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Fig. 1. The proposed projector deblurring technique compensates movie contents for defocus blur artifacts using a deep neural network
for dynamic projection mapping. The left and middle images show the target images (top) as well as the projected results of the target
images (middle) and of the compensation images (bottom) that were computed by the proposed network. The projection surface was
(a) translated from far (in focus) to near (out of focus) or (b) rotated from O degrees (in focus) to 45 degrees (out of focus) along the yaw
axis by using a robotic arm shown in the right image. We observed that the details of the target images were preserved in the projected
results of the proposed technique but were missing in the projected results of the direct projection of the target images.

Abstract—Projector deblurring is an important technology for dynamic projection mapping (PM), where the distance between a
projector and a projection surface changes in time. However, conventional projector deblurring techniques do not support dynamic
PM because they need to project calibration patterns to estimate the amount of defocus blur each time the surface moves. We
present a deep neural network that can compensate for defocus blur in dynamic PM. The primary contribution of this paper is a unique
network structure that consists of an extractor and a generator. The extractor explicitly estimates a defocus blur map and a luminance
attenuation map. These maps are then injected into the middle layers of the generator network that computes the compensation
image. We also propose a pseudo-projection technique for synthesizing physically plausible training data, considering the geometric
misregistration that potentially happens in actual PM systems. We conducted simulation and actual PM experiments and confirmed
that: (1) the proposed network structure is more suitable than a simple, more general structure for projector deblurring; (2) the network
trained with the proposed pseudo-projection technique can compensate projection images for defocus blur artifacts in dynamic PM;
and (3) the network supports the translation speed of the surface movement within a certain range that covers normal human motions.

Index Terms—Projector deblurring, dynamic projection mapping, deep neural network
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INTRODUCTION

Projection mapping (PM) is a major approach to realize spatial aug-
mented reality (SAR), which seamlessly merges the real and cyber
worlds by optically superimposing computer-generated graphics onto
physical surfaces [8, 15]. It has been applied in various fields, such
as medicine [37], industrial design [44], online conferencing [23],
office work [25, 30], and entertainment [26, 31]. Due to the recent
advances of high-speed and low-latency projector hardware [49], the
latest research tends toward dynamic PM, where the geometrical re-
lationship between a projection target and a projector changes during
the projection [5, 32, 35,42, 45]. In addition, there is an emerging
optical see-through, head-mounted display that applies a dynamic PM
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framework, where a head-mounted screen is projected by a pan-tilt
projector [22]. To control the appearance of the target surface, accurate
alignment of the projected image onto the target is crucial; and thus,
geometric registration of the projector has been the prime technical
challenge [8]. On the other hand, defocus blur is also a critical problem
in dynamic PM. Because the lens aperture of a projector is normally
designed to be large (i.e., with a small f-stop) to achieve bright pro-
jection, a projector’s depth of field (DoF) is narrow. When a target
moves and its distance from the projector changes, the projected result
is significantly blurred. Therefore, defocus blur compensation is as
important as geometric registration in dynamic PM.

Defocus blur is mathematically modeled as the convolution of a
projection image and a point spread function (PSF). The PSF of each
projector pixel represents its impulse response or the intensity distribu-
tion of its projected result. Past studies realized projector deblurring by
computing the projection images using deconvolution [9, 13,38]. To
achieve effective defocus blur compensation, these techniques require
accurate PSF estimation. Because the PSF varies according to the
distance between the projector lens and the projection surface, it varies
spatially in PM, where the projection surface is potentially nonplanar.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Previous studies estimated the PSFs by projecting a calibration pattern,
which is either a spatial code pattern such as a dot pattern [9, 13,52]
or an original target image [28,38], and capturing the projected results
using a camera. The estimated PSFs are valid for as long as the pro-
jector and the surface do not move. If they move, however, the PSFs
must be estimated again. Therefore, in dynamic PM, the calibration
pattern must be frequently projected onto the surface, which signifi-
cantly degrades the augmented reality experience of users. While many
approaches to mitigating the defocus blur in PM have been proposed
(see Sect. 2.1), to the best of our knowledge, no technical solution has
been presented yet for the projector defocus problem in dynamic PM.

This paper proposes a projector deblurring technique that does not
require projection of the calibration pattern even when the projection
surface moves. As the first attempt towards the projector deblurring in
dynamic PM, we start with a simple assumption that the surface is uni-
formly white and completely diffuse. The key insight exploited in the
technique is that the geometric relationship between the projector and
the projection surface does not vary significantly within a video frame
(i.e., 1/60 sec in most current video projectors). Therefore, our method
computes the compensation image of the current frame using the pro-
jected result of the previous frame captured with a camera. Specifically,
we applied a deep convolutional neural network (CNN) to generate the
compensation image. As the prime contribution of this research, we
devised an effective network structure for projector deblurring, which
has two parts: an extractor and a generator. In each frame, the extractor,
which consists of two subnetworks, takes a pair of the projection image
of the previous frame and its projected result as the input. The first sub-
network estimates a defocus blur map that represents how much each
projector pixel is defocused on the surface. The second subnetwork
estimates a luminance attenuation map that represents the degree of
reduction of the captured luminance of the projected result compared
to that of the target luminance due to the inverse square law of light
intensity. These two maps are then injected into the middle layers of
the generator network, which takes the original target image of the
current frame as the input and computes the compensation image to be
projected at the current frame. We also propose to synthesize physically
plausible training data to avoid laborious and time-consuming projec-
tion data collection. In particular, our pseudo-projection technique
generates the projected results by simulating the defocus blur based on
the thin-lens model and by simulating the luminance reduction based
on the inverse-square law with respect to the depth. Considering actual
PM scenarios where the geometric registration of the projector and
the camera is potentially inaccurate, we also incorporated warping of
the generated image into our pseudo-projection framework. Through
a simulation-based comparison, we show that the proposed network
structure is more suitable for compensating dynamic projection con-
tents for defocus blur than a simple, single-network structure. Using a
physical projector-camera system, we demonstrate that our projector
deblurring technique can compensate for the defocus blur in an actual
dynamic PM scenario.

To summarize, our primary contributions from this study are as
follows:

* We introduce a CNN-based projector deblurring technique that
generates a compensation image for defocus blur artifacts in the
projected result in a dynamic PM scenario without requiring
offline PSF estimation;

* We find that the combination of extractor subnetworks and a
generator subnetwork is the effective structure for projector de-
blurring, where the outputs of the extractor (the defocus blur map
and the luminance attenuation maps) are incorporated into the
middle layers of the generator;

* We design a pseudo-projection framework to synthesize physi-
cally plausible training data, considering inaccurate geometric
registration between the projector and the camera; and

* We demonstrate the projector deblurring achieved by the proposed
system through a physical dynamic PM experiment.
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Details on the implementation can be found at the GitHub repository!.

2 RELATED STUDIES

There are two major research topics related to this study: projector
deblurring and deep learning for radiometric compensation in PM. In
this section, we introduce previous studies on these topics and state our
contributions compared to them.

2.1 Projector deblurring

Previous PM techniques that tackled the defocus blur artifacts can be
categorized into single-projector and multiple-projectors approaches.
The goal of the single-projector approach is to generate a compensation
image that, when projected, will closely resemble the target image,
which is not blurred. To this end, the single-projector techniques solve
the inverse problem of projector defocus, which is modeled by a convo-
lution between a projection image and the pixel-dependent PSFs [11].
Researchers have explored several deconvolution approaches. For in-
stance, Brown et al. [9] and Oyamada and Saito [38] proposed compen-
sation techniques based on the Wiener filter. Although these were com-
putationally efficient, their compensation results tended to suffer from
ringing artifacts. Other researchers achieved projector deblurring with
fewer artifacts by applying a constrained optimization technique [52]
or an inverse light transport matrix technique [50], though they were
computationally expensive. Kageyama et al. balanced the trade-off
between the deblurring accuracy and the computational complexity
using a deep neural network (DNN) [28]. Grosse et al. also balanced
the trade-off by applying a coded aperture to the projector optics, which
preserves the high-frequency components of a projected image more
than do normal circular apertures and, consequently, reduces the ringing
artifacts caused by Wiener filtering [13].

In these aforementioned techniques, the pixel-dependent PSFs must
be estimated for the deconvolution. The estimation is done by pro-
jecting either dot patterns [9, 13,50, 52] or original images (i.e., target
images) [28,38] in advance. Therefore, unblurred images cannot be
continuously displayed on a moving projection surface, where the PSFs
vary in time. One possible solution is to apply a traditional fast PSF
estimation method and deblurring technique [3,27] using the projection
information of the previous frame and the target image of the current
frame. This idea is similar to our proposed method but may not work
well due to the misalignment between the projector and the camera
pixels in actual dynamic PM scenarios. These limitations had been
overcome by applying a fast focal sweep projection technique with an
electrically focus tunable lens (ETL), by which the PSF of each pixel
becomes uniform over a wide depth range [24]. Another solution also
applied the ETL by controlling it to keep focusing on a moving target
whose position was tracked by a depth sensor [47]. In these techniques,
the PSFs need not be estimated online even when the projection surface
moves. However, to the best of our knowledge, there is currently no
ETL device that can balance a sufficiently quick response for the focus
control with a sufficiently large aperture for image projection.

The multiple-projectors approach achieves all in-focus projection
by positioning multiple projectors such that their projected images
overlay each other and their DoFs cover the entire projection surface. In
early methods, a projector is selected for each surface area whose PSF
preserves the high-spatial-frequency components of the target image [6,
34]. Recent studies have proposed more advanced techniques in which
the projection images for the multiple projectors are jointly optimized so
that the appearance of the overlaid projected results resembles the target
image [4,41]. The image quality of the projected result is better in the
multiple-projectors techniques than in the single-projector techniques.
However, a multi-projection system significantly increases the cost and
requires complex geometric and photometric calibrations. Thus, its
application field is still very limited.

lhttps ://github.com/kagechan5/0Online-Projector-
Deblurring-Using-a-Convolutional-Neural-Network
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Fig. 2. An overview of our online blur compensation framework that has two parts: an extractor and a generator. The two subnetworks of the
extractor, DefocusNet and LuminanceNet, have the same U-Net-like structure [39] but do not share the learnable weights. From the information in
the previous frame ¢ — 1, the DefocusNet estimates the defocus blur map M/,(z), and LuminanceNet estimates the luminance attenuation map M;(z).
These maps represent the degree of defocus blur and luminance attenuation per pixel, respectively. The generator’s subnetwork generates the
compensated projection image I,(r) from the target image I (r) by incorporating the maps into the middle layers of the network.

2.2 Deep learning for radiometric compensation

A projected result on an arbitrary surface appears different from its orig-
inal image. The color is modulated by the texture of the surface, and
the high-spatial-frequency components are reduced by the subsurface
scattering, interreflection, and defocus blur. Radiometric compensation
techniques have been intensively explored in the last two decades to
mitigate the image quality degradation in PM [7, 15]. The latest trend
in this research field is the application of deep learning technologies.
Huang et al. proposed an end-to-end projector photometric compen-
sation network [19]. By projecting and capturing hundreds of texture
images on a projection surface, the network implicitly learns the per-
pixel complex reflectance property of the surface. Once trained, the
network generates a projection image from an original image such that
the projected result does not suffer from photometric distortions caused
by the spatially varying surface reflectance properties. The network
was improved to compensate for both photometric and geometric dis-
tortions [18,21] as well as for global illumination effects [20]. These
networks outperform classical technologies with regard to radiometric
compensation. However, they need to be trained for each projection
surface, in which multiple textures need to be projected in advance.

Kageyama et al. proposed an end-to-end compensation network for
projector deblurring [28]. Once the weights of the network are trained,
they can be used for any projection surface. However, the network still
requires projection of the target image and capture of its projected result
before it can compute the compensation image for each surface. There-
fore, it does not support dynamic projection contents (e.g., movies) and
cannot properly work for dynamic projection surfaces. In summary, the
previous radiometric compensation techniques based on deep learning
are not suitable for dynamic PM scenarios.

2.3 Our contribution

The prime contribution of this paper is the realization of a projector de-
blurring technique in a single-projector approach that works in dynamic
PM. Based on an observation that the depth of the projection surface
does not significantly change within a video frame (i.e., 1/60 sec), our
technique synthesizes the compensation image using the projected in-
formation in the previous frame. We designed a DNN structure that
synthesizes a compensation image from the target image of the current
frame as well as from the projection image of the previous frame and
its projected result. In particular, we found that the combination of two
network modules (an extractor and a generator) has better compensation
performance than a simple single-network structure. We also propose a
pseudo-projection technique for synthesizing a projected result from

a projection image and a depth map of a surface in order to train the
network. We show that the network weights trained by the synthesized
data are useful for projector deblurring in physical setups.

3 PROJECTOR DEBLURRING NETWORK

We propose a DNN that synthesizes a projection image to compensate
for defocus blur even in dynamic PM scenarios. This section describes
our network and our loss function, which are designed to minimize
the difference between a target image and the projected result of the
compensation image.

3.1 Overview

We assume that a projection surface is (1) uniformly white and com-
pletely diffuse, (2) observed with a camera, and (3) within the camera’s
DoFs. Although various optical phenomena can degrade the image
quality of a projected result, we found from our preliminary investi-
gation that two of these optical phenomena are dominant factors in
the assumed situation. The first optical phenomenon is the projector’s
defocus blur, which attenuates the high-spatial-frequency components
of the projected result according to the distance from the focal plane.
The second optical phenomenon is the attenuation of the luminance of
the captured projected result according to the distance of the surface
from the camera (i.e., according to the inverse square law of light). We
designed our network to mitigate the image quality degradation caused
by the defocus blur in the projected result without suffering from the
luminance attenuation artifacts.

Figure 2 shows the whole structure of our proposed projector deblur-
ring network. In our preliminary investigation, we observed that the
projection surface did not significantly move within each video frame
in most of the dynamic PM scenarios. Thus, we estimated the extent of
the occurrence of the defocus blur and the luminance attenuation of the
projected result in the previous frame, and we used that information to
generate the compensation image for the current frame. We applied a
network structure with two parts, an extractor and a generator, rather
than a single network to explicitly estimate the defocus blur and the
luminance attenuation. Specifically, the extractor had two subnetworks,
one of which estimates the amount of defocus blur, and the other, of
luminance attenuation for each projector pixel. The estimated defocus
blur map and the luminance attenuation map were then injected into
the generator subnetwork, which synthesized the projection image that
compensated for the image degradation. We explicitly separated the
network structure so that the texture of the previous frame would not
affect the compensation image in the current frame.
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Note that we designed our network to compensate for defocus blur
caused by spatially varying PSFs, and it properly worked even in a
case wherein two consecutive video frames were not similar (e.g., a
scene change occurred between them). Without loss of generality, we
assumed that the projector and the camera shared the same field of
view (FoV). This assumption allowed us to model the projector’s PSF
without having to consider its distortion on a freeform or tilted surface
due to the different perspectives of the two devices. We achieved the
FoV sharing in an actual projector-camera setup by applying a beam-
splitter or by geometrically transforming the captured image using the
pose relationship between them.

3.2 Extractor

The two subnetworks in the extractor independently estimate the de-
focus blur and the luminance attenuation. We refer to the subnetwork
for the defocus blur estimation as DefocusNet (.#;), and that for the
luminance attenuation, as LuminanceNet (.4;). As shown in Fig. 2,
these subnetworks are independent to enable them to extract different
features from each network. They apply the same U-Net [39] structure
but do not share the weights and are not connected to each other.

Each subnetwork takes as input a projection image and its projected
result in the preceding frame. Considering the interframe consistency,
we also feed each subnetwork with its previous output. Then, Defocus-
Net and LuminanceNet output the defocus blur map and the luminance
attenuation map, respectively. As a reasonable assumption that was
applied in most previous studies [1,24,34], we considered the PSF of a
projected pixel a Gaussian function. Then, each pixel of the defocus
blur map represents the variance of the PSF of the corresponding pro-
jected pixel. A captured projected pixel becomes darker when the pixel
is farther from the camera (i.e., based on the inverse square law of light).
Therefore, each pixel of the luminance attenuation map represents the
distance of the corresponding projected pixel from the camera. Then,
these subnetworks are modeled as in the following equations:

M0
Mo -

Aol = 1), Py = )My 1), ()
M=), P - 1) M~ 1), @)

where M, and M; are the estimated defocus blur map and the luminance
attenuation map, respectively; I, is the projection image and Z(1,)
represents its projected result; and ¢ and ¢ — 1 indicates the frame
numbers.

We trained DefocusNet and LuminanceNet to accurately estimate
the amount of defocus blur and luminance attenuation in the projected
result for each projector pixel. Suppose that the ground truth map of
the PSF variances of the projected pixels and of their distances from
the camera are M, and M;, respectively. Then, we used the following
%, and & as the loss functions in the training of DefocusNet and
LuminanceNet, respectively:

ZI g(MZ{(t)aMd(t))* (3)
& = LM),Mt)), “)
y(l‘J) = &1 (l*‘/)’+"ll-=g7"V(l‘J)q (5)

where %, (i, j) is a loss function that uses the ¢; norm of the differ-
ences between i and j. In addition, we applied the total variation [40]
loss Zry (i, j) for the regularization of the estimated maps. A, is a
coefficient that balances the two functions.

3.3 Generator

Given the estimated defocus blur map M, and the luminance atten-
uation map M/, we generated a compensation image from the target
image I; using the generator subnetwork. We denote the compensation
image as I, because it is the projection image of the next frame. We
refer to the network as CompensationNet (.4;), and we use ResNet [17]
as its backbone network. To use the per-pixel information of the two
maps in the compensation image generation, we applied an attention
mechanism [12] for incorporating the maps into CompensationNet.
Specifically, we injected M/, and M/ into the middle layers of Compen-
sationNet with the Hadamard product rather than giving them to the
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first layer of the network, as shown in Fig. 2. Thus, we modeled the
network as in the following equation:

Ip(t) = Ae(l (), [Mg (1)), [M7 (1)), (6)

where the brackets represent the injection of the estimated maps into
the middle layers.

We trained CompensationNet to generate a compensation image
whose projected result resembles the target image for human observers.
Therefore, the following function can be considered the loss in the
training:

%Sim(‘@(lp (t)),'lt (t))v (7)

where Zi5im (i, j) represents the structural similarity (SSIM) [48] loss
that computes the difference between i and j in the human visual
perception space. However, due to the limited peak luminance of a
current projector device, the full luminance range of the target image is
not always reproducible in a projected result [14,46]. To mitigate the
clipping errors caused by this limitation, we linearly normalized the
target image pixel values into the reproducible range. Thus, we used the
following %, as the loss function in the training of CompensationNet:

%sim('@(lp(t))aklr(t))ﬁ €

where k (0 < k < 1) represents the normalization constant that is uni-
formly applied to the pixel values over the target image, and k is the
minimum luminance attenuation factor (i.e., the largest amount of
attenuation) in the captured image.

¥ =

3.4 Training strategy

A straightforward (or naive) method of training the proposed network
is to update all the weights in the network by flowing the data de-
picted in Fig. 2. Specifically, the estimated maps from DefocusNet and
LuminanceNet (i.e., M/, and M) are directly injected into Compensa-
tionNet in the training. However, we expect this method to be unstable
and the weights not to converge in a reasonable time frame. In the early
stage of the training, DefocusNet and LuminanceNet did not output
correct maps. Thus, updating the weights of CompensationNet did
not make much sense. Therefore, we applied another method that sep-
arately trained the three networks. Specifically, we used the ground
truth of the defocus blur map M, and the luminance attenuation map
M; to train CompensationNet instead of the estimated maps, M/, and

M (Fig. 3).

4 DATASET SYNTHESIS

To train the proposed network, we had to prepare a large set of target
images I, the ground truth of the defocus blur maps My, and that of
the luminance attenuation maps M;. In addition, the training required
the projected results of the projection images I,. However, it was
impractical to obtain them using actual PM and capturing setups with
a large number of projection surfaces of various shapes. Therefore,
we synthesized the dataset from a set of target images and a set of
depth images that represented the shapes of the projection surfaces.
We performed the dataset synthesis in a virtual space with a virtual
projector and a virtual camera. Based on the assumption described in
Sect. 3.1, the virtual projector and the virtual camera had the same FoV.

4.1 Computational model of projector blur

As shown in Fig. 4, based on a thin-lens model, a light point emitted
from the imaging plane of a projector is observed as a circle on a
projection surface located v away from the projector lens. The diameter
of the blur circle b can be computed using geometrical similarity as:

b=ld(: -1, ©)

where d and s are the diameter of the projector’s aperture and the
focusing distance, respectively. A pixel on the imaging plane is not an
ideal point light source; therefore, the PSF of the projected pixel cannot
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Fig. 4. Thin-lens model for computing the PSF of a projected pixel.

be represented as a pillbox function but is generally approximated as
the following Gaussian function [1,24,34]:

2r2

PSF(r,b) = =

2,
—exp(— ), (10)

b
where r is the distance from the blur center. When an image I, is pro-
jected from a virtual projector onto a nonplanar surface, the projected
appearance [, captured by a virtual camera can be computed using the
following convolution:

I =I,®PSF +n, (11)

where ® is the convolution operator and # is a Gaussian noise.
4.2 Synthesis of defocus blur map and luminance attenu-

ation map

We generated the defocus blur map M, from the depth map of a pro-
jection surface that represented the distance from the virtual projector
to the surface at each projector pixel (Fig. 5(a)). Specifically, based on
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Luminance
attenuation map: M; V)

Depth image: D Defocus blur map: My

(14 191+ 1)

@©

Pseudo-projected result: I,

Pscudo-projected result
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Fig. 5. The process flow of the proposed pseudo-projection technique.

Eq. 9, we computed the defocus blur map as follows:

a2PEN +hs

s
where D(x,y) is the depth value (0 < D(x,y) < 1) at the projector pixel
coordinate of (x,y). The focusing distance s is randomly selected from
the predefined range A4 < s < As.

We generated the luminance attenuation map M, also from the depth
map (Fig. 5(b)). As described in Sect. 3.2, each pixel of the luminance
attenuation map M; (x,y) represents the distance of the corresponding
projected pixel from the camera. Therefore, we computed it as follows:

Ml(xﬁy) = AﬁD(x*y) +A77

where Ag and A7 are the predefined scaling factor and the bias, respec-
tively.

My(x,y) = (12)

(13)

4.3 Pseudo-projection for synthesis of projected results

We developed a pseudo-projection technique to synthesize the projected
results, considering both the defocus blur and the luminance attenuation.
Suppose that I, is a projection image; then the defocus blurred image
1; can be computed using Eq. 11 as:

Ii(x,y) = (I, ® PSF(Mg))(x,y) +no(x,y), (14)
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where ng is a Gaussian noise with the standard deviation value of o
(Fig. 5(c)).

Next, we applied the luminance attenuation to /; to obtain the pro-
jected result I.. According to our assumption of the FoV sharing
between the virtual projector and the virtual camera, the apparent size
of each projected pixel captured by the virtual camera does not change
with respect to the depth variation of the projection surface. On the
other hand, the luminous flux that is emitted from the projected pixel
and incident into the virtual camera’s lens is inversely proportional to
the square of the distance from the pixel. Thus, the luminance of the
projected pixel captured by the virtual camera attenuates according to
the inverse square law. Therefore, the luminance attenuation factor

at each pixel is m Suppose the pseudo-projection operator is

denoted as Z7; then the projected result is generated as:

Ls) =)= (15)

AT s

Figure 5(d) shows this process. Note that the normalization constant in

1
the computation of the loss of CompensationNet is k = min —————
xy (M (x,y))
(see Eq. 8).

4.4 Warping in pseudo-projection

The pseudo-projection process has been implemented so far assuming
the FoV of the virtual projector and that of the virtual camera are iden-
tical. However, achieving the perfect alignment in an actual projector-
camera setup is difficult [2]. If the projected results in a dataset are
synthesized as described above and used to train the proposed network,
a slight misalignment in an actual setup potentially causes significant
artifacts in the compensation result. Therefore, we propose the use of
a geometric warping technique to simulate the misalignment and to
incorporate it into the pseudo-projection process.

Specifically, we applied a homography transformation to warp
the synthesized projected result /., which was originally a rectangle
(Fig. 5(e)). Suppose that the coordinate values of the four corners are
(xi,yi) (i=1,2,3,4). Then, we warp the projected result so that the
coordinate values after warping are (x; + ng,,y; + g, ). The warped im-
age is clipped by the original rectangle area. We fill non-existing pixels
with the pixel value of zero (i.e., black). We denote the warping process
as # . Thus, the whole process of obtaining the pseudo-projected result
with warping I, can be written as:

L =W (I,) =W (P(Ip)). (16)

5 EXPERIMENT

We evaluated the proposed network both in a simulation and a physical
dynamic PM setup. In this section, the details of the training are
described, followed by the simulation experiment that was conducted
to evaluate the validity of the proposed network and the training strategy.
Then, the results of the physical experiments, which were conducted to
check if the proposed network would work in an actual dynamic PM
scenario, are introduced.

5.1 Training details

To train our network, we prepared 20,000 videos of 21 video frames,
each of which was generated by connecting three different video files
randomly selected from Vimeo-90K dataset [51], where each video
file consists of seven frames. We connected the different video files
to ensure that each video sequence contained rapid changes between
the connected frames. Then we randomly selected 2,748 depth images
from the NYU Depth Dataset [36], which were used to represent the
shapes of projection surfaces. The videos and the depth images were
scaled and clipped into 256 x256 pixels. Each video file was paired
with one of the depth images. Thus, we prepared 20,000 pairs of video
files and depth images.

To optimize the network, we utilized Adam [29] with a learning
rate of le-3 and momentum parameters of §; = 0.9 and 3, = 0.999.
All learnable parameters were initialized using the method of He et
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Fig. 6. Comparison of the proposed training method with the naive
training method. The orange lines are the loss values of the proposed
method, and the blue lines, of the naive method.

al. [16]. The 20,000 pairs were divided into 1,000 mini-batches, each
of which contained 20 pairs. Because training using a large set of video
files normally takes a relatively long time, it was not feasible to repeat
our training for multiple epochs. Therefore, the epoch number of our
training was one. We trained our network using a shared workstation
(GPU: NVIDIA RTX A6000, GPU memory: 48 GB, CPU: Intel Xeon
Platinum 8260, CPU memory: 768 GB). The training took 630 min.
The predefined parameters were setas A =0.2, 1 =5, 43 =1, 44 =1,
As =3, A4 = 0.2, and A7 = 1. The standard deviation values of the
Gaussian noise were set as 6 = 3 and 0y = 0y = 3.

Note that all of the following experiments, except that in Sect. 5.2,
were conducted using fixed parameters that had been trained in the
aforementioned settings.

5.2 Validation of training strategy

As described in Sect. 3.4, we propose to separately train the three sub-
networks, DefocusNet, LuminanceNet, and CompensationNet, rather
than jointly updating all the weights of the entire network (i.e., as done
in the naive training method). In the naive training method, it is not
guaranteed that DefocusNet and LuminanceNet provide the correct
defocus blur and luminance attenuation maps, respectively, at the early
stage of the training. On the other hand, the correct maps are always
injected into CompensationNet in the proposed training method. There-
fore, we hypothesize that the proposed training method can train the
subnetworks more efficiently than can the naive training method. We
experimentally tested this hypothesis by comparing the loss values
between the naive training method and the proposed training method.

Figure 6 shows the loss values at each iteration in the training of the
three subnetworks using the naive method and the proposed method.
We see that the loss values did not decrease but only fluctuated over the
iterations when the naive training method was applied. On the other
hand, the proposed training method decreased the loss values of all
three subnetworks. Therefore, we confirmed that our hypothesis is
correct; and thus, the proposed training strategy is valid.

5.3 Validation of network structure

The most important feature of the proposed network is its divided
structure into an extractor and a generator. We designed the proposed
structure to use the target image of the previous frame and its projected
result only to estimate the defocus blur map and the luminance atten-
vation map. If we did not explicitly separate the network structure,
the possibility that the texture of the previous frame would affect the
compensation image in the current frame would increase. Therefore,
we evaluated our proposed network structure by comparing it with a
simpler one that computes the compensation image without the explicit
estimations of the defocus blur map and the luminance attenuation
map. Specifically, considering the versatile property of ResNet, we
applied it as we did CompensationNet for the compared simple network,
which takes the target image of the current frame, that of the previous
frame, and its projected result as the inputs and generates a compen-
sation image. We trained the simple network using the same dataset
and pseudo-projection technique that we used to train the proposed
network.

We compared the proposed and simple networks in the simulation
using the pseudo-projection technique. Ten video files for the compar-
ison were randomly selected from another dataset (Moment in Time
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Fig. 7. The pseudo-projected results of the images compensated by the
proposed and simple networks. There is a scene change between the
51st and 52nd frames.

Dataset [33]). All the selected video files were scaled and clipped into
256x256 pixels. Each video file had 90 frames. We paired each of
the video files with a randomly selected depth image from the NYU
Depth Dataset, which represents the shape of a projection surface. We
tested each network by repeating the following process from the frame
number of = 1 to 90 for each video file. First, we fed the video frame
of ¢ as the target image (), the projection image of the previous frame
I,(t — 1), and its pseudo-projected result Z,(t — 1) = P (I, (¢ — 1)) into
the tested network. In cases where the tested network was the pro-
posed network, we also fed the defocus blur map M/, (r — 1) and the
luminance blur map M (r — 1) estimated in the previous frame to the
network. The tested network generated the compensation image 7, (t).
Second, we applied the proposed pseudo-projection technique using
the paired depth image to the compensation image to synthesize its
projected result Z,(1) = (I, (t)). We then computed the SSIM value
of the pseudo-projected result compared to the normalized target image
(see Eq. 8). Note that in the first frame, we used the video frame of
t=1asI,(t—1)and I.(t — 1), and we used a uniform black image as
My(t—1) and M (r — 1).

Figure 7 shows a part of the pseudo-projection results of the three
video frames where a scene change occurred. In the result of the simple
network, the silhouette of the shelf in the 51st frame remained in the
52nd frame. On the other hand, such artifacts are not visible in the
result of the proposed network. This difference can be quantitatively
confirmed in the SSIM values of the pseudo-projected results compared
to the target images. We averaged the SSIM values of all the frames of
all the video files. The pseudo-projected results of the proposed network
(ave. SSIM: 0.820) were more similar to the target images than those of
the simple network (ave. SSIM: 0.807) and those of a normal projection
where the target images were directly pseudo-projected (ave. SSIM:
0.790). Therefore, we confirmed that the proposed network structure is
more suitable for projector deblurring than the simple one.

5.4 Dynamic PM in actual setup

We designed our network to compensate for the defocus blur in an
actual dynamic PM scenario. In particular, our pseudo-projection
technique in the training applies warping to the virtually projected
result, considering the potential misregistration in an actual projector-
camera setup, as described in Sect. 4.4. We evaluated the compensation
performance of the proposed network and the efficacy of the warping
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Fig. 8. The translation and rotation movements of the projection surface
applied in the experiment.

process using an actual PM system.

5.4.1 Experimental setup

We built a physical projector-camera setup, as shown in Fig. 1. We
used a DLP projector (BenQ TH682ST, 60mm lens aperture) and an
industrial CMOS camera (FLIR FL3-U3-13S2C-CS). The projection
surface was a flat, diffuse surface whose pose was controlled by a
robot arm (UFACTORY xArm 7) so that the same sequence of the
surface poses could be repeated in different conditions. Because the
computation of a compensation image took 71.7 ms (Sect. 5.3), real-
time frame-by-frame projector deblurring, which requires completion
of the computation within 1/60 s, was difficult to perform in the current
setup. Therefore, we merely emulated it using the robotic arm by
slowly moving the surface. We performed a manual calibration to
obtain the geometric relationships among the projector, the camera,
and the surface, by which we were able to geometrically transform the
captured image of the projected result such that the camera and the
projector shared the same FoV.

‘We randomly selected three video clips from the Moment in Time
Dataset used in Sect. 5.3 (90 frames, 256 x256 pixels). These videos
were projected onto the moving surface in two conditions: compensated
and uncompensated. In the first condition, we computed the projection
images by entering the video frames into the proposed network and
geometrically transforming the compensated images to align them with
the surface. In the second condition, the original video frames were
directly geometrically transformed to compute the projection images.

We prepared two types of movements for the projection surface:
translation and rotation (Fig. 8). For the translation movement, the
surface was initially placed 280 mm away from the projector such that
the surface was perpendicular to the projector’s optical axis. Then, the
surface was translated towards the projector along its optical axis (i.e.,
from far to middle) at the speed of 1 mm per frame for 40 frames. Then,
the surface was translated in the horizontal direction at the same speed
for 10 frames, during which no depth variation occurred. The surface
was then translated towards the projector (i.e., from middle to near)
again at the same speed for 40 frames. During the experiment, the
projector’s focusing distance was fixed at 280 mm from the projector
lens (i.e., far). For the rotation movement, the surface was placed 400
mm away from the projector such that the surface was perpendicular
to the projector’s optical axis. The surface was rotated around the
yaw axis at the angular velocity of 1 angle per frame for 45 frames.
Then, it was rotated back at the same speed for 45 frames. During the
experiment, the projector’s focusing distance was fixed at 400 mm from
the projector lens.
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Fig. 9. The projected results of the uncompensated and compensated
projection images onto the projection surface moved by the robotic arm
according to the (a) translation and (b) rotation movements.

5.4.2 Results

Figure 9 shows a part of the projected results. The comparison of the
results in the compensated and uncompensated shows that the high-
frequency components (texture details) were preserved when the pro-
posed compensation technique was applied, while those were missing
in the uncompensated condition. Figure 10 shows the SSIM values of
the projected results compared to the corresponding target video frames.
The SSIM values in the compensated condition were higher than those
in the uncompensated condition in both the translation and rotation
movements. The average SSIM values over all the video frames of all
the video files in the translation movement were 0.531 in the compen-
sated condition and 0.438 in the uncompensated condition. Those in
the rotation movement were 0.804 in the compensated condition and
0.722 in the uncompensated condition. Therefore, we can quantitatively
confirm that the proposed network successfully compensated for the
defocus blur in an actual PM system.

5.4.3 Validation of warping process in pseudo-projection

We saw the effect of the warping process on the estimated defocus
blur and luminance attenuation maps. We trained our network without
the warping process in the pseudo-projection technique and conducted
the dynamic PM experiment using the same video files and projection
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surface. We called this the “compensated (without warping)” condition.
Figure 11 compares the estimated defocus blur and luminance attenua-
tion maps in the rotation movement between the compensated condition
and the compensated (without warping) condition. Because the surface
was flat and rotated such that the projected image appeared focused
at its right end and was getting defocused towards the left end, the
intensities of the defocus blur map and the luminance attenuation map
should be linearly decreasing from left to right. In the figure, we see
that the target texture is prominent in both the maps of the compensated
(without warping) condition. This artifact was caused by the inaccurate
geometric registrations of the actual projector and camera, and thus,
these two devices did not perfectly share the FoVs. The network trained
without the warping process did not assume such situation, and thus,
produced the artifacts. On the other hand, we can observe that the
proposed network was less affected by the misregistration, and the
texture of the target image is less visible in the maps. The right graphs
quantitatively show this trend. The red lines (the compensated condi-
tion) decrease more smoothly from O to 255 on the horizontal pixel
coordinate than the green lines (the compensated (without warping)
condition).

5.4.4 Full-color dynamic PM

Full-color images can be compensated using the proposed network
independently for each color channel. The full-color compensation
image was generated by concatenating the compensation images of the
three color channels. Figure 1 shows a part of the projected results
captured by the camera. We can see that the high-frequency components
were preserved in the results of the comp condition, while those of
the corresponding video frames were missing in the results of the
uncomp condition. Therefore, we experimentally confirmed that the
proposed network could compensate full-color images for the defocus
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blur artifacts.

5.5 Robustness against fast movement

We developed the proposed technique by assuming that a projection
surface does not move much within the period of a video frame (1/60 s).
Thus, we experimentally evaluated how robust the proposed network is
against a fast projection surface motion. We used the same PM system
described in Sect. 5.4. The projection surface was translated along
the projector’s optical axis from 300 mm from the projector to 400
mm. We changed the translation speed to 1, 5, 10, 20, 50, and 100
mm/frame. The projector’s focusing distance was fixed at 300 mm from
the projector lens throughout this experiment. To compare the projected
results of the same target images at different translation speeds, we
used a static image (Mandrill) as the target image in this experiment.
Figure 12(a) plots the SSIM values of the projected results of the
original target image and those of the compensated images in the trans-
lation speed of 1 mm/frame. Both SSIM values decreased according to
the distance from the focusing distance (= 300 mm) due to the defocus
blur artifact. The fluctuation in the SSIM values was caused by the mis-
registration of the projector and the camera to the surface. Figure 12(b)
shows the difference in the SSIM values between the projected results
of the translation speed of 1 mm/frame and those of the other transla-
tion speeds. The number of plots differed across the translation speeds
because a slower speed decreases the surface positions to be projected
(e.g., 20 positions in a Smm/frame, 10 positions in a 10mm/frame, ..., 1
position in a 100mm/frame). We can observe that the similar compen-
sation performances were achieved when the translation speed was 5,
10, and 20 mm/frame, while they were mostly lower when the speed
was 50 and 100 mm/frame. These results indicate that the proposed
technique robustly works at various surface speeds. Specifically, it
worked when the translation speed of a projection surface was slower
than 20 mm/frame (= 1,200 mm/s) in theory, which covers normal
human hand motions. This result is valid only for the current PM setup;
and thus, we consider more general cases. When the distance between
a projection surface and a projector becomes shorter, the PSF changes
more notably with the same depth difference of the surface. Because
we used a relatively short distance in the current experimental setup,
the PSF changed more quickly than in general dynamic PM scenarios.
Therefore, our technique can support faster than 1,200 mm/s projection
surface movement in a more normal dynamic PM setup, where the
projection surface is placed farther than the current experimental setup.

6 DiscussioN

Although we achieved our research goal, our technique still has several
technical limitations. First, the computational time required to gen-
erate the compensation image using the proposed network was 71.7
ms in the current setup. Therefore, we used the robotic arm to emu-
late real-time frame-by-frame compensation and projection by slowing
down the surface movement. Among conventional techniques, sim-
ple (but inaccurate) projector deblurring methods work faster than a
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CNN-based method [28]. Previous studies showed that the acceptable
latency for dynamic PM must be less than 10 ms [32,35,49]; otherwise,
observers cannot perceive that a projected image is attached to a pro-
jection surface. However, this level of latency has not been achieved
even by the simple methods. Therefore, reducing the computational
time of projector deblurring to the required level while achieving sat-
isfactory compensation performance is still an open issue in dynamic
PM research. Second, the currently implemented network works for
256 x256-pixel images. On the other hand, commercially available
displays support a 4K resolution (i.e., 3,840x2,160 pixels). However,
increasing the pixel size to 4K in the training of the proposed network
is not feasible due to the limited size of the GPU memory.

A large part of a natural image consists only of low-spatial-frequency
components; and thus, projector deblurring does not significantly
change the image quality of the projected result of such a low-frequency
part. Therefore, we could improve our method in terms of its computa-
tional cost and memory usage by applying the compensation network
selectively to only the image areas that contain a large amount of high-
spatial-frequency components. We may further speed up the inference
process and reduce memory usage by incorporating factorization of
two-dimensional PSF into two one-dimensional PSFs [43]. Another
solution is the application of the latest multi-scale separable network,
which has been proven to deblur a 4K video at the video rate of 35
fps [10]. We believe that projector deblurring for larger image size in
dynamic PM is an important topic for future study.

Third, we developed our technique based on the simple assumption
that the projection surface is uniformly white and diffuse. However,
in reality, physical surfaces are more complex, such as those with
spatially varying reflectance properties that include specular reflections.
In addition, image quality degradation is caused not only by defocus
blur and luminance attenuation but also by various global illumination
effects that include interreflection, subsurface scattering, and diffraction.
The proposed network does not support these degrading factors. A
couple of previous techniques can compensate for all the artifacts [20,
50], but they require actual projection of a large number of calibration
patterns. One of these studies demonstrated that a DNN could generate
compensation images for complex artifacts. Therefore, for our future
study, we find it interesting to combine our approach and the previous
technique of optimizing projection images to jointly compensate for all
the image degradation factors in dynamic PM.

7 CONCLUSION

This paper presented a DNN that can compensate for defocus blur in
dynamic PM. The primary contribution of this paper is its develop-
ment of a unique network structure that consists of an extractor and a
generator. The extractor explicitly estimates a defocus blur map and
a luminance attenuation map, which are then injected into the middle
layers of the generator network that computes the compensation im-
age. We also proposed a pseudo-projection technique for synthesizing
physically plausible training data, considering not only the defocus blur
and the luminance attenuation but also the geometric misregistration
that potentially happens in actual PM use. We conducted a simulation
and actual PM experiments and confirmed that: (1) the proposed net-
work structure was more suitable for projector deblurring than a simple
structure; (2) the network trained with the proposed pseudo-projection
technique could compensate projection images for defocus blur and
luminance attenuation artifacts in dynamic PM; and (3) the network
supported the translation speed of a projection surface within a certain
range that covers normal human motions. In our future study, we will
test our method in more complex environments, such as one with clear
depth discontinuities. We will also conduct a user study to evaluate
how much the proposed network improves the projected image quality
compared to the simple network in the perceptual space.
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