the direct projection of the target images.

Abstract-Projector deblurring is an important technology for dynamic projection mapping (PM), where the distance between a
projector and a projection surface changes in time. However, conventional projector deblurring techniques do not support dynamic
PM because they need to project calibration patterns to estimate the amount of defocus blur each time the surface moves. We
present a deep neural network that can compensate for defocus blur in dynamic PM. The primary contribution of this paper is a unique
network structure that consists of an extractor and a generator. The extractor explicitly estimates a defocus blur map and a luminance
attenuation map. These maps are then injected into the middle layers of the generator network that computes the compensation
image. We also propose a pseudo-projection technique for synthesizing physically plausible training data, considering the geometric
misregistration that potentially happens in actual PM systems. We conducted simulation and actual PM experiments and confirmed
that: (1) the proposed network structure is more suitable than a simple, more general structure for projector deblurring; (2) the network
trained with the proposed pseudo-projection technique can compensate projection images for defocus blur artifacts in dynamic PM;
and (3) the network supports the translation speed of the surface movement within a certain range that covers normal human motions.

Index Terms-Projector deblurring, dynamic projection mapping, deep neural network..
INTRODUCTION

Projectionmapping(PM) is a major approachto realizespatialaug-
mentedreality (SAR), which seamlesslymergesthe real and cyber
worlds by optically superimposingcomputer-generatedgraphicsonto
physicalsurfaces[8,15]. It hasbeenappliedin variousfields, such
as medicine [37], industrial design [44], online conferencing[23],
office work [25,30], and entertainment[26,31]. Due to the recent
advancesof high-speedandlow-latencyprojectorhardware[49], the
latestresearchtendstoward dynamicPM, wherethe geometricalre-
lationshipbetweenaprojectiontargetanda projectorchangesduring
the projection [5,32,35,42,45]. In addition, there is an emerging
optical see-through,head-mounteddisplaythatappliesa dynamicPM
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framework,wherea head-mountedscreenis projectedby a pan-tilt
projector[22]. To control the appearanceof the targetsurface,accurate
alignmentof theprojectedimageonto the targetis crucial; andthus,
geometricregistrationof the projectorhasbeenthe prime technical
challenge[8]. On theotherhand,defocusblur is alsoacritical problem
in dynamicPM. Becausethe lensapertureof a projectoris normally
designedto be large (Le., with a small f-stop) to achievebright pro-
jection, a projector'sdepthof field (DoF) is narrow. When a target
movesandits distancefrom the projectorchanges,theprojectedresult
is significantly blurred. Therefore,defocusblur compensationis as
importantasgeometricregistrationin dynamicPM.

Defocusblur is mathematicallymodeledas the convolutionof a
projectionimageanda point spreadfunction (PSF).ThePSFof each
projectorpixel representsits impulseresponseor the intensitydistribu-
tion of its projectedresult. Paststudiesrealizedprojectordeblurringby
computingtheprojectionimagesusingdeconvolution[9, 13,38]. To
achieveeffectivedefocusblur compensation,thesetechniquesrequire
accuratePSFestimation. Becausethe PSF varies accordingto the
distancebetweentheprojectorlensandtheprojectionsurface,it varies
spatiallyin PM, wheretheprojectionsurfaceis potentiallynonplanar.
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PreviousstudiesestimatedthePSFsby projectinga calibrationpattern,
which is eithera spatialcodepatternsuchasa dot pattern[9,13,52]
or an original targetimage[28,38], andcapturingtheprojectedresults
usinga camera.The estimatedPSFsarevalid for as long as thepro-
jectorandthe surfacedo not move. If theymove,however,thePSFs
mustbe estimatedagain. Therefore,in dynamicPM, the calibration
patternmustbe frequentlyprojectedonto the surface,which signifi-
cantlydegradestheaugmentedreality experienceof users.While many
approachesto mitigating the defocusblur in PM havebeenproposed
(seeSect.2.1), to the bestof our knowledge,no technicalsolutionhas
beenpresentedyet for theprojectordefocusproblemin dynamicPM.

This paperproposesa projectordeblurringtechniquethatdoesnot
requireprojectionof thecalibrationpatternevenwhen theprojection
surfacemoves.As the first attempttowardsthe projectordeblurringin
dynamicPM, we startwith a simpleassumptionthat the surfaceis uni-
formly white andcompletelydiffuse. Thekey insightexploitedin the
techniqueis that thegeometricrelationshipbetweentheprojectorand
theprojectionsurfacedoesnot vary significantly within a videoframe
(i.e., 1/60secin mostcurrentvideoprojectors).Therefore,our method
computesthecompensationimageof thecurrentframeusing thepro-
jectedresultof thepreviousframecapturedwith a camera.Specifically,
we applieda deepconvolutionalneuralnetwork(CNN) to generatethe
compensationimage. As the prime contributionof this research,we
devisedaneffectivenetworkstructurefor projectordeblurring,which
hastwo parts:an extractoranda generator.In eachframe, theextractor,
which consistsof two subnetworks,takesa pair of theprojectionimage
of thepreviousframeandits projectedresultasthe input. The first sub-
networkestimatesa defocusblur mapthatrepresentshow mucheach
projectorpixel is defocusedon the surface.The secondsubnetwork
estimatesa luminanceattenuationmap that representsthe degreeof
reductionof thecapturedluminanceof theprojectedresultcompared
to that of the targetluminancedueto the inversesquarelaw of light
intensity. Thesetwo mapsaretheninjectedinto the middle layersof
the generatornetwork, which takesthe original targetimageof the
currentframeasthe input andcomputesthe compensationimageto be
projectedat thecurrentframe. We alsoproposeto synthesizephysically
plausibletraining datato avoid laboriousandtime-consumingprojec-
tion datacollection. In particular, our pseudo-projectiontechnique
generatestheprojectedresultsby simulatingthe defocusblur basedon
the thin-lensmodelandby simulatingthe luminancereductionbased
on the inverse-squarelaw with respectto thedepth.Consideringactual
PM scenarioswherethe geometricregistrationof the projectorand
thecamerais potentially inaccurate,we alsoincorporatedwarpingof
thegeneratedimageinto our pseudo-projectionframework.Through
a simulation-basedcomparison,we showthat the proposednetwork
structureis moresuitablefor compensatingdynamicprojectioncon-
tentsfor defocusblur thana simple,single-networkstructure.Using a
physicalprojector-camerasystem,we demonstratethatour projector
deblurringtechniquecancompensatefor thedefocusblur in an actual
dynamicPM scenario.

To summarize,our primary contributionsfrom this study are as
follows:

• We introducea CNN-basedprojectordeblurringtechniquethat
generatesa compensationimagefor defocusblur artifactsin the
projectedresult in a dynamic PM scenariowithout requiring
offiine PSFestimation;

• We find that the combinationof extractorsubnetworksand a
generatorsubnetworkis the effectivestructurefor projectorde-
blurring, wheretheoutputsof the extractor(thedefocusblur map
and the luminanceattenuationmaps)are incorporatedinto the
middle layersof thegenerator;

• We designa pseudo-projectionframeworkto synthesizephysi-
cally plausibletraining data,consideringinaccurategeometric
registrationbetweentheprojectorandthecamera;and

• We demonstratetheprojectordeblurring achievedby theproposed
systemthrougha physicaldynamicPM experiment.

Detailson the implementationcanbe found at theGitHub repositoryl.

2 RELATED STUDIES

Thereare two major researchtopics relatedto this study: projector
deblurringanddeeplearningfor radiometriccompensationin PM. In
this section,we introducepreviousstudieson thesetopicsandstateour
contributionscomparedto them.

2.1 Projector deblurring

PreviousPM techniquesthat tackledthedefocusblur artifactscanbe
categorizedinto single-projectorandmultiple-projectorsapproaches.
Thegoalof thesingle-projectorapproachis to generatea compensation
imagethat, whenprojected,will closely resemblethe targetimage,
which is not blurred.To this end,the single-projectortechniquessolve
the inverseproblemof projectordefocus,which is modeledby a convo-
lution betweena projectionimageandthepixel-dependentPSFs[11].
Researchershaveexploredseveraldeconvolutionapproaches.For in-
stance,Brown et al. [9] andOyamadaandSaito [38] proposedcompen-
sationtechniquesbasedon theWienerfilter. Although thesewerecom-
putationallyefficient, their compensationresultstendedto suffer from
ringing artifacts.Otherresearchersachievedprojectordeblurringwith
fewerartifactsby applyinga constrainedoptimizationtechnique[52]
or an inverselight transportmatrix technique[50], thoughthey were
computationallyexpensive.Kageyamaet al. balancedthe trade-off
betweenthe deblurringaccuracyand the computationalcomplexity
usinga deepneuralnetwork(DNN) [28]. Grosseet al. alsobalanced
the trade-offby applyingacodedapertureto theprojectoroptics,which
preservesthehigh-frequencycomponentsof a projectedimagemore
thando normalcircularaperturesand,consequently,reducestheringing
artifactscausedby Wienerfiltering [13].

In theseaforementionedtechniques,the pixel-dependentPSFsmust
be estimatedfor the deconvolution. The estimationis doneby pro-
jectingeitherdot patterns[9,13,50,52]or original images(i.e., target
images)[28,38] in advance.Therefore,unblurredimagescannotbe
continuouslydisplayedon a movingprojectionsurface,wherethePSFs
vary in time. Onepossiblesolution is to apply a traditional fast PSF
estimationmethodanddeblurringtechnique[3,27] usingtheprojection
informationof thepreviousframeandthe targetimageof the current
frame. This ideais similar to our proposedmethodbut may notwork
well due to the misalignmentbetweenthe projectorand the camera
pixels in actualdynamicPM scenarios.Theselimitations hadbeen
overcomebyapplyinga fast focal sweepprojectiontechniquewith an
electricallyfocus tunablelens(ETL), by which thePSFof eachpixel
becomesuniform overa wide depthrange[24]. Anothersolutionalso
appliedtheETL by controlling it to keepfocusingon a moving target
whosepositionwastrackedby a depthsensor[47]. In thesetechniques,
thePSFsneednotbeestimatedonlineevenwhentheprojectionsurface
moves.However,to the bestof our knowledge,thereis currentlyno
ETL devicethatcanbalancea sufficiently quick responsefor the focus
control with a sufficiently largeaperturefor imageprojection.

The multiple-projectorsapproachachievesall in-focusprojection
by positioningmultiple projectorssuch that their projectedimages
overlayeachotherandtheirDoFscovertheentireprojectionsurface.In
early methods,a projectoris selectedfor eachsurfaceareawhosePSF
preservesthehigh-spatial-frequencycomponentsof thetargetimage[6,
34]. Recentstudieshaveproposedmoreadvancedtechniquesin which
theprojectionimagesfor themultipleprojectorsarejointly optimizedso
thattheappearanceof theoverlaidprojectedresultsresemblesthetarget
image[4,41]. The imagequality of theprojectedresult is betterin the
multiple-projectorstechniquesthanin the single-projectortechniques.
However,a multi-projectionsystemsignificantly increasesthecostand
requirescomplexgeometricandphotometriccalibrations. Thus, its
applicationfield is still very limited.

lhttps://github.com/kagechan5/0nline-Projector-
Deblurring-Using-a-Convolutional-Neural-Network
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Fig. 2. An overview of our online blur compensation framework that has two parts: an extractor and a generator. The two subnetworks of the
extractor, DefocusNet and LuminanceNet, have the same U-Net-like structure [39] but do not share the learnable weights. From the information in
the previous frame 1-1, the DefocusNet estimates the defocus blur map M~(t), and LuminanceNet estimates the luminance attenuation map Mi(t).
These maps represent the degree of defocus blur and luminance attenuation per pixel, respectively. The generator's subnetwork generates the
compensated projection image Ip(t) from the target image I,(t) by incorporating the maps into the middle layers of the network.

2.2 Deep learning for radiometric compensation

A projectedresulton an arbitrarysurfaceappearsdifferentfrom its orig-
inal image.Thecolor is modulatedby the textureof the surface,and
thehigh-spatial-frequencycomponentsarereducedby the subsurface
scattering,interreflection,anddefocusblur. Radiometriccompensation
techniqueshavebeenintensivelyexploredin the last two decadesto
mitigatethe imagequality degradationin PM [7,15]. The latesttrend
in this researchfield is theapplicationof deeplearningtechnologies.
Huanget al. proposedan end-to-endprojectorphotometriccompen-
sationnetwork[19]. By projectingandcapturinghundredsof texture
imageson a projectionsurface,the networkimplicitly learnstheper-
pixel complexreflectancepropertyof the surface.Oncetrained,the
networkgeneratesa projectionimagefrom an original imagesuchthat
the projectedresultdoesnot sufferfrom photometricdistortionscaused
by the spatially varying surfacereflectanceproperties.The network
was improvedto compensatefor bothphotometricandgeometricdis-
tortions [18,21] aswell as for global illumination effects[20]. These
networksoutperformclassicaltechnologieswith regardto radiometric
compensation.However,they needto be trainedfor eachprojection
surface,in which multiple texturesneedto beprojectedin advance.

Kageyamaet al. proposedanend-to-endcompensationnetworkfor
projectordeblurring[28]. Oncetheweightsof the networkaretrained,
theycanbe usedfor any projectionsurface.However,the networkstill
requiresprojectionof thetargetimageandcaptureof its projectedresult
beforeit cancomputethecompensationimagefor eachsurface.There-
fore, it doesnot supportdynamicprojectioncontents(e.g.,movies)and
cannotproperlywork for dynamicprojectionsurfaces.In summary,the
previousradiometriccompensationtechniquesbasedon deeplearning
arenot suitablefor dynamicPM scenarios.

2.3 Our contribution

Theprimecontributionof this paperis the realizationof a projectorde-
blurring techniquein a single-projectorapproachthatworks in dynamic
PM. Basedon an observationthat thedepthof theprojectionsurface
doesnot significantly changewithin a video frame(Le., 1/60sec),our
techniquesynthesizesthecompensationimageusingtheprojectedin-
formation in the previousframe. We designeda DNN structurethat
synthesizesa compensationimagefrom the targetimageof thecurrent
frameaswell as from theprojectionimageof the previousframeand
its projectedresult. In particular,we found that the combinationof two
networkmodules(anextractorandagenerator)hasbettercompensation
performancethana simplesingle-networkstructure.We alsoproposea
pseudo-projectiontechniquefor synthesizinga projectedresultfrom

a projectionimageanda depthmapof a surfacein orderto train the
network. We showthat the networkweightstrainedby the synthesized
dataareusefulfor projectordeblurringin physicalsetups.

3 PROJECTOR DEBLURRING NETWORK

Weproposea DNN thatsynthesizesa projectionimageto compensate
for defocusblur evenin dynamicPM scenarios.This sectiondescribes
our networkand our loss function, which are designedto minimize
the differencebetweena targetimageand the projectedresultof the
compensationimage.

3.1 Overview

We assumethata projectionsurfaceis (I) uniformly white andcom-
pletelydiffuse, (2) observedwith a camera,and(3) within thecamera's
DoFs. Although variousoptical phenomenacan degradethe image
quality of a projectedresult,we found from our preliminary investi-
gation that two of theseoptical phenomenaare dominantfactors in
theassumedsituation.Thefirst optical phenomenonis theprojector's
defocusblur, which attenuatesthe high-spatial-frequencycomponents
of theprojectedresultaccordingto thedistancefrom the focal plane.
The secondopticalphenomenonis the attenuationof theluminanceof
the capturedprojectedresultaccordingto the distanceof the surface
from the camera(Le., accordingto the inversesquarelaw of light). We
designedour networkto mitigatethe imagequality degradationcaused
by the defocusblur in theprojectedresultwithout sufferingfrom the
luminanceattenuationartifacts.

Figure2 showsthewhole structureof ourproposedprojectordeblur-
ring network. In our preliminary investigation,we observedthat the
projectionsurfacedid not significantly movewithin eachvideo frame
in mostof thedynamicPM scenarios.Thus,we estimatedtheextentof
theoccurrenceof the defocusblur andthe luminanceattenuationof the
projectedresult in thepreviousframe,andwe usedthat informationto
generatethecompensationimagefor thecurrentframe. We applieda
networkstructurewith two parts,an extractoranda generator,rather
thana singlenetworkto explicitly estimatethe defocusblur and the
luminanceattenuation.Specifically,theextractorhadtwo subnetworks,
oneof which estimatesthe amountof defocusblur, and the other,of
luminanceattenuationfor eachprojectorpixel. Theestimateddefocus
blur mapandthe luminanceattenuationmapwerethen injectedinto
the generatorsubnetwork,which synthesizedthe projectionimagethat
compensatedfor the imagedegradation.We explicitly separatedthe
networkstructureso that the textureof thepreviousframewould not
affect thecompensationimagein the currentframe.
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whereste,(i,j) is a loss function that usesthe fl 1 norm of the differ-
encesbetweeni and j. In addition,we appliedthe total variation [40]
loss stTV (i, j) for the regularizationof the estimatedmaps. AI is a
coefficientthatbalancesthe two functions.

whereM~ andM! aretheestimateddefocusblur mapandthe luminance
attenuationmap, respectively;Ip is the projectionimageand fYJ(Ip)
representsits projectedresult; and t and t - I indicatesthe frame
numbers.

We trainedDefocusNetandLuminanceNetto accuratelyestimate
theamountof defocusblur andluminanceattenuationin theprojected
resultfor eachprojectorpixel. Supposethat the groundtruth mapof
the PSFvariancesof theprojectedpixels andof their distancesfrom
thecameraareMel andM" respectively.Then,we usedthe following
std and!C/ as the loss functions in the training of DefocusNetand
LuminanceNet,respectively:

Note thatwe designedour networkto compensatefor defocusblur
causedby spatially varying PSFs,and it properly worked evenin a
casewhereintwo consecutivevideo frameswere not similar (e.g.,a
scenechangeoccurredbetweenthem). Without lossof generality,we
assumedthat the projectorand the camerasharedthe samefield of
view (FoY). This assumptionallowedus to modeltheprojector'sPSF
without havingto considerits distortionon a freeformor tilted surface
dueto thedifferentperspectivesof the two devices.We achievedthe
FoY sharingin an actualprojector-camerasetupby applyinga beam-
splitteror by geometricallytransformingthecapturedimageusingthe
poserelationshipbetweenthem.

3.2 Extractor
The two subnetworksin the extractorindependentlyestimatethe de-
focusblur andthe luminanceattenuation.We refer to the subnetwork
for thedefocusblur estimationasDefocusNet(J1';,), andthat for the
luminanceattenuation,as LuminanceNet(A[). As shownin Fig. 2,
thesesubnetworksareindependentto enablethemto extractdifferent
featuresfrom eachnetwork.They apply the sameV-Net [39] structure
but do not sharetheweightsandarenot connectedto eachother.

Eachsubnetworktakesas input a projectionimageandits projected
resultin theprecedingframe. Consideringthe interframeconsistency,
we alsofeedeachsubnetworkwith its previousoutput.Then,Defocus-
Net andLuminanceNetoutputthe defocusblur mapandthe luminance
attenuationmap,respectively.As a reasonableassumptionthat was
appliedin mostpreviousstudies[1,24,34],we consideredthePSFof a
projectedpixel a Gaussianfunction. Then,eachpixel of the defocus
blur maprepresentsthevarianceof thePSFof thecorrespondingpro-
jectedpixel. A capturedprojectedpixel becomesdarkerwhenthepixel
is fartherfrom thecamera(i.e., basedon theinversesquarelaw of light).
Therefore,eachpixel of the luminanceattenuationmaprepresentsthe
distanceof the correspondingprojectedpixel from the camera.Then,
thesesubnetworksaremodeledas in the following equations:

(7)

(8)

(6)

£'sim( fYJ(Ip(t)), kIf (t)),

£'sim (fYJ(Ip(t)),If (t)),

Ip(t) = .A;; (If (t), [M~ (t)]' [M! (t)]),

where£'sim(i,j) representsthe structuralsimilarity (SSIM) [48] loss
that computesthe differencebetweeni and j in the human visual
perceptionspace.However,due to the limited peakluminanceof a
currentprojectordevice,the full luminancerangeof the targetimageis
notalwaysreproduciblein a projectedresult[14,46]. To mitigatethe
clipping errorscausedby this limitation, we linearly normalizedthe
targetimagepixel valuesinto thereproduciblerange.Thus,we usedthe
following stc asthe lossfunction in the training of CompensationNet:

first layerof the network,as shownin Fig. 2. Thus,we modeledthe
networkasin the following equation:

wherethebracketsrepresentthe injectionof theestimatedmapsinto
the middle layers.

We trainedCompensationNetto generatea compensationimage
whoseprojectedresultresemblesthe targetimagefor humanobservers.
Therefore,thefollowing function can be consideredthe loss in the
training:

3.4 Training strategy
A straightforward(or naive)methodof training the proposednetwork
is to updateall the weights in the network by ftowing the data de-
pictedin Fig. 2. Specifically,theestimatedmapsfrom DefocusNetand
LuminanceNet(i.e., M~ andMf) aredirectly injectedinto Compensa-
tionNet in the training. However,we expectthis methodto be unstable
andtheweightsnot to convergein a reasonabletime frame. In theearly
stageof the training, DefocusNetand LuminanceNetdid not output
correctmaps. Thus, updatingthe weightsof CompensationNetdid
not makemuchsense.Therefore,we appliedanothermethodthat sep-
aratelytrainedthethree networks. Specifically,we usedthe ground
truth of thedefocusblur mapMel andthe luminanceattenuationmap
M, to train CompensationNetinsteadof the estimatedmaps,M~ and
M! (Fig. 3).

4 DATASET SYNTHESIS

To train theproposednetwork,we hadto preparea largesetof target
imagesIf, the groundtruth of the defocusblur mapsMd, and thatof
the luminanceattenuationmapsMI' In addition, the training required
the projectedresultsof the projection imagesIp . However, it was
impracticalto obtainthem usingactualPM andcapturingsetupswith
a large numberof projectionsurfacesof various shapes.Therefore,
we synthesizedthe datasetfrom a setof target imagesand a setof
depth imagesthat representedthe shapesof the projectionsurfaces.
We performedthe datasetsynthesisin a virtual spacewith a virtual
projectoranda virtual camera.Basedon theassumptiondescribedin
Sect.3.1, thevirtual projectorandthevirtual camerahadthe sameFoY.

wherek (0 ::; k ::; I) representsthe normalizationconstantthat is uni-
formly appliedto thepixel valuesover the targetimage,andk is the
minimum luminanceattenuationfactor (i.e., the largestamountof
attenuation)in thecapturedimage.

(3)

(4)

(5)

(1)

(2)

st(M~(t),Md(t)),

st(M! (t),M, (t)),
ste,(i,j) +AIstTV(i,j),

J1';,(Ip(t -I), fYJ(Ip(t -1)),M~(t - I)),

A[(Ip(t-I),fYJ(Ip(t-I)),M!(t-I)),

whered and s are the diameterof the projector'sapertureand the
focusingdistance,respectively.A pixel on the imagingplaneis not an
idealpoint light source;therefore,thePSFof theprojectedpixel cannot

4.1 Computational model of projector blur
As shownin Fig. 4, basedon a thin-lensmodel,a light point emitted
from the imaging planeof a projector is observedas a circle on a
projectionsurfacelocatedvawayfrom theprojectorlens. Thediameter
of theblur circle b canbecomputedusinggeometricalsimilarity as:

3.3 Generator
Given the estimateddefocusblur map M~ and the luminanceatten-
uation mapM!, we generateda compensationimagefrom the target
imageIt usingthegeneratorsubnetwork.We denotethecompensation
imageas Ip becauseit is theprojectionimageof the next frame. We
refer to thenetworkasCompensationNet (.A;;), andwe useResNet[17]
as its backbonenetwork. To usetheper-pixelinformationof the two
mapsin the compensationimagegeneration,we appliedan attention
mechanism[12] for incorporatingthe maps into CompensationNet.
Specifically,we injectedM;, andM! into the middle layersof Compen-
sationNetwith the Hadamardproductratherthan giving themto the

v
b=ld(--I)I,

s
(9)
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Eq. 9, we computedthedefocusblur mapasfollows:

berepresentedasa pillbox function but is generallyapproximatedas
the following Gaussianfunction [1,24,34]:

wherer is thedistancefrom theblur center.Whenan imageI p is pro-
jectedfrom a virtual projectorontoa nonplanarsurface,theprojected
appearance1,- capturedby a virtual cameracanbecomputedusingthe
following convolution:

whereD(x,y) is thedepthvalue(0::; D(x,y) ::; I) at theprojectorpixel
coordinateof (x,y). Thefocusingdistances is randomlyselectedfrom
thepredefinedrangeA.4 ::; s ::; As.

We generatedthe luminanceattenuationmapM, alsofrom thedepth
map(Fig. 5(b». As describedin Sect.3.2, eachpixel of the luminance
attenuationmapM, (x,y) representsthedistanceof thecorresponding
projectedpixel from thecamera.Therefore,we computedit asfollows:

(13)

(12)

(10)
2 2r2

PSF(r,b) = -2exp(--2),
nb b

4.2 Synthesis of defocus blur map and luminance attenu-
ation map

We generatedthe defocusblur mapMd from the depthmapof a pro-
jection surfacethatrepresentedthedistancefrom thevirtual projector
to the surfaceat eachprojectorpixel (Fig. 5(a». Specifically,basedon

I,-=Ip®PSF+n,

where® is theconvolutionoperatorandn is a Gaussiannoise.

(11) whereAu andA.7 arethepredefinedscalingfactorand the bias,respec-
tively.

4.3 Pseudo-projection for synthesis of projected results

We developedapseudo-projectiontechniqueto synthesizetheprojected
results,consideringboththedefocusblur andtheluminanceattenuation.
SupposethatI p is a projectionimage;thenthedefocusblurred image
Id canbecomputedusingEq. II as:

(14)
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5 EXPERIMENT

We evaluatedtheproposednetworkboth in a simulationanda physical
dynamic PM setup. In this section, the details of the training are
described,followed by the simulationexperimentthatwasconducted
to evaluatethevalidity of theproposednetworkandthetrainingstrategy.
Then,the resultsof the physicalexperiments,which wereconductedto
checkif theproposednetworkwould work in an actualdynamicPM
scenario,are introduced.

wherencr is a Gaussiannoisewith the standarddeviationvalueof 0"

(Fig.5(c».
Next, we appliedthe luminanceattenuationto Id to obtain thepro-

jected result I r . According to our assumptionof the FoV sharing
betweenthevirtual projectorandthe virtual camera,theapparentsize
of eachprojectedpixel capturedby the virtual cameradoesnot change
with respectto the depthvariationof the projectionsurface.On the
otherhand,the luminousftux that is emittedfrom theprojectedpixel
andincidentinto the virtual camera'slens is inverselyproportionalto
the squareof thedistancefrom thepixel. Thus,the luminanceof the
projectedpixel capturedby the virtual cameraattenuatesaccordingto
the inversesquarelaw. Therefore,the luminanceattenuationfactor
at eachpixel is (MI(~'Y)P' Supposethepseudo-projectionoperatoris

denotedas 9; thentheprojectedresultis generatedas:

20Q 0100 wo 800 1(lO(1
Numbn-ofI~atiOIl

5.2 Validation of training strategy

As describedin Sect.3.4,we proposeto separatelytrain the threesub-
networks,DefocusNet,LuminanceNet,andCompensationNet,rather
thanjointly updatingall the weightsof the entirenetwork(i.e., asdone
in the naIve training method). In the naIve training method,it is not
guaranteedthat DefocusNetand LuminanceNetprovide the correct
defocusblur andluminanceattenuationmaps,respectively,at the early
stageof the training. On the otherhand,thecorrectmapsarealways
injectedinto CompensationNetin theproposedtrainingmethod.There-
fore, we hypothesizethat theproposedtraining methodcan train the
subnetworksmoreefficiently thancanthe naIvetraining method.We
experimentallytestedthis hypothesisby comparingthe loss values
betweenthe naIvetraining methodandtheproposedtraining method.

Figure6 showsthe lossvaluesat eachiterationin the training of the
threesubnetworksusing the naIvemethodandtheproposedmethod.
We seethat the lossvaluesdid not decreasebut only ftuctuatedoverthe
iterationswhen the naIvetraining methodwasapplied. On the other
hand,the proposedtraining methoddecreasedthe loss valuesof all
three subnetworks.Therefore,we confirmedthat our hypothesisis
correct;andthus,theproposedtraining strategyis valid.

Fig. 6. Comparison of the proposed training method with the naNe
training method. The orange lines are the loss values of the proposed
method, and the blue lines, of the naIve method.

5.3 Validation of network structure

The most important featureof the proposednetwork is its divided
structureinto an extractoranda generator.We designedtheproposed
structureto usethe targetimageof the previousframeand its projected
resultonly to estimatethe defocusblur mapandthe luminanceatten-
uation map. If we did not explicitly separatethe network structure,
thepossibility that the textureof thepreviousframe would affect the
compensationimagein the currentframe would increase.Therefore,
we evaluatedour proposednetworkstructureby comparingit with a
simpleronethatcomputesthecompensationimagewithout the explicit
estimationsof the defocusblur map and the luminanceattenuation
map. Specifically, consideringthe versatilepropertyof ResNet,we
appliedit aswe did CompensationNetfor thecomparedsimplenetwork,
which takesthe targetimageof thecurrentframe,thatof theprevious
frame,andits projectedresultas the inputsandgeneratesa compen-
sationimage. We trainedthe simplenetworkusing the samedataset
andpseudo-projectiontechniquethat we usedto train the proposed
network.

We comparedtheproposedandsimplenetworksin the simulation
usingthe pseudo-projectiontechnique.Ten videofiles for thecompar-
ison wererandomlyselectedfrom anotherdataset(Momentin Time

al. [16]. The20,000pairsweredivided into 1,000mini-batches,each
of which contained20 pairs.Becausetraining usinga largesetof video
files normally takesa relatively long time, it wasnot feasibleto repeat
our training for multiple epochs.Therefore,theepochnumberof our
training wasone.We trainedour networkusinga sharedworkstation
(GPU: NVIDIA RTX A6000,GPUmemory:48 GB, CPU: Intel Xeon
Platinum8260,CPU memory: 768 GB). The training took 630 min.
ThepredefinedparametersweresetasAl = 0.2, A2 = 5, A3 = I, -'4 = I,
As = 3, Au = 0.2, and A7 = I. The standarddeviation valuesof the
Gaussiannoiseweresetas 0" = 3 and o"x = O"Y = 3.

Note thatall of thefollowing experiments,exceptthat in Sect.5.2,
were conductedusing fixed parametersthat had beentrained in the
aforementionedsettings.

(16)

5.1 Training details
To train our network,we prepared20,000videosof 21 videoframes,
eachof which wasgeneratedby connectingthreedifferent video files
randomlyselectedfrom Vimeo-90K dataset[51], whereeachvideo
file consistsof sevenframes. We connectedthe different video files
to ensurethat eachvideo sequencecontainedrapidchangesbetween
theconnectedframes.Thenwe randomlyselected2,748depthimages
from the NYU DepthDataset[36], which wereusedto representthe
shapesof projectionsurfaces.The videosandthedepthimageswere
scaledandclippedinto 256x256pixels. Eachvideo file waspaired
with oneof the depthimages.Thus,we prepared20,000pairsof video
files anddepthimages.

To optimize the network, we utilized Adam [29] with a learning
rateof le-3 andmomentumparametersof f31 = 0.9 and f32 = 0.999.
All learnableparameterswere initialized using the methodof He et

Figure5(d) showsthis process.Note that the normalizationconstantin
I

thecomputationof the lossof CompensationNetis k = min ( .() )2
x,y Ml x,Y

(seeEq. 8).

4.4 Warping in pseudo-projection
The pseudo-projectionprocesshasbeenimplementedsofar assuming
theFoV of the virtual projectorandthatof the virtual cameraare iden-
tical. However,achievingtheperfectalignmentin an actualprojector-
camerasetupis difficult [2]. If the projectedresultsin a datasetare
synthesizedasdescribedaboveandusedto train theproposednetwork,
a slight misalignmentin an actualsetuppotentiallycausessignificant
artifactsin thecompensationresult.Therefore,we proposethe useof
a geometricwarping techniqueto simulatethe misalignmentand to
incorporateit into thepseudo-projectionprocess.

Specifically, we applied a homographytransformationto warp
the synthesizedprojectedresult I r , which was originally a rectangle
(Fig. 5(e». Supposethat the coordinatevaluesof the four cornersare
(Xi,Yi) (i = 1,2,3,4). Then,we warp the projectedresultso that the
coordinatevaluesafterwarpingare (Xi +ncrx ,Yi+ncry)' Thewarpedim-
ageis clippedby theoriginal rectanglearea.We fill non-existingpixels
with thepixel valueof zero(i.e., black). We denotethewarpingprocess
as"fI/. Thus,thewholeprocessof obtainingthepseudo-projectedresult
with warpingI w canbewritten as:
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Fig. 8. The translation and rotation movements of the projection surface
applied in the experiment.

Frame:51 52 53

Fig. 7. The pseudo-projected results of the images compensated by the
proposed and simple networks. There is a scene change between the
51 st and 52nd frames.

processusingan actualPM system.

5.4.1 Experimental setup

Dataset[33]). All the selectedvideo files werescaledandclippedinto
256x256pixels. Each video file had90 frames. We pairedeachof
thevideo files with a randomlyselecteddepthimagefrom the NYU
DepthDataset,which representsthe shapeof a projectionsurface.We
testedeachnetworkby repeatingthe following processfrom the frame
numberof t = 1 to 90 for eachvideo file. First, we fed the video frame
of t asthetargetimageIf (t), theprojectionimageof thepreviousframe
Ip(t -1), andits pseudo-projectedresultI,.(t -1) = !Y(Ip(t - 1)) into
the testednetwork. In caseswherethe testednetwork was the pro-
posednetwork, we also fed the defocusblur map M~ (t - 1) and the
luminanceblur mapM; (t - 1) estimatedin thepreviousframeto the
network.The testednetworkgeneratedthecompensationimageIp(t).
Second,we appliedthe proposedpseudo-projectiontechniqueusing
the paireddepth imageto the compensationimageto synthesizeits
projectedresultI,.(t) = !Y(Ip(t)). We thencomputedthe SSIM value
of thepseudo-projectedresultcomparedto the normalizedtargetimage
(seeEq. 8). Note that in the first frame, we usedthe video frame of
t = 1as Ip(t - 1) and I,.(t - 1), andwe useda uniform blackimageas
M~(t-l) andM!(t-l).

Figure7 showsa partof thepseudo-projectionresultsof the three
videoframeswherea scenechangeoccurred.In the resultof the simple
network, the silhouetteof the shelfin the51st frameremainedin the
52nd frame. On the other hand,suchartifactsare not visible in the
resultof theproposednetwork. This differencecanbequantitatively
confirmedin theSSIM valuesof thepseudo-projectedresultscompared
to the targetimages.We averagedthe SSIM valuesof all the framesof
all thevideofiles. Thepseudo-projectedresultsof theproposednetwork
(ave. SSIM: 0.820)weremoresimilar to the targetimagesthanthoseof
the simplenetwork(ave.SSIM: 0.807)andthoseof anormalprojection
wherethe targetimagesweredirectly pseudo-projected(ave. SSIM:
0.790).Therefore,we confirmedthat the proposednetworkstructureis
moresuitablefor projectordeblurringthan thesimpleone.

5.4 Dynamic PM in actual setup
We designedour network to compensatefor the defocusblur in an
actual dynamic PM scenario. In particular, our pseudo-projection
techniquein the training applieswarping to the virtually projected
result,consideringthepotentialrnisregistrationin an actualprojector-
camerasetup,asdescribedin Sect.4.4. We evaluatedthecompensation
performanceof theproposednetworkandtheefficacy of the warping

We built a physicalprojector-camerasetup,as shown in Fig. 1. We
useda DLP projector(BenQTH682ST,60mmlensaperture)andan
industrialCMOS camera(FUR FL3-U3-13S2C-CS).Theprojection
surfacewas a fiat, diffuse surfacewhoseposewas controlled by a
robot arm (UFACTORY xArm 7) so that the samesequenceof the
surfaceposescould be repeatedin differentconditions.Becausethe
computationofa compensationimagetook 71.7 ms (Sect.5.3), real-
time frame-by-frameprojectordeblurring,which requirescompletion
of thecomputationwithin 1/60s, wasdifficult to performin thecurrent
setup. Therefore,we merely emulatedit using the robotic arm by
slowly moving the surface. We performeda manualcalibration to
obtain the geometricrelationshipsamongthe projector,the camera,
andthe surface,by which we wereableto geometricallytransformthe
capturedimageof the projectedresult suchthat the cameraand the
projectorsharedthe sameFoY.

We randomlyselectedthreevideo clips from theMomentin Time
Datasetusedin Sect.5.3 (90 frames,256x256pixels). Thesevideos
wereprojectedontothemovingsurfacein two conditions:compensated
anduncompensated.In the first condition,we computedtheprojection
imagesby enteringthe video framesinto the proposednetworkand
geometricallytransformingthe compensatedimagesto align themwith
the surface.In the secondcondition,the original video frameswere
directly geometricallytransformedto computetheprojectionimages.

We preparedtwo types of movementsfor the projectionsurface:
translationand rotation (Fig. 8). For the translationmovement,the
surfacewas initially placed280mm awayfrom the projectorsuchthat
the surfacewasperpendicularto theprojector'soptical axis. Then,the
surfacewastranslatedtowardstheprojectoralong its opticalaxis (Le.,
from far to middle) at thespeedof 1mm perframefor 40 frames.Then,
the surfacewastranslatedin the horizontaldirectionat the samespeed
for 10 frames,during which no depthvariationoccurred.The surface
was then translatedtowardsthe projector(i.e., from middle to near)
againat the samespeedfor 40 frames. During the experiment,the
projector'sfocusingdistancewasfixed at 280mm from theprojector
lens(Le., far). For the rotationmovement,the surfacewasplaced400
mm awayfrom theprojectorsuchthat the surfacewasperpendicular
to the projector'soptical axis. The surfacewas rotatedaroundthe
yaw axis at the angularvelocity of 1 angleper frame for 45 frames.
Then,it wasrotatedbackat the samespeedfor 45 frames.During the
experiment,theprojector'sfocusingdistancewasfixed at 400mm from
theprojectorlens.
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Fig. 11. The estimated defocus blur map and the luminance attenuation
map from the network that was trained without the warping process in
the pseudo-projection technique, and those from the proposed network.
The right graphs show the pixel values along the green and red lines.

Fig. 10. The 881M values of the projected results shown in Fig. 9
compared to the corresponding target images (orange: compensated
condition; blue: uncompensated condition).

5.4.4 Full-color dynamic PM

Full-color imagescan be compensatedusing the proposednetwork
independentlyfor eachcolor channel. The full-color compensation
imagewasgeneratedby concatenatingthe compensationimagesof the
threecolor channels.Figure I showsa part of the projectedresults
capturedby thecamera.We canseethatthehigh-frequencycomponents
werepreservedin the resultsof the camp condition, while thoseof
the correspondingvideo frames were missing in the resultsof the
uncamp condition. Therefore,we experimentallyconfirmedthat the
proposednetworkcouldcompensatefull-color imagesfor thedefocus

surface.We calledthis the"compensated(without warping)"condition.
Figure II comparestheestimateddefocusblur andluminanceattenua-
tion mapsin therotationmovementbetweenthecompensatedcondition
andthecompensated(without warping)condition. Becausethe surface
was flat and rotatedsuchthat the projectedimageappearedfocused
at its right end and was getting defocusedtowardsthe left end, the
intensitiesof thedefocusblur mapandthe luminanceattenuationmap
shouldbe linearly decreasingfrom left to right. In the figure, we see
thatthe targettextureis prominentin both themapsof thecompensated
(without warping)condition. This artifactwascausedby the inaccurate
geometricregistrationsof the actualprojectorandcamera,and thus,
thesetwo devicesdid not perfectlysharetheFoYs. Thenetworktrained
without the warpingprocessdid not assumesuchsituation,andthus,
producedthe artifacts. On the otherhand, we can observethat the
proposednetwork was less affectedby the misregistration,and the
textureof the targetimageis lessvisible in themaps.The right graphs
quantitativelyshowthis trend. Thered lines (thecompensatedcondi-
tion) decreasemore smoothlyfrom 0 to 255 on the horizontalpixel
coordinatethan the greenlines (the compensated(without warping)
condition).
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Fig. 9. The projected results of the uncompensated and compensated
projection images onto the projection surface moved by the robotic arm
according to the (a) translation and (b) rotation movements.

5.4.3 Validation of warping process in pseudo-projection

We saw the effect of the warpingprocesson the estimateddefocus
blur andluminanceattenuationmaps.We trainedour networkwithout
thewarpingprocessin thepseudo-projectiontechniqueandconducted
thedynamicPM experimentusing the samevideofiles andprojection

5.4.2 Results

Figure9 showsa partof theprojectedresults.Thecomparisonof the
resultsin the compensatedand uncompensatedshowsthat the high-
frequencycomponents(texturedetails)werepreservedwhenthepro-
posedcompensationtechniquewasapplied,while thoseweremissing
in the uncompensatedcondition. Figure 10 showsthe SSIM valuesof
theprojectedresultscomparedto thecorrespondingtargetvideo frames.
The SSIM valuesin the compensatedconditionwerehigherthanthose
in the uncompensatedcondition in both the translationand rotation
movements.TheaverageSSIM valuesoverall thevideo framesof all
thevideo files in the translationmovementwere0.531 in thecompen-
satedconditionand0.438in the uncompensatedcondition. Thosein
therotationmovementwere0.804in thecompensatedconditionand
0.722in theuncompensatedcondition.Therefore,wecanquantitatively
confirm that theproposednetworksuccessfullycompensatedfor the
defocusblur in an actualPM system.
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blur artifacts.

Fig. 12. Results of the test of the robustness of the proposed network
against fast surface movement. (a) The 881M values of the projected
results of the original target image (blue) and those of the projected
results of the compensated images when the translation speed was 1
mm/frame (orange). (b) The difference in the 881M values between the
translation speed of 1 mm/frame and the other speeds.

6 DISCUSSION

Although we achievedour researchgoal,our techniquestill hasseveral
technicallimitations. First, the computationaltime requiredto gen-
eratethe compensationimageusingthe proposednetworkwas 71.7
ms in the currentsetup. Therefore,we usedthe robotic arm to emu-
late real-timeframe-by-framecompensationandprojectionby slowing
down the surfacemovement. Among conventionaltechniques,sim-
ple (but inaccurate)projectordeblurringmethodswork faster thana

CNN-basedmethod[28]. Previousstudiesshowedthat theacceptable
latencyfor dynamicPM mustbe lessthan 10 ms [32,35,49];otherwise,
observerscannotperceivethata projectedimageis attachedto a pro-
jection surface.However,this level of latencyhasnot beenachieved
evenby the simplemethods.Therefore,reducingthe computational
time of projectordeblurringto the requiredlevel while achievingsat-
isfactorycompensationperformanceis still an openissuein dynamic
PM research.Second,the currently implementednetworkworks for
256x256-pixelimages. On the otherhand,commerciallyavailable
displayssupporta 4K resolution(Le., 3,840x2,160pixels). However,
increasingthepixel sizeto 4K in the trainingof theproposednetwork
is not feasibledueto the limited sizeof theGPU memory.

A largepartof a naturalimageconsistsonly of low-spatial-frequency
components;and thus, projector deblurring does not significantly
changetheimagequality of theprojectedresultof sucha low-frequency
part. Therefore,we could improveour methodin termsof its computa-
tional costandmemoryusageby applying thecompensationnetwork
selectivelyto only the imageareasthatcontaina largeamountof high-
spatial-frequencycomponents.We may further speedup the inference
processand reducememory usageby incorporatingfactorizationof
two-dimensionalPSFinto two one-dimensionalPSFs[43]. Another
solution is theapplicationof the latestmulti-scaleseparablenetwork,
which hasbeenproven to deblura 4K video at the video rate of 35
fps [10]. We believethatprojectordeblurringfor largerimagesizein
dynamicPM is an importanttopic for future study.

Third, we developedour techniquebasedon the simpleassumption
that the projectionsurfaceis uniformly white anddiffuse. However,
in reality, physical surfacesare more complex, such as thosewith
spatiallyvarying reflectancepropertiesthat includespecularreflections.
In addition, imagequality degradationis causednot only by defocus
blur andluminanceattenuationbut alsoby variousglobal illumination
effectsthat includeinterreflection,subsurfacescattering,anddiffraction.
The proposednetwork doesnot supportthesedegradingfactors. A
coupleof previoustechniquescancompensatefor all theartifacts[20,
50], but they requireactualprojectionof a largenumberof calibration
patterns.Oneof thesestudiesdemonstratedthata DNN couldgenerate
compensationimagesfor complexartifacts.Therefore,for our future
study,we find it interestingto combineour approachandtheprevious
techniqueof optimizing projectionimagesto jointly compensatefor all
the imagedegradationfactorsin dynamicPM.

7 CONCLUSION

This paperpresenteda DNN thatcancompensatefor defocusblur in
dynamicPM. The primary contributionof this paperis its develop-
mentof a uniquenetworkstructurethatconsistsof an extractoranda
generator.The extractorexplicitly estimatesa defocusblur mapand
a luminanceattenuationmap,which aretheninjectedinto the middle
layersof the generatornetwork thatcomputesthe compensationim-
age.We alsoproposeda pseudo-projectiontechniquefor synthesizing
physicallyplausibletrainingdata,consideringnot only thedefocusblur
and theluminanceattenuationbut alsothegeometricmisregistration
thatpotentiallyhappensin actualPM use.We conducteda simulation
andactualPM experimentsandconfirmedthat: (I) theproposednet-
work structurewasmoresuitablefor projectordeblurringthana simple
structure;(2) the networktrainedwith theproposedpseudo-projection
techniquecould compensateprojectionimagesfor defocusblur and
luminanceattenuationartifactsin dynamicPM; and(3) the network
supportedthe translationspeedof a projectionsurfacewithin a certain
rangethatcoversnormalhumanmotions. In our future study,we will
testour methodin morecomplexenvironments,suchasonewith clear
depthdiscontinuities.We will alsoconducta userstudy to evaluate
how muchthe proposednetworkimprovestheprojectedimagequality
comparedto the simplenetworkin theperceptualspace.
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5.5 Robustness against fast movement
We developedthe proposedtechniqueby assumingthat a projection
surfacedoesnotmovemuchwithin theperiodof a videoframe(1/60s).
Thus,we experimentallyevaluatedhow robustthe proposednetworkis
againsta fastprojectionsurfacemotion. We usedthe samePM system
describedin Sect.5.4. The projection surfacewas translatedalong
the projector'soptical axis from 300 mm from the projectorto 400
mrn. We changedthe translationspeedto I, 5, 10, 20, 50, and 100
mm/frame.Theprojector'sfocusingdistancewasfixed at 300mmfrom
theprojectorlensthroughoutthis experiment.To comparetheprojected
resultsof the sametargetimagesat different translationspeeds,we
useda staticimage (Mandrill) as the targetimagein this experiment.

Figure 12(a)plots the SSIM valuesof the projectedresultsof the
original targetimageandthoseof thecompensatedimagesin the trans-
lation speedof I mm/frame.Both SSIM valuesdecreasedaccordingto
thedistancefrom thefocusingdistance(= 300 mm) dueto thedefocus
blur artifact. Thefluctuation in the SSIM valueswascausedby themis-
registrationof the projectorandthecamerato the surface.Figure12(b)
showsthedifferencein the SSIM valuesbetweenthe projectedresults
of the translationspeedof I mm/frameandthoseof theothertransla-
tion speeds.Thenumberof plots differedacrossthe translationspeeds
becausea slowerspeeddecreasesthe surfacepositionsto beprojected
(e.g.,20positionsin a5mm/frame,10 positionsin a IOmm/frame,...,I
position in a 100mm/frame).We canobservethat the similar compen-
sationperformanceswereachievedwhen the translationspeedwas5,
10, and20 mm/frame,while they weremostly lower when the speed
was50 and 100 mm/frame. Theseresultsindicatethat the proposed
techniquerobustly works at various surfacespeeds.Specifically, it
workedwhen the translationspeedof a projectionsurfacewasslower
than 20 mm/frame(= 1,200mm/s) in theory, which coversnormal
humanhandmotions.This resultis valid only for thecurrentPM setup;
andthus,we considermoregeneralcases.Whenthedistancebetween
a projectionsurfaceanda projectorbecomesshorter,thePSFchanges
morenotablywith the samedepthdifferenceof the surface.Because
we useda relatively shortdistancein the currentexperimentalsetup,
thePSFchangedmorequickly than in generaldynamicPM scenarios.
Therefore,our techniquecansupportfasterthan 1,200mm/sprojection
surfacemovementin a more normal dynamicPM setup,where the
projectionsurfaceis placedfarther thanthecurrentexperimentalsetup.
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