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Abstract—Contemporary scientific data sets require fast and scalable topological analysis to enable visualization, simplification and

interaction. Within this field, parallel merge tree construction has seen abundant recent contributions, with a trend of decentralized,

task-parallel or SMP-oriented algorithms dominating in terms of total runtime. However, none of these recent approaches computed

complete merge trees on distributed systems, leaving this field to traditional divide & conquer approaches. This article introduces a

scalable, parallel and distributed algorithm for merge tree construction outperforming the previously fastest distributed solution by a

factor of around three. This is achieved by a task-parallel identification of individual merge tree arcs by growing regions around critical

points in the data, without any need for ordered progression or global data structures, based on a novel insight introducing a sufficient

local boundary for region growth.

Index Terms—Scientific visualization, topological data analysis, task parallelism, distributed architecture
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1 INTRODUCTION

WITH increasing size and complexity of scientific data
arising from simulations and measurements, methods

for efficient visualization and interactive exploration are
becoming more and more important, forming a crucial com-
ponent of modern, computational science. Topology-based
methods have proven to reveal fundamental global features
in such data, allowing for automatic analysis and simplifica-
tion, and laying a basis for many such visualization meth-
ods [1], [2], [3].

However, this very same increase in size and complexity
of data brings sequential algorithms of visualization and
analysis to their feasible runtime limits. Scalable parallel
reformulations have become necessary but proved especially
challenging for topological methods that are often sequential
in nature, due to their global feature-oriented concepts.

One of the most utilized [4], [5], [6], [7], [8], [9] topological
concepts is the contour tree that represents level-set compo-
nents of scalar functions on discretizedmanifold domains.

An augmented contour tree in addition embeds all verti-
ces of the discretization to their corresponding level-set
representation in the tree, allowing an additional band-
width of applications [10], [11], [12].

In this paper we present work on the construction of the
merge trees, from which the contour tree can be obtained
with a well understood merging step, which is usually not
the bottleneck in contour tree construction.

The global nature of these trees manifests in their well
established sequential construction algorithm [13], that

performs a single ordered scan through the data and man-
ages a union-find data structure to track level sets.

Topological structures, and in particular the augmented
merge trees, have considerably large memory footprints
during computation, which, for larger data sets, exceeds
shared-memory system capacity.

Therefore, the necessity for parallel and distributed
merge tree construction algorithms, combined with the
aforementioned intrinsic challenges to derive them, has led
to a patched field of algorithms tailored for parallel execu-
tion or distributed systems, that received a lot of attention
in recent years (see Section 2.2).

Within this field, a contemporary trend towards fine-
grained parallelism, using e.g., task-parallel [14] or data-
parallel [15] solutions, outperform more traditional divide
& conquer strategies [16] on shared-memory systems. This
is not surprising, since the core idea of maintaining a high
processor occupancy through latency hiding and compen-
sating load imbalance (which is found both in SIMD warps
and task-parallel paradigms) fits the I/O heavy problem,
with a tendency towards unpredictable load imbalance
well. Additionally, the high-level concepts of task-parallel
problem descriptions allow for easy portability, while
machine-oriented low-level solutions do not fit the ever
increasing size of modern clusters.

However, existing solutions within this trend either rely
on sorted progression per arc [14], or global data structures
[15], [17], [18], [19]. Therefore, improved versions [20] of the
traditional divide & conquer remain unchallenged in the
field of distributed merge tree construction.

Thus, the construction of the merge trees beyond the
scope of shared-memory is hurt by either the need for data-
boundary spanning, sorted progression, by some necessary
global structures, or by the fan-in stages of traditional
divide & conquer approaches. There are some specialized
solutions that do not depend on shared-memory, however
they compute a quantized approximation [21] or distributed
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representation [22] instead of the complete, un-modified
contour tree.

In this context, we make the following contributions. We
extend upon the monotone path-based core idea of meth-
ods, that do not rely on locally ordered progression [15],
[18], [22], by deriving a novel insight of a ”local boundary”.
This avoids global data structures, resulting in the identifi-
cation of locally restricted, independent tasks, that can span
beyond shared-memory and run on distributed computa-
tion nodes concurrently.

We derive a novel merge tree construction algorithm, that
aims to bring strengths of recent, fine-grained solutions to
distributed systems and present benchmarked runtimes and
scalability on different data sets. The results show, that the
novel algorithm performs almost on par with the current
state of the art solution [14] on a shared-memory system, but
is able to outperform the previously fastest distributed
merge tree constructions [20], [23] by a factor of two to three,
even though it constructs the augmented instead of un-aug-
mented merge trees. Additionally, a proof-of-concept imple-
mentation of the SIMD-Hybrid variant is derived and
benchmarked, and it demonstrates speed-ups of up to 20x.

2 BACKGROUND AND PREVIOUS WORK

2.1 Preliminaries

Consider a piecewise-linear (PL), real-valued function f on
the triangulation M of a d-manifold. We require that the
restriction of f to the set V ðMÞ of vertices of M is injective,
which can be achieved by slight function value perturba-
tions achieving simulation of simplicity [24]. A level set is
the pre-image f�1ðhÞ of a given level h 2 R. A sub-level set
f�1
�1ðhÞ is the pre-image of the interval ð�1; h� - or sur-level
set f�1

þ1ðhÞ for the interval ½h;1Þ respectively. A contour is a
single connected component of any such level-set. Denote
the contour containing a vertex p by f�1ðhÞp. Define the
equivalence relation � on vertices p1; p2 2 V ðMÞ as: p1 �
p2 , fðp1Þ ¼ fðp2Þ ^ p2 2 f�1ðfðp1ÞÞp1 . The Reeb graph of M
is the quotient space RðfÞ ¼ M=� . On domains that are
topologically equivalent to a sphere of the same dimension-
ality RðfÞ will be loop-free and called the contour tree. The
join tree and split tree are defined similarly with regard to an
equivalence relation on sub-level set components and sur-
level set components respectively. Both join and split tree
are called merge trees. Note that while contour, join and
split trees are defined as quotient spaces, they are usually
implicitly used as graphs. In these graphs nodes are vertices
at which the number of connected components changes and
edges follow the connectedness in the quotient space. For
triangulations, all critical points and thus all tree nodes of f
are guaranteed to be at vertices [25]. If v is such a vertex, we
denote the corresponding node in the join tree, split tree or
contour tree as the join node, split node or contour node ~v.

Intuitively, the join tree contracts all points that belong to
a given sub-level set component and have the same function
value to a point, see Fig. 1. Split and contour tree follow sim-
ilarly for sur-level sets and level-sets. With this, the contour
tree is a powerful topological abstraction, building a kind of
skeleton of geometry with respect to a scalar field. Within
this setting, each local minimum is a vertex with no smaller-
valued neighbors and creates an isolated connected

component of the sub-level set at its value, and thus it
appears as a leaf in the join tree. As sub-level set compo-
nents grow with increasing level h, vertex values of the data
will gradually be reached, and corresponding vertices will
join connected components. All vertices where such con-
nected components merge with another will appear as inner
nodes in the join tree, and they will again represent a now
merged sub-level set connected component themselves.
With edges connecting nodes to the node where their repre-
sented connected component merges, and vertices that are
not nodes in the tree mapped to the edge that represents the
sub-level set component they initially belonged to, the aug-
mented join tree is complete. The augmented split tree fol-
lows symmetrically for sur-level sets and local maxima.

The identification of local minima is trivial and embar-
assingly parallel, and the augmented contour tree can be
constructed in parallel and in linear runtime from the aug-
mented join and split tree [14]. The relevant task of our algo-
rithm therefore is to identify inner nodes, edges and
augmentations of the merge trees. This is also the aspect in
which most contemporary solutions differ.

2.2 Contour Tree Computation

The abundant efforts in parallel contour tree construction
have created a varied landscape of algorithms with different
strengths, weaknesses and target hardware architectures. In
the following, we group existing solutions into three families,
giving a short characterization of each. Note that we will not
address general Reeb graph construction in high detail as
those algorithms are generally outperformed by their more
specialized versions on simply connected domains. Especially
within the scope of this paper instead of comparing to the

Fig. 1. An exemplary domain M and a given triangulation of it, with the
scalar function f corresponding to the height (a). Local minima (green)
and maxima (red) are illustrated as circles. In (b) vertices at which the
number of connected components of sub-level sets change are illus-
trated as additional circles (orange). One such sub-level set is
highlighted; it contains three components, one of which is created at this
level by a join. The join tree (which is identical to the contour tree in this
example due to the lack of split nodes) is shown embedded in the trian-
gulation (c). (d) shows the join tree as a quotient space that is trivially
interpretable as a graph.
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fastest known augmented Reeb graph construction [26], we
compare to its faster version formerge trees [27].

2.2.1 Divide & Conquer Sequential Construction

Carr et al. [13] introduced constructing the contour tree from
two merge trees; a method most existing algorithms utilize.
Here, the join tree is constructed by a sequential sweep
through all vertices, sorted by value. With a union-find data
structure, adjacency to existing sub-level set components
can be tested efficiently. Vertices that are not adjacent to any
existing sub-level set appear as leafs in the tree. Vertices
that are adjacent to exactly one sub-level set component just
join that sub-level set (joining their augmentation too). Ver-
tices that are adjacent to multiple components merge them
and appear as inner nodes in the tree. As always, split tree
computation follows symmetrically and will not be men-
tioned again below. Identification of nodes in the tree there-
fore relies on the sub-level set component configuration
adjacent to a vertex at a level ”just before” the vertices own
value. This configuration is tracked with the union-find
data structure and updated for each vertex in total order.

This naturally sequential approach has received a divide
& conquer based parallelization [16], which divides the data
into preferably equal chunks, computes the join tree sequen-
tially for each chunk and then stitches those local trees
together at common vertices on chunk boundaries. For this,
a hierarchical fan-in is necessary, with each two local trees
being merged into a new, partially-merged tree, that spans
the combination of their chunks, repeating until two par-
tially merged trees -spanning half the data each- merge into
the complete join tree.

Some of the limitations of this approach could be over-
come by an optimization by Landge et al. [20]. Here, the
local trees and -after each merging step- the partially
merged trees are pruned of any information that does not
cross the remaining chunk-boundaries, before climbing the
next merge step in the fan-in process. Depending on data
complexity and chunk distribution, this reduces the com-
munication and work in the fan-in stages dramatically and
allows for a feasible treatment of augmentations, that would
otherwise require the last fan-in merge to do approximately
as much work as the sequential tree construction.

Another approach divides the data among level-sets,
instead of spatial concepts [28]. Depending on the data, this
approach might reduce chunk-boundary sizes and thus
computational and communication overhead.

Members of this family of divide & conquer strategies
[16], [20], [28], [29], [30] (and [31] for Reeb graphs) share
common strengths and weaknesses. The number of parallel
worker agents is limited to the number of data chunks. A
growing number of data chunks increases not only synchro-
nization effort, but actually introduces extra work. Lastly,
the fan-in reduction stages of such approaches suffer from
increased work and decreased involved processors, the
higher up in the hierarchy the process reaches. All of this
harms scalability of such approaches onto massively paral-
lel systems like clusters and accelerators.

2.2.2 Fine-Grained Per-Arc Construction

A second family of algorithms focuses on mostly indepen-
dent identification of individual arcs. As nodes in the join

tree are always connected by monotone paths in the original
data [25], tracing monotone paths from or to local minima
and scanning for potential vertices where connected compo-
nents may merge, allows for join tree construction. With
this focus on local features, a less centralized workflow
improves parallelization.

For example Chiang et al. [19] utilize the observation, that
all inner nodes in the join tree have to be Morse critical sad-
dle points. Otherwise, there could not ever be multiple, not
yet connected sub-level set components to merge at the ver-
tex. Restricting the data to local minima and Morse-critical
saddle points, and following all remaining monotone paths
from each remaining vertex downwards, yields all edges of
the join tree. However, to be able to reconstruct the internal
hierarchy of the join tree, these monotone paths have to be
processed in sequential order of the remaining critical sad-
dle vertices, and due to the restriction of the algorithm to
critical points no augmentation can be computed.

Restricting the data even further, Maadasamy et al. [18]
test for all critical saddle vertices whether their smaller
neighbors are connected, by performing overlapping
breadth-first searches in the sub-level set to their values.

Similarily, Carr et al. [15], [32] introduced an SMP ori-
ented algorithm. From each vertex in the data an arbitrary
descending monotone path is followed, until reaching a
local minimum, labelling the vertices with that local mini-
mum. In a second step, for each edge in the data it is
checked, whether it connects differently labelled vertices
and if so, the higher valued vertex of the edge is marked as
potentially joining the two connected components of those
minima. A global list of those saddle candidates is sorted by
function value, and the smallest saddle candidate per local
minimum is identified as its join node.

While algorithms of this second family [17], [18], [19],
[32], [33] have parts that expose fine-grained parallelism
suitable for GPU or distributed settings, they introduce con-
siderable extra work and communication, by tracing paths
through the entire height of the tree. Most do not produce
an augmentation and still contain globally sequential parts,
harming scalability.

2.2.3 Independent Arc Growth

Gueuenet et al. [14] recently presented a task-parallel algo-
rithm, with minimal dependencies between individual arc
constructions. As it is neither based on a divide & conquer
approach, nor requires any global or shared data structures,
but instead constructs every arc in the join tree indepen-
dently (with parent arcs depending on child arcs only), we
classify this approach as the first in a third family of algo-
rithms. As already hinted at in [17], finding the join node for
a local minimum is ultimately a semi-local operation. In fact
the smallest valued Morse-critical saddle point that is reach-
able by a local minimum m and at least one local minimum
other than m through monotone paths is the join tree saddle
for m. This observation will be discussed in Section 3.2, as
our novel algorithm is also part of this third family.

In [14], again monotone paths are followed from minima,
but instead of following all or one of them to their very end,
only the path with the smallest next-to-visit vertex is
extended, allowing to stop progression, once the join node is
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reached. Again, all visited vertices are associated with the
local minimum (and also added to its augmentation). The
first node visited by a local minimum m that has smaller
neighbors not visited bym is the join node form. Bymerging
the visited labels of merging components with a union-find
data structure, the whole join tree is constructed in this man-
ner. This method collects the augmentation on the fly and
guarantees to only visit each vertex in the data exactly once.
No communication or ordering spanning unrelated join tree
arcs is necessary, leaving only the parent-child relations of
the tree as inherent interdependencies. For an additional
major speedup, explicit join tree construction can be skipped,
as soon as only paths for one connected component are still
followed. The authors call this trunk-skipping and demon-
strate superior sequential and parallel runtime, while still
computing the entire augmented contour tree. Since the pro-
gression of each connected component has to be strictly
ordered to achieve correctness, parallel scalability is limited
to the number of simultaneously growing components. This
becomes problematic in a distributed setting, where the
growth of a component spanning multiple computation
nodes would require a sorted progression among all
involved computation nodes, hurting distributed scalability.

Sarkar et al. [34] derived an algorithm on ad-hoc sensor
networks, that is actually part of this third mentioned family
of algorithms, as it computes arcs of the join tree over the
network agents in parallel and independently of any unre-
lated arcs, of course without the use of global data struc-
tures, which would not be possible in an ad-hoc network.
The general method is very similar to [32], with the global
sorting of edge lists replaced by a broadcast.

The algorithm introduced in this paper is very similar to
[14], but tries to overcome the mentioned limits, by allowing
parallel work on each single component growth, without
going back to the second families reliance on global data
structures and the double work of tracing monotone paths
through their entire length. This is made possible by the use
of local restrictions for monotone path progression. We
inherit sequential runtimes thanks to trunk-skipping and
output-sensitiviy from [14], but try to challenge divide &
conquer techniques in distributed settings [20], as we do not
rely on shared memory. We compute the entire, un-altered
augmented contour tree with an option to collect it on a sin-
gle node, or to store a distributed representation. Our algo-
rithm can also be adapted to a hybrid CPU-GPU solution.

2.2.4 Specialized Solutions

Morozov et al. [22], [23] utilize globally extending monotone
paths to calculate the augmentation of the contour tree in a
distributed representation. While they do minimize com-
munication and allow for the construction of an augmented
contour tree in a distributed setting, the contour tree is
never constructed explicitly, but rather stored in an implicit
per-node representation, which differs greatly from the
scope of this paper.

Carr et al. [21] developed a hybrid CPU-GPU and also
distributed algorithm for augmented contour tree construc-
tion. By rasterizing the domain along quantized levels and
computing the topology of the resulting fragments with a
union-find data structure, a quantized approximation of the

contour tree is constructed, which is augmented with
respect to not vertices, but fragments. This again differs
greatly from the scope discussed here.

3 CONCEPT: LOCALLY RESTRICTED MONOTONE

PATHS

As mentioned above, contour tree construction is substan-
tially achieved by constructing both merge trees and com-
bining them; the approach presented in this paper does
follow this idea. Combining is usually not the bottleneck for
computational runtime and a partially parallel combination
algorithm for merge trees exists [14].

Join and split tree construction is symmetrical and we
will only be discussing join tree construction in the remain-
der of this paper. The join tree is taken to track sub-level
sets; thus, local minima will appear as leafs in the tree.

3.1 Unordered Sweeping

The overall structure of our novel algorithm is as follows:

(1) For each vertex in M, test if it is a local minimum. If
so, perform a depth-first search, (called a sweep as
described in 2) at that local minimum m, i.e., push m
to a newly created stack called sweep stack.

(2) Each sweep thus has its own stack and then per-
forms the following:
a) Pull a vertex v from the sweep stack. (On the first

loop this will be the sweep starterm)
b) If all smaller-valued neighbors of v are labelled

”visited by m” push all larger-valued neighbors
of v to the sweep stack and label v ”visited by
m”, else label it ”boundary accessed fromm”.

c) If the sweep stack is not empty loop back to 2a.
d) Find the minimal-valued vertex sm that is

labelled ”boundary of m”. sm is the saddle for m
in the join tree.

e) After all smaller-valued neighbors of sm have
been labeled visited (by this or any other sweep),
start a new sweep at sm.

(3) Once a sweep finds no vertices labelled as boundary,
the algorithm is done and thus the join tree has been
constructed.

This structure is very similar to the task-parallel
approach of Gueunet et al. [14]. By sweeping along ascend-
ing paths in the data, saddles are identified for each sweep
starter independently. However, instead of progressing
each sweep in a sorted order, our sweeps can follow multi-
ple ascending paths in any order and in parallel.

3.2 Saddle Classification

The above algorithm depends on some observations for cor-
rectness. At its core the algorithm finds for each local mini-
mum the corresponding saddle in the join tree by a depth-
first search. To be more precise, the problem is to find for
each local minimum m a vertex sm, such that there exists an
edge ~m; ~smð Þ in the join tree. In the following we will show
some properties of sm that will ultimately prove the termi-
nation criteria in step 2d to be correct (see Fig. 2).

Let Vmin denote the set of all local minima in M. We call a
path p monotone ascending w.r.t. the scalar function f if
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fðpðaÞÞ � fðpðbÞÞ for all 0 � a < b � 1. We denote the set of
such paths by Pþ. Symmetrically, we define P� as the set of
monotone descending paths. We call a path p monotone if
p 2 Pþ [ P�. With this, we want to define the set of all verti-
ces reachable from a local minimum m 2 Vmin through a
monotone ascending path as

UpðmÞ :¼ v 2 V ðMÞ : 9p 2 Pþ s.t. pð0Þ ¼ m; pð1Þ ¼ vf g:

Lemma 1. For a join node ~v that is an ancestor in the join tree to
a leaf ~m one has v 2 UpðmÞ.

Proof. For the proof, it is sufficient to show that for each
parent ~u and child ~v in the join tree there exists a path p 2
Pþ from u to v. However, this is already shown in the lit-
erature (Lemma 9 in [19]). The claim then follows through
a transitivity argument. tu
Now consider the set of saddle candidates of a local mini-

mumm 2 Vmin as the set

ScðmÞ :¼
[

n2Vmin
n 6¼m

UpðmÞ \UpðnÞð Þ:

In other words, a saddle candidate for a local minimum
m is a vertex that is reachable by a monotone path from m
and another local minimum in M. The motivation behind
the chosen name saddle candidates becomes clear when con-
sidering the following lemma:

Lemma 2. sm is a saddle candidate form, i.e., sm 2 ScðmÞ.
Proof. From the definition of sm follows sm 2 UpðmÞ due to

Lemma 1. Furthermore, ~sm has to be connected to at least
one other leaf ~n. Since a leaf in the join tree corresponds
to a local minimum n 2 Vmin one has sm 2 UpðnÞ again
due to Lemma 1 and therefore sm 2 ScðmÞ. tu
This criterion is behind most monotone path-based

merge tree construction algorithms [15], [17], [19]. However,
since the sets of saddle candidates for different local minima
overlap, searching their entirety often results in double
work. This can be avoided by sorted progression, because
of the following additional property:

Lemma 3. The vertex sm is the smallest valued saddle candidate
ofm. That means sm ¼ arg minv2ScðmÞ fðvÞ.

Proof. We need to show that every saddle candidate’s func-
tion value provides an upper bound for fðsmÞ. Then, the
claim follows from Lemma 2. Let v 2 ScðmÞ be an arbi-
trary saddle candidate of m. Then, there exist monotone
ascending paths to v from m and at least one additional
local minimum n. The entirety of these paths is in
f�1
�1ðfðvÞÞv. This especially means that m and n are con-
nected in f�1

�1ðfðvÞÞv and therefore f�1
�1ðfðvÞÞm ¼

f�1
�1ðfðvÞÞn. However, the initial connected components
of m and n were disjoint i.e., f�1

�1ðF Þm \ f�1
�1ðF Þn ¼ ;,

where F :¼ max fðmÞ; fðnÞf g. Since both of these compo-
nents are contained in f�1

�1ðfðvÞÞv, they must have joined
by then; leaving the estimate F < fðsmÞ � fðvÞ. tu
Finally, we concluded the classification of the join node

for a local minimum that we mentioned in Section 2.2: The
smallest valued vertex that is reachable through monotone
paths from m and at least one local minimum in M other
than m, corresponds to the adjacent inner node for m in the
join tree.

This observation summarizes why following monotone
paths along the smallest-valued reachable vertex, until a
vertex with an unvisited, smaller-valued neighbor is found,
is sufficient to identify this vertex as the join node (as done
in [14]). It is also behind the global monotone path-based
approaches categorized in the second family in Section 2.2.

However, an additional, novel observation allows us to
search for saddle candidates without the need for ordered
progression and without tracing the entirety of ScðmÞ for all
minima. We define

ExðmÞ :¼ UpðmÞ n ScðmÞ;
for m 2 Vmin as the set of vertices that are exclusively reach-
able through a monotone path fromm. We write v1 $ v2 for
vertices v1; v2 2 M, if there exists a 1-simplex inM being the
convex hull of these vertices. In this case we also call v1 and
v2 adjacent to each other inM. With this, let furthermore

BdðmÞ :¼ v 2 MnExðmÞ : 9v0 2 ExðmÞ : v0 $ v in Mf g;
be the set of vertices forming a boundary around ExðmÞ.
Regarding this set, consider the following properties.

Lemma 4. The set BdðmÞ is a subset of ScðmÞ.
Proof. Let v 2 BdðmÞ. By definition v =2 ExðmÞ which is only

possible if either v =2 UpðmÞ or if v 2 ScðmÞ. Thus, we
have to rule out the first case by proving v 2 UpðmÞ.
Again due to the definition of BdðmÞ, there exists v0 2
ExðmÞ such that v $ v0. If fðv0Þ < fðvÞ, the vertex v is
reachable from m by a monotone ascending path through
v0; therefore, v 2 UpðmÞ. The remaining case can be ruled
out by contradiction. Assume that v =2 UpðmÞ and fðv0Þ �
fðvÞ. Note that then, there has to exist at least one local
minimum n 2 Vmin; n 6¼ m, such that v 2 UpðnÞ. This
becomes clear when considering the following construc-
tion: by successively choosing adjacent vertices in M with
decreasing function values, one eventually ends up in
such a local minimum n. By traversing the involved 1-
simplices in reverse order, one thus obtains a monotone

Fig. 2. (a) illustrates the saddle candidate set Sc for the leftmost local
minimum with rectangles. Note that saddle candidate sets of local min-
ima overlap and can span large portions of the domain. (b) illustrates the
exclusively monotone reachable region set Ex for all local minima with
triangles according to color. Note that those sets are mutually disjoint,
connected and leave out large portions of the domain. Additionally it
shows the boundary sets Bd for all local minima with rectangles accord-
ing to color. The smallest valued vertex in each such set is a join node in
the join tree.
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ascending path from n to v, proving v 2 UpðnÞ. Since v0

was chosen adjacent to v and has a larger function value
by assumption, v0 is reachable by a monotone path
through v from n, thus v0 2 UpðnÞ. This however contra-
dicts v0 2 ExðmÞ. With this contradiction we prove
fðv0Þ < fðvÞ, thus v 2 UpðmÞ and finally v 2 ScðmÞ. tu

Lemma 5. sm is in the boundary set ofm, i.e., sm 2 BdðmÞ.
Proof. Because of Lemma 2, sm is reachable fromm through

at least one monotone ascending path. Let p denote one
such path. Since m 2 ExðmÞ and sm =2 ExðmÞ, there has to
exist a vertex v =2 ExðmÞ on p that is adjacent inM to a ver-
tex in ExðmÞ. Thus, v 2 BdðmÞ and therefore due to
Lemma 4 v 2 ScðmÞ. Because p is monotone ascending,
the estimate fðvÞ <¼ fðsmÞ holds true and due to
Lemma 3 we obtain sm ¼ v 2 BdðmÞ. tu
Lemmas 4 and 5 together directly allow for a stronger

variant of Lemma 3:

Lemma 6. The vertex sm is the smallest valued vertex in the
boundary set ofm. That means sm ¼ arg minv2BdðmÞ fðvÞ.
With this novel observation, we can locally restrict our

sweepswithBdðmÞ. This iswhy the algorithm in Section 3.1 is
correct, as from these observations our novel algorithm
directly follows: For each local minimum m, a sweep grows
exclusively monotone reachable regions from m. Those
regions are subsets ofExðmÞ and can therefore not contain sm.
This growth terminates at the boundary BdðmÞ, which must
contain sm. We identify the actual saddle as the smallest ver-
tex on that boundary. After this, contraction ofExðmÞ onto the
saddle is simulated. This results in the saddle becoming a
local minimum and an identical sweep can be started from
there. This is repeated until the join tree is constructed.

4 PARALLEL IMPLEMENTATION

In this section, we present our novel algorithm in detail,
focusing on involved methods and data structures. We first
concentrate on the fundamental algorithm, as if running on
a single, shared-memory system. The necessary adaption to
a distributed implementation is elaborated in Section 5.

The described algorithm is formulated for a task-parallel
setting. In this setting, light-weight tasks are defined by the

algorithm, each of which performs a set of instructions. A
runtime engine assigns tasks to and suspends them from
computational resources, according to dependencies to
other tasks and external latencies like memory and network
communication. This allows for a dependency driven, par-
allel execution of tasks. In the presented algorithm, every
call to START_SWEEP (see Algorithm 1) creates a new,
independent task for execution.

The presented approach calls for a number of data struc-
tures. AUnion-Find data structureUF is used to track visited
labels of vertices and allow for fast simulated contraction to
saddles. It is thus updated and queried by the sweeps. Note
that we do not rely on the connected component algorithm
that is also often called Union-Find. A boundary data struc-
ture BD represents boundary sets, to efficiently determine
the smallest-valued vertex and thus saddle for each sweep.
An augmentation data structureAU holds information about
the arc each vertex is augmented to.

4.1 Local Minimum Search

Iterating over the complete dataset, a function called IS_MI-
NIMUM is evaluated for each vertex. The function returns
true, iff no neighbors of the vertex have smaller scalar val-
ues than itself. If so, a sweep is started at the local minimum
m by START_SWEEP, this work is encapsulated in a new
task and thus runs in parallel to all other sweeps. Compare
to Fig. 3a.

4.2 Exclusively Monotone Reachable Region
Growth

In START_SWEEP(m), a modified depth-first search is per-
formed, successively evaluating CAN_SWEEP(v) for all ver-
tices that are in ExðmÞ or BdðmÞ. CAN_SWEEP(v) performs
a find operation for each smaller-valued neighbor of v in a
Union-Find data structure and returns true if all return m.
Each vertex v that passes this test is visited; thus, all its
neighbors are added to a search stack and a union is per-
formed on v and m in the Union-Find structure, see Fig. 3b.
Vertices not passing this test are tracked in a boundary data
structure and removed if they are visited later on. This
representation of the extending boundary will be identical
to BdðmÞ once the sweep stack is empty, and thus it contains

Fig. 3. Exemplary join tree computation on the height function on a manifold, deliberately made comparable to an example in [14]. In (a) local minima
and thus join tree leaves are found according to Section 4.1. In (b) independent sweeps grow a region around each local minimum following arbitrary
monotone paths in parallel. In (c) sweeps terminate at non-exclusively monotone reachable vertices, namely boundary sets according to Section 4.2.
The smallest valued boundary vertices are identified and prepared for their own sweep according to Section 4.3. Additionally, according to Sec-
tion 4.6, swept vertices are split at the saddle value to retrieve the augmentation. In (d) prepared saddles continue their own sweeps in the same man-
ner, constructing the entire join tree.
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the join tree saddle sm for m as the smallest valued element,
see Fig. 3c.

4.3 Moving up the Tree

So far we only talked about local minima as sweep starters,
which allows us to identify only leaf edges. However, with
a little caution, we are able to virtually contract the sub-level
set connected component of a saddle to itself, once all
incoming edges in the join tree have been identified. This in
turn makes the saddle a local minimum and we can apply
the algorithm and observations from Section 3, see Fig. 3d.
To prepare the saddle s to start its own sweep (and simulate
contraction), a union operation on m and s is performed in
the Union-Find structure. To avoid the sweep of s having to
revisit Ex sets of its join tree children, the boundary of such
a sweep is initialized in UNITE_CHILD_BD to contain the
union of the boundaries of their children in the tree. Addi-
tionally, pairwise intersections of child boundaries might
contain vertices, that are exclusively, monotonely reachable
by a saddle, once the child minima are pruned. Thus, pair-
wise child boundary intersections have to be added to the
initial sweep stack of s in INIT_STACK. Once all smaller-
valued neighbors of s point to s in the Union-Find data
structure, the sweep for s can commence. This sweep will
calculate boundary unions and intersections first and then
run on its initialized stack in an identical procedure to the
local minimum sweeps.

4.4 Union-Find Data Structure

To keep track of vertices that have been visited by sweeps,
we employ a data structure that is capable of union and
find operations, a Disjoint-Set or Union-Find data structure
UF . Find operations are used in CAN_SWEEP and union
operations are performed, whenever a sweep visits a vertex
or finds a saddle. We chose UF to be implemented as a fixed
size array, holding one vertex index to point to, for each ver-
tex in the data. This allows unrestricted parallel access to
unrelated parts of the structure. Some care has to be taken
when two smaller-valued neighbors of a vertex v are visited.
If both subsequent considerations of v do not see the
changes of each others visiting step, growth might termi-
nate too early. However, no mutex and ordering is needed
here and a simple memory fence, guaranteeing the visibility
of previous changes, is sufficient.

4.5 Boundary Data Structure

A boundary data structure BD is needed to track all vertices
that have been considered by a sweep, but could not be vis-
ited due to smaller-valued, unvisited neighbors. The data
structure must support insertion and deletion of vertex indi-
ces, because critical points within Ex sets may not be visited
on the first consideration, but later on. Additionally, a fast
min-search operation on this data structure is needed, to
identify the smallest saddle candidate on the final bound-
ary. Also, union and intersection operations will be per-
formed at every saddle between all child boundary
structures. For implementation of this structure a set was
chosen, as it allows logarithmic min-search, insertion and
deletion, and a union and intersection in O(n*log(m)) with n
the size of the smaller and m the size of the larger set. Note

that the parallelization of a data structure with these
requirements is not trivial, which limits the in-arc parallel
abilities of our algorithm. However, this restriction does not
transfer to distribution as discussed below and there is no
need for any kind of synchronization regarding this data
structure between different sweeps.

Algorithm 1. START_SWEEP

Input: Local minimum or contracted saddlem
Initialization :
UF[m] = m
Bd(m) = UNITE_CHILD_Bd(m)
AU(m) = UNITE_CHILD_AU(m)
Initial_Stack = INIT_STACK(m)
while !Stack.empty() do
v = Stack.pop()
if (CAN_SWEEP(v)) then
UF[v] = m
Bd(m).erase(v)
AU(m).insert(v)
Stack.insert(NEIGHBORS(v))

else
Bd(m).insert(v)

end if
end while
s = Bd(m).MIN()
if (s == null) then
GLOBAL_TERMINATE()

end if
UF[m] = s
REGISTER_CHILD_Bd(s, Bd(m))
REGISTER_CHILD_AU(s, AU(m).SPLIT(s))
if (SADDLE_READY(s) then
START_SWEEP(s)

end if
return P

4.6 Augmentation Handling and Data Structure

To understand the augmentation data structure AU , con-
sider the following observation: The augmentation of an arc
from a local minimum m to a join tree saddle s is the set of
all vertices in ExðmÞ with smaller values than s. To again
avoid double work for visited vertices, a dedicated data
structure holding a set of all vertices augmented to an arc
started at a local minimum m is maintained. A vertex v is
added to the augmentation of m, when v is visited by the
sweep of m. When pruning an arc to its saddle s, the aug-
mentation needs to be split into vertices with smaller values
than s, that form the final augmentation of m’s arc, and ver-
tices with higher values than s, that are then used to initial-
ize the augmentation of s’s sweep. This split is illustrated as
a dotted line in Fig. 3c resulting in the colored augmentation
of Fig. 3d. For this purpose we implemented a concurrent
skip-list [35]. This allows for statistically logarithmic inser-
tion and constant time splitting of the list at a given value,
and again a union in Oðn � log ðmÞÞ. Note that tracking the
augmentation is optional, as our algorithm at no point
requires augmentation information for correctness. Results
in section 6 include augmentation tracking. Omitting this
data structure and the methods described above resulted in
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almost identical runtimes, which can be explained by the I/
O and message heavy nature of the algorithm and the
latency hiding capabilities of task parallel programming.
Note however, that depending on the data, resulting output
sizes of augmented merge trees may be orders of magnitude
larger than un-augmented output sizes.

4.7 Tree Representation

The resulting tree can be extracted from these data struc-
tures in multiple ways. The most simple representation of
the augmented join tree would be to start an additional par-
allel scan over the data in UPDATE_UF and let all vertices
in UF point to the local minimum they are augmented to in
AU. After this step, UF would be a flat representation of the
join tree, with all non-node vertices pointing to the lower
vertex of their augmented edge.

5 DISTRIBUTED TASK-PARALLEL MERGE TREES

With the distributed setting, we refer to a parallel hardware
environment in which not all threads access a shared mem-
ory. Instead, multiple computational nodes host a set of
threads each, and accessing memory of a remote node
requires explicit communication. In our task-parallel setting
[36], no direct memory access or message passing across
nodes is possible, but rather all information has to be shared
as method input or output.

The input data to our algorithm is assumed to be parti-
tioned onto the nodes, so that each node is responsible for a
subset of M. We require one layer of ghost cells [37] that is
assumed in the input data but could be constructed with
one message between all nodes holding adjacent vertices.
Within this setting, the neighbors and value of a vertex v are
available only on nodes that are responsible for v or any of
its neighbors. In the following, it is assumed that the parti-
tion of M onto the nodes is along axis aligned boxes of pref-
erably similar volume. While this is a typical standard
setting, as it minimizes boundary sizes between nodes, it is
not required by our algorithm.

Above, we described a novel algorithm to compute aug-
mented join trees. However, we assumed shared-memory
so far. Thus, the algorithm has similar structure to [14], with
the option to parallelize the work on a single join tree edge
to some degree, but paying the price of management of the
boundary and augmentation data structures for it. While
for augmentations a parallel and efficient data structure
could be found, boundary management will harm our
sequential runtime.

Since most complex and large data sets arising from sim-
ulations and measurements tend to have a large number of
join tree arcs with rather small augmentations each, the
option of parallelizing individual arc constructions is hardly
ever worth this price. However, as we will discuss in this
section, the ability to split work on single arcs allows our
algorithm to scale to distributed systems without shared
memory quite well. As we still utilize task-parallel, non-
global methodology, global communication can be kept to a
minimum. In the following, data structures and methods
will be revisited and their adaption to a distributed setting
is explained, see Fig. 4.

5.1 Local Minimum Search

The function IS_MINIMUM does not require an adaption
to the distributed setting and thus the identification of local
minima, which start sweeps can be done in parallel for
each node and within each node, scaling embarrassingly
parallely.

5.2 Exclusively Monotone Reachable Region
Growth

The sweeps themselves are running just like in the shared-
memory scenario with one major adaption. If the node
responsible for a vertex v from the sweep-stack is not the
node on which the current task is running, the responsible
node is informed about a sweep from m having reached v;
on the responsible node, a new sweep-task is started for m,
with the initial stack containing v. Note that this way any
number of nodes can get involved in a single sweep. If such

Fig. 4. Circles represent nodes in a regular 2D-Grid with their scalar function value written inside. Starting in the local minima (colored red, blue and
green) a task (I, II, III) sweeps along ascending paths, visiting vertices that are exclusively monotone reachable by the starting local minimum; thus,
tracing the interior of the correspondingEx set. According to Section 5.2 when such a sweep encounters a data boundary between two nodes (dotted
line) a network message is sent to start a new task on the neighboring node continuing the sweep (A, B, C). Information about visited and boundary
labels is stored separately on each node for the local vertices. Once the sweep stack of task is empty and all remotely started sweeps returned, the
smallest boundary vertex on the local node is returned by the sweep. In (b) each task (I, II, III, A, B, C) is positioned at the smallest valued vertex of
the local boundary set representation of the starting local minimum. In this case A would return the node valued 22, which would be compared to 11,
which would be identified as the saddle for 0. In (c) , after saddle identification, the saddle is communicated to all involved nodes. A new task is
started for each involved node (IV, D). Here augmentations are cut at the saddle value, boundary intersections are pushed on the sweep stack and a
new sweep is started. The task IV encounters an empty boundary, D returns vertex values 22 which will be handled as the saddle in the same way
11 was. Note that trunk skipping would skip all work shown in (c).
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continuing sweeps encounter a data boundary to another
node again, they recursively start a continuing sweep at the
responsible node. This process might spread back onto
nodes that already work on a sweep for a given local mini-
mum. In this case, the respective vertex is added to the back
of the sweep stack of an already running sweep and the
newly started sweep instantly returns. Each continuing
sweep returns once its stack is empty and all recursively
started sweeps return.

For each sweep, only one instance of BdðmÞ and AUðmÞ
is maintained, per node. Since insert and delete operations
for given vertices v will always arise only on the node
responsible for v, those data structures are disjoint and do
not need any communication during the sweep. Once the
stack of a continuing sweep is empty, the current minimum
of BdðmÞ is returned to the node that initiated the continu-
ing sweep. Since even after that a second continuing sweep
on the same node can be started, only the most recent such
return value per node is maintained in a dictionary on the
node responsible for the local minimum that started the
sweep.

With this, once the stack of the original sweep is empty
and all continuing sweeps have returned, the overall mini-
mum s in the dictionary is the overall minimum of all
involved BdðmÞ structures and thus the saddle for m. s is
shared with all nodes involved in the sweep, so that they
can initialize their local portions of BdðsÞ, AUðsÞ and initial
sweep stack, with the respective elements in BdðmÞ and
AUðmÞ. This will allow continuing sweeps of s to run within
a correct setting on those nodes. The node responsible for s
will check whether all smaller neighbors of s have been vis-
ited by (continuing) sweeps of some minima and if so start
a sweep at s.

5.3 Distributed Union-Find Data Structure

The structure for UF therefore is the only data structure,
that will need to store vertices, for which the storing node is
not responsible. For that, the structure is composed of a
fixed sized array for all local vertices and a dictionary for all
remote vertices. Modifications to the dictionary need to be
synchronized. The maintenance of this data structure does
not require additional network messages. Union operations
that may involve remote vertices only occur when a sweep
moves across data chunks, or when a saddle is identified. In
both cases the algorithm requires a network message any-
way and the involved vertices can be stored to all involved
dictionaries. With that, as find operations on a vertex v only
traverse ancestors of v in the join tree, find operations will
never look up a vertex that is not already in the dictionary.

5.4 Communication and Load Balance

Note that an uneven distribution of local minima (and
sweep starting saddles higher up in the tree) among nodes
causes little imbalance. Each vertex will be visited by
exactly one sweep. BD and AU structures will only contain
vertices a node is responsible for. Computational expense of
unions and intersections will be proportional to the size of
the respective Ex set within the nodes responsibility; this is
independent of whether a node is responsible for the local
minimum or saddle of the sweep. Communication is limited

to directly adjacent nodes. The only exception to this occurs
when informing all involved nodes of a found saddle.

In other words, sweeps that span across multiple nodes
can grow on each node individually, overall communication
being limited to one message per vertex on the boundary
between two nodes. There will be latencies introduced due
to messaging, for example when waiting for continuing
sweeps return values, when the local stack is empty. How-
ever, since all sweeps can run in parallel, and the task-paral-
lel paradigm allows for fast context switches, these wait
times can —to a large degree— be filled with work on dif-
ferent sweeps.

5.5 Trunk Skipping

However, in practice for typical data sets, a large part of the
computations in regions of the tree with great height can be
avoided, since the concept of trunk-skipping [14] translates
to our distributed solution.Wemaintain a global counter that
is increased for each identified localminimum. It is decreased
each time a sweep is finished and does not spawn a new
sweep at its saddle immediately. With this counter, the num-
ber of globally active sweeps can be tracked. Note that this is
the only completely global data structure in our algorithm
that serves only as an optimization, without sequential
dependencies. Only a single integer is stored, and counter
modification tasks can be runwith low priority, running only
whenever all remainingworker tasks are in awaiting state.

Once all nodes have identified all minima, and the global
counter reaches the value one, only one sweep is still grow-
ing, and the remaining computation can be trivialized as fol-
lows: All remaining saddles that were identified, but still
have smaller-valued unvisited neighbors, will be reached by
the last remaining sweep in ascending order of their values.
Therefore, they are collected on a single node, sorted by
value and broadcasted back to all nodes. There, all un-aug-
mented vertices will be augmented to the highest valued
saddle in the list that has a smaller value than them with a
parallel binary search.While this is a very global and sequen-
tial operation, it typically helps avoiding to sweep through
large regions of the data and can significantly speed up com-
putation on noisy data sets, or data sets with large homoge-
neous regions, as illustrated by Guenet et al. [14].

5.6 Tree Representation

After construction, the augmented join tree is implicitly rep-
resented by all UF data structures on all nodes. However, we
additionally collected the un-augmented join tree arcs during
construction. Whenever a sweep terminates, the correspond-
ing arc/edge is stored as a pair (m, s) and asynchronously
sent to a master node. The resulting messages are combined
with the messages required to maintain the trunk skipping
counter above. Thus, after construction, the un-augmented
join tree is available at the master node, runtimes in Section 6
include this process. Note that if the resulting join tree does
not fit within themainmemory of a single node,more sophis-
ticated representationswill be necessary.

5.7 GPU Adaption

In addition to the task-parallel and distributed setting above,
our novel algorithm can also translate to a GPU
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environment. As a proof of concept, we derived a CUDA
implementation of the following idea: One thread for each
vertex evaluates IS_MINIMUM. Using an atomic counter, all
minima are collected in a list. For each element of the list, a
megakernel performs the sweeps like above. After a fixed
number of CAN_SWEEP calls, one thread for each vertex in
the data tests, whether the vertex is adjacent to two vertices
in different Ex sets. If so, and the sweeps for both those sets
already finished, the tested vertex is on the boundary set Bd
of both. This boundary vertex is compared in an atomicmini-
mumoperation for both involved sweeps. The resultingmin-
imum for a sweep is the join tree saddle and is therefore
added to themega kernel list as a new (contracted) local min-
imum. It is typically faster to extract current boundary and
sweep states after a certain number of rounds and switch
remaining computation and trunk skipping back to CPU.

6 RESULTS

In this section, we present performance and scalability of
the resulting implementations. All results emerged from
experiments run on the AHRP High Performance Computer
’Elwetritsch’ at TU Kaiserslautern. All involved processors
were of type Intel XEON SP 6126 (19.25M Cache, 2.6 GHz,
12 CPU cores, 96 GB RAM) with two processors per cluster
node. All times were measured for join tree construction,
including the augmentation and gathering of resulting arcs
at a master node.

Our C++ and CUDA based implementations utilize the
HPX framework on top of an OpenMPI parcelport and VTK
for data input, using gcc version 9.1, nvcc version 9.2, hpx
1.3.0 and OpenMPI version 4.0. They are made publicly
available via codeocean [40].

Experiments are performed on openly accessible, well
known data sets to allow better comparability, see Table 1.
Most data sets are from the Open SciVis Dataset page
(https://klacansky.com/open-scivis-datasets/). Addition-
ally, we use time step 15,422 from simulation yA31 of the
SciVis contest asteroid data set [38], the foot ct scan from the
TTK example data (https://topology-tool-kit.github.io/
downloads.html) and a simulation of a jet fluid stream [39].

Considering Amdahl’s law, a deciding factor for the use-
fulness of a distributed algorithm is the turnaround point at
which the total runtime is no longer reduced by additional
resources, as communication and synchronization overhead

excel parallelization benefits. Our results show sufficient
strong scalability of up to 96 nodes (2,304 cores), see upper
Fig. 5, although ideal runtimes were typically achieved with
32 or 64 nodes. This sound scalability allows us to utilize
the HPC hardware to reduce the necessary runtime for aug-
mented merge tree construction on large data sets by an
order of magnitude, see lower Fig. 5. Note, that missing
entries in the diagram represent configurations, that timed
out consistently. These may be due to a sharp increase in
parallel overhead, due to network congestion, or similar
hardware related thresholds.

In weak scaling experiments problem sizes are grown
proportionally to the number of utilized cores to determine
the maximal problem sizes the algorithm can feasibly solve,
before growing overheads increase runtimes unsustainably.
Runtimes of our algorithm stayed within the same order of
magnitude when scaling problem sizes up to 2 billion data
points, see Fig. 6. As the problem requires/enforces unique
vertex values, the number of values a float can represent
will become a scalability issue before the runtime of our
algorithm does.

The sequential runtime of our novel algorithm on a sin-
gle, shared memory system is almost on par with the cur-
rent state-of-the-art TTK implementation [14], see Fig. 7.
Additionally, the GPU-hybrid solution demonstrates speed
ups between x5 and x20. While the algorithm is targeted
towards distributed systems and faster and more readily
available solutions for shared-memory systems exist, this
comparison shows, that speedups of parallelization do not
have to compensate for a subpar sequential runtime.

TABLE 1
Data Set Overview Including Runtimes on an Ideal Number of

Nodes and Dimensionality for all Involved Data Sets

Data set Dimensionality Arc count
[million]

Runtime
[seconds]

Foot 2563 0.54 1.19
Vertebra 5123 1.5 2.48
Meteor [38] 3003 0.038 3.31
Backpack 5122x373 4.8 6.23
Jet [39] 2562x512 0.24 4.49
Aneurism 2563 0.007 0.23
Vertebra 10243 10243 1.7 10.02
Foot 10243 10243 2.2 14.64
Miranda 10243 3.4 29
Spathorhynchus 10242x750 30 117.33

Fig. 5. Strong scaling for different data sets. Runtimes are illustrated for
growing number of parallel agents showing feasible scalability up to 96
nodes depending on data size. On the bottom, data sets Vertebra and
Foot are resampled to 10243 grid size.
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Comparison to related work in a distributed setting
shows, that our novel algorithm outperforms both [20] and
[22] significantly (compared to their reported runtimes on
the volvis.org vertebra data set, see Fig. 8). Thus, we con-
clude that the algorithm described here is at least competi-
tive with the state of the art with respect to performance
and scalability.

7 CONCLUSION

We have described a task-parallel algorithm for augmented
merge tree construction, that is efficient in shared-memory,
scalable in distributed settings, adaptable to a hybrid GPU
solution and can compute the entire, un-altered merge tree
with or without augmentation.

This was made possible by identifying a local boundary
for the recent region growing construction concept, avoid-
ing any need for ordered progression and shared-memory-
dependent data structures.

A review of contemporary contour tree construction
methods showed, that this unique profile of strengths
addresses a gap in the current algorithm landscape, and we
were able to demonstrate a perfomance and scalability that
outperforms any other means of distributed, large-data
merge tree construction known to the authors at the time of
writing.

Additionally, as a task-parallel algorithm, combinations
of the algorithm with related computations would allow for
additional latency hiding; thus, interleaved operations like
topological simplification [41], topology based transfer func-
tions for volume rendering and in-situ visualization

scenarios would present themselves as interesting topics for
future work.
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