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Comparing Direct and Indirect Methods of Audio Quality Evaluation
in Virtual Reality Scenes of Varying Complexity

Thomas Robotham, Olli S. Rummukainen, Miriam Kurz, Marie Eckert, and Emanuël A. P. Habets

Fig. 1. Audio-visual objects used within VR scenes to demand various amounts of interactivity from the user. From left to right; static
loudspeaker, animated train-set, interactive radio, and interactive remote control drone.

Abstract—Many quality evaluation methods are used to assess uni-modal audio or video content without considering perceptual,
cognitive, and interactive aspects present in virtual reality (VR) settings. Consequently, little is known regarding the repercussions of
the employed evaluation method, content, and subject behavior on the quality ratings in VR. This mixed between- and within-subjects
study uses four subjective audio quality evaluation methods (viz. multiple-stimulus with and without reference for direct scaling, and
rank-order elimination and pairwise comparison for indirect scaling) to investigate the contributing factors present in multi-modal 6-DoF
VR on quality ratings of real-time audio rendering. For each between-subjects employed method, two sets of conditions in five VR
scenes were evaluated within-subjects. The conditions targeted relevant attributes for binaural audio reproduction using scenes with
various amounts of user interactivity. Our results show all referenceless methods produce similar results using both condition sets.
However, rank-order elimination proved to be the fastest method, required the least amount of repetitive motion, and yielded the highest
discrimination between spatial conditions. Scene complexity was found to be a main effect within results, with behavioral and task load
index results implying more complex scenes and interactive aspects of 6-DoF VR can impede quality judgments.

Index Terms—Multi-modal, virtual reality, 6-Degrees-of-freedom, audio quality, direct scaling, indirect scaling, evaluation methods

1 INTRODUCTION

Subjective quality evaluation methods for media technology are highly
dependent on the context-of-use and user demographic. Consequently,
many standards now exist to address these different scenarios [68].
For traditional audio quality, most recommendations consider contexts
where audio is judged as an independent sensory input (uni-modal), as
opposed to in conjunction with multiple sensory inputs (multi-modal).
With the rising popularity of immersive and interactive systems such
as virtual reality (VR), investigations within complex multi-modal en-
vironments are becoming more prevalent in the research community
to understand higher-order quality covariates such as cyber-sickness
and plausibility [7, 63, 75]. Nevertheless, the ability to conduct qual-
ity evaluations of audio rendering within a multi-modal setting is still
advantageous for algorithmic optimization. The choice of method in
psychoacoustic evaluations can directly influence the ability to identify
statistically significant perceptual differences which drive many deci-
sions in the domain of sensory sciences. To the authors’ knowledge, no
standard currently exists for VR audio evaluation, and little research
has comparatively studied the use of standardized quality evaluation
methods in multi-modal VR environments.
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This study provides a comparison of four evaluation methods (viz.
multi-stimulus with and without reference for direct scaling, and rank-
order elimination and pairwise comparison for indirect scaling) to
identify subjective audio quality within a multi-modal VR context. Five
simple scenes are employed to target differing degrees of interaction
available to users representative of typical VR content: static, animated,
and interactive objects (shown in Fig. 1). In traditional signal-focused
quality evaluation, the choice of the evaluation method is also informed
by the estimated magnitude of quality differences of the presented
conditions. However, as all audio conditions in VR are presented in
combination with visual, proprioception, and vestibular cues, these dif-
ferences can no longer be assumed to have the same perceived quality
levels and cognitive impact in comparison to a uni-modal presenta-
tion. Consequently, by altering the available task complexity within
controlled VR scenes, we also observe the effect multi-modal input
imposes on condition discernability. Given a comparison of subjective
results of using direct and indirect scaling evaluation methods, scene
interactivity, user behavior, and factors related to subjects’ cognitive
load, the results provide developers and quality evaluation experts a
novel contribution on how to evaluate and analyze audio quality in
multi-modal VR, as well as highlighting the implications of content
complexity in the absence of any explicit auditory reference.

2 BACKGROUND

2.1 Audio Quality Evaluation in the Context of 6-DoF VR
In six-degrees-of-freedom (6-DoF) VR, users may orientate their field
of view (FoV) and move position in all directions. Tracking data is
then used to drive rendering systems (e.g., audio, video) in real-time
to deliver a coherent egocentric representation of an interactive virtual
environment (IVE). Multi-sensory integration (MSI) is the multifaceted
neurocognitive process that combines our perception of these render-
ings, allowing us to orientate spatially and successfully navigate a
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space [23, 66]. In this study, this comprises of our visual, auditory,
vestibular, and proprioceptive responses. For audio, systems that pro-
vide us with high-fidelity sensory information can contribute to a greater
sense of immersion and presence within IVEs [37, 42]. Therefore, sub-
jectively evaluating these systems is a key step in maximizing the use
of limited computational budgets or bandwidth, for example. How-
ever, many test considerations that apply to traditional audio quality
evaluation do not strictly fit the context of 6-DoF IVEs.

Traditional audio quality evaluation procedures often aim to min-
imize the effect of influencing visual factors on quality judgments.
Research into auditory localization demonstrates how our auditory per-
ception is changed given various amounts of spatio-temporally aligned
visual cues [9, 24]. However, visual information is a necessity in nearly
all VR contexts. Now, quality evaluation within multi-modal IVEs
moves us towards MSI conflict situations, whereby two modalities may
receive incoherent information regarding a particular stimulus [22]. On
the one hand, MSI conflicts may lead to multiple sensory streams being
combined into a multi-modal percept in a near-optimal manner [1,8,14].
On the other hand, processing information with two different sensory
systems, which are activated synchronously by the same multi-modal
stimulus, increases the likelihood that we can correctly identify di-
verging sensory signals [65, 74]. The latter demonstrates how quality
judgments may be aided in multi-modal settings, where the expected
behavior of the modality under test does not spatially, temporally, or
otherwise correlate with another [34, 35].

For interacting with audio content in traditional evaluation settings,
the only dimension of variability is via a loop control allowing sub-
jects to set start- and end-points for loop segments along the presented
waveform. In 6-DoF VR, the amount of interaction offered within
a VR scene leads to completely non-linear exploration ranging from
purely 6-DoF movement to manipulating and interacting with individ-
ual audio-visual objects. This non-linearity means any subject may
experience the content completely different from all others [69]. For
object interaction, allowing users to actively ‘grab’ an audio source
with a controller means the auditory position of the sound source then
undergoes MSI with both visual and proprioception cues. Auditory
localization studies indicate proprioceptive feedback can improve local-
ization accuracy [27], and even aid our auditory system to procedurally
calibrate and adapt over a given exposure period to maintain local-
ization performance [49]. How this is achieved at a neurocognitive
level is not yet fully understood [44, 62]. However, increasing levels of
interactivity may place a higher cognitive and physical demand on sub-
jects leading to several undesirable effects such as increased test time,
mental fatigue, loss of motivation, and frustration. Studies involving
dual-task evaluations [41] in MSI research demonstrate that an increase
in cognitive processes and manual tasks, which occupy our working
memory, leave us susceptible to false perceptions of our other senses,
thereby influencing task performance [26, 59, 60]. Considering all the
available factors contributing to mental workload, such as: VR controls,
menu interaction, interactive elements within the scene, the quality
judgment task, and processing of sensory information, understanding
any challenges that impede (or mask) the quality judgment process is
of particular use for future research.

Lastly, depending on the evaluation conditions and quality criteria,
naı̈ve or expert listeners may be used [61]. However, an additional com-
ponent within IVEs is the subject’s experience with VR systems. Works
regarding intuitive interaction design demonstrate that intuition is not
the innate simplicity of a system, but rather a cognitive process trans-
forming knowledge or prior experience to a current application [11,43].
Following this principle, participants who are experienced in similar
systems as VR have already developed the cognitive schema associated
with particular human-computer interfaces and will consequently find
certain aspects less challenging, allowing them to focus more on the
quality judgment task.

2.2 Audio Evaluation Methods
2.2.1 Direct Scaling
In sensory evaluation, direct scaling allows subjects to directly assign a
value that represents their estimated magnitude of a perceived sensation

or attribute to a stimulus [45]. As this value is prescribed directly
from the subject, it is seemingly unambiguous and may often be easily
compared across conditions in terms of mean opinion scores (MOS)
and confidence intervals (CIs). For audio evaluation, two of the most
commonly used direct scaling methods are BS.1116 [28], targeting
small quality differences and BS.1534-3 [30] Multiple Stimulus with
Hidden Reference and Anchor (MUSHRA) tests, for larger deviations
compared to an explicit reference [4]. In MUSHRA tests, multiple con-
ditions (typically ≥ 5), including a hidden reference and a low-quality
anchor, are presented in parallel to the subject. A rating may then be
attributed to a condition via a slider representing a continuous qual-
ity scale ranging from 0 - 100, annotated with five descriptive labels:
Bad, Poor, Fair, Good, and Excellent. One of the main advantages of
MUSHRA testing is the ability to compare multiple conditions during
one test scene, making the test efficient whilst yielding high-quality
data [80]. Whilst not mandatory, subjects are also encouraged to switch
between conditions and reference as often as possible [47]. Subjects
also inherently provide a form of relative ranking through paired com-
parison between the presented conditions [64], meaning the quality
of presented conditions also affects the interpretation of the scale. To
control the scale usage, a low-quality anchor is used along with the
explicit open reference. How subjects are instructed to interpret and
rate anchor signals is likely to change the observed statistical differ-
ences [61]. Consequently, great care and consideration should be taken
in the design and guidance of any anchor conditions. No standard
currently exists detailing what constitutes an appropriate anchor for
real-time immersive audio evaluations.

Both BS.1116 and BS.1534-3 direct scaling methods are common
within signal-related audio quality evaluation largely due to the use of a
reference condition. However, IVEs are often computer-simulated, and
any real-time audio rendering pipeline for 6-DoF VR will require signal
processing to reflect user movements and acoustic auralization [46].
Therefore, a ‘ground-truth’ reference model for audio quality is seldom
available. Instead, direct scaling methods that do not utilize an open ref-
erence condition could be used in VR. Tests such as Absolute Category
Ratings (ACR) [32] present only a single condition to subjects which,
in comparison to MUSHRA testing of audio codec qualities, has proven
to be efficient and repeatable for low and intermediate degradations,
and less stable for high-quality conditions [21]. Recent experiments
and standardization activities also employ multi-stimulus experiments,
whereby direct scaling is still employed but in the absence of a ref-
erence and hidden reference, making a subject’s quality judgments
relative to one another and scale labels [31, 56, 80]. However, issues
related to response mapping of the scale and label interpretations [83]
may be more prevalent in the absence of a reference condition and thus
further susceptible to inter-subject differences.

2.2.2 Indirect Scaling

Contrary to direct scaling, indirect scaling methods use data given by
subjects to derive the magnitude of a stimulus’ quality. Data is collected
through a comparative process where conditions are prescribed a status
in relation to others via a choice-based paradigm. A scale can then
be constructed to show the probability that any particular condition
is favored over others with relative distances. Pairwise comparison
methods are some of the most powerful indirect scaling sensory tests.
This may be given as a binary forced-choice paradigm [76, 78], or a
bi-polar labelled scale [29]. The discriminatory power is due to subjects
being presented only two stimuli, reducing the subject’s task to simple
pairwise judgments [77]. If no scale is employed, the possibility of sub-
jective interpretation of the scale or labels is eliminated [16] making the
task even simpler. Bradley-Terry model [13] or Thurstone’s model [71]
are often used for the statistical analysis to determine a quality (or
preference) scale based on logistic or Gaussian distributions [81]. Al-
though commonly described as accurate, the main disadvantage of this
method is the time taken to complete all comparisons. Consequently,
incomplete block designs are used to decrease the required number of
paired comparisons. However, this design choice drastically increases
the number of subjects required to participate in testing.

To reduce task time, rank-order methods have been used through-
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out sensory evaluation to rapidly compare multiple conditions [67].
These methods require that subjects rank the presented stimuli in a
specified direction. This subjective ranking can then be used to develop
a relationship between all conditions within each test scene. As with
pairwise comparisons, the absence of any scale removes any potential
bias due to the interpretation of labels and also requires very little
training for the subjects. The drawback of this method is that the rating
cannot be described in terms of absolute quality [50, 79]. An adapta-
tion of a rank-order procedure, proposed by Wickelmaier et al. [77],
takes the method a step further. The goal is to sequentially eliminate
all conditions on the premise that preceding conditions all possessed
aspects that the current conditions do not [73]. By continuously di-
minishing the number of comparisons available within a test scene,
test time can be reduced whilst still providing results comparable to
other indirect scaling methods. Statistical inference can be conducted
via Plackett-Luce model [51], which is comparatively similar to the
Thurstone model [39].

For 6-DoF VR, ranking by elimination has proven to be an effective
method for determining relative levels of audio quality [57]. While
overcoming many hurdles presented by direct scaling, indirect scaling
still possesses overt limitations. Evaluating a collection of ‘poor’ qual-
ity audio renderers may yield a ranking, but the ‘best’ condition may
still be substandard to our expectations. However, in the absence of
a reference, direct scaling multi-stimulus experiments may also only
provide results in terms of relative quality. Another potential issue be-
comes apparent if all subjects make consistent rankings thus resulting
in zero inter-individual error [45]. Relative distances then derived from
choice probability will result in conditions that are infinitely separated
along any scale. Therefore, extracting a finite distance between condi-
tions requires more detailed statistical models than those used for direct
scaling analysis.

3 STUDY PARADIGM

This study employs a mixed between- and within-subjects test design
with a sample size N = 68. The between element of the design can
be broken down into four experiments that comprise of two separate
test sessions. These four experiments refer to the four different meth-
ods employed for quality evaluation (see Sect. 3.1) shown in Fig. 2.
Consequently, N

4 = 17 subjects are randomly assigned to each experi-
ment with two sessions ending in a total of 136 unique results across
experiments and sessions. Within each experiment, the two test ses-
sions employ two different sets of five conditions varying along two
dimensions of audio quality degradation (see Sect. 3.4).

3.1 Evaluation Methods and Environment
Four subjective evaluation methods are compared within this study:
two direct scaling methods and two indirect scaling methods. For direct
scaling methods, an adaptation of BS.1534-3 [30] and a multi-stimulus
comparison rating are used. Both methods are hereafter referred to
as multi-stimulus with hidden reference (MSHR) and multi-stimulus
(MS), respectively. As discussed in Sect. 2.2.1, the reference condition
is seldom available for 6-DoF VR, particularly in scenarios evaluating
different rendering algorithms. However, the MSHR test is included
here to serve as a comparison against other methods. The only departure
from the recommendation [30] is the anchor, as no 3.5 kHz low-pass
filtered version is included. This was withheld due to the uncertain
impact such a heavily degraded condition would have on scaling when
used in other methods (Sect. 2.2.1). The MS method includes no open
reference making all judgments relative to one another [31, 56].

For indirect scaling methods, rank-order elimination-by-aspects [77]
and pairwise comparisons are employed, hereafter referred to as EBA
and PC, respectively. The PC method is presented as a continuous
120-point bi-polar scale allowing subjects to represent their opinion
where smaller or greater differences are perceived. In actuality, the
scores given are converted to a binary format (described in Sect. 5.2).
Both bi-polar scale and statistical analysis have been selected as a
quality evaluation method in current standardization activities [54].
Consequently, we adopt the design choice here to be consistent with
related activities. To keep the PC method at a feasible size, a complete
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Fig. 2. VR test method interfaces. 1. Multiple-stimulus with hidden
reference interface (MSHR) . 2. Multi-stimulus interface (MS). 3. Rank-
order elimination interface (EBA). 4. Pairwise comparison interface (PC).

block design with no self-comparison or pairwise repetitions is used,
resulting in 50 comparisons per subject. All comparison pairs are
randomly presented per scene. Randomization of condition pairs across
all scenes was not included to reduce waiting (loading) times when
repeatedly switching scenes.

To conduct the experiments, software was built using the Unity game
engine and Max/MSP inspired by Robotham et al. [55] and Dodds et
al. [19]. The Unity game engine is programmed to host the VR devices,
interactivity framework, graphical components, and the test method
user interfaces. Max/MSP is used as a real-time audio engine to host all
audio renderers, test paradigms, and results logging. Communication
between the software is done via the open sound control protocol
through a user datagram protocol (UDP) transport layer. For this
study, the HTC Vive Pro is used as the VR head-mounted display in a
SteamVR playable area measuring 2.4 m × 2 m. The headphones used
are Beyerdynamic DT-990 Pro. Two controllers are used with the Vive
Pro to interact with the VR environment and test interfaces. Maximum
motion-to-sound latency was measured at approximately 12 ms.

For each method, a separate test panel is automatically imported into
each scene. The test interfaces for all methods can be seen in Fig. 2.
To show and hide the test panel, the subjects can touch-tap the north
sector of the controller touchpad. The test panel will always appear in
the subjects’ FoV. When the test panel appears, a laser pointer is also
activated to allow the users to change conditions and provide ratings
using buttons and sliders respectively. Teleportation was included to
allow exploration beyond the immediate playable area. Touching the
south sector of the touchpad would show the target pointer and pressing
the touchpad would activate. The mechanics of teleporting in VR raise
certain audio rendering considerations such as Doppler effects or brief
auditory discontinuities. How such mechanics are handled in complex
auralizations may also impact the perceived quality of a continuous spa-
tial soundscape. Grabbing interactive objects within the scene is done
by moving the controller towards the object, followed by pressing and
holding the grip button. If the interactive object has any functionality, it
can be activated by pulling the trigger while gripping. To assist subjects
in learning the controls, they first enter a VR configuration scene where
instructions for all interaction mechanics are written on separate panels
along with example objects to practice with. As the VR controls will
contribute towards usability, it is important that all subjects (particularly
those new to VR) feel comfortable with all mechanics to a point where
the initial learning curve has been overcome, allowing them to better
concentrate on the quality evaluation task.

3.2 Evaluation Content
For 6-DoF VR, varying levels of interaction are available to the user
depending on the use case and context. For this study, five scenes
have been designed which differ in interaction complexity and the
behavior of audio-visual objects to observe any effects on the cognitive
workload, and consequently, the quality judgment ratings. Table 1
provides a summary of the scenes in order of estimated complexity
(based on practical VR experience) and Fig. 1 shows the main audio-
visual objects included. Although treated as audio-visual, these scenes
are authored to be minimalistic in terms of visual realism. The intention
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is to provide a 6-DoF environment and relevant visual counterparts
to support multi-sensory integration. All scenes are presented in a
randomized order across all tests to minimize any learning effects.

The most simplistic scene is the Static scene. An audio-visual
loudspeaker is positioned on a stand with the acoustic axis at roughly
1.7 m height, allowing subjects to explore the complete space around
the audio-visual object. The loudspeaker plays a short music excerpt
lasting ≈ 16 seconds which is continuously looped.

The Animated scene possesses a tabletop toy train-set with a small
animated train that continuously runs around a circuit. The circuit
varies height at three distinct positions, and the table is purposefully
modeled to allow subjects to enter a small 2 meter wide cut-out, thus
being enveloped by the animation. Subjects may also explore around
all sides of the table to judge from all angles. While running, the train
plays pulse-modulated Brownian noise imitating a train engine, and
when passing the station plays a short whistle. The total duration of the
train audio and animation is ≈ 20 seconds.

The Distraction scene augments the Animated scene using five more
additional sound sources. Two audio-visual loudspeakers are positioned
on stands on either side of the train model, which loop left and right
channels of a ≈ 20 second stereo music excerpt. The sound of a pond is
positioned at the water source indicated on the table. Finally, two more
audio sources are included, which have no direct visual counterpart
but have semantic meaning within the scene’s context. Birds singing
positioned at a cluster of trees and a platform bell positioned at the
station. The platform bell is triggered to play only when the train
arrives. The intention is to make it challenging for the subjects to judge
the quality of only the toy train-set in the presence of competing audio.
All audio sources are subject to HRTF degradations (see Sect. 3.4).

The Interaction scene introduces more complex interaction with an
audio-visual object. An analog-style radio is situated on a table and the
subjects are instructed to grab and move the radio around their person
while evaluating the audio content. The radio loops a music excerpt of
≈ 34 seconds duration. By interacting with one controller and operating
the evaluation interface with another controller, it is estimated that the
cognitive load on subjects will be increased, making the evaluation
more challenging than previous passive scenes.

Finally, the Task scene is intended to be the most cognitively de-
manding. Set in a forest environment, the task involves flying a drone
which subjects must control using a virtual remote controller. Upon
starting the scene, the drone starts at a particular height and then pro-
ceeds to descend slowly. Subjects can move the forwards/sideways
position of the drone to any location indicated in space via a yellow
sphere by pulling the controller trigger. To increase the height of the
drone, the subjects must pull and hold the trigger (> 0.2 seconds). If
subjects let the drone sink to the ground, all audio playback from the
drone will stop, forcing subjects to continuously monitor the drone
height and use the virtual controller if they are to continue the evalua-
tion. Two audio files are attached to the drone. One plays a continuous
fan-motor, the other plays a revved fan-motor. The revved fan-motor is
only triggered when the user pulls the trigger and thus moves the drone
position. Four additional audio sources are positioned in the scene:
two ambient forest sounds, an owl source, and a woodpecker source.
These have no direct visual counterpart but support the contextual set-
ting. Overall, the mental workload of monitoring the drone position,
controlling the drone with one hand, and the test panel with another
hand is estimated to be the most demanding.

3.3 Questionnaire Scene
When evaluating methods, previous research [76, 77] has shown addi-
tional surrounding metrics such as task time, cognitive demand, and
emotional responses (burden, stress, frustration [10]) to be valuable in
understanding subjective responses that may contribute to the overall
reliability and ease-of-use [33]. Consequently, we include an addi-
tional questionnaire scene presented after each VR scene to collect
more information regarding the perceived difficulty of the evaluation
content. This is programmed into the VR software eliminating the
need for subjects to remove the VR equipment to provide manual pen
and paper responses. The intention being that the experience of the

previous VR scene will be more present in their memory. The NASA
Task Load Index (TLX) questionnaire [25] is employed which asks for
six responses along the following dimensions: mental demand, physical
demand, temporal demand, performance, effort, and frustration. Time
spent within the questionnaire scene is not analyzed; therefore, subjects
can also use the scene to take a break if desired.

3.4 Condition Pool
To compare the evaluation methods, we devised two degradation cat-
egories that highlight important aspects of real-time binaural audio
rendering using head-related transfer functions (HRTFs). One test
session employs conditions that are spatially degraded and hereafter
referred to as HRTFSpat . The other test session employs conditions
that posses frequency differences, hereafter referred to as HRTFFreq.
As a starting point and high-quality non-degraded open reference for
the MSHR method, we used the generic HRTF set measured from
the KEMAR head and torso simulator retrieved from the spatial au-
dio for domestic interactive entertainment (SADIE) database [3]. The
measurements comprise of 8802 source positions measured at 1.2 m
distance with a 1◦ azimuth and 15◦ elevation resolution, resulting in
35737 KB of data. The final HRTF set is diffuse-field equalized and the
filter length is 256 samples. Due to practical limitations of measuring
68 subjects’ individualized HRTFs, the methodological focus of this
study, and that we study here the perceptual impact of degradation’s
originating from a singular HRTF dataset, generic HRTFs are used. All
audio was rendered using convolution of the nearest HRTF angular fil-
ter and direct sound with the addition of distance attenuation according
to the inverse-square law. No interpolation was performed to focus the
perceptual quality on the HRTF dataset, as opposed to further signal
processing optimization. A gain limiter is active at 0.5 m from the
center of the head to avoid amplitude clipping at close distances. No
additional acoustic auralization was included to focus on the quality
effects of HRTF fidelity degradations. Block size for real-time audio
playback was 256 at a sampling rate of 44.1 kHz. All conditions within
both sessions were fully randomized to minimize learning effects.

For the HRTFSpat session, the spatial azimuth resolution of the
HRTF grid was reduced to produce HRTFs with azimuth grid reso-
lutions of 5◦, 10◦, 20◦, and 30◦ (illustrated in Fig. 3 - Top). The
lower resolution HRTF files were constructed by subsampling the orig-
inal HRTF at all measurement points that equaled the desired azimuth
angles. The resulting number of source positions for the respective
degrees are 1586, 794, 398, and 226. While a high-resolution HRTF
set may produce higher spatial fidelity, the motivation to include a
lower number of source positions drastically reduces the amount of
data (6400, 3214, 1620, and 1089 KB) and allows a faster capture time.

For the HRTFFreq session, the frequency resolution of the HRTF
set was altered by reconstructing the original HRTF using principal
component analysis (PCA) [36] on the HRTF magnitiude response.
The process entails identifying the reoccurring data patterns within a
data set, which can then be used to reduce the data such that its defining
components may still be expressed given a combination of basis vectors.
The number of principal components (bases) used defines the order
of dimensions to characterize our original data. In this study, the
frequency resolution for each HRTF source position is re-synthesized
using PCA with 2, 8, 16, 64, and 128 bases (Fig. 3 - Bottom), where 128
bases result in a reconstruction of the original HRTF (code available
at [72]). By altering the frequency response of our original HRTF, we
simulate possible degraded localization cues of height due to altering
the finer detail of higher frequency content [12], and overall impression
regarding coloration and timbre differences. The influence of timbre is
known to play a large role in the perception of overall audio quality [58].
However, such evaluations are often in comparison to a high-quality
open reference condition. In this study, the conditions in HRTFFreq
grant us more insight when comparing results between methods that do
not employ an open reference.

4 EVALUATION PROCEDURE

At the start of each test, all subjects were asked to fill out consent
and data protection forms and a short demographic form asking for
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Table 1. Evaluation content employed. Object refers to the audio-visual object within the scene, where N/A means no visual or audio counterpart is
present. For Audio, certain audio files are ‘triggered’, meaning the audio file only plays back at specific points during the scene.

Scene ID Area (x× z) Source No# Object Audio Starting Position Interactivity

Static 12×12 1 Loudspeaker Music excerpt (mono) [1.9 1.7 0.0] Static

Animated 24×24 1 Toy train Pulsed Brownian noise & whistle [-0.1 1.0 -5.6] Dynamic Trajectory

Distraction 24×24 1 Toy train Pulsed Brownian noise & whistle [-0.1 1.0 -5.6] Dynamic Trajectory
2 Loudspeaker (left) Music excerpt (left) [7.0 1.7 -7.0] Static
3 Loudspeaker (right) Music excerpt (right) [-7.0 1.7 -7.0] Static
4 N/A Birds chirping [-2.4 1.15 -6.0] Static
5 Table pond Slow water splashing / pond noise [1.6 1.0 -6.2] Static
6 N/A Platform bell (triggered) [-0.8 1.2 -5.8] Static

Interaction 12×12 1 Analogue radio Music excerpt (mono) [0.9 0.4 0.4] Interactive

Task 20×17 1 Remote drone Drone fans [1.0 4.0 4.0] Interactive
2 Remote drone Drone fans revving (triggered) [1.0 4.0 4.0] Interactive
- Drone controller N/A On person Interactive
3 N/A Forest ambience / crickets [-25.0 4.0 0.0] Static
4 N/A Forest ambience / crickets [25.0 4.0 0.0] Static
5 N/A Tawney owl (sporadic) [18.1 8.4 -20.5] Static
6 N/A Woodpecker (sporadic) [-9.3 11.3 12.0] Static
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128 basis functions, used as conditions for the HRTFFreq test session.

name, age, gender (male, female, and non-binary), VR experience,
and listening experience. Subjects could freely choose where they
saw themselves given written explanations of the various choices. VR
experience was broken down into five categories; naı̈ve, occasional,
semi-regular, frequent, and expert user. Listening experience was
broken into three categories: naı̈ve, experienced, and expert listener. All
subjects recruited for the test reported normal or corrected-to-normal
vision and hearing and were all compensated via monetary payment. In
total, 24 female and 44 male subjects participated with an average age
of 31 (SD = 11.7), 23 subjects were expert listeners, and 22 subjects
were naı̈ve regarding VR experience. At least five expert listeners
participated in each separate evaluation method.

A written description of the test was given to the subjects and ver-
bally explained by the administrator detailing, the method they will
be using, and how to provide their quality ratings. The criteria for
how subjects base their ratings is method-dependent. As MSHR is the
only method that provides a reference, the overall audio quality of the
conditions should be rated against the open reference. For the other
methods MS, EBA, and PC, the overall audio quality judgments should
be based on comparisons against other sensory cues (i.e., visual and
proprioceptive), and subjects’ inner reference and expectation. Instruc-
tions were provided in each VR scene (Table 1) to remind subjects
of the evaluation task. For the Distraction and Task scene, subjects
were informed to evaluate the overall audio quality of the toy train and

remote drone audio-visual objects, respectively. To aid the more naı̈ve
subjects, some major attribute categories of audio quality were provided
and described: localization quality, timbral quality, time behavior, and
dynamics. The chosen attributes were selected from established stan-
dards of traditional audio quality evaluation and research considering
more dynamic aspects of IVEs [30, 38]. It was stressed to subjects that
this list is not exhaustive, and any other differences they perceived may
also be used to help them provide quality judgments.

Once the subjects confirmed they had understood the test, they were
given the VR equipment and entered into a virtual familiarization scene.
Here, subjects have the opportunity to practice all the controls and
interactions they will encounter in the test including showing / hiding
the test interface, teleporting, basic interaction with the radio, and
advanced interaction with the drone. No time restriction was placed
during the familiarization phase, and once subjects felt comfortable
with all controls, they could begin the evaluation.

5 RESULTS

5.1 Direct Scaling Results
For both MSHR and MS methods, a two-way repeated-measures analy-
sis of variance (ANOVA) was conducted separately for both HRTFSpat
and HRTFFreq test sessions for independent variables Scene and Con-
dition on dependent variable subjective Rating. In all instances, signif-
icant main effects were obtained when present at p < 0.05. Mauchly’s
test of sphericity was performed for all data. In cases where sphericity
was not met, significant main effects after Huynh-Feldt correction are
reported. Cohen’s operational definitions for effect sizes are reported
for interpreting the magnitude of correlation coefficients in accordance
with [18]. Normality of residuals for all ANOVAs was found satisfac-
tory with a standard deviation of residuals ranging 16.74 ≤ s ≤ 22.14,
suitable for the available response scale between 0 - 100.

5.1.1 Multiple Stimulus with Hidden Reference
For the MSHR method, Fig. 4 shows the mean opinion scores and
95 % bootstrapped CIs. For the HRTFSpat session, a large main effect
of condition (F(4,64) = 35.23, p < .001, η2

G = .33) and a small effect
of scene (F(4,64) = 3.42, p = .03, η2

G = .03) were found. For the
HRTFFreq session, a large effect of condition (F(4,64) = 38.5, p <

.001, η2
G = .38) was found.

Post-hoc Tukey pairwise comparison t-tests of conditions within
each scene for the HRTFSpat session revealed the following main con-
clusions. No significant difference was found between conditions 1◦
and 5◦ across all scenes. Conditions 1◦ and 5◦ consistently yielded
significant differences against conditions 20◦ and 30◦ for all scenes.
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Fig. 4. MOS and bootstrapped 95 % CIs of HRTFSpat (top) and HRTFFreq
(bottom) test sessions using MSHR method. NSpat = 17 and NFreq = 17.

Overall, the number of significant differences found between all condi-
tions for each scene was Static (8) > Animated (6) > Distraction (5) =
Interaction (5) > Task (4).

Post-hoc analysis for the HRTFFreq session revealed similar results
to the spatial conditions. No significant difference was found between
128 and 64 bases in any scene, the closest to significance being the
Distraction scene (p = 0.059). For all scenes, significant differences
were found between high bases count conditions 128 and 64 against
lower bases count conditions 8 and 2. The number of significant
differences found between all conditions for each scene was Static (7)
= Interaction (7) = Task (7) > Animated (6) = Distraction (6).

5.1.2 Multi-Stimulus
For the MS method, Fig. 5 shows the mean opinion scores and 95 %
bootstrapped CIs. Analysis of the HRTFSpat session revealed a large
main effect of the condition (F(4,64) = 29.55, p < .001, η2

G = .2) and
small effect of scene × condition (F(16,256) = 1.82, p < .031, η2

G =
.05). The HRTFFreq session possessed a small effect from the condition
(F(4,64) = 5.31, p = .001, η2

G = .04).
Post-hoc Tukey pairwise comparison t-tests of conditions within

each scene for the HRTFSpat session revealed the following observa-
tions. Across all scenes, no significant difference was found between
any combination of 1◦, 5◦, and, 10◦. In scenes Static Distraction,
and Interaction, condition 1◦ had no significant difference vs. 20◦
and in one scene, no difference vs. 30◦. The number of significant
differences from pairwise t-tests observed across scenes ranged from
two in the Interaction scene between 1◦ vs. 30◦ (p = .01), and 5◦ vs.
30◦ (p = .03), up to six in the Animated scene. Overall, number of sig-
nificant differences per scene was Animated (6) > Static (5) > Task (4)
> Distraction (2) > Interaction (2). Post-hoc analysis for the HRTFFreq
session revealed the only scene with a significant difference was the
Task scene between bases count conditions 128 vs. 16 (p = .019).

5.2 Indirect Scaling Results
To analyze the EBA and PC methods, we employed the scale mod-
eling technique described by Pérez-Ortiz and Mantiuk [53], where
Thurstone’s Case V model is used to calculate maximum likelihood
estimation of quality differences. The results were then converted to
a just-objectionable-difference (JOD) scale, with confidence intervals
calculated via bootstrap resampling [40]. The statistical analysis is
the same as in current standardization efforts [54]. Just-noticeable-
difference (JND) scores imply discernability along a single dimension,
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Fig. 5. MOS and bootstrapped 95 % CIs of HRTFSpat (top) and HRTFFreq
(bottom) test sessions using MS method. NSpat = 17 and NFreq = 17.

where two conditions exceed a difference limen regarding a certain
psychophysiological sensation [48], conventionally exceeding a 75 %
probability of one condition being chosen over another. However,
in [53] the authors argue JOD better represents differences along mul-
tiple dimensions. Although we manipulate only a single parameter
for separate test sessions, the multi-modal nature of 6-DoF VR means
subjects are offered multiple dimensions they can utilize to give their
rating. Consequently, it is not guaranteed that subjects will employ the
same difference criteria to come to their conclusions.

To use the data within the model, results from both methods re-
quired a pre-processing step. For EBA, the rankings for each scene
were converted into a count matrix [15]. For the PC data, the subjec-
tive ratings for all sequential condition pairs A and B were converted
into a binary form. For a rating r, the binary value was chosen given
(−60 ≥ r <−5)→ A = 0, B = 1, and (5 < r ≤ 60)→ A = 1, B = 0,
where 0 indicates the selected condition. A 10-point margin was given
to allow for slider inaccuracies when indicating no difference between
conditions A and B. All ratings between ±5, were collected on a
scene-condition-pair basis and randomized to have an equal distribu-
tion between 0 and 1. This essentially simulates the same outcome of a
2-alternative forced-choice paradigm where 50 % of subjects would ran-
domly select A as being better and the other 50 % B. After conversion,
the same count matrix as with the rank-order data was formulated. For
both methods two-tailed tests were ran to inspect significant differences
(α = 0.05 p < 0.025 for two-ended distribution) between JOD values.

5.2.1 Rank Order Elimination-by-Aspects
Fig. 6 shows JOD scores and 95 % bootstrapped CIs for the EBA
method. Results from the HRTFSpat session, two-tailed significance
tests yielded the following differences. For the Static scene, six sig-
nificantly different JODs were found for all combinations of 1◦, 5◦,
and 10◦ vs. 20◦ and 30◦. Within the Animated scene, nine significant
differences were found. The only pair with no significant difference
was between 1◦ vs. 5◦. For the Distraction scene, four JODs were
significantly different between combinations of 1◦ and 5◦ vs. 20◦ and
30◦. For the Interaction scene, six significant differences were found
between combinations of 1◦, 5◦, and 10◦ vs. 20◦ and 30◦ (same as
the Static scene). For the Task scene, six significant differences were
found between varying higher and lower azimuth degree conditions,
with no significant difference found between 1◦ vs. 5◦ vs. 10◦. Overall
the number of significant differences within each scene was Animated
(9) > Static (6) = Interaction (6) = Task (6) > Distraction (4).

For the HRTFFreq session two-tailed tests within the Interaction
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HRTFFreq (bottom) test sessions using EBA method. NSpat = 17 and
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scene revealed four significantly different JODs for pairs: 128 vs. 64
bases (z = 2.19, p = .014), 128 vs. 8 bases (z = 2.11, p = .018), 64 vs.
2 bases (z = 2.5, p = .006), and 8 vs. 2 bases (z = 2.92, p = .002).

5.2.2 Pairwise Comparison
Fig. 7 shows the JOD values and 95 % bootstrapped CIs for the PC
method. Results from the HRTFSpat two-tailed tests revealed the follow-
ing differences. For the Static scene, 5◦ vs. 20◦ (z = 2.81, p = .003).
For the Animated scene six JODs were significantly different resulting
from tests between the higher azimuth resolutions 1◦ and 5◦ vs. lower
resolutions 10◦, 20◦, and 30◦. For the Distraction scene five signifi-
cant differences were found between 30◦ and all other conditions, and
between 5◦ vs. 20◦. No significant differences were found within the
Interaction scene and four significant differences within the Test scene
between 1◦ vs. 20◦ (z = 2.02, p = .022), for 1◦ vs. 30◦ (z = 2.23,
p = .013), for 5◦ vs. 30◦ (z = 2.11, p = .012), and for 10◦ vs. 30◦
(z = 2.21, p = .014). Overall, the number of significant differences
between all conditions per scene was Animated (5) > Distraction (4)
> Task > (3) > Static (1) > Interaction (0). For the HRTFFreq session,
two-tailed tests revealed only a single difference between 8 vs. 2 bases
in the Static scene.

5.3 NASA-TLX and Tracking Results
Mean opinion scores and 95 % bootstrapped CIs for the TLX ques-
tionnaire are plotted in Fig. 8. To analyze the data we ran a one-way
between-groups ANOVA on each question for independent variable
Scene on dependent variable NASA-TLX Rating between the Method
groups. The results shown in Table 2 revealed a main effect of the
Scene was found for all questions. A main effect between the different
groups Method was found for Mental Demand, Effort, and Perfor-
mance, and a weak interaction was found between Scene and Method
for Temporal demand.

For the between group Methods, Tukey pairwise comparison t-tests
revealed significant differences for: Mental Demand between MSHR
vs. EBA (p = .007), Effort between MSHR vs. EBA (p = .04) and
MSHR vs. PC (p = .045), and Performance between MSHR vs. MS
(p = .017). For Physical Demand, which yielded the strongest main
effect of scene (η2

G = .242), post-hoc t-tests shows scenes Task and
Interaction were significantly different from each other (p= .001), and
significantly different from all other scenes. Scenes Static, Animated,
and Distraction yielded no significant difference for physical demand.

Finally, the results for the tracking data are shown in Fig. 9 for
time (minutes), virtual distance traveled (meters), and head rotations
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Fig. 7. Mean JODs and bootstrapped 95 % CIs HRTFSpat (top) and
HRTFFreq (bottom) test sessions using PC method. NSpat = 17 and
NFreq = 17.

Table 2. Results of individual one-way between-groups analysis of vari-
ance for all questions.

Question Effect F-Value p-value Effect Size

Mental Method F(3,132) = 3.77 p = .012 η2
G = .051

Scene F(4,528) = 18.45 p < .001 η2
G = .05

Physical Scene F(4,528) = 77.07 p < .001 η2
G = .242

Temporal Scene F(4,528) = 21.69 p < .001 η2
G = .064

Scene:Method F(12,528) = 2.02 p = .029 η2
G = .019

Effort Method F(3,132) = 3.19 p = .026 η2
G = .037

Scene F(4,528) = 18.55 p < .001 η2
G = .062

Perform Method F(3,132) = 3.13 p < .028 η2
G = .042

Scene F(4,528) = 7.94 p < .001 η2
G = .022

Frust Scene F(4,528) = 20.94 p < .001 η2
G = .063

(degrees) across all different scenes for each method. The total average
duration for each method was: MSHR ≈ 24 minutes, MS ≈ 28 min-
utes, EBA ≈ 22 minutes, and PC ≈ 45 minutes. Within all methods,
the Interaction scene generally provided the lowest average distance
traveled and head movements.

6 DISCUSSION

6.1 Methods
For the MSHR method (Fig. 4), results revealed a reasonable number of
significant differences between conditions for both test sessions, with a
larger variation for the HRTFSpat session depending on the scene (8 to
4) than HRTFFreq (7 to 6). The larger variation in number of significant
differences using HRTFSpat conditions implies some effect of scene
complexity. This observation is supported through the main effect of
the scene shown in the ANOVA analysis, in addition to the difference
range for MOS across HRTFSpat conditions (≈ ∆15-points) between
scenes Interaction and Static. The HRTFSpat session showed results
unsurprising given the degradations of the condition set and open refer-
ence. The absence of a significant difference between conditions 1◦ vs.
5◦ in all scenes implies a perceptual threshold of 5◦ azimuth resolution
for HRTF azimuth discretization consistent with most data-sets and
literature [2, 82]. Results for the HRTFFreq session also demonstrate
subjects can discriminate between frequency resolutions using an au-
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dible reference. The MSHR results validate the use of the employed
conditions, showing that differences can be perceived and rated accord-
ingly representative of the impaired spatial and frequency resolutions.
Given this, we proceed further with the discussion of other methods
using MSHR as a suitable comparison.

The results for the MS method (Fig. 5) HRTFSpat session revealed a
similar trend to the MSHR method with notable differences. The range
of average MOS for the MS method is compressed, suggesting two
mutually compatible possibilities. One, the best high-quality conditions
seen in the MSHR results are still not what subjects would consider

‘excellent’ in MS. The freedom to account for MSI conflicts beyond
the audible differences observed against a fixed reference may have
augmented subjects’ impression of overall audio quality. For example,
the unrealistic timbre or spatial extent of an audio source given its
visual physical dimensions. Two, the different interpretation of labels
and scale usage across the subjects may result in any number of biases,
initially described by Poulton [52]. Biases such as range equalizing
bias, centering bias, and contraction bias, are all potential causes of
error for direct scaling that are even more prevalent in the absence of
an open reference. Research regarding evaluations with and without an
open reference also show similar effects [5, 6, 83]. Irrespective of scale
positioning, the relative differences also vary. The statistical similarity
between conditions 1◦, 5◦, and 10◦ across all scenes would suggest a
higher perceptual threshold of azimuth resolution than that observed
in MSHR results. Lastly, the range of MOS across conditions had
a difference of ≈ ∆30-points between scenes, double that of MSHR.
The difference suggests that content and scene complexity influence
subjective judgments to a greater degree in the absence of a reference,
an observation also supported by the varying number of significantly

different condition pairs between scenes.
For the HRTFFreq all MS results are completely different compared

to MSHR. One might conclude from the MSHR results that higher
frequency resolution conditions produce ‘excellent’ quality, while the
MS results show the overall audio quality is ‘fair’ - ‘good’. This
emphasizes the potential misinterpretation when using a reference that
is presupposed to be the best quality. However, without an explicit
open reference, the tendency of quality to decrease with HRTFs of
lower bases derived from the same HRTF set is not observed. This
implies the differences in frequency resolution of a generic HRTF set
yield no decrease in overall quality, and that preference or the fit of
the HRTFFreq conditions against subjects’ personal HRTF may alone
be justification for equal ratings. Further study would be needed to
validate if reduction of bases on an individualized HRTF yields the
same result, given the more bespoke modeling of the high-frequency
peaks and notches.

Results for the EBA method (Fig. 6) are represented on a JOD
scale which provides a more comparable means of interpretation than
probability against MOS ratings [81]. In the HRTFSpat session, no
significant differences were consistently found between conditions 1◦
and 5◦ for all scenes, similar to the observation from the MSHR and MS
method. However, the notably higher number of significant differences
found between the conditions for EBA is more consistent with MSHR
compared to MS. The only difference in tracking data between EBA
and MS is a higher average distance traveled in favor of MS, with time
and head rotations remaining comparatively similar for both methods.
This would suggest no advantage for the EBA results can be seen in
subjects’ behavior and therefore, a higher discriminatory power inherent
in the EBA method compared to MS in the context of 6-DoF VR.
Discernability between conditions also appears to be less susceptible
to scene complexity for the EBA method, where Interaction and Task
scenes yielded a high number of significant differences. While the
argument may be proposed that no absolute quality level for conditions
can be drawn as with direct scaling, the potential scaling biases in MS
make it hard to quantify what any scale labels actually represent. For
indirect scaling, differences in a latent multi-dimensional space can be
modeled post-evaluation by observed responses rather than attempting
to be directly estimated. As such, the JOD scale representation does
not assume any maximum quality and acknowledges latent variables
impacting perceived audio quality inclusive of MSI. For the HRTFFreq
session, the same trend from the MS is present where few significant
differences were found across all scenes, thus leading to the same
hypothesis regarding preference or personal fit to the HRTFs.

The results for the PC method (Fig. 7) showed a compressed range
of JOD values in comparison to the EBA method but with a smaller
range for CIs. The result exhibits a similar trend in mean quality levels
compared to EBA and MS. In many contexts, the PC method is often
credited as having a high discriminatory power due to a psychological
tendency of humans to be better at discrimination than judging absolutes
[67]. However, the results here indicate no advantage is given in
providing more consistent or accurate ratings over EBA or MS methods.
Results for the HRTFSpat still suggest a statistical similarity between
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higher azimuth resolutions, with a number of significant differences
comparable to MS. The range of significant differences across scenes
(5 - 0) also indicates a stronger influence of scene complexity similar
to MS than EBA and MSHR. Results for the HRTFFreq session lead
to the same observations of no perceptual difference in overall audio
quality as with MS and EBA.

An apparent difference between indirect methods EBA and PC is
the time taken and tracking data (Fig. 9). For PC, subjects must repeat
actions for every condition pair resulting in a higher average distance
traveled and head movements than in the EBA method (Fig. 9). If
movements are not repeated, the subjects are more likely to neglect
interactions that induce audible differences. The PC test time is also
roughly double compared to the EBA method, similar to previous com-
parison studies [77]. Both observations are likely due to the repetitive
nature of PC plus the proactive actions required by subjects inside
6-DoF VR. The distance traveled for the MS method also shows a
comparatively higher distance traveled than EBA. Following the same
logic of repetitive motion, even when presented in parallel, subjects
have to carry out an extra step of prescribing magnitude estimations.
Consequently, additional movements are required to listen, assign, re-
listen, and adjust for all conditions. Overall, the EBA method appears
to combine benefits of parallel presentation of all conditions seen in
direct scaling MS and MSHR methods together with the unambiguous
response format of indirect scaling. The sequential elimination of par-
allel conditions in EBA means subjects do not have to repeat actions
resulting in a more efficient use of subjects’ movements.

6.2 Scene Complexity and Task Load Index

Statistical analysis of the TLX questionnaire revealed independent vari-
able Scene to be a main effect for all questions. This finding coincides
with main effects in the direct scaling ANOVA HRTFSpat results, along
with the varying range of mean JODs for indirect scaling methods. For
all methods, HRTFSpat ratings for the Animated scene show a large
range in MOS and JOD values, in addition to the highest number of
significant differences for MS, EBA, and PC methods. In all TLX
questions, the Animated scene is also one of the least demanding. Both
results are likely due to the scene producing the most prominent au-
ditory cues. Considering that the HRTFSpat conditions were altered
only in azimuth resolution combined with the animated train’s mostly-
lateral trajectory, subjects are more likely to be exposed to binaural
localization cues such as inter-aural time and level differences with
more passive behavior. In contrast, the Distraction scene (which in-
cluded the same animation) proved to: 1) be one of the most demanding
scenes for all TLX questions excluding Physical Demand, 2) require
more movements and head rotations from subjects, and 3) result in
quality ratings with decreased differentiation between conditions for
all methods. Research regarding complex scenes with multiple special-
ized audio sources shows directed attention towards a specific object
helps detect localization changes [20]. However, our results suggest
an additional cognitive overhead may be required in auditory scene
analysis and stream segregation [17, 70] that can lower our sensitivity
in detecting changes between the employed spatial differences.

The TLX dimension with the most variation and strongest effect size
from the ANOVA analysis (Table 2) across scenes was Physical De-
mand, with a clear pattern of mean values showing Static = Animated
= Distraction < Interaction < Task, for all methods. Interestingly, for
all referenceless methods, the scenes Static, Animated, and Distrac-
tion generally result in more subject movements than the Interaction
scene. This scene is designed to include more complex interactions,
allowing subjects to interact with a radio which subjects mostly moved
around their head. Consequently, it is reasonable to suggest the ob-
served physical demand is a consequence of movements linked to more
‘coordinated’ interactions rather than 6-DoF translational motion. More-
over, for MS and PC methods the Interaction scene resulted in a low
number of significant differences between conditions for the HRTFSpat
session. As controller and menu operations remain consistent across all
scenes, the significantly higher physical demand for interactive scenes
suggest more complex interactions to be a contributing factor towards
the lower discrimination between audio quality conditions.

Finally, for Mental Demand, Performance and Effort MSHR was
rated worse than referenceless methods, with the largest significant dif-
ference being between MSHR and EBA for mental demand. Although
an open reference provides a clearer target of overall audio quality, it
also seems to increase the cognitive load on subjects, in contrast to EBA
where subjects can rather quickly remove conditions without further
consideration towards relative rating positions on a scale. Inspection of
Fig. 9 also suggests the inclusion of an open reference in MSHR seems
to reduce 6-DoF exploration in comparison to the other direct scaling
method MS with no reference. The implication here is that an open
reference causes a higher concentration (and thus mental demand) and
in turn possibly deters subjects from more active exploration.

6.3 Outlook and Limitations

The results of this study imply the type of interactivity within a VR
scene can influence subjects’ ability to discern between conditions in
the absence of an open reference. More research into the perceptual
and cognitive effects of complex interactions on quality judgments
through controller tracking data is needed to support this observation.
Moreover, all scenes were made intentionally simple for evaluation
of psychoacoustic thresholds using auditory rendering parameters of
HRTFs given multi-modal input. Contrary to what one might see with
realistic virtual scenes, clear visual focal points meant that subjects’
movements had little exploratory variation. Research using more real-
life-like scenes with high-resolution textures, environmental settings,
and background objects may yield a different behavioral response po-
tentially reducing discernability between conditions. In the same vein,
the condition sets employed vary only a single parameter of the HRTFs.
When testing various algorithmic approaches for audio rendering, the
differences in the latent multi-dimensional quality space may be much
more difficult for subjects to judge. A continuation of this study using
multi-dimensional condition degradations and more realistic acoustic
auralization would provide further confidence in method stability.

7 CONCLUSION

This study compared four quality evaluation methods: multiple-
stimulus with and without a reference (MSHR and MS), rank-order
elimination-by-aspects (EBA), and pairwise comparison (PC) using
two conditions sets targeting quality differences important for real-time
binaural audio rendering. The conditions sets were constructed altering
spatial (HRTFSpat ) and frequency (HRTFFreq) resolutions of a high-
quality HRTF file. The evaluation content employed virtual reality
scenes of varying complexity. For all methods, subjects were tasked
with rating differences in overall audio quality.

Our results show that all methods produce a similar trend in average
overall audio quality ratings for HRTFSpat session but differ regarding
the scale ranges and the number of significantly different conditions.
For the HRTFFreq session, all referenceless methods produce compara-
ble results implying perceived differences in frequency characteristics
of HRTFs may not impact overall quality in the absence of an open ref-
erence. Overall, the EBA method yields: 1) the fastest evaluation times,
2) less repetitive 6-DoF movement from subjects due to sequential
elimination of conditions, 3) results with a high discernability between
HRTFSpat conditions for all scenes, and 4) significantly less mental
demand and effort from subjects compared to MSHR. Hence, our re-
sults demonstrate that EBA is a pragmatic and sensitive method that
should be considered in tackling broader research and standardization
challenges when comparatively evaluating spatial audio rendering for
multi-modal VR where no high-quality reference is available. Finally,
scene complexity is shown to affect quality judgments for HRTFSpat
conditions, with scenes that possess more hand interactions (linked
to physical demand) or a higher number of audio sources showing a
tendency to reduce discernability between conditions.
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