
Meshless Approximation and Helmholtz-Hodge
Decomposition of Vector Fields

Giuseppe Patan�e

Abstract—The analysis of vector fields is crucial for the understanding of several physical phenomena, such as natural events (e.g.,

analysis of waves), diffusive processes, electric and electromagnetic fields. While previous work has been focused mainly on the

analysis of 2D or 3D vector fields on volumes or surfaces, we address the meshless analysis of a vector field defined on an arbitrary

domain, without assumptions on its dimension and discretisation. The meshless approximation of the Helmholtz-Hodge decomposition

of a vector field is achieved by expressing the potential of its components as a linear combination of radial basis functions and by

computing the corresponding conservative, irrotational, and harmonic components as solution to a least-squares or to a differential

problem. To this end, we identify the conditions on the kernel of the radial basis functions that guarantee the existence of their

derivatives. Finally, we demonstrate our approach on 2D and 3D vector fields measured by sensors or generated through simulation.

Index Terms—Vector fields, helmholtz-hodge decomposition, meshless representations, radial basis functions

Ç

1 INTRODUCTION

VECTOR fields are commonly used to model several phe-
nomena, such as natural events, diffusive processes,

electric and electromagnetic fields; for instance, vector fields
represent the velocity and direction of an object or the mag-
nitude and direction of a force. Measuring and simulating a
flow field typically generate a large amount of unstructured,
sparse, and noisy vector data, which are a challenging input
for the reconstruction of a global representation. Indeed, it
is generally complex to convey 3D directional information
through stream lines that visualise the flow patterns. Fur-
thermore, the components of the reconstructed vector field
must satisfy additional properties such as being conserva-
tive (e.g., incompressible fluid flow), irrotational (e.g., mag-
netic field), harmonic, and invariant with respect to a set of
transformations.

In these examples, we typically have heterogeneous data
(e.g., scalar values, vectors) in terms of data structures (e.g.,
vector fields, scalar functions), spatial distribution or resolu-
tion (e.g., regular grids, meshes, sparse samples), and data
values of any dimension. Then, recovering a common tessel-
lation is generally difficult and time-consuming. As a result
of the heterogeneity of the input data, previous work has
been focused mainly (i) on the analysis of 2D or 3D vector
fields on volumes or surfaces, depending on the discretisa-
tion of the input domain and of the differential operators,
and (ii) on the computation of the potential of the conserva-
tive component of an arbitrary field, without constraints on

the values of its potential. In particular, the Helmholtz-
Hodge Decomposition (HHD, for short) splits a vector field
into its conservative, irrotational, and harmonic component
fields, which provide a concise representation of the under-
lying flow through sources, sinks, and vortices. Then, the
HHD is applied to simplify or edit the structure of the input
vector field in a coherent and admissible manner, to analyse
and visualise the behaviour and properties of the underly-
ing phenomenon.

In this context, we present a unified approach to (i) the
meshless approximation of heterogeneous data (Sections 2, 3),
such as scalar values and vectors, measured at sparsely
sampled points (e.g., without a regular structure or an
underlying grid), and (ii) the meshless HHD of arbitrary vector
fields, e.g., generated by particle-based fluid simulation or
experimental measurements (e.g., wind fields).

Given a set of function values and vectors sampled at a
set of sparse points, we compute a meshless and smooth
approximation of the input vector field. Then (Section 4),
we introduce three variants of the meshless HHD with
Radial Basis Functions (RBFs, for short), which are based on
a direct, a least-squares, and a Laplace-based approach,
respectively. The meshless approach allows us to (i) exactly
compute differential operators by evaluating the 1D deriva-
tives of the kernel generating the RBFs, (ii) impose different
types of interpolating, least-squares, or smoothness con-
straints, and (iii) approximate data values of any dimension
and structure (e.g., scalar values, vectors). In particular, the
smoothness order is determined by the regularity of the
generating kernel, e.g., a poly-harmonic kernel for Ck regu-
larity, k � 2.

With respect to [1], we provide a continuous formulation of
the HHD, which is based on the differentiability of the mesh-
less approximation and is independent of the discretisation
of differential operators (e.g., gradient, divergence, Laplace-
Beltrami operator) involved in the Poisson-based formula-
tion of the HHD. In this way, we improve the approxima-
tion accuracy and the resulting performances have the same
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order of complexity of previous work, in terms of computa-
tional cost and storage overhead. While the compactness of
the input domain is a standard hypothesis of previous
work [2], [3] to guarantee the unicity of the HHD, we neither
assume that the input domain is compact nor restrict our
approximation and decomposition to a compact domain.

While the meshless HHD [1] applies to 2D SPH (Smoothed
Particle Hydrodynamics) flows and the mesh-based decompo-
sition [4] holds for vector fields on surfaces discretised as
triangle meshes, our meshless HHD applies to nD vector
fields, is based entirely on a continuous approach, and is
independent of the discretisation of partial derivatives with
finite differences. As a theoretical analysis of the properties
of the resulting HHD, we determine the conditions on the
existence of the meshless potential of the conservative and
solenoidal components of the decomposition. Then, we dis-
cuss the numerical accuracy and stability of the meshless decom-
position, in terms of the selected centres and of the
generating kernel, and its computational aspects, in terms of
cost, memory requirements, and reduction of the memory
footprint for the representation of discrete data (Section 5).

Since the meshless HHD involves the evaluation of the
gradient and of the Laplace operator, we identify the hypoth-
esis on the generating kernel for the existence of the first and sec-
ond order derivatives of the corresponding RBFs. The meshless
potentials of the conservative and irrotational components
are uniquely defined in terms of the RBFs. In fact, the coeffi-
cients of their representations solve the corresponding least-
squares systems. Since our meshless HHD is based on the
evaluation of differential operators, the residual divergence
and the residual rotor are null. On the contrary, previous
work [1], [5] involves a residual divergence and rotor, as dif-
ferential operators are discretised with finite differences.

Through the meshless approximation, the involved dif-
ferential operators (i.e., gradient, rotor, Laplace-Beltrami)
are computed in linear time by applying their continuous
definition, and are not tailored to a specific (e.g., vertex-, or
edge-, or face-based) discretisation [6] of the operator itself
or of the input domain. The meshless approach guarantees
the consistency of the approximation and decomposition of the
input vector field. It also provides a compact representation in
terms of memory footprint, by encoding the potentials as
the set of the corresponding centres of the RBFs and coeffi-
cients. To summarise, our main contributions are

� a unified approach to the meshless approximation
and HHD of vector fields with null residual diver-
gence and rotor;

� a meshless approach, based on the differentiability of
RBFs and independent of discrete derivatives;

� the identification of the hypothesis on the generating
kernel for the existence of RBFs’ derivatives;

� a generalisation of previous work on the meshless
HHD of 2D vector fields [1], [5] to nD vector fields.

We demonstrate the main features of the proposed
approach on 2D/3D vector fields acquired by sensors and
generated through simulation; for the evaluation of the
approximation accuracy and numerical stability of the
meshless decomposition, we consider analytic vector fields.
Finally (Section 6), we outline future work on the classifica-
tion of critical points and centres’ selection.

2 PREVIOUS WORK

Let us assume that the vector field v : V ! Rd, defined on a
compact domain V of Rd, assigns a vector to the points P :¼
fpigni¼1 or cells (e.g., triangles, tetrahedra) of V. We present
previous work on the HHD (Section 2.1), the meshless
approximation (Section 2.2), the analysis of potentials and
vector fields (Section 2.3).

2.1 Helmolthz-Hodge Decomposition

A vector field v : V ! Rd is conservative if there exists a poten-
tial function u : V ! R such that v ¼ ru. If v is conservative,
then it is irrotational (i.e.,r^ v ¼ 0) and the vice versa holds
if the input domain is simply connected. A vector field v is
solenoidal if there exists a field w such that v ¼ r^w, or
equivalently if its divergence is null (i.e.,r � v ¼ 0). If v is not
conservative, then we consider its HHD v ¼ ruþr^wþ h
in terms of a conservative ru, a solenoidal r^w, and a
harmonic h component. To guarantee the uniqueness of the
decomposition, we impose that the conservative and solenoi-
dal components are orthogonal and tangential to the bound-
ary of the input domain, respectively. The potentials of the
conservative and solenoidal components solve the Poisson
equations Du ¼ r � v and Dw ¼ r^ v, where D and D :¼
ðrr�Þ � ðr ^r^Þ are the standardLaplace-Beltrami andvec-
tor Laplace-Beltrami operator, respectively. For 3D, the solu-
tion uðpÞ ¼ RV Gðp;qÞfðqÞdq to the Poisson equation Du ¼ f
is computed by convolving the function f with the free-space
Green’s function Gðp;qÞ :¼ �ð4pkp� qk2Þ�1 and is approxi-
mated as uðpÞ �Pk

i¼1 fðpiÞGðpi;pÞjVij [3], [7], where jVij is
the volume of the 1-star Voronoi cells associatedwith pi.

Previous work has addressed the computation of the
HHD on triangular meshes [4], [8] through a variational
approach; on tetrahedral meshes [6] through a least-squares
formulation of its components; and on regular grids [9]
through a decomposition of the grid into a regular triangu-
lation. The natural HHD [3] is achieved by separating the
vector field on the domain V and its complement RdnV.
Then, the corresponding potentials are computed by solving
the Poisson equation and convolving the input functions
with the free-space Green’s function. The HHD on a domain
with boundary is not unique and two decompositions differ
by a harmonic function, which is both irrotational and
divergence-free. This decomposition becomes unique by
either applying boundary conditions, or restricting the vec-
tor field on an open, bounded, and connected sub-domain.
In the former case, normal-parallel conditions impose that
the conservative and solenoidal components are normal
and parallel to the boundary, respectively. In the latter
case [10], the localised flow in the sub-domain V

?
of V has the

same divergence and curl components of the input vector
field but they are isolated from the field on the boundary
of V

?
.

For theHHDof 2D vector fields, themeshless approach [1],
[5] approximates the gradient, divergence, and Laplace opera-
tors through discrete derivatives of the approximation of the
input vector field with RBFs generated by a compactly-sup-
ported polynomial kernel. Indeed, these approximated differ-
ential operators have a fixed accuracy, which is generally
linear. In [11], the decomposition is achieved by expressing its
components as a linear combination of matrix-valued kernels
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and computing its coefficients through a learning process. For
the choice of the boundary conditions (e.g., normal boundary
flow on the curl-free and a tangential flow on the divergence-
free component) that guarantee the uniqueness and orthogo-
nality of the HHD, we refer the reader to the work of Bhatia
et al. [12].

We briefly recall that the boundary conditions determine
the unicity of the HHD and the orthogonality of the conser-
vative and irrotational components. Traditional boundary
conditions impose a normal boundary flow for the solenoi-
dal component (i.e., ru is normal to the boundary:
ru ^ v ¼ 0) and a tangential flow for the conservative com-
ponents (i.e., r ^w) is parallel to the boundary (i.e.,
r ^w � n ¼ 0). Weaker or different boundary conditions
(e.g., the normal flow in the conservative component and
the tangential flow in the conservative component) can be
applied without guarantees on the uniqueness and/or
orthogonality of the decomposition [1], [7], [12].

2.2 Meshless Approximation

Meshless approximations have been studied extensively in
Computer Graphics and applied to volumetric model-
ling [13] and topological analysis [14]. Choosing a kernel f :
Rþ ! R, the meshless approximation F : R3 ! R of f :
M ! R is defined as a linear combination F ðpÞ :¼Pn

i¼1 aifiðpÞ, where fiðpÞ :¼ fðkp� pik2Þ is the radial basis
function (RBF) centred at pi. Then, the coefficients a :¼
ðaiÞni¼1, which uniquely satisfy the interpolating conditions
F ðpiÞ ¼ fi, i ¼ 1; . . . ; n, are the solutions of the n� n linear
systemFa ¼ f, where the entries of the GrammatrixF asso-
ciated with the RBFs are Fði; jÞ :¼ fðkpi � pjk2Þ. For the
approximation of a vector field v, we either apply the mesh-
less approximation to each component or consider the

approximating field vðpÞ :¼
P

pi2N p
vðpiÞfðkp�pik2ÞP

pi2Np
fðkp�pik2Þ

, defined as

a weighted average [15], [16] (e.g., Gaussian weights) of the
values of v in a neighbourhood N p of p. As neighbourhood
of p, we refer to the k points of the input point set P that are
nearest to p, or to the points belonging to a sphere centred
at p and with radius proportional to the local sampling
density.

RBFs’ Centres’ Selection. To reduce the amount of mem-
ory storage and computation time, a set of centres is
selected through clustering, kernel and sampling methods,
or sparsificiation. Clustering (e.g., k-means clustering [17],
PCA - Principal Component Analysis [18]) is applied to
group those points that satisfy a common “property” (e.g.,
planarity, closeness) and each basis function is centred at a
representative point of each cluster. Kernel methods [19]
(e.g., kernel PCA) evaluate the correlation among points
with respect to the scalar product induced by a positive-
definite kernel. Sampling methods approximate a signal as
a linear combination of Gaussian kernels with a fixed
support, whose centres (i.e., the samples) are computed
through the minimisation of a least-squares energy func-
tional [20], [21], or satisfy the blue-noise [22] or spec-
tral [23] properties. Sparsification selects the basis functions
through a basis pursuit de-noising [24], standard and
orthogonality matching pursuit methods [25], [26], or reg-
ularised logistic regression [27].

2.3 Analysis of Potentials and Vector Fields

Computation of the Potential Fields. For the conservative and
solenoidal components on discrete surfaces and volumes,
the Poisson equation reduces to a sparse linear system,
whose solution is computed by applying iterative solvers
(e.g., gradient conjugate) or building a multi-resolution
mesh pyramid [9], [28]. In this last case, the Poisson equa-
tion is solved at the coarsest resolution and its solution is
then mapped back to the finer resolution by collapsing the
pyramid and adding the corresponding details to the cur-
rent approximation of the solution. This approach is effi-
cient but depends on the discretisation and resolution of the
input grid. An alternative approach is to consider a moving
least-squares approximation [29], [30] with a polynomial
basis, which improves the accuracy and smoothness of the
gradient of a given scalar function [31].

Analysis of Vector and Potential Fields. Vector fields are
typically visualised through level-set methods [32], local
reference frames [2], [33], and flow regions [34] with a simi-
lar geometric, topological, or physical behaviour [35], [36],
[37]. Another efficient approach is to compute the flow
streamlines [38], which are defined as curves whose tangen-
tial direction is equal to the velocity of the input field, and
partition the input domain in such a way that two stream-
lines are either disjoint or equal. For the analysis of the
potential of the conservative component, we mention the
classification of the critical points [39], [40] and the contour
tree [41], [42], the Morse-Smale complex [43], [44], and the
Reeb graph [45], [46], [47]. The input vector field and/or the
potential of the irrotational component can be analysed by
classifying its singularities and streamlines, which are
smoothed in order to preserve only the persistent ones [48]
in case of noise. For more details on these topics, we refer
the reader to survey papers on topology-based visualisa-
tion [49], [50], [51] and on vortex extraction [33].

3 MESHLESS APPROXIMATION

We address the approximation of the potential of the conser-
vative component of a vector field from a set of discrete vec-
tor values, and eventually integrated with a set of scalar
values of its potential at the same or different samples. To
this end, we apply a meshless least-squares approach, which
enforces the consistency of the meshless potential with
respect to the input samples and allows us to analytically
evaluate its derivatives for the computation of the HHD. In
Section 5.2, we discuss the selection of the kernel and of the
centres of the RBFs for themeshless approximation.

Meshless Potential of Mixed Scalar and Vector Fields. We
address the computation of the meshless potential v : V ! R

of scalar values ðfiÞi2I and vectors ðviÞi2J measured at sparse
sampled points, i.e.,

uðpiÞ � fi; i 2 I ; ruðpjÞ � vj; j 2 J ; (1)

with k1, k2 numbers of indices in I , J , respectively. For the
mixed interpolation problem, the potential function uðpÞ ¼P

i2I aifiðpÞ þ
P

j2J bjfjðpÞ is defined as a linear combina-
tion of the RBFs ðfiÞi centred at ðpkÞk2I[J , with unknown
coefficients ðaiÞi2I and ðbjÞj2J . Imposing the conditions in
Eq. (1)
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uðpiÞ ¼
P

k2I[J akfkðpiÞ � fi; i 2 I ;
ruðpjÞ ¼

P
k2I[J akrfkðpjÞ � vj; j 2 J ;

�
(2)

we minimise the least-squares energy functional

EðaÞ :¼
X
i2I

juðpiÞ � fðpiÞj2 þ
X
j2J

kruðpjÞ � vjk22: (3)

Then, the normal equation is

~F
F

� �
a ¼ ~f

~v

� �
; (4)

with ~F 2 Rk1�ðk1þk2Þ, F 2 R3k2�ðk1þk2Þ, ðk1 þ k2Þ unknowns,
and right hand side vectors ~f :¼ ðfðpiÞÞi2I 2 Rk1 and ~v 2
R3k2 . Here, ~F :¼ ðfkðpjÞÞk2I[Jj2J is the Grammatrix associated
with the generating kernel and the matrix F is defined as
F :¼ ½@xfkðpjÞ; @yfkðpjÞ; @zfkðpjÞ�>k;j. If the scalar and vector
terms have very different value ranges, it is enough to con-
sider a positive trade-off parameter d as coefficient of the
second term in Eq. (3) and to include d in the corresponding
parts F, ~v of Eq. (4). Alternatively, the function and vector
values are normalised before computing the meshless
potential.

“Overlapped” Conditions on Scalar/Vector Values. The least-
squares formulation is valid also for those cases where we
have both scalar and vector constraints at the same points,
or arbitrary vector fields (e.g., not necessarily conservative).
In this case, the approximation scheme and solver remain
unchanged and each centre pi, i 2 I \ J , is counted only
once. The number of approximating constraints is greater
than the number of unknowns and the corresponding linear
system in Eq. (4) admits a unique solution. The conservative
and meshless vector field v ¼ ru provides the best least-
squares approximation of the constrains in Eq. (2).

Examples. We consider an input potential u (Fig. 1a) and
vector field v :¼ ru (Fig. 1b), which are sampled with a dif-
ferent percentage of constraints on function (I) and vector
(J ) values. In this case, constraints on the u-values and ru-
vectors are both applied to the 10 percent of the same input
points (i.e., overlapped constraints), thus considering a total
of 110 percent least-squares constraints. Varying the num-
ber of u-values and ru-vectors, we compute the meshless
potential ~u (c.f., Eq. (1)) and the approximation error �1 :¼
ku� ~uk1=k~uk1 (y-axis) between u and the ground-truth
solution. We notice that the L2-error is bounded as ku�
~uk2 	 �1jVj, where jVj is the measure (e.g., area, volume)
of V. Then, we report the approximation accuracy �1
(Fig. 1c) for the potential and the mean of the angle
ffðru;r~uÞ (Fig. 1d) between the input and the approximated
vector fields, for a different percentage of constraints on
function and vector values. Increasing the number of con-
straints on the u-values from 10 to 90 percent (Fig. 1b, x-
axis), the approximation error (y-axis) remains below 10�6,
with an analogous behaviour with respect to the inverse
multi-quadratic and exponential kernels and a slightly
higher error with the multi-quadratic kernel. Increasing the
number of constraints on the ru-values from 10 to 90 per-
cent (Fig. 1d, x-axis), the maximum angle (y-axis) remains
below 1.6 degree, with an analogous behaviour with respect
to the multi-quadratic and inverse multi-quadratic kernels
and a slightly higher error with the Gaussian kernel.

In Fig. 2, we show the streamlines of the gradient field
and the distribution of the angle error, with 90 percent of
constraints on u-values and 20 percent of ru constraints, or
vice versa with 20 percent of constraints on u-values and 90
percent of ru constraints. Indeed, we impose a total of 110
percent least-squares constraints. Comparing the ground-
truth vector field in Fig. 1b with its meshless approximation
in Fig. 2, the approximation error and the maximum angle
ffðv;ruÞ between the input v and meshless ru vector fields
(Figs. 1c and 1d) remain low and only small undulations of
the streamlines are visible along the parabolic area where
the input vector field is discontinuous. These local artifacts
are present where the number of constraints on the gradient
is maximum (J : 90 percent), and disappear as we increase
the number of constraints on the values of the potential.
Analogously to the tests in Figs. 1 and 2, in Fig. 3 we select a
set of analytic functions and their gradient fields evaluated
at a set of irregularly distributed samples (Fig. 4a). The
meshless potential induced by these three kernels has a
good accuracy in terms of approximation error and maxi-
mum angles between the input and the meshless gradient
fields. The Gaussian kernel generally provides the most
accurate results. According to the angle variation (Fig. 4,
2nd and 3rd rows), the maximum error is localised in those
regions of V where ðu;ruÞ have a complex behaviour and a
partial information, e.g., at the domain boundary.

4 MESHLESS DECOMPOSITION

Let us assume that the input vector field is known at an arbi-
trary set B :¼ fbigti¼1 of points of the input domain. For
instance, the vector field on each triangle or tetrahedron Ti is

Fig. 1. (a) Meshless potential u, (b) approximation accuracy, (c) gradient
field ru, (y-axis), (d) mean angle ffðv;ruÞ between the input vector
field v and the least-squares meshless gradient field ru, induced by dif-
ferent kernels and percentages (x-axis) of p1% random constraints on u-
values (x-axis) (10% 	 p1 	 90%), ð100� p1Þ% random constraints
on ru-values. Function and vector constraints are both applied to an
additional 10 percent of the same input points (i.e., overlapped con-
straints), thus imposing a total of 110 percent least-squares constraints.
See also Fig. 2.
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associated with the corresponding barycentre bi. The output
is a smooth approximation of the input vector field and its
HHD, which can be re-sampled at any point, or used to
analyse the behaviour of the underlying phenomenon. To
this end, we introduce a direct (Section 4.1), least-squares
(Section 4.2), and Laplace-based (Section 4.3) HHDwith RBFs.

In the paper examples, the components of a 3D HHD are
visualised by drawing the corresponding streamlines from
a set of starting points, and the behaviour of the conserva-
tive potential is visualised through its iso-surfaces.

4.1 Meshless HHD

The meshless potential of the conservative component

uðpÞ ¼
Xk
i¼1

aifiðpÞ; fiðpÞ :¼ fðkp� cik2Þ; (5)

is represented as a linear combination of RBFs ðfiÞi gener-
ated by a positive-definite kernel f : R ! R and centred at

C :¼ fcigki¼1 [52], [53], [54]. The set C is generally different
from P and its selection will be addressed in Section 5.2.
Applying the linearity of the gradient operator, we get that

vðpÞ � ruðpÞ ¼Pk
i¼1 ai’iðpÞ; ðaÞ

’iðpÞ :¼ rfiðpÞ ¼ f0
iðpÞ p�ci

kp�cik2 ; ðbÞ

(
; (6)

where the basis field f’igi is centred at ci, has length
jf0ðkp� cik2Þj, points towards the centre ci, and is radially
symmetric. Then, we impose the conditionsruðbiÞ � vi, i ¼
1; . . . ; t, by minimising the corresponding least-squares
error

Pt
i¼1 kruðbiÞ � vik22. Deriving this error with respect

to the coefficients, we get the normal equation

Fa ¼ ~v; F :¼
F1

F2

F3

2
4

3
5 2 R3t�k; ~v ¼

vx
vy
vz

2
4

3
5 2 R3t; (7)

Fig. 2. 1st Row: With reference to Fig. 1, streamlines of the approximated meshless vector field, induced by different kernels and percentages of ran-
domly selected function (SC) and vector (VC) constraints. We impose p1% constraints on u-values (x-axis) (10% 	 p1 	 90%), ð100� p1Þ% con-
straints on ru-values. Function and vector constraints are both applied to an additional 10% of the same input points (i.e., overlapped constraints),
thus imposing a total of 110% least-squares constraints. 2nd Row: (a) zoom on the input (left box) and meshless (right box) approximation, and (b)
HHD.

Fig. 3. Analytic vector fields sampled on an irregular 2D point set (c.f., Fig. 4a). (y-axis) L1 approximation error and maximum angles ffðv;ruÞ
between the input v and meshlessru gradient fields, induced by different kernels and percentages (x-axis) of constraints on the (u, ru) values. We
impose p1% constraints on u-values (x-axis) (10% 	 p1 	 90%), ð100� p1Þ% constraints on ru-values. Function and vector constraints are both
applied to an additional 10 percent of the input points, thus imposing a total of 110 percent of least-squares constraints (i.e., overlapped constraints).
For the potential u2, the distribution of the angle error is shown in Fig. 4.
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where the building blocks of the coefficient matrix are

Fi :¼
’
xi
1 ðb1Þ ’

xi
2 ðb1Þ . . . ’

xi
k ðb1Þ

’
xi
1 ðb2Þ ’

xi
2 ðb2Þ . . . ’

xi
k ðb2Þ

..

. ..
. ..

. ..
.

’
xi
1 ðbtÞ ’

xi
2 ðbtÞ . . . ’

xi
k ðbtÞ

2
6664

3
7775 2 Rt�k; (8)

i ¼ 1; 2; 3, ~v is the array of the input vector data, and ’
xj
i ðblÞ

is the jth component of ’iðblÞ. If the number of basis fields
is lower than the number of samples (i.e., k < n), then we
solve the k� k least-squares system F>Fa ¼ F>~v. Since the
generating kernel is positive-definite, the solution a and the
resulting potential are unique.

Each component of the potentialwðpÞ of v is expressed in
terms of the basis ðfiðpÞÞki¼1 as

wðpÞ ¼
Xk
i¼1

a
ð1Þ
i fiðpÞ;

Xk
i¼1

a
ð2Þ
i fiðpÞ;

Xk
i¼1

a
ð3Þ
i fiðpÞ

" #
; (9)

with 3k unknowns aðjÞ :¼ ðaðjÞ
i Þki¼1, j ¼ 1; 2; 3. Then, we min-

imise the least-squares error GðwÞ ¼ kr ^w� vk22, between
the rotor

r ^w ¼
Xk
i¼1

ðað3Þ
i @yfi � a

ð2Þ
i @zfi;

"

Xk
i¼1

ðað1Þ
i @zfi � a

ð3Þ
i @xfi;

Xk
i¼1

ðað2Þ
i @xfi � a

ð1Þ
i @yfi

#
;

(10)

and the input vector field. The corresponding least-squares
problem is rewritten in matrix form as kAa� ~vk2, where the
3t� 3k anti-symmetric coefficient matrix

A ¼
0 �@zf @yf

@zf 0 �@xf

�@yf @xf 0

2
4

3
5; 0 2 Rt�k; (11)

has 3kt non-null elements and the blocks @yf, @zf are
defined analogously to @xf :¼ ð@xfjðpiÞÞj¼1;...;k

i¼1;...;t 2 Rt�k. The
entries in Eq. (11) are computed by applying the relation in
Eq. (6 b). Then, the coefficients solve the linear system

A>Aa ¼ A>~v; a ¼
að1Þ

að2Þ

að3Þ

2
4

3
5 2 R3k; ~v ¼

vx
vy
vz

2
4

3
5 2 R3n;

(12)

where vx, vy, and vz are the components of v. The solution to
the linear systems in Eqs. (7) and (12) is computed through
the conjugate gradient if the input matrix is positive-definite
or iterative solvers of sparse and symmetric linear systems if
the coefficient matrix is positive semi-definite. To evaluate
the derivatives in Eqs. (8) and (11), we apply the derivative
of composite functions, as detailed in Section 5.1. The mesh-
less representation of the potentials u, w induces the mesh-
less approximation v � ruþr ^wþ h of the input vector
field and of the harmonic component h � v�ru�r ^w.

The HHD of 2D and 3D vector fields is shown in Figs. 5, 6,
7, and 8, respectively. In Fig. 7, a perturbation of 25 percent
Gaussian noise of the input vector field corresponds to a ‘1
error of 1.2 percent between the ground-truth and the mesh-
less potentials. The multi-quadratic, Gaussian (1.51 percent),
and inverse multi-quadratic (1.57 percent) kernels provide
analogous results. Finally, the iso-surfaces and streamlines

TABLE 1
Generating Kernels for RBFs, First and Second Order Derivatives, Existence of the Gradient and the Hessian of the RBFs

Global Kernels fðr; sÞ First order derivative - f0ðr; sÞ Second order derivative - f00ðr; sÞ 9 Grad. 9Hess.

Cubic sr3 3sr2 6sr Yes (s ¼ 0) Yes

Gaussian expð�sr2Þ �2srexpð�sr2Þ �2sð1� 2sr2Þexpð�sr2Þ Yes Yes

Thin Plate Spline r2log ðsrÞ 2rlog ðsrÞ þ r 2ðlog ðsrÞ þ 2Þ No No

Inv. multi-quad. ðr2 þ s2Þ�1=2 �rðr2 þ s2Þ�3=2 ðr2 þ s2Þ�3=2ð3ðr2 þ s2Þ�1r2 � 1Þ Yes Yes (s 6¼ 0)

Multi-quad. ðr2 þ s2Þ1=2 (s 6¼ 0) rðr2 þ s2Þ�1=2 s2ðr2 þ s2Þ�3=2 Yes Yes

Local Kernels

Local II-deg. polyn. ð1� sÞ2þ �2ð1� sÞþ 2 Yes Yes
Local IV-deg. polyn. ð1� sÞ4þð4s þ 1Þ �20sð1� sÞ3þ �20ð1� sÞ2þð1� 4sÞ Yes Yes

Fig. 4. 1st Row: (a) input domain V with an irregular distribution of sam-
ples and (b) level-sets of the potential u3 in Fig. 3. (2nd, 3rd Rows) Distri-
bution of the angle error of the meshless approximation of ru3 induced
by the Gaussian, multi-quadratic (mquad), and inverse multi-quadratic
(inv. mquad) kernels, with a different percentage of randomly selected
function and vector constrains. The error is localised in the (red) area
close to the upper part of the boundary (green box) of V and covers a
larger area for the inverse multi-quadratic kernel. Blue identifies a null
error and red corresponds to the maximum approximation error (1.53
percent).
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of the meshless potential confirm that it preserves the global
behaviour of the input data, removes the noise, and guaran-
tees a good approximation accuracy.

4.2 Weighted Meshless Decomposition

Alternatively, we consider the meshless approximation
uðpÞ ¼Pk

i¼1 aifiðpÞ of the potential of the conservative com-
ponent ru of ~v by minimising the weighted least-squares [6]
instead of the pointwise energy

F :¼ 1

2

Z
V

kru� ~vk22dp ¼ �
Xk
i¼1

ai

Z
V

hrfiðpÞ; ~vi2dp

þ 1

2

Z
V

k~vk22dpþ 1

2

Xk
i;j¼1

aiaj

Z
V

hrfiðpÞ;rfjðpÞi2dp:

The derivatives of F with respect to a :¼ ðaiÞki¼1 are

@aF ¼
Xk
i¼1

ai

Z
V

hrfiðpÞ;rfjðpÞi2dp�
Z
V

hrfjðpÞ; ~vi2dp;

and the equation @aF ¼ 0 reduces to the linear system

Aa ¼ b; Aði; jÞ :¼ RVhrfiðpÞ;rfjðpÞi2dp;
bðiÞ :¼ RVhrfiðpÞ; ~vi2dp:

�
(13)

The least-squares approximation requires only to evaluate
the RBFs at the input points, while the weighted least-
squares approximation needs an underlying connectivity
for the evaluation of the integral. Indeed, the least-squares
approximation is particularly useful for the computation of
the potential of vector fields on point sets.

For the solenoidal component, we minimise the error
HðwÞ ¼ 1

2

R
V GðwÞdp ¼ 1

2

R
V kr ^w� ~vk22dp, where GðwÞ

and r ^w in Eq. (10) are defined in Section 4.1. Then, the
minimum is achieved by solving the normal equation @aH,
where the derivatives are computed with respect to the
coefficients a

ð1Þ
k ;a

ð2Þ
k ;a

ð2Þ
k . In particular,

Fig. 5. Meshless decomposition v ¼ ruþr^wþ h: (a) input field,
(b) curl-free, (c) div-free, and (d) harmonic component.

Fig. 6. HHD: (a) input vector field, (b) curl-free, (c) div-free, and (d) harmonic
component.

Fig. 7. (a,c) Iso-surfaces of the meshless potential of the curl-free vector
field in (b,d). Perturbing (b) with a 25 percent Gaussian noise, we com-
pute the corresponding least-squares potential (c), whose gradient field
is reported in (d). The ‘1 error between the ground-truth potential (a)
and its approximation (c) is lower than 1.2 percent. Different colours
correspond to different iso-values.

Fig. 8. (a) Input field, (b-d) streamlines of the curl-free, div-free, and
harmonic components of the HHD.
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@
a
ð1Þ
k

H ¼
Z
V

Xn
i¼1

ðað1Þ
i @zfi � a

ð3Þ
i @xfiÞ � wy

 !
@zfk

"

þ
Xn
i¼1

ðað2Þ
i @xfi � a

ð1Þ
i @yfiÞ � wz

 !
@yfk

#
dp;

and analogous relations apply to the other derivatives.
From these relations and analogously to Eqs. (11) and (12),
we derive the corresponding normal equation. The mesh-
less representation of the potential of the conservative and
solenoidal components of the input vector field guarantees
the smoothness and stability to regular/irregular space
sampling or noise, and an approach general enough to deal
with 2D (Figs. 9 and 10) and 3D (Fig. 11) data.

4.3 Meshless Decomposition With Laplace
Equation

Recalling that the components u and w of the Helmholtz-
Hodge decomposition of v satisfy the relations Du ¼ r � v,
Dw ¼ r ^ v, we approximate these functions as a linear
combination of RBFs. To this end, we approximate v with
a meshless vector field ~v such that ~vðpiÞ ¼ vi, i ¼ 1; . . . ; n;
in this way, we evaluate r � ~v and r ^ ~v analytically. Then,
we define uðpÞ :¼Pk

j¼1 ajfjðpÞ, where the coefficient

vector a :¼ ðajÞkj¼1 satisfies the linear system

La ¼ b; Lði; jÞ :¼ DfjðpiÞ; bðiÞ :¼ r � ~vðpiÞ; (14)

i ¼ 1; . . . ; n, j ¼ 1; . . . ; k. In Eqs. (7) and (14), the meshless
approximations of the irrotational component of the HHD
are equivalent, requiring the solution of a least-squares lin-
ear system but having a different degree of smoothness, i.e.,
C1 for Eq. (7) and C2 for Eq. (14). The large null space of the
potential of the irrotational component can lead to numeri-
cal instabilities in Eqs. (7) and (14), which generally happen
in case of a large number of centres and are removed by
adding the regularisation term �I, � � 0, to the coefficient
matrices. In our experiments, we did not face high numeri-
cal instabilities and the choice � :¼ 10�10 was enough to han-
dle them. Each x, y, z component of w is approximated as a
linear combination of RBFs of class C2. Sincew is C2, the vec-
tor Laplace-Beltrami operator D ¼ rr � �r ^r ¼ ðD;D;DÞ
reduces to the scalar Laplace-Beltrami operator on each
component of the vector field, as a consequence of the
Schwartz commutativity of the second order partial deriva-
tives. Indeed, the equation Dw ¼ r ^ ~v is equivalent to solv-
ing three harmonic equations, as done for the component u.
Examples are shown in Fig. 11.

Algorithm 1.Meshless HHD

Input: A discrete vector field v : P ! R3, with P point set, a
positive-definite kernel f : R ! R, and a set of centres
C :¼ fcigki¼1 with RBFs fiðpÞ :¼ fðkp� cik2Þ (Table 1).

Output: Computation of the conservative componentru.
1: Compute the coefficient matrix in Eq. (8);
2: Compute the coefficients a as solution to Eq. (7);
3: Compute the potential u in Eq. (5);
4: Compute the conservative componentru in Eq. (6 a).
Output: Computation of the solenoidal componentr^w.
5: Compute the anti-symmetric matrix in Eq. (11);
6: Compute the coefficients a as solution to Eq. (12);
7: Compute the potentialw in Eq. (9);
8: Compute the solenoidal componentr^w in Eq. (10).
Output: Computation of the harmonic component h.
9: Compute h � v� ðruþr ^wÞ.

5 DISCUSSION

We derive the conditions on the kernel for the existence of the
derivatives (Section 5.1) of theRBFs. Then,wediscuss theprop-
erties of themeshless decomposition (Sections 5.2 and 5.3).

Fig. 9. Least-squares HHD: (a) Input field, (b) curl-free, (c) div-free, and
(d) harmonic components.

Fig. 10. Least-squares HHD: (a) Input field, (b) curl-free, (c) div-free, and
(d) harmonic component.

Fig. 11. Meshless HHD v ¼ ruþr ^w of an analytic vector field: (b)
iso-surfaces of u, and streamlines of the (a) irrotational and (c) div-free
components. The ‘1 error between the ground-truth and the computed
decomposition is lower than 2.3 percent.
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5.1 Well-Posedness of the Meshless Decomposition

Expressing the potential of the conservative and solenoidal
components as a linear combination of RBFs, the evaluation
of differential operators reduces to 1D derivatives. To this
end, we identify the conditions on the kernel that guarantee
the existence of the gradient and of the rotor of the potential
of the conservative and solenoidal component, respectively.
These conditions are easily evaluated for an arbitrary kernel
by checking the existence of its first and second derivatives
at zero. In Table 1, we discuss the existence of the first and
second order derivatives of the RBFs commonly used for
the approximation and HHD of vector fields.

Assuming that f is C1ðRþÞ, we study the well-posedness,
continuity, and differentiability of the potential at any point
of R3 in terms of the generating kernel. Since the potential is
a linear combination of RBFs, it is enough to study the exis-
tence of the gradient in Eq. (6 b) of these basis functions,
which is well-defined, continuous, and differentiable for
any kernel and at any point of R3 except the centre ci. To
analyse the regularity of the meshless function in Eq. (6 b)
at ci, we evaluate this expression in a neighbourhood of ci,
i.e., on the points p :¼ ci þ ba, kak2 ¼ 1, of the sphere S of
centre ci and radius b. Then, we have that

lim
b!0�

rfiðpÞ ¼ lim
b!0�

sgnðbÞf0ðjbjÞa ¼ �f0ð0Þa; p 2 S;

where sgnð�Þ is the sign function. Indeed, the gradient of fi

is well-defined and continuous at ci if and only if f0ð0Þ ¼ 0.
Since the rotor involves the first order partial derivatives of
the components of w, previous conditions also guarantee
the well-posednees of the solenoidal potential. Deriving the
function in Eq. (6 b), the entries of the Hessian matrix of the
RBFs are

@2xkxj
fiðpÞ ¼

f00ðkp� cik2Þ
kp� cik2

ðxk � c
ðkÞ
i Þðxj � c

ðjÞ
i Þ

þ f0ðkp� cik2Þ
kp� cik2

dkj � f0ðkp� cik2Þ
kp� cik32

ðxk � c
ðkÞ
i Þðxj � c

ðjÞ
i Þ;

(15)

i; j ¼ 1; . . . ; d, where c
ðjÞ
i is the jth component of ci. To study

the continuity of these derivatives at ci, we consider their
restriction on the sphere S, i.e.,

@2xkxj
fi ¼ f00ðjbjÞjbjhðkÞhðjÞ þ f0ðjbjÞ

jbj dkj þ�f0ðjbjÞ
jbj hðkÞhðjÞ:

Applying the following identities (derivative of a composite
function) limjbj!0�

f0ðjbjÞ
jbj ¼ limjbj!0� f00ðjbjÞ ¼ f00ð0Þ, we get

that limjbj!0� @2xkxj
fiðpÞ ¼ ðdkj � hðkÞhðjÞÞf00ð0Þ. Indeed, the

existence of f00ð0Þ is enough to compute the second order
derivatives of the RBFs.

5.2 Kernel/Centres’ Selection and Computational
Cost

The kernel and centres’ selection is guided by the order of
smoothness of the resulting approximation (Table 1), the
computational cost and storage overhead.

Kernel Selection. The first and second order derivatives of
the cubic, Gaussian, II- and IV-degree polynomial kernels
are well defined; indeed, they are valid choices for the

approximation of vector fields, the computation of the
HHD, the classification of the critical points of the potential
of the conservative and solenoidal components. The deriva-
tives of the thin-plate, inverse multi-quadratic, and multi-
quadratic kernels might be not well defined as the radial
distance r and/or the parameter s of the generating kernels
in Table 1 becomes close to zero. Indeed, these last three ker-
nels are valid choices for the approximation of a vector field
but the components of the HHD might be not defined at the
centres of the RBFs or might have spurious critical points.
For sparse samples, we select globally-supported kernels
(e.g., the Gaussian kernel in our tests); for dense data, we
select locally-supported kernels (e.g., the II-order polyno-
mial, in our experiments), whose support is computed
according to geometric [55] or functional properties [56].

Centres’ Selection. In case of a dense point set, we select
locally-supported RBFs centred at any input point or glob-
ally-supported RBFs centred at a subset of the input points
through clustering, kernel-based sampling, or sparsifica-
tion, and with a maximum number of centres determined
according to the available computational resources (e.g., 5K
points in our experiments). Indeed, the location and number
of centres of the RBFs are adapted to the behaviour of the
input vector field by increasing the number of centres at
each iteration until the residual least-squares error is lower
than a given threshold (e.g., 5 percent, in our experiments).
However, the centres of the RBFs remain fixed (i.e., they are
not optimised further) and are used for the computation of
the coefficient matrices of the linear systems in Eq. (7).

Computational Cost. For the computation of the potential
functions of the conservative and solenoidal components
with k globally-supported RBFs [57], [58], the allocation of the
coefficient matrices in Eqs. (8) and (11) takes OðktÞ memory
and the computation of the coefficients of the solution to the
linear system in Eqs. (7) and (12) takes Oðk3Þ time with direct
solvers andOðktÞ time with iterative solvers. Finally, the com-
putation of the harmonic component takes linear time. For
locally-supported RBFs [54], [59], thememory allocation reduces
to OðrkÞ and computational cost is Oðrklog kÞ, where r is the
average number of points in the neighbourhood of each center
(e.g., r ¼ 10; 20 for the k-nearest neighbourhood). In Table 2,
we report the performances of the meshless HHD in terms of
computation time andmemory consumptions.

TABLE 2
Timings of the Meshless Approximation and HHDWith

Respect to the Number of Samples and Centres, Induced by
Globally- (Gl.) and Locally- (Loc.) Supported RBFs
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Experimental Results. For the selection of the centres of the
meshless approximation of a 2D vector field defined on a
regular (Fig. 12, wind field) and irregular sampling (Fig. 13,
a fluid flow), we apply the kernel-based sampling, a uni-
form sampling, and a random sampling. The error is mea-
sured as the angle between the input and the reconstruction
vector fields; the white colour corresponds to a null angle
and black identifies the maximum angle, which is lower or
equal to p in our experiments. For all the methods, the
centres of the RBFs are denser in those regions where the
magnitude of the vector field is higher (e.g., in the central
region of the input domain); here, the reconstruction is very
accurate and preserves the streamlines of the vector field.
The error is localised mainly in the boundary regions, where
we have only a partial information on the behaviour of the
input vector field. The kernel-based sampling generally pro-
vides the best results in terms of minimum angle between
the input and meshless vector fields, shape and distribution
of the streamlines.

We analyse the quality of the meshless approximation
and decomposition in terms of the selected centres and ker-
nels. To this end, we focus on 2D vector fields and on the
computation of the conservative component.

To this end, we evaluate the quality of the reconstruction
at m input points in terms of the normalised cross correlation

NC, the normalised root mean square error (NRMSE), and the
Pk-percentile, defined as the percentage of points whose
reconstruction error is lower than k. Eachmetric is computed
as the average of its value on the components of the field. In
out tests (Table 3), the kernel-based sampling has the best
results with a NC value of 0.994 and a P0:05 value of 0.99.
Since the kernel-based sampling provides the best approxi-
mation accuracy, we further analyse its accuracy with
respect to the number of samples. Selecting a larger numbers
of samples (i.e., from 500 to 4K), the reconstruction of the
input vector field improves. The error is mainly localised at
the bottom left corner, where the samples are less dense, and
it reduces where the number of samples increases (Fig. 14).
Comparing the error metrics with a larger number of sam-
ples (Table 4), the kernel-based sampling is very accurate,
even when we use only 1K samples (i.e., the 6 percent of the
input points). In fact, the 97.1 percent of the points have a
reconstruction error lower than 0.10. Selecting 4K samples,
the reconstruction error is lower than 0.02.

Comparison With Respect to Previous Work. For the compar-
ison of the proposed approach with previous work, we

Fig. 12. 1-st Row: Wind field and streamlines on a 25� 25 regular grid.
Centres computed with the kernel-based sampling applied to the field
magnitude kvk2 (2nd row) and to the potential (3rd row), or uniformly dis-
tributed (4th row). (a) Selected centres of the RBFs, (b) streamlines of
gradient of the meshless potential, and (c) angle distribution ffðru; vÞ:
white represents a null angle and black corresponds to p. See also
Table 3.

Fig. 13. Sampling, reconstruction, and error of the kernel-based sam-
pling applied to the field magnitude kvk2 (first row) with (a) n ¼ 150,
(b) n ¼ 300; (c) n ¼ 700 samples. See also Table 6.

TABLE 3
Approximation Accuracy of the Meshless Vector Field in Fig. 12
With Centres Selected Through Kernel-Based and Uniform

Centres. Best Results in Bold

Method Kernel sampl. kvk2 Kernel sampl. u Unif. sampl.

NC 0.994 0.355 0.929
NRMSE 0.084 0.938 0.311
P0:05 99.9% 35:5% 88.7%
P0:10 100% 62:7% 96.9%
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notice that our main goals (i.e., meshless interpolation of
scalar/vector values, meshless HHD of arbitrary 3D fields)
are still an open problem in Computer Graphics and Visual-
isation, which have been focused mainly on 2D vector
fields. To this end, we compare its main properties with
respect to [1], [5], which have been applied only to 2D SPH
flows. According to Table 5, the proposed meshless decom-
position has a higher approximation accuracy for the com-
putation of the potential of the conservative and irrotational
components. Considering an irregularly sampled vector
field (Fig. 13) and comparing the error metrics with a larger
number of samples (Table 6), the kernel-based sampling is
very accurate, even when we use only 150 samples (i.e.,
the 10 percent of the input points). In fact, the 96.1 percent
of the points have a reconstruction error lower than 0.10.

Selecting 700 samples, the reconstruction error is lower than
0.07. In Table 6, we report the execution time and the num-
ber of iterations with respect the number of selected centres.

5.3 Properties of the Decomposition

Unicity and Exactness. The proposed approach implements
the natural HHD [2], [3], without imposing additional
boundary conditions to guarantee a unique decomposition.
However, the approximations (5), (9) of the potential of the
conservative and irrotational components are uniquely
defined in terms of the RBFs. In fact, the coefficients of their
representations solve the corresponding least-squares sys-
tems in Eqs. (7) and (12). Since our meshless HHD is based
on the evaluation of differential operators in the continuous
setting, the residual divergence and the residual rotor are
null, i.e., the relations r ^ru ¼ 0, r � r ^w ¼ 0, r � rf ¼
Df apply in an exact way. On the contrary, these relations
apply in an approximate way for [1], [5], as differential
operators are discretised as finite differences, and are
affected by a residual divergence and rotor.

Approximation of Derivatives. Let f be the Gaussian or
multi-quadratic kernel and let us assume that f is condition-
ally positive of order m. Let V be a bounded set of Rd that

TABLE 5
For the Analytic Fields in Figs. 3, 11, and 14, We Compare the
Proposed Approach With [1], Where ‘1 Error (‘1-u) Between

the Ground-Truth u and the Computed Meshless Potential of the
Conservative Component (i.e.,maxijuðpiÞ � ~uðpiÞj)

Tests Our method

Ex. ‘1-u ffru ffr ^w

Fig. 3a 1:2� 10�6 1:2� 3:3�
Fig. 3b 2:5� 10�7 2:4� 4:6�
Fig. 11 1:2� 10�6 1:9� 2:1�
Fig. 14 6:2� 10�8 3:2� 4:1�

Previous work: [1]

‘1-u ffru ffr ^w

Fig. 3a 5:2� 10�3 5:1� 7:3�
Fig. 3b 3:5� 10�2 8:5� 7:5�
Fig. 11 1:2� 10�3 7:6� 5:2�
Fig. 14 4:2� 10�3 10:8� 4:6�

We measure the angle between (i) the ground-truth and the meshless conserva-
tive fields, and (ii) the ground-truthw and meshless ~w irrotational component
(i.e.,maxiffððr ^wÞðpiÞ; ðr ^ ~wÞðpiÞ).

TABLE 6
With Reference to Fig. 13,WeReport (i) the ErrorMetricsWhen
Varying theNumber of Samples, theReduction of the Execution

Time and the Variation of the Number of Iterations for the
Kernel-Based SamplingWith a Larger Number of Samples,With
Respect to the Execution Time T ¼ 58 Sec.With 700 Samples

Samples 700 500 300 150

Objective function 1.49 1.81 4.6 8.3
NC 0.997 0.996 0.983 0.959
NRMSE 0.075 0.152 0.181 0.279
P0:05 99.9% 98.7% 98.6% 96.1%
P0:10 100% 99.7% 99.6% 99.1%

Execution Time [s] T 0:4T 0:23T 0:22T
Iterations 1634 842 631 1236

Fig. 14. (a) Streamlines of a conservative vector field. (b, 2nd row) 0.5K,
(b, 3rd row) 1K, (d, 4th row) 2K kernel-based samples of the field magni-
tude kvk2. (c) Streamlines of the gradient of the meshless potential and
(d) angles between the input vector field and its meshless approximation.
See also Table 4.

TABLE 4
With Reference to Fig. 14, We Report the Approximation

Accuracy With Respect to a Larger Number of Centres of the
RBFs, Selected With the Kernel-Based Sampling

Samples 4K 3K 2K 1K 0.5K

NC 0.999 0.998 0.995 0.981 0.913
NRMSE 0.020 0.029 0.048 0.102 0.226
P0:05 100% 99.9% 98.4% 88.2% 67.1%
P0:10 100% 100% 99.9% 97.1% 85.1%

Best results in bold.
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satisfies the interior cone condition and let u be the interpo-
lant of f on P with respect to the RBFs centred at P. Then,
for any l 2 N with l � maxfjaj;m� 1g, there exist constants
h0ðlÞ, fl > 0 such that jDaf �Dauj 	 flhVjf j, with hV <
h0ðlÞ. According to this last relation, we accurately approxi-
mate the derivatives of a given function through the deriva-
tives the RBFs of its approximation. For quantitative error
bounds, we refer the reader to [60], [61].

Numerical Stability. Let ueðpÞ ¼
Pk

i¼1 ae;ifiðpÞ be the
potential of the perturbed vector field ~v :¼ vþ e. Then, the
variation on the corresponding gradient is estimated as

kru�ruek2 ¼ k
Xk
i¼1

ðai � ae;iÞrfik2

	
ffiffiffi
k

p
max
i¼1;...;k

fkrfik2gka� aek2; ae ¼ ðae;iÞki¼1;

	Eq. (7)

ffiffiffi
k

p
kf0k1kðF>FÞ�1F>Þk2kek2

(16)

Indeed, the stability of the meshless computation of the
potential of the conservative component is controlled by the
maximum variation the derivative of the generating kernel
and the inverse of the minimum eigenvalue of the least-
squares matrix. Let we be the potential of ~v. Recalling that a
satisfies Eq. (12) and analogously to Eq. (16), we get that

kr ^w�r ^wek2 	
ffiffiffiffiffi
6k

p
kf0k1��1

minð~AÞkek2; (17)

with ~A :¼ ðA>AÞ�1A. Our experiments confirm the robust-
ness of the meshless approximation and HHD to sampling,
a good independence of the selection of the shape parame-
ters and kernels. An ill-conditioned coefficient matrix is
associated with almost coincident points or a badly scaled
coefficient matrix. Indeed, it is useful to check and remove
almost coincident points from the input data set and select
the shape parameter of the RBFs through optimised criteria,
such as “trial and error” procedure, or an adaptive leave-
one-out cross-validation [56], or optimality constraints [62]
with respect to the selected (e.g., Gaussian) RBFs. For a fixed
number of centres, a smaller shape parameter generally pro-
duces a more accurate approximation, but is associated with
a poorly conditioned coefficient matrix. For a fixed shape
parameter, the conditioning number also grows with the
number of centres. The upper bounds in Eqs. (16) and (17)
highlight the case when numerical instabilities might hap-
pen. In these cases, which we have not encountered in our
tests, it is generally enough to regularise the linear systems

in Eq. (12) and (13) by adding the term �I to the coefficient
matrix, with � ! 0 and I identity matrix.

Memory Footprint of the Meshless Decomposition. While the
input vector field is stored as a matrix of doubles, whose
dimension is equal to the number of input nodes/vertices,
the meshless potentials are represented as a set of coeffi-
cients and corresponding centres, which are the nodes of a
grid with a lower resolution. Indeed, the meshless HHD
(Section 4) allows us to achieve a strong reduction of the
memory footprint of the input data (Figs. 12, 13, and 14,
Tables 4, 6, and 7) and to decouple the representation of the
potential from the discretisation of the input domain. This
last aspect is important to distinguish the complexity of the
domain geometry from the complexity of the vector field.

6 CONCLUSION AND FUTURE WORK

This paper has addressed the approximation and analysis of
an arbitrary vector field through a meshless representation
of the HHD with RBFs. To the best of our knowledge, we
introduce the first work that addresses the meshless compu-
tation of the HHD of nD instead of 2D vector fields, which is
based entirely on a continuous approach. This new HHD
framework for meshless vector fields is also aimed to set-up
the foundation for other tasks for the analysis of meshless
vector fields, such as the detection of critical points, topol-
ogy construction, and the analysis of time-depending vector
fields. For the meshless classification of the critical points of
the potential u : V ! R [63], we solve the equation ruðpÞ ¼

Fig. 15. (Left) Noisy potential, (middle) meshless approximation, (right)
critical points (black dots) with paths computed by the iterative scheme
from random guesses (yellow dots).

TABLE 7
Reduction of the Memory Footprint% (p :¼ k=n) of the Input

Data With the Meshless Approximation, in Terms of the Original
Grid Size n� n and the Number k of RBFs in the Meshless

Approximation

2D Tests n ¼ 2562 3D Tests n ¼ 1283

k ¼ 642 p ¼ 0:6% k ¼ 11K p ¼ 0:5%

Fig. 5 1:2� 10�9 Fig. 7 7:3� 10�8

Fig. 6 2:5� 10�10 Fig. 8 2:1� 10�8

Fig. 9 1:9� 10�9

Fig. 10 2:9� 10�11

The value �1 is the ‘1 error between the input field and its meshless approxi-
mation, evaluated at the grid nodes.

TABLE 8
‘It’ Iterations, ‘Ev’ Function Evaluations, Convergence of

kruðpÞk2 to Zero of the Iterative Trust-Region Method (Fig. 15)

It. Ev. kruðpÞk2 It. Ev. kruðpÞk2
0 4 0.0494952 0 4 0.172086
1 8 0.0400076 1 8 0.015144
2 12 0.0231691 2 12 0.002548
3 16 0.0005562 3 16 5:0169 e� 05
. . . . . .
28 116 1:1088 e� 16 18 76 4:7386 e� 17
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0 in Eq. (6 a) through a trust-region iterative solver, initial-
ised as pj1

:¼ p
?
. Then (Fig. 15, Table 8), a critical point is

classified according to the sign of the eigenvalues of the
Hessian matrix of u (c.f., Eq. (15)). For the potential w of the
solenoidal component, we can apply a similar procedure to
the symmetric Jacobian matrix J ¼ r ^w (for a C2 kernel).
Each RBF has at most one critical point at its centre and the
critical points of the potential are determined uniquely by
its meshless representation as a linear combination of the
RBFs, and not by the single RBF. Even though the order of
convergence of ruðpÞ to zero is high, in case of critical
points of higher order we might experience a larger approx-
imation error around the critical points. Indeed, the classifi-
cation of the critical points of the conservative potential and
of the singularities of the solenoidal component will be
addressed in future work.

Finally, the computation of the optimal centres with
respect to the target accuracy and computational resources
can be achieved by minimising the least-squares energy in
Eqs. (7) and (12) with respect to the unknown coefficients and
to the coordinates of the centres. The minimum of the normal
equation is computed through iterative solvers of non-linear
systems or the iterative optimisation method L-BFGS (Lim-
ited-memory Broyden, Fletcher, Goldfarb, Shanno) [64].
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