
656 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

Manuscript received 30 Apr. 2020; revised 31 July 2020; accepted 14 Aug. 2020.
Date of publication 13 Oct. 2020; date of current version 15 Jan. 2021.
Digital Object Identifier no. 10.1109/TVCG.2020.3030414

Githru: Visual Analytics for Understanding Software Development
History Through Git Metadata Analysis

Youngtaek Kim, Jaeyoung Kim, Hyeon Jeon, Young-Ho Kim, Hyunjoo Song, Bohyoung Kim, and Jinwook Seo

Fig. 1. Githru system. (a) The Global Temporal Filter shows commit trends by number of commits and CLOC (changed lines of code).
(b) The Clustering Step controls the granularity of clustering. (c) The stem graph visualizes a cluster information of each commit at a
single glance. (d) The Grouped Summary View provides a rough summary of the selected clusters. (e) A file icicle tree allows users to
interactively observe the modified file hierarchy. (f) The commit list shows all the commits in a selected cluster. (g) Comparison View
enables a comparison between selected groups.

Abstract— Git metadata contains rich information for developers to understand the overall context of a large software development
project. Thus it can help new developers, managers, and testers understand the history of development without needing to dig into
a large pile of unfamiliar source code. However, the current tools for Git visualization are not adequate to analyze and explore the
metadata: They focus mainly on improving the usability of Git commands instead of on helping users understand the development
history. Furthermore, they do not scale for large and complex Git commit graphs, which can play an important role in understanding
the overall development history. In this paper, we present Githru, an interactive visual analytics system that enables developers to
effectively understand the context of development history through the interactive exploration of Git metadata. We design an interactive
visual encoding idiom to represent a large Git graph in a scalable manner while preserving the topological structures in the Git graph.
To enable scalable exploration of a large Git commit graph, we propose novel techniques (graph reconstruction, clustering, and
Context-Preserving Squash Merge (CSM) methods) to abstract a large-scale Git commit graph. Based on these Git commit graph
abstraction techniques, Githru provides an interactive summary view to help users gain an overview of the development history and a
comparison view in which users can compare different clusters of commits. The efficacy of Githru has been demonstrated by case
studies with domain experts using real-world, in-house datasets from a large software development team at a major international IT
company. A controlled user study with 12 developers comparing Githru to previous tools also confirms the effectiveness of Githru in
terms of task completion time.

Index Terms—git, history, exploration, overview, repository, visualization, cluster, DAG

1 INTRODUCTION

• Youngtaek Kim, Jaeyoung Kim, and Jinwook Seo are with Seoul National
University. E-mail: {ytaek.kim, jykim}@hcil.snu.ac.kr, jseo@snu.ac.kr.

• Youngtaek Kim is also with Samsung Electronics.
• Hyeon Jeon is with POSTECH. E-mail: jeonhyun97@postech.ac.kr.
• Young-Ho Kim is with University of Maryland. E-mail: yghokim@umd.edu.
• Hyunjoo Song is with Soongsil University. E-mail: hsong@ssu.ac.kr.
• Bohyoung Kim is with Hankuk University of Foreign Studies.

E-mail: bkim@hufs.ac.kr.

The Git repository archives the development history of a project. It
keeps a record of the changes, called “commits”, made to a file or set
of files, along with metadata for each commit such as the unique ID,

author, message, and date. It also maintains information about branches
(or merges) created to diverge from (or converge to) the main line
of development. Thus, the metadata of the Git repository is known
to provide rich information for understanding the overall context of
development history without delving directly into the source code [53].
As new developers, managers, and testers of a project are generally not
well acquainted with the source code, such metadata could alleviate the
burden of comprehending the code themselves.

However, as the size of a project grows in terms of the number of
commits, branches, authors, or files, going through a long list of com-
mit logs becomes challenging. Several Git clients show the graphical
representation of a repository as a directed acyclic graph (DAG), where
each node is a commit and each edge represents the parent-child rela-
tionship between commits [27]. While such visualizations can alleviate
the scalability issue to some extent, most Git clients focus on improving
the usability of Git commands rather than on helping users understand
the development history. Some prior studies have provided a graphi-
cal overview and supported visual exploration of development history,
but still lack visual analytics functions that provide all the metadata
while preserving the branch and merge information of the Git graph.
Moreover, the visualization scalability issue with large DAGs remains
unresolved in such studies.

In this paper, we introduce Githru, an interactive visual analytics
system for Git metadata, to help users explore and understand the con-
text of development history. We propose novel analytic techniques to
deal with the complexity and scalability issues of large sets of Git meta-
data. We start by identifying and removing the redundant nodes in the
DAG that come from a conventional git merge operation. Such a recon-
struction simplifies the topology of a Git commit graph, which greatly
reduces the cognitive load of branch traversal. We also introduced addi-
tional techniques to simplify the topology by grouping similar nodes
according to user-defined criteria. Lastly, based on the Git commit
graph abstraction techniques, Githru provides an interactive summary
view to help users gain an overview of the development history and a
comparison view to enable users to compare different clusters of inter-
est. We followed an iterative design process to design Githru, closely
collaborating with developers and managers at Samsung Electronics
to formulate requirements; created and refined design prototypes; and
evaluated the system. To assess the efficacy and usability of Githru, we
performed case studies with an in-house repository dataset, followed
by interviews with domain experts. We also conducted a controlled
user study with 12 developers comparing Githru to a combination of
existing widely used tools: GitHub and git log.

The major contributions of this paper are as follows:
• We define, through literature reviews and expert interviews, a list

of tasks to analyze large sets of Git metadata.
• We propose a set of new analytics techniques to abstract large and

complex Git commit graphs.
• We present novel visualization designs for the interactive explo-

ration of large-scale Git metadata.
• We evaluate Githru with domain experts using real-world, in-

house datasets.

2 BACKGROUND

In this section, we introduce the background of Git metadata. We also
identify target users to analyze development history through preliminary
interviews.

2.1 Git Metadata
Git metadata are a collection of content for each commit, such as
its unique ID, author, message, date, and information on the set of
changed files. A commit is connected to its parent commits, and thus
the metadata can be represented as a DAG, where each node is a
commit and each edge is the parental relationship between the commits
[16]. The topology of a DAG encodes the history of the activity of
commits. Hence, users need to explore a DAG to understand the overall
development history.

The complexity of a DAG with Git metadata mainly depends on the
edges created through branching in Git. Branching refers to diverging

Fig. 2. An unintended implicit branch is created when synchronized with
the remote repository.

from the main line of development and continuing to work without
affecting that main line. In Git, a branch is simply a lightweight movable
pointer to a commit, and therefore, branches are cheap to create and
destroy [22]. Due to this low cost, Git encourages a workflow that
branches and merges often.

At the same time as an unintended side effect of decentralization,
Git can also create implicit branches as illustrated in Fig. 2 [16, 46].
Suppose that a developer pulled the latest snapshot from the remote
repository, added several commits to the local repository (repo #1), and
pushed them back. If another developer (with repo #2) then tried to
push additional commits to the remote repository, the synchronization
with the remote repository could introduce an implicit branch.

Due to the frequent branching and unintended implicit branches, the
number of branches increases drastically as the project grows. There-
fore, the complexity of the DAG increases, which complicates the in-
terpretation of the graph to understand the overall development history.
Such high complexity also aggravates the cognitive load of traversing
parent commits when identifying which commits are finally merged
into the main line.

If a Git repository is hosted on GitHub, pull requests (PRs) can
provide additional information. Pull requests are proposed changes to
a repository. Submitted PRs by users are accepted or rejected by the
repository’s maintainers [43]. A PR operates identically to an explicit
branch in the graph but provides additional information, such as a
message written by the creator of the PR, the state (open, closed, or
merged), and the commit into which the PR is merged.

In this study, we extract the metadata from the results of the git
log command and augment them with additional information. First,
we add a commit type that represents the characteristics of a commit
in accordance with developers’ needs as derived from the preliminary
interviews. A commit type is classified using Hattori’s method [38]
as a baseline. Next, we add the number of added and deleted lines
of code (LOCs) per each changed file provided by git log with the
--numstat option [1]. We also use the information in PRs from the
GitHub data.

2.2 Target Users

The preliminary interviews were conducted in a semi-structured form
to ascertain the practical necessity of a metadata analysis and to iden-
tify the types of users who need to analyze development history. The
interviewees were five software engineers: three developers (D1–3)
and two project leaders (L1–2) who perform both management and
development. Their development experience ranged from 5 to 16 years
(mean, 10.2 years), and they had worked in engineering, infrastructure,
and AI.

All interviewees confirmed the necessity of understanding the de-
velopment history. As for metadata analysis, L1 and L3 said that they
did not try analysis due to a lack of time. The others said that they
felt performing analyses with the existing tools, such as git log in
a console, Sourcetree [8], or the GitHub website, was inconvenient.
Normally they navigated a long list of commits to obtain an overview
of the commit history and summarized what they wanted to focus on.
They sometimes wrote scripts to answer questions.

During the interviews, we discussed the types of target users who
need to analyze development history in practical terms. Developers who
are contributing to the source code of ongoing projects feel less of a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

KIM ET AL.: GITHRU: VISUAL ANALYTICS FOR UNDERSTANDING SOFTWARE DEVELOPMENT HISTORY THROUGH GIT METADATA ANALYSIS 657

Githru: Visual Analytics for Understanding Software Development
History Through Git Metadata Analysis

Youngtaek Kim, Jaeyoung Kim, Hyeon Jeon, Young-Ho Kim, Hyunjoo Song, Bohyoung Kim, and Jinwook Seo

Fig. 1. Githru system. (a) The Global Temporal Filter shows commit trends by number of commits and CLOC (changed lines of code).
(b) The Clustering Step controls the granularity of clustering. (c) The stem graph visualizes a cluster information of each commit at a
single glance. (d) The Grouped Summary View provides a rough summary of the selected clusters. (e) A file icicle tree allows users to
interactively observe the modified file hierarchy. (f) The commit list shows all the commits in a selected cluster. (g) Comparison View
enables a comparison between selected groups.

Abstract— Git metadata contains rich information for developers to understand the overall context of a large software development
project. Thus it can help new developers, managers, and testers understand the history of development without needing to dig into
a large pile of unfamiliar source code. However, the current tools for Git visualization are not adequate to analyze and explore the
metadata: They focus mainly on improving the usability of Git commands instead of on helping users understand the development
history. Furthermore, they do not scale for large and complex Git commit graphs, which can play an important role in understanding
the overall development history. In this paper, we present Githru, an interactive visual analytics system that enables developers to
effectively understand the context of development history through the interactive exploration of Git metadata. We design an interactive
visual encoding idiom to represent a large Git graph in a scalable manner while preserving the topological structures in the Git graph.
To enable scalable exploration of a large Git commit graph, we propose novel techniques (graph reconstruction, clustering, and
Context-Preserving Squash Merge (CSM) methods) to abstract a large-scale Git commit graph. Based on these Git commit graph
abstraction techniques, Githru provides an interactive summary view to help users gain an overview of the development history and a
comparison view in which users can compare different clusters of commits. The efficacy of Githru has been demonstrated by case
studies with domain experts using real-world, in-house datasets from a large software development team at a major international IT
company. A controlled user study with 12 developers comparing Githru to previous tools also confirms the effectiveness of Githru in
terms of task completion time.

Index Terms—git, history, exploration, overview, repository, visualization, cluster, DAG

1 INTRODUCTION

• Youngtaek Kim, Jaeyoung Kim, and Jinwook Seo are with Seoul National
University. E-mail: {ytaek.kim, jykim}@hcil.snu.ac.kr, jseo@snu.ac.kr.

• Youngtaek Kim is also with Samsung Electronics.
• Hyeon Jeon is with POSTECH. E-mail: jeonhyun97@postech.ac.kr.
• Young-Ho Kim is with University of Maryland. E-mail: yghokim@umd.edu.
• Hyunjoo Song is with Soongsil University. E-mail: hsong@ssu.ac.kr.
• Bohyoung Kim is with Hankuk University of Foreign Studies.

E-mail: bkim@hufs.ac.kr.

The Git repository archives the development history of a project. It
keeps a record of the changes, called “commits”, made to a file or set
of files, along with metadata for each commit such as the unique ID,

author, message, and date. It also maintains information about branches
(or merges) created to diverge from (or converge to) the main line
of development. Thus, the metadata of the Git repository is known
to provide rich information for understanding the overall context of
development history without delving directly into the source code [53].
As new developers, managers, and testers of a project are generally not
well acquainted with the source code, such metadata could alleviate the
burden of comprehending the code themselves.

However, as the size of a project grows in terms of the number of
commits, branches, authors, or files, going through a long list of com-
mit logs becomes challenging. Several Git clients show the graphical
representation of a repository as a directed acyclic graph (DAG), where
each node is a commit and each edge represents the parent-child rela-
tionship between commits [27]. While such visualizations can alleviate
the scalability issue to some extent, most Git clients focus on improving
the usability of Git commands rather than on helping users understand
the development history. Some prior studies have provided a graphi-
cal overview and supported visual exploration of development history,
but still lack visual analytics functions that provide all the metadata
while preserving the branch and merge information of the Git graph.
Moreover, the visualization scalability issue with large DAGs remains
unresolved in such studies.

In this paper, we introduce Githru, an interactive visual analytics
system for Git metadata, to help users explore and understand the con-
text of development history. We propose novel analytic techniques to
deal with the complexity and scalability issues of large sets of Git meta-
data. We start by identifying and removing the redundant nodes in the
DAG that come from a conventional git merge operation. Such a recon-
struction simplifies the topology of a Git commit graph, which greatly
reduces the cognitive load of branch traversal. We also introduced addi-
tional techniques to simplify the topology by grouping similar nodes
according to user-defined criteria. Lastly, based on the Git commit
graph abstraction techniques, Githru provides an interactive summary
view to help users gain an overview of the development history and a
comparison view to enable users to compare different clusters of inter-
est. We followed an iterative design process to design Githru, closely
collaborating with developers and managers at Samsung Electronics
to formulate requirements; created and refined design prototypes; and
evaluated the system. To assess the efficacy and usability of Githru, we
performed case studies with an in-house repository dataset, followed
by interviews with domain experts. We also conducted a controlled
user study with 12 developers comparing Githru to a combination of
existing widely used tools: GitHub and git log.

The major contributions of this paper are as follows:
• We define, through literature reviews and expert interviews, a list

of tasks to analyze large sets of Git metadata.
• We propose a set of new analytics techniques to abstract large and

complex Git commit graphs.
• We present novel visualization designs for the interactive explo-

ration of large-scale Git metadata.
• We evaluate Githru with domain experts using real-world, in-

house datasets.

2 BACKGROUND

In this section, we introduce the background of Git metadata. We also
identify target users to analyze development history through preliminary
interviews.

2.1 Git Metadata
Git metadata are a collection of content for each commit, such as
its unique ID, author, message, date, and information on the set of
changed files. A commit is connected to its parent commits, and thus
the metadata can be represented as a DAG, where each node is a
commit and each edge is the parental relationship between the commits
[16]. The topology of a DAG encodes the history of the activity of
commits. Hence, users need to explore a DAG to understand the overall
development history.

The complexity of a DAG with Git metadata mainly depends on the
edges created through branching in Git. Branching refers to diverging

Fig. 2. An unintended implicit branch is created when synchronized with
the remote repository.

from the main line of development and continuing to work without
affecting that main line. In Git, a branch is simply a lightweight movable
pointer to a commit, and therefore, branches are cheap to create and
destroy [22]. Due to this low cost, Git encourages a workflow that
branches and merges often.

At the same time as an unintended side effect of decentralization,
Git can also create implicit branches as illustrated in Fig. 2 [16, 46].
Suppose that a developer pulled the latest snapshot from the remote
repository, added several commits to the local repository (repo #1), and
pushed them back. If another developer (with repo #2) then tried to
push additional commits to the remote repository, the synchronization
with the remote repository could introduce an implicit branch.

Due to the frequent branching and unintended implicit branches, the
number of branches increases drastically as the project grows. There-
fore, the complexity of the DAG increases, which complicates the in-
terpretation of the graph to understand the overall development history.
Such high complexity also aggravates the cognitive load of traversing
parent commits when identifying which commits are finally merged
into the main line.

If a Git repository is hosted on GitHub, pull requests (PRs) can
provide additional information. Pull requests are proposed changes to
a repository. Submitted PRs by users are accepted or rejected by the
repository’s maintainers [43]. A PR operates identically to an explicit
branch in the graph but provides additional information, such as a
message written by the creator of the PR, the state (open, closed, or
merged), and the commit into which the PR is merged.

In this study, we extract the metadata from the results of the git
log command and augment them with additional information. First,
we add a commit type that represents the characteristics of a commit
in accordance with developers’ needs as derived from the preliminary
interviews. A commit type is classified using Hattori’s method [38]
as a baseline. Next, we add the number of added and deleted lines
of code (LOCs) per each changed file provided by git log with the
--numstat option [1]. We also use the information in PRs from the
GitHub data.

2.2 Target Users

The preliminary interviews were conducted in a semi-structured form
to ascertain the practical necessity of a metadata analysis and to iden-
tify the types of users who need to analyze development history. The
interviewees were five software engineers: three developers (D1–3)
and two project leaders (L1–2) who perform both management and
development. Their development experience ranged from 5 to 16 years
(mean, 10.2 years), and they had worked in engineering, infrastructure,
and AI.

All interviewees confirmed the necessity of understanding the de-
velopment history. As for metadata analysis, L1 and L3 said that they
did not try analysis due to a lack of time. The others said that they
felt performing analyses with the existing tools, such as git log in
a console, Sourcetree [8], or the GitHub website, was inconvenient.
Normally they navigated a long list of commits to obtain an overview
of the commit history and summarized what they wanted to focus on.
They sometimes wrote scripts to answer questions.

During the interviews, we discussed the types of target users who
need to analyze development history in practical terms. Developers who
are contributing to the source code of ongoing projects feel less of a

658 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

need to explore and gain an overview of historical data with visual tools:
They are already acquainted with the context, so they know what or
where the answer is. Hence, in this study, we focus on new developers,
managers, and testers who are not yet familiar with the source codes as
the target users.

A new developer who has just joined a new team needs to fully
understand the previous works and source codes of the latest snapshot.
The information can be obtained from the previous developer, project
documents, or the infrastructure system. When such necessary infor-
mation is missing, a Git metadata analysis can answer questions such
as, Which component was John mainly responsible for recently? Who
were John’s co-workers? and How much has he been working since the
last quarter? [32].

Similarly, managers and testers also need to deal with historical
information. Managers need an overview of individual developers’
work. They often explore areas where many changes have occurred
and figures out what happened at that point. Testers also need to under-
stand the development history to write test cases [66] or perform bug
localization [63] and triage [41].

3 RELATED WORK

The design of Githru is inspired by numerous prior studies. In this
section, we introduce the core research areas related to Githru: software
evolution visualization, Git metadata analysis, and historical questions.

3.1 Software Evolution Visualization
Stephan Diehl categorized software visualization into three aspects:
structure, behavior, and evolution [24]. As Githru mainly focuses on
visualizing development history, it can be classified as evolution. We
first investigate the existing tools that visualize software evolution
[10–12, 20, 28, 30, 44, 49, 55, 56, 58, 67, 68, 70, 73]. SeeSoft [25] offers
a line-oriented visualization of source code, mapping the software
attributes to different line colors. Through this mapping, developers
can see who worked on which specific lines of code. Similarly, Augur
[33] and Advizor [26] visualize developer-related data. These systems
provide a quantitative way to analyze software.

GitHub [2] features various built-in visualizations to support explo-
ration in GitHub Insights. However, they are still in the early stages and
unable to effectively support the analytical tasks users would like to
perform. For example, GitHub provides a graph showing LOC changes
over time but does not support chronological filtering. Also, users
cannot look at the commit graphs at a glance and must scroll signifi-
cantly. RepoVis [29] provides a comprehensive visual overview and
full-text search for Git repositories, which enables a rapid overview of
the repository. However, it shows only a snapshot of a revision, not the
overall history. ConceptCloud [35] is a web application that automati-
cally indexes Git and SVN repositories and summarizes them through
interactive tag clouds. Another novel approach to software evolution
visualization is Code Swarm [54], which applies animation and organic
information visualization techniques to create aesthetic visualizations
of software projects for casual viewers.

To help understand Git DAGs, git log [1] provides a graphical rep-
resentation in a console environment. Many Git GUI clients, such as
Sourcetree [8], GitKraken [4], gitk [3] and gmaster [5], represent DAGs
similarly to git log. On the other hand, Elsen has introduced VisGi [27],
which compresses complex Git repository structures into DAGs.

Various reconstruction methods of DAGs have been proposed to
solve the problem of high complexity. Wilde proposed Linvis [72],
a web-based tool that uses the conversion of a DAG to merge trees.
Linvis also proposed visualization to represent the hierarchy of merged
trees. Gitgraph [75] constructs a knowledge graph that users can in-
teractively explore and that helps developers comprehend software
repositories. However, when a DAG is reconstructed, the original topo-
logical information is lost or distorted. In contrast, Githru preserves the
chronological sequence of commits with reduced complexity.

3.2 Git Metadata Analysis
Git repository data have been actively studied to understand various
facets of development history. Bird and Kalliamvakou provided a

set of recommendations for researchers on how to approach Git and
GitHub data [16, 43]. Stevens [65] presented the QWALKEKO meta-
programming library, which enables querying the history of versioned
software projects in a declarative manner. Barik [13] proposed Commit
Bubbles, which supports developers in constructing commit histories
with their coding workflows. However, Commit Bubbles is merely
conceptual and has not been implemented. Rozenberg introduced Re-
poGram [57], a tool to support comparing and contrasting tasks in
software projects over time.

Branching is one of the main features of Git. Various tools have
been developed to support the analysis of its topology. Lee et al. [50]
proposed a tool that extracts branch data from Git repositories and
abstracts each commit and branch into the workflow. Biazzini et al.
[15] defined Metagraph, a data structure representing topologically
relevant commits. Based on the definition, they analyzed the topological
characteristics of Git repositories and identified patterns recurring in
multiple repositories.

Githru also covers historical aspects of development using Git meta-
data; however, it focuses on the main branch and reduces complexity of
visualization by simplifying other branches to resolve scalability issues.
Section 5 provides a detailed explanation.

3.3 Historical Questions
There have been many studies on the questions that should be answered
to augment the understanding of development history. After interview-
ing 203 participants, Begel and Zimmermann [14] presented a ranked
list of 145 questions that software engineers want data scientists to
answer. Fritz and Murphy [32] and Buse et al. [21] also identified
questions that developers have about projects. LaToza et al. [48] or-
ganized 94 distinct questions about code that are hard to answer. All
three studies were conducted by interviewing professional developers.
Silito et al. [62] categorized 44 different kinds of questions about the
information programmers need and how they discover it. Kubelka et
al. [47] conducted software evolution sessions in Live Programming
and assigned questions to each session, based on Silito et al.’s study.
Codoban et al. [23] performed an empirical study about the motivations
developers have for examining software history, the strategies they use,
and the challenges they encounter.

Research also exists about how developers analyze their code and
repositories. Sadowski et al. [59] analyzed how developers search for
code and provided insights into multiple aspects, including what de-
velopers are doing and trying to learn when performing a search. Tao
et al. [66] explored the information engineers’ need to understand
changes and their requirements for the corresponding tool. Safwan
and Servant [60] discovered how developers decompose the rationale
for code commits in the context of software maintenance. Interview-
ing 20 software developers allowed these authors to understand their
experience.

The design of Githru is based on the analytics tasks extracted and
organized from previous studies. Section 4.1 describes these in detail.

4 REQUIREMENT ANALYSIS

We extracted analytics questions from our literature review and vali-
dated them through interviews with five experts. We then organized
them into three analytics tasks and formulated requirements accordingly
based on the tasks.

4.1 Task Abstraction
To construct analytics tasks, we investigated 1,479 papers from software
engineering conferences, including ICSE (660), FSE (574), and ICSME
(245), by querying “question AND (history OR evolution)” for papers
since 2010. We selected four papers [32, 59, 60, 66] suggesting at least
five history-related questions that can be answered by Git metadata
without analyzing source code. Two additional papers [37, 48] were
included subsequently by investigating the citations of the selected
papers under the same criteria. We derived nine exemplary questions
by analyzing the six papers using thematic analysis [19].

To validate whether the questions reflect real-world problems, we
conducted semi-structured interviews with five software engineers (two

Requirements R1 R2 R3 R4
Sub-items a b c a b c a b c a b c d

R
es

ea
rc

h ConceptCloud • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦•
GitGraph ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦
Linvis • • ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦◦
RepoVis ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦•
Visgi • ◦ • • • ◦ ◦ ◦ ◦ ◦ • ••

G
it

cl
ie

nt

GitHub • ◦ ◦ • • ◦ • • • • • ◦•
gmaster ◦ ◦ ◦ • • • • • • • ◦ ◦◦
gitk ◦ ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦◦
gitkraken ◦ ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦◦
Sourcetree ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦◦

Table 1. Assessment of related systems against the requirements. The
black mark implies that the related system satisfies the corresponding
sub-item.

developers and three project leaders, D2–3 and L1–3). They had an aver-
age of 11.8 years (ranging from 7 to 16 years) of professional software
development experience and had worked in the areas of engineering, in-
frastructure, AI, and cloud computing. We asked the interviewees how
the questions relate to real-world problems. Through the interviews, we
formulated three significant tasks as follows:

• T1: Understand the overall development context. Obtain an
overview of the development history in terms of mainly temporal
aspects. Who is working on what? What are my co-workers working
on right now? and What has changed between two builds? [32]

• T2: Understand the topology of commit history. Analyze the
merging and branching. Have changes in another branch been
integrated into this branch? and Is the pull request “501” merged
into the master in this release? [48]

• T3: Explore and compare details. Interactively explore detailed
information (e.g., directory containing changed files, name of au-
thor, keywords of message) that meets user-defined criteria; and
compare the context between multiple periods to find meaningful
patterns (e.g., hotspots [66] where frequent or large numbers of
changes have occurred). Which component was John mainly re-
sponsible for recently? Is this changed location a hotspot for past
changes? and How many LOC have been changed? [60, 66]

4.2 Requirement Analysis
Based on the final four tasks, we formulated the requirements that
Githru must satisfy as follows:

• R1: Provide an overview. The system should present an overview
of development history where (a) the commits are grouped accord-
ing to specific criteria to avoid examining each commit individually;
(b) the visualization of a group encodes its size and topological
position compared to others; and (c) the summary of the selected
group(s) is presented interactively (T1).

• R2: Visualize a graph while preserving topology. The graph rep-
resenting the abstracted data should be visualized in an interpretable
form. The graph should contain abstracted topological data that
include (a) the temporal sequence of each node (i.e., commit) and
(b) branch information and merge relation; and (c) the graph should
be navigable with minimal interactions (T2).

• R3: Support filtering by and searching for details. Depending
on the user query, which can be a keyword or a temporal range,
the corresponding commits should be (a) filtered in or out and (b)
searched and highlighted to reduce the exploration scope. Moreover,
users should be able to (c) browse the details of each commit (T3).

• R4: Support comparison. The system should facilitate compar-
isons (a) based on the number of commits and LOC. The mag-
nitude can be compared according to (b) overall trends, or (c)
within/between user-selections. (d) In particular, the information
in the changed files should be compared while being organized
according to the directory that contains the structure of the source
code (T3).

Fig. 3. Complex git DAG (Captured from GitHub [2] network graph of
realm-java [6] repository)

As discussed in Section 3, there have been various Git clients and
research. Among them, we selected the ones that support visual ex-
ploratory analysis of the Git metadata for assessment. We evaluated
whether they meet the requirements (Table 1). GitHub fulfills the re-
quirements mostly due to GitHub Insights, the tool with which in-field
developers are most familiar. Hence, we selected GitHub for compari-
son to Githru in the user study.

5 THE GITHRU SYSTEM

We propose Githru, a Git repository visual analysis system, for users
who are not acquainted with the underlying source code of a project.
This section describes data reconstruction techniques for resolving the
visual complexity of the huge sets of Git metadata and novel visualiza-
tion techniques for exploratory analysis of the metadata.

5.1 Git Graph Data Abstraction

The DAG representation of a Git repository suffers not only from a
large number of nodes (i.e., commits) but also from diverging and
converging links at implicit and explicit branches (Fig. 3). As the
number of commits and branches inevitably increases over time in an
ongoing project, scalability is crucial for DAG-based visual analysis.
As a remedy, we introduce graph reorganizing techniques tailored to
the Git metadata, which could interactively reduce the number of nodes
and links during analysis (R2).

5.1.1 Transforming Branches to Stems

The top straight line in the DAG of a Git repository generally represents
the master branch (Fig. 4a). However, an overwhelming number of
branches and the connected links between them could hinder tracking
down the origin of changes even for commits in the master branch. To
alleviate this problem, Githru removes the connected links between
the branches in a DAG to form a group of stems (R1). A stem is a list
of ancestor nodes for a specific commit that includes only one of the
parents when there are multiple preceding nodes. It is similar to the
first-parent option of the git log command [1], which removes other
parent nodes from a branch. However, git log focuses only on a single
branch while neglecting pruned nodes and their parents. Conversely,
Githru applies the approach to every branch to provide an overview of
the overall history of development.

The process starts with building the main stem from the master
branch, into which commits finally merge. Pruning a branch could
affect the topology of other branches that exclusively occupy common
ancestor nodes. Thus, we begin the process from the master branch
to preserve the order of events in the mainline of development. The
rest of the branches are pruned afterward by retaining only the first
parent commits in each branch. Then, we remove links to non-first-
parent nodes in adjacent stems to reduce visual complexity. Eventually,
only one path remains for every stem. Due to the simple topology
and reduced number of edges, the result provides a brief overview
of branches and enables simple traversal without any backtracking to
multiple parents.

The downside of converting to a stem structure is leaving extra
implicit stems that have no branch information, as shown in Fig. 4b.
Also, the process removes links between stems that hold branching and
merging information. However, in the case of understanding the context
of development history, the experts in requirement analysis confirmed
that they were interested in finding the contents of merged commits
rather than the underlying links between branches. We combat these

KIM ET AL.: GITHRU: VISUAL ANALYTICS FOR UNDERSTANDING SOFTWARE DEVELOPMENT HISTORY THROUGH GIT METADATA ANALYSIS 659

need to explore and gain an overview of historical data with visual tools:
They are already acquainted with the context, so they know what or
where the answer is. Hence, in this study, we focus on new developers,
managers, and testers who are not yet familiar with the source codes as
the target users.

A new developer who has just joined a new team needs to fully
understand the previous works and source codes of the latest snapshot.
The information can be obtained from the previous developer, project
documents, or the infrastructure system. When such necessary infor-
mation is missing, a Git metadata analysis can answer questions such
as, Which component was John mainly responsible for recently? Who
were John’s co-workers? and How much has he been working since the
last quarter? [32].

Similarly, managers and testers also need to deal with historical
information. Managers need an overview of individual developers’
work. They often explore areas where many changes have occurred
and figures out what happened at that point. Testers also need to under-
stand the development history to write test cases [66] or perform bug
localization [63] and triage [41].

3 RELATED WORK

The design of Githru is inspired by numerous prior studies. In this
section, we introduce the core research areas related to Githru: software
evolution visualization, Git metadata analysis, and historical questions.

3.1 Software Evolution Visualization
Stephan Diehl categorized software visualization into three aspects:
structure, behavior, and evolution [24]. As Githru mainly focuses on
visualizing development history, it can be classified as evolution. We
first investigate the existing tools that visualize software evolution
[10–12, 20, 28, 30, 44, 49, 55, 56, 58, 67, 68, 70, 73]. SeeSoft [25] offers
a line-oriented visualization of source code, mapping the software
attributes to different line colors. Through this mapping, developers
can see who worked on which specific lines of code. Similarly, Augur
[33] and Advizor [26] visualize developer-related data. These systems
provide a quantitative way to analyze software.

GitHub [2] features various built-in visualizations to support explo-
ration in GitHub Insights. However, they are still in the early stages and
unable to effectively support the analytical tasks users would like to
perform. For example, GitHub provides a graph showing LOC changes
over time but does not support chronological filtering. Also, users
cannot look at the commit graphs at a glance and must scroll signifi-
cantly. RepoVis [29] provides a comprehensive visual overview and
full-text search for Git repositories, which enables a rapid overview of
the repository. However, it shows only a snapshot of a revision, not the
overall history. ConceptCloud [35] is a web application that automati-
cally indexes Git and SVN repositories and summarizes them through
interactive tag clouds. Another novel approach to software evolution
visualization is Code Swarm [54], which applies animation and organic
information visualization techniques to create aesthetic visualizations
of software projects for casual viewers.

To help understand Git DAGs, git log [1] provides a graphical rep-
resentation in a console environment. Many Git GUI clients, such as
Sourcetree [8], GitKraken [4], gitk [3] and gmaster [5], represent DAGs
similarly to git log. On the other hand, Elsen has introduced VisGi [27],
which compresses complex Git repository structures into DAGs.

Various reconstruction methods of DAGs have been proposed to
solve the problem of high complexity. Wilde proposed Linvis [72],
a web-based tool that uses the conversion of a DAG to merge trees.
Linvis also proposed visualization to represent the hierarchy of merged
trees. Gitgraph [75] constructs a knowledge graph that users can in-
teractively explore and that helps developers comprehend software
repositories. However, when a DAG is reconstructed, the original topo-
logical information is lost or distorted. In contrast, Githru preserves the
chronological sequence of commits with reduced complexity.

3.2 Git Metadata Analysis
Git repository data have been actively studied to understand various
facets of development history. Bird and Kalliamvakou provided a

set of recommendations for researchers on how to approach Git and
GitHub data [16, 43]. Stevens [65] presented the QWALKEKO meta-
programming library, which enables querying the history of versioned
software projects in a declarative manner. Barik [13] proposed Commit
Bubbles, which supports developers in constructing commit histories
with their coding workflows. However, Commit Bubbles is merely
conceptual and has not been implemented. Rozenberg introduced Re-
poGram [57], a tool to support comparing and contrasting tasks in
software projects over time.

Branching is one of the main features of Git. Various tools have
been developed to support the analysis of its topology. Lee et al. [50]
proposed a tool that extracts branch data from Git repositories and
abstracts each commit and branch into the workflow. Biazzini et al.
[15] defined Metagraph, a data structure representing topologically
relevant commits. Based on the definition, they analyzed the topological
characteristics of Git repositories and identified patterns recurring in
multiple repositories.

Githru also covers historical aspects of development using Git meta-
data; however, it focuses on the main branch and reduces complexity of
visualization by simplifying other branches to resolve scalability issues.
Section 5 provides a detailed explanation.

3.3 Historical Questions
There have been many studies on the questions that should be answered
to augment the understanding of development history. After interview-
ing 203 participants, Begel and Zimmermann [14] presented a ranked
list of 145 questions that software engineers want data scientists to
answer. Fritz and Murphy [32] and Buse et al. [21] also identified
questions that developers have about projects. LaToza et al. [48] or-
ganized 94 distinct questions about code that are hard to answer. All
three studies were conducted by interviewing professional developers.
Silito et al. [62] categorized 44 different kinds of questions about the
information programmers need and how they discover it. Kubelka et
al. [47] conducted software evolution sessions in Live Programming
and assigned questions to each session, based on Silito et al.’s study.
Codoban et al. [23] performed an empirical study about the motivations
developers have for examining software history, the strategies they use,
and the challenges they encounter.

Research also exists about how developers analyze their code and
repositories. Sadowski et al. [59] analyzed how developers search for
code and provided insights into multiple aspects, including what de-
velopers are doing and trying to learn when performing a search. Tao
et al. [66] explored the information engineers’ need to understand
changes and their requirements for the corresponding tool. Safwan
and Servant [60] discovered how developers decompose the rationale
for code commits in the context of software maintenance. Interview-
ing 20 software developers allowed these authors to understand their
experience.

The design of Githru is based on the analytics tasks extracted and
organized from previous studies. Section 4.1 describes these in detail.

4 REQUIREMENT ANALYSIS

We extracted analytics questions from our literature review and vali-
dated them through interviews with five experts. We then organized
them into three analytics tasks and formulated requirements accordingly
based on the tasks.

4.1 Task Abstraction
To construct analytics tasks, we investigated 1,479 papers from software
engineering conferences, including ICSE (660), FSE (574), and ICSME
(245), by querying “question AND (history OR evolution)” for papers
since 2010. We selected four papers [32, 59, 60, 66] suggesting at least
five history-related questions that can be answered by Git metadata
without analyzing source code. Two additional papers [37, 48] were
included subsequently by investigating the citations of the selected
papers under the same criteria. We derived nine exemplary questions
by analyzing the six papers using thematic analysis [19].

To validate whether the questions reflect real-world problems, we
conducted semi-structured interviews with five software engineers (two

Requirements R1 R2 R3 R4
Sub-items a b c a b c a b c a b c d

R
es

ea
rc

h ConceptCloud • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦•
GitGraph ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦
Linvis • • ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦◦
RepoVis ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦•
Visgi • ◦ • • • ◦ ◦ ◦ ◦ ◦ • ••

G
it

cl
ie

nt

GitHub • ◦ ◦ • • ◦ • • • • • ◦•
gmaster ◦ ◦ ◦ • • • • • • • ◦ ◦◦
gitk ◦ ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦◦
gitkraken ◦ ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦◦
Sourcetree ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦◦

Table 1. Assessment of related systems against the requirements. The
black mark implies that the related system satisfies the corresponding
sub-item.

developers and three project leaders, D2–3 and L1–3). They had an aver-
age of 11.8 years (ranging from 7 to 16 years) of professional software
development experience and had worked in the areas of engineering, in-
frastructure, AI, and cloud computing. We asked the interviewees how
the questions relate to real-world problems. Through the interviews, we
formulated three significant tasks as follows:

• T1: Understand the overall development context. Obtain an
overview of the development history in terms of mainly temporal
aspects. Who is working on what? What are my co-workers working
on right now? and What has changed between two builds? [32]

• T2: Understand the topology of commit history. Analyze the
merging and branching. Have changes in another branch been
integrated into this branch? and Is the pull request “501” merged
into the master in this release? [48]

• T3: Explore and compare details. Interactively explore detailed
information (e.g., directory containing changed files, name of au-
thor, keywords of message) that meets user-defined criteria; and
compare the context between multiple periods to find meaningful
patterns (e.g., hotspots [66] where frequent or large numbers of
changes have occurred). Which component was John mainly re-
sponsible for recently? Is this changed location a hotspot for past
changes? and How many LOC have been changed? [60, 66]

4.2 Requirement Analysis
Based on the final four tasks, we formulated the requirements that
Githru must satisfy as follows:

• R1: Provide an overview. The system should present an overview
of development history where (a) the commits are grouped accord-
ing to specific criteria to avoid examining each commit individually;
(b) the visualization of a group encodes its size and topological
position compared to others; and (c) the summary of the selected
group(s) is presented interactively (T1).

• R2: Visualize a graph while preserving topology. The graph rep-
resenting the abstracted data should be visualized in an interpretable
form. The graph should contain abstracted topological data that
include (a) the temporal sequence of each node (i.e., commit) and
(b) branch information and merge relation; and (c) the graph should
be navigable with minimal interactions (T2).

• R3: Support filtering by and searching for details. Depending
on the user query, which can be a keyword or a temporal range,
the corresponding commits should be (a) filtered in or out and (b)
searched and highlighted to reduce the exploration scope. Moreover,
users should be able to (c) browse the details of each commit (T3).

• R4: Support comparison. The system should facilitate compar-
isons (a) based on the number of commits and LOC. The mag-
nitude can be compared according to (b) overall trends, or (c)
within/between user-selections. (d) In particular, the information
in the changed files should be compared while being organized
according to the directory that contains the structure of the source
code (T3).

Fig. 3. Complex git DAG (Captured from GitHub [2] network graph of
realm-java [6] repository)

As discussed in Section 3, there have been various Git clients and
research. Among them, we selected the ones that support visual ex-
ploratory analysis of the Git metadata for assessment. We evaluated
whether they meet the requirements (Table 1). GitHub fulfills the re-
quirements mostly due to GitHub Insights, the tool with which in-field
developers are most familiar. Hence, we selected GitHub for compari-
son to Githru in the user study.

5 THE GITHRU SYSTEM

We propose Githru, a Git repository visual analysis system, for users
who are not acquainted with the underlying source code of a project.
This section describes data reconstruction techniques for resolving the
visual complexity of the huge sets of Git metadata and novel visualiza-
tion techniques for exploratory analysis of the metadata.

5.1 Git Graph Data Abstraction

The DAG representation of a Git repository suffers not only from a
large number of nodes (i.e., commits) but also from diverging and
converging links at implicit and explicit branches (Fig. 3). As the
number of commits and branches inevitably increases over time in an
ongoing project, scalability is crucial for DAG-based visual analysis.
As a remedy, we introduce graph reorganizing techniques tailored to
the Git metadata, which could interactively reduce the number of nodes
and links during analysis (R2).

5.1.1 Transforming Branches to Stems

The top straight line in the DAG of a Git repository generally represents
the master branch (Fig. 4a). However, an overwhelming number of
branches and the connected links between them could hinder tracking
down the origin of changes even for commits in the master branch. To
alleviate this problem, Githru removes the connected links between
the branches in a DAG to form a group of stems (R1). A stem is a list
of ancestor nodes for a specific commit that includes only one of the
parents when there are multiple preceding nodes. It is similar to the
first-parent option of the git log command [1], which removes other
parent nodes from a branch. However, git log focuses only on a single
branch while neglecting pruned nodes and their parents. Conversely,
Githru applies the approach to every branch to provide an overview of
the overall history of development.

The process starts with building the main stem from the master
branch, into which commits finally merge. Pruning a branch could
affect the topology of other branches that exclusively occupy common
ancestor nodes. Thus, we begin the process from the master branch
to preserve the order of events in the mainline of development. The
rest of the branches are pruned afterward by retaining only the first
parent commits in each branch. Then, we remove links to non-first-
parent nodes in adjacent stems to reduce visual complexity. Eventually,
only one path remains for every stem. Due to the simple topology
and reduced number of edges, the result provides a brief overview
of branches and enables simple traversal without any backtracking to
multiple parents.

The downside of converting to a stem structure is leaving extra
implicit stems that have no branch information, as shown in Fig. 4b.
Also, the process removes links between stems that hold branching and
merging information. However, in the case of understanding the context
of development history, the experts in requirement analysis confirmed
that they were interested in finding the contents of merged commits
rather than the underlying links between branches. We combat these

660 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

Fig. 4. Git graph data abstraction from DAG to stem structure. (a) DAG representation of a Git repository. (b) Stem pruning simplifies edges, but
produces implicit stems. (c) Performing a Context-Preserving Squash Merge (CSM). (d) The stem structure reduced by CSM. (e) Commit clustering.
(f) Group adjacent commits in the grid layout to the blocks (denoted by orange dashed box). (g) Squeezing the blocks. (h) Stem relocation for space
efficiency. (i) Adding a thin strip at the bottom of each stem.

disadvantages through a Context-Preserving Squash Merge, described
in the following section.

5.1.2 Context-Preserving Squash Merge (CSM)
The preliminary interviews with domain experts indicated that tracking
back from a merge commit to its parents is laborious and tedious in a
DAG with many branches. Transforming the DAG into a stem structure
could unravel the complexity with a straightforward topology, but it
does not reduce the number of stems. Moreover, it hides trails to the
relevant stems and leaves a merge commit only for reference. However,
the content of a merge commit is insufficient if there is only a short
sentence written by its committer or an auto-generated message [51].

As a resolution, we propose a Context-preserving Squash Merge
(CSM). CSM fuses relevant commits (i.e., second parent commits from
the merged branch [22]) into a single node for simplicity (Fig. 4c) and
fetches messages from the stems to preserve the merge context (R2). For
each merge commit on the main stem (i.e., CSM-base), CSM traverses
every parent commit (i.e., the CSM-source) on the other stems. When
a commit is a parent of multiple CSM-bases, we select the leftmost
commit as a base to avoid redundant merges. CSM gathers contextual
information from every CSM-source (e.g., author, commit type, and
log message) and appends it to the end of the corresponding field
in the CSM-base. For instance, the authors of CSM-sources become
coauthors of the corresponding CSM-base. However, the list of changed
files remains the same since CSM-base encompasses the changes from
CSM-sources.

In case of merged PRs, we also include additional information (e.g.,
pull request number, message, and body) from the PRs to comply with
the comments from the preliminary interviews. After the CSM is ap-
plied to the main stem, it is iteratively applied to the other stems, starting
with the one with the most recent commit. We determine the process-
ing order to preserve the topology of critical stems first, following the
valuation criteria in a prior work [71].

The CSM can drastically reduce the number of stems and commits on
the screen by removing implicit stems (Fig. 4d), stems corresponding
to merged branches, or merged PRs (R1). LinVis [72] proposed a
similar approach that grouped parents into a hierarchical structure
and presented the structure in Merge-Tree. However, this prior work
focused mainly on analyzing the details of CSM-sources (i.e., parent
commits) in the master branch and presenting a visual representation
of the hierarchy. In contrast, Githru provides an overview of the entire

repository by applying the CSM to every stem. Furthermore, users
can decide whether to apply a CSM or not, depending on their task.
Users can also, if necessary, explicitly visualize the edges between the
CSM-base and CSM-sources.

5.1.3 Commit Clustering
In another effort to improve scalability, we adopt a clustering technique
to group neighboring commits in each stem (Fig. 4e; R1). The scope of
the grouping is confined to similar commits in each stem to preserve
the temporal sequence and topology. We exploit the Simple Additive
Weighting (SAW) model in calculating similarity since this model is
intuitive for users to understand and is known to serve exploration
well [69, 74]. To measure similarity, we choose five criteria from the
commit metadata (i.e., author, commit date, commit type, file, and
message). Jaccard similarity is used for the author, commit type, and
file. Cosine similarity is used with TF-IDF weights for the message, and
logarithmic growth from 0 to 1 is used for the commit date. Users can
interactively change the granularity clusters by adjusting the similarity
threshold. We also prepare options to determine whether to separate
commits from different release versions [7]. This enables separate
analyses of individual releases, which was found to be significant in
the requirement analysis (R3).

If there is still an overwhelming number of nodes even after the
above techniques are applied, users can additionally apply Non-Conflict
Commits Clustering, which can group non-neighbor commits (R1). For
instance, suppose that a cluster A is not adjacent to a cluster C, but
their similarity is above the threshold (being sufficiently similar). If
the cluster A has no commonly modified files with cluster B (an in-
between cluster of A and C), changing the order of B and C could
further simplify the underlying structure by grouping the clusters A
and C as illustrated in Fig. 5. However, we make this process optional
because it considers only the conflict coming from modified files and
not the contextual conflict.

Fig. 5. Clustering non-conflict commits simplifies the stem graph by
grouping similar non-neighbor commits.

Fig. 6. Users can (a) apply the CSM or (b) not. Without the CSM, the
clusters containing CSM-bases will be split due to the blocks of newly
appeared CSM-sources, as depicted in (b).

5.2 Stem Graph Visualization
Representing a cluster (i.e., commits grouped by similarity) as a single
node saves screen space by reducing the number of nodes. However, it
might also destroy the temporal order between the commits that belong
to different clusters in different stems. Thus, we introduce a block in
the cluster visualization as follows:
1. A two-dimensional grid layout is drawn in which columns and rows

are mapped to time slots and stems, respectively.
2. Each commit is filled in a cell in temporal order.
3. Adjacent commits are grouped into a block until the block overlaps

with any commit in other stems.
4. The block is squeezed into a single column (Fig. 4f).
5. A vertically centered box is drawn for each block, where the height

of the box corresponds to the number of commits in the block.
6. An outline is drawn to enclose the blocks in a cluster, along with the

number of commits included in the bottom-right corner (Fig. 4g)
when the rendered cluster has sufficient width.
We emphasize each block using a black border line when it has a

CSM-base and the CSM is enabled (Fig. 4g); the line turns dashed gray
if the CSM is disabled (Fig. 6). Regarding visual clutter of borders,
adjacent clusters with identical pale colors were hardly distinguishable
without any additional visual cues. This issue was raised during the
interviews with domain experts, and we eventually included borders.
The visibility of the edges between the CSM-base and CSM-sources
also changes accordingly. This allows us to reduce the number of visual
elements in the horizontal dimension without losing the temporal order
of commits across stems (R1, R2).

We also work on optimizing the vertical space by filling the gaps
in the grid. In the aforementioned grid layout, each row maps to each
stem. The main stem comes first, on the top, and the other stems follow
according to the date of the last commit in descending order. While
such a layout is intuitive, the height of the grid increases as the number
of stems grows. To alleviate this problem, we relocate stems that do not
overlap with each other into a single row (Fig. 4h).

However, such relocation can cause difficulty distinguishing between
individual stems in the same row. Thus, we introduce various visual aids.
We add a thin strip under each stem that not only helps differentiate
the stems but also allows entire clusters in the stem to be selected at
once (Fig. 4i). We then move the blocks inside each stem to the vertical
center to avoid interference with short blocks. We also add an edge
between non-adjacent clusters in a stem to indicate they belong to the
same stem. And if a block includes a commit with a release tag, we
draw a red dashed line on the right of the block with the version number
on top. The final stem abstraction is shown in Fig. 1c.

5.3 Cluster Visualization
Following Shneiderman’s mantra [61], we prepare two levels of detail
for cluster views. The views are designed to support commit-level
analytical tasks, which were demanded in the interview. Users can
start by selecting one or more clusters in the stem graph to focus on
specific details. However, the selected clusters can have a varying
number of commits (ranging from a single commit to all commits in
the repository), and each commit contains intricate information (e.g.,
author, keywords, and list of modified files) to visualize in a single
view. Thus, we present underlying details in a stepwise manner with
two coordinated views.

5.3.1 Grouped Summary View
Grouped Summary View shows a brief overview of the selected clusters
as shown in Fig. 1d (R1). The columns in the view are mapped to

individual clusters and the width of each column is proportional to
the number of commits. This view enables a visual comparison of the
relative size among selected clusters, which was frequently cited as a
needed task in the requirement analysis (R4). Each column has a group
of horizontal bars that briefly show the top two or three values from
the clustering criteria (i.e., author, commit types, modified files, and
keywords). In addition, there are bars for the list of modified directories
and files to offer more context. Furthermore, the length of each bar is
proportional to the number of relevant commits that users could visually
compare. For instance, users could find the author who has contributed
the most to the cluster by finding the longest bar.

Enabling the Summary by CLOC option changes the width of each
column and the length of the file criteria bar proportionally to the
number of CLOCs (changed LOCs, added LOCs + deleted LOCs).

5.3.2 Cluster Detail View
When users select a cluster in Grouped Summary View, Cluster Detail
View appears at the bottom. This view provides commit-level details
along with a visual summary of the affected files and directories on
the left (R1). A list of raw commit metadata is presented in a tabular
form by date in ascending order (Fig. 1f). In the case of a CSM commit,
it shows only the CSM-base at first, but users can expand the row to
also see the relevant CSM-source commits. On the left of the table,
we prepared a file icicle tree [39] (Fig. 1e). Since files and directories
are organized in a hierarchy, we consider a number of space-filling
approaches to maximize space utilization [42]. Among Tree-Map [42],
SunBurst [64], and the icicle tree, we finally choose the last to comply
with the task requirements. Tree-Map shows limitations in the structural
interpretation task [18] and SunBurst is inadequate to embed long file
names because of the radial coordinate. On the other hand, the icicle tree
explicitly shows a structural hierarchy in a Cartesian coordinate system
well suited for displaying a string (e.g., file-name) horizontally [39].
Also, as the depth of the modified file structure can vary, we enable
users to zoom in or out with a mouse click on the icicle tree (R3).

5.4 Controlling the Analysis Scope
We provide additional visual components to facilitate the in-depth
analysis by controlling its scope: Cluster Parameters, Filter, and Search.

5.4.1 Cluster Parameters
One can control the granularity of clustering by setting a Clustering
Step (Fig. 1b) encoded as a vertical slider. The desired level of abstrac-
tion can be set by adjusting the maximum difference value (threshold)
to be clustered. For instance, if one moves up the slider, the cluster-
ing becomes granular. Thus, one can analyze fine-grained clusters by
moving up the slider. For the same reason, we also provided a way to
set Preference Weights for each similarity criterion. For instance, if
one wants to cluster only commits with similar commit types, one can
simply set the weight of the commit type to 1 and the rest to 0. Such a
capability reveals the underlying policy of clustering, helping users to
understand the context (R2) and find the information they want (R3) by
allowing them to set appropriate clustering schemes for their task.

5.4.2 Filter and Search
Global Temporal Filter In many tasks, understanding what hap-

pened over a period of time is important. For example, a manager may
wonder what happened over the previous week or month. Therefore,
we provided a Global Temporal Filter with ways to filter for a certain
time period: Brushing (Fig. 1a) and a Select Box. Githru provides two
horizontal bars that can be brushed. The bar at the top includes two area
charts aligned vertically, which represent the number of commits and
LOCs by date respectively. The bar at the bottom is a horizontal list of
boxes that encodes each commit ordered by date. Both brushes allow
for filtering in a specific range and they are synchronized. However, the
interval of the commits is non-uniform, unlike the dates in the above
chart, so we draw a line connecting the release commit to the bin, point-
ing to the release date as a guideline. This can alleviate the confusion
that occurs when the range of the top brushed area differs from that
of the bottom brushed area. This method allows users to effectively

KIM ET AL.: GITHRU: VISUAL ANALYTICS FOR UNDERSTANDING SOFTWARE DEVELOPMENT HISTORY THROUGH GIT METADATA ANALYSIS 661

Fig. 4. Git graph data abstraction from DAG to stem structure. (a) DAG representation of a Git repository. (b) Stem pruning simplifies edges, but
produces implicit stems. (c) Performing a Context-Preserving Squash Merge (CSM). (d) The stem structure reduced by CSM. (e) Commit clustering.
(f) Group adjacent commits in the grid layout to the blocks (denoted by orange dashed box). (g) Squeezing the blocks. (h) Stem relocation for space
efficiency. (i) Adding a thin strip at the bottom of each stem.

disadvantages through a Context-Preserving Squash Merge, described
in the following section.

5.1.2 Context-Preserving Squash Merge (CSM)
The preliminary interviews with domain experts indicated that tracking
back from a merge commit to its parents is laborious and tedious in a
DAG with many branches. Transforming the DAG into a stem structure
could unravel the complexity with a straightforward topology, but it
does not reduce the number of stems. Moreover, it hides trails to the
relevant stems and leaves a merge commit only for reference. However,
the content of a merge commit is insufficient if there is only a short
sentence written by its committer or an auto-generated message [51].

As a resolution, we propose a Context-preserving Squash Merge
(CSM). CSM fuses relevant commits (i.e., second parent commits from
the merged branch [22]) into a single node for simplicity (Fig. 4c) and
fetches messages from the stems to preserve the merge context (R2). For
each merge commit on the main stem (i.e., CSM-base), CSM traverses
every parent commit (i.e., the CSM-source) on the other stems. When
a commit is a parent of multiple CSM-bases, we select the leftmost
commit as a base to avoid redundant merges. CSM gathers contextual
information from every CSM-source (e.g., author, commit type, and
log message) and appends it to the end of the corresponding field
in the CSM-base. For instance, the authors of CSM-sources become
coauthors of the corresponding CSM-base. However, the list of changed
files remains the same since CSM-base encompasses the changes from
CSM-sources.

In case of merged PRs, we also include additional information (e.g.,
pull request number, message, and body) from the PRs to comply with
the comments from the preliminary interviews. After the CSM is ap-
plied to the main stem, it is iteratively applied to the other stems, starting
with the one with the most recent commit. We determine the process-
ing order to preserve the topology of critical stems first, following the
valuation criteria in a prior work [71].

The CSM can drastically reduce the number of stems and commits on
the screen by removing implicit stems (Fig. 4d), stems corresponding
to merged branches, or merged PRs (R1). LinVis [72] proposed a
similar approach that grouped parents into a hierarchical structure
and presented the structure in Merge-Tree. However, this prior work
focused mainly on analyzing the details of CSM-sources (i.e., parent
commits) in the master branch and presenting a visual representation
of the hierarchy. In contrast, Githru provides an overview of the entire

repository by applying the CSM to every stem. Furthermore, users
can decide whether to apply a CSM or not, depending on their task.
Users can also, if necessary, explicitly visualize the edges between the
CSM-base and CSM-sources.

5.1.3 Commit Clustering
In another effort to improve scalability, we adopt a clustering technique
to group neighboring commits in each stem (Fig. 4e; R1). The scope of
the grouping is confined to similar commits in each stem to preserve
the temporal sequence and topology. We exploit the Simple Additive
Weighting (SAW) model in calculating similarity since this model is
intuitive for users to understand and is known to serve exploration
well [69, 74]. To measure similarity, we choose five criteria from the
commit metadata (i.e., author, commit date, commit type, file, and
message). Jaccard similarity is used for the author, commit type, and
file. Cosine similarity is used with TF-IDF weights for the message, and
logarithmic growth from 0 to 1 is used for the commit date. Users can
interactively change the granularity clusters by adjusting the similarity
threshold. We also prepare options to determine whether to separate
commits from different release versions [7]. This enables separate
analyses of individual releases, which was found to be significant in
the requirement analysis (R3).

If there is still an overwhelming number of nodes even after the
above techniques are applied, users can additionally apply Non-Conflict
Commits Clustering, which can group non-neighbor commits (R1). For
instance, suppose that a cluster A is not adjacent to a cluster C, but
their similarity is above the threshold (being sufficiently similar). If
the cluster A has no commonly modified files with cluster B (an in-
between cluster of A and C), changing the order of B and C could
further simplify the underlying structure by grouping the clusters A
and C as illustrated in Fig. 5. However, we make this process optional
because it considers only the conflict coming from modified files and
not the contextual conflict.

Fig. 5. Clustering non-conflict commits simplifies the stem graph by
grouping similar non-neighbor commits.

Fig. 6. Users can (a) apply the CSM or (b) not. Without the CSM, the
clusters containing CSM-bases will be split due to the blocks of newly
appeared CSM-sources, as depicted in (b).

5.2 Stem Graph Visualization
Representing a cluster (i.e., commits grouped by similarity) as a single
node saves screen space by reducing the number of nodes. However, it
might also destroy the temporal order between the commits that belong
to different clusters in different stems. Thus, we introduce a block in
the cluster visualization as follows:
1. A two-dimensional grid layout is drawn in which columns and rows

are mapped to time slots and stems, respectively.
2. Each commit is filled in a cell in temporal order.
3. Adjacent commits are grouped into a block until the block overlaps

with any commit in other stems.
4. The block is squeezed into a single column (Fig. 4f).
5. A vertically centered box is drawn for each block, where the height

of the box corresponds to the number of commits in the block.
6. An outline is drawn to enclose the blocks in a cluster, along with the

number of commits included in the bottom-right corner (Fig. 4g)
when the rendered cluster has sufficient width.
We emphasize each block using a black border line when it has a

CSM-base and the CSM is enabled (Fig. 4g); the line turns dashed gray
if the CSM is disabled (Fig. 6). Regarding visual clutter of borders,
adjacent clusters with identical pale colors were hardly distinguishable
without any additional visual cues. This issue was raised during the
interviews with domain experts, and we eventually included borders.
The visibility of the edges between the CSM-base and CSM-sources
also changes accordingly. This allows us to reduce the number of visual
elements in the horizontal dimension without losing the temporal order
of commits across stems (R1, R2).

We also work on optimizing the vertical space by filling the gaps
in the grid. In the aforementioned grid layout, each row maps to each
stem. The main stem comes first, on the top, and the other stems follow
according to the date of the last commit in descending order. While
such a layout is intuitive, the height of the grid increases as the number
of stems grows. To alleviate this problem, we relocate stems that do not
overlap with each other into a single row (Fig. 4h).

However, such relocation can cause difficulty distinguishing between
individual stems in the same row. Thus, we introduce various visual aids.
We add a thin strip under each stem that not only helps differentiate
the stems but also allows entire clusters in the stem to be selected at
once (Fig. 4i). We then move the blocks inside each stem to the vertical
center to avoid interference with short blocks. We also add an edge
between non-adjacent clusters in a stem to indicate they belong to the
same stem. And if a block includes a commit with a release tag, we
draw a red dashed line on the right of the block with the version number
on top. The final stem abstraction is shown in Fig. 1c.

5.3 Cluster Visualization
Following Shneiderman’s mantra [61], we prepare two levels of detail
for cluster views. The views are designed to support commit-level
analytical tasks, which were demanded in the interview. Users can
start by selecting one or more clusters in the stem graph to focus on
specific details. However, the selected clusters can have a varying
number of commits (ranging from a single commit to all commits in
the repository), and each commit contains intricate information (e.g.,
author, keywords, and list of modified files) to visualize in a single
view. Thus, we present underlying details in a stepwise manner with
two coordinated views.

5.3.1 Grouped Summary View
Grouped Summary View shows a brief overview of the selected clusters
as shown in Fig. 1d (R1). The columns in the view are mapped to

individual clusters and the width of each column is proportional to
the number of commits. This view enables a visual comparison of the
relative size among selected clusters, which was frequently cited as a
needed task in the requirement analysis (R4). Each column has a group
of horizontal bars that briefly show the top two or three values from
the clustering criteria (i.e., author, commit types, modified files, and
keywords). In addition, there are bars for the list of modified directories
and files to offer more context. Furthermore, the length of each bar is
proportional to the number of relevant commits that users could visually
compare. For instance, users could find the author who has contributed
the most to the cluster by finding the longest bar.

Enabling the Summary by CLOC option changes the width of each
column and the length of the file criteria bar proportionally to the
number of CLOCs (changed LOCs, added LOCs + deleted LOCs).

5.3.2 Cluster Detail View
When users select a cluster in Grouped Summary View, Cluster Detail
View appears at the bottom. This view provides commit-level details
along with a visual summary of the affected files and directories on
the left (R1). A list of raw commit metadata is presented in a tabular
form by date in ascending order (Fig. 1f). In the case of a CSM commit,
it shows only the CSM-base at first, but users can expand the row to
also see the relevant CSM-source commits. On the left of the table,
we prepared a file icicle tree [39] (Fig. 1e). Since files and directories
are organized in a hierarchy, we consider a number of space-filling
approaches to maximize space utilization [42]. Among Tree-Map [42],
SunBurst [64], and the icicle tree, we finally choose the last to comply
with the task requirements. Tree-Map shows limitations in the structural
interpretation task [18] and SunBurst is inadequate to embed long file
names because of the radial coordinate. On the other hand, the icicle tree
explicitly shows a structural hierarchy in a Cartesian coordinate system
well suited for displaying a string (e.g., file-name) horizontally [39].
Also, as the depth of the modified file structure can vary, we enable
users to zoom in or out with a mouse click on the icicle tree (R3).

5.4 Controlling the Analysis Scope
We provide additional visual components to facilitate the in-depth
analysis by controlling its scope: Cluster Parameters, Filter, and Search.

5.4.1 Cluster Parameters
One can control the granularity of clustering by setting a Clustering
Step (Fig. 1b) encoded as a vertical slider. The desired level of abstrac-
tion can be set by adjusting the maximum difference value (threshold)
to be clustered. For instance, if one moves up the slider, the cluster-
ing becomes granular. Thus, one can analyze fine-grained clusters by
moving up the slider. For the same reason, we also provided a way to
set Preference Weights for each similarity criterion. For instance, if
one wants to cluster only commits with similar commit types, one can
simply set the weight of the commit type to 1 and the rest to 0. Such a
capability reveals the underlying policy of clustering, helping users to
understand the context (R2) and find the information they want (R3) by
allowing them to set appropriate clustering schemes for their task.

5.4.2 Filter and Search
Global Temporal Filter In many tasks, understanding what hap-

pened over a period of time is important. For example, a manager may
wonder what happened over the previous week or month. Therefore,
we provided a Global Temporal Filter with ways to filter for a certain
time period: Brushing (Fig. 1a) and a Select Box. Githru provides two
horizontal bars that can be brushed. The bar at the top includes two area
charts aligned vertically, which represent the number of commits and
LOCs by date respectively. The bar at the bottom is a horizontal list of
boxes that encodes each commit ordered by date. Both brushes allow
for filtering in a specific range and they are synchronized. However, the
interval of the commits is non-uniform, unlike the dates in the above
chart, so we draw a line connecting the release commit to the bin, point-
ing to the release date as a guideline. This can alleviate the confusion
that occurs when the range of the top brushed area differs from that
of the bottom brushed area. This method allows users to effectively

662 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

select a specific period of dates or commits (R3). Users can also select
a specific date or release tag using the Select Box. This solves the
problem that occurs in brushing when the user has to choose an exact
position, which is difficult to select.

Keyword Filter Users often have to work on tasks related to
certain elements. For example, if a newcomer replaces Alice in a project,
the newcomer may want to see only what Alice did. For such cases,
Githru offers the Keyword Filter, which can exclude or include the
commits related to specific keywords. We provide keyword-filtering for
all similarity criteria except for commit date, which is filtered by the
Global Temporal Filter.

Stem Type Filter Each stem type in Githru has various character-
istics, such as the existence of a name, its relation to PRs, and its PR
status. Users may want to focus on a particular stem type depending
on their task. For instance, there is no need to see merged or closed
branches when looking for recently opened PRs. Thus, we offered
options to show or hide each stem type (R3).

Search and Highlight If one searches for a certain keyword,
Githru scans branch names, tags, commit messages, authors, commit
IDs, and modified files. Then, it highlights every block that matches.
Multiple keyword highlighting is also allowed (R3).

5.5 Comparison View
Comparison View provides a detailed comparison of clusters or cluster
sets (R4) based on similarity criteria and stem topology. It is designed
following the details-on-detail strategy: a rough comparison in Grouped
Summary View, and a detailed comparison in Comparison View. We
used keywords instead of raw messages for comparison since it was
more difficult to use unstructured strings than keywords when visu-
alizing the differences and commonalities between clusters. We used
Selection Cards to compare stem information and date and used a Diff
View for the other criteria.

Capture Selection Users can select the clusters in Grouped
Summary View as a selection to be compared. To enhance reusability,
we provided selection capturing to select once and use it repeatedly.

Selection Cards Selection Cards represent corresponding se-
lections. The stem information, such as a branch name or PR number,
is prominently presented on each card, as they directly represent the
characteristics of the cluster (R1). For the same reason, the color of
the card is also derived from the color of the stem where the selected
cluster(s) is located.

Diff View Diff View shows a two-way comparison between selec-
tions for authors, commit types, files, and keywords (Fig. 1g). Since
comparison becomes difficult as the number of objects increases [34]
and Grouped Summary View already provides a rough overview of
a multi-way comparison, a two-way comparison fits the details-on-
demand strategy (R3, R4).

Diff View assigns different colors to three sets: the intersection, the
difference of A from B, and the difference of B from A to perform a
two-way comparison more effectively. Moreover, the view provides the
option to hide or show elements in each set so that users can focus on a
particular set(s). For instance, if one wants to see only the intersection
between two clusters, one needs to deselect only the parts representing
the difference.

As for the author and commit type criteria, we displayed all values:
the number of developers for a repository is typically below ten due
to the internal guidance gathered during prior interviews. Hence, the
top ten elements for others are represented. Furthermore, to ensure con-
sistency with Grouped Summary View and to offer more information
to users, we provide an option to select between number of commits
(commit #) and CLOC for comparison. Diff View is composed of three
parts as follows:

• Authors & Commit type: Display a stacked bar chart representing
each cluster. Each box represents the value (CLOC or commit #)
of the corresponding author.

• Files: Present individual bar charts for two clusters while showing
the top ten modified (CLOC or commit #) files in each cluster. The
bar size encodes {value / total value (of cluster)} where value is

CLOC or commit #, depending on the selected option.
• Keywords: Visualize the top 20 words ranked by TF-IDF value

as a word cloud. As the statistical overview of the word cloud is
achieved by positively correlating the font size [40], we set the size
of the words in the word cloud at a minmax normalized TF-IDF
value. Thus, the user can perceive the importance of each word.

5.6 System Architecture and Implementation
The Githru system consists of two modules - pre-processing and visu-
alization. The former module crawls and extracts metadata (i.e., list
of commits and PRs) from the Git repository using the GitHub API in
Python. It extracts keywords from each commit message and removes
noises (e.g., stop words, enumeration symbols) using the Natural Lan-
guage Toolkit Library [17]. It also calculates the TF-IDF weight of
keywords and the similarity between commits in advance for faster
performance at runtime. The latter module shows an interactive visual-
ization of the extracted data as a single-page application in JavaScript
using D3.js and the React library. The left pane consists of the stem
graph, detailed views and related control panels, and the right pane
shows the Comparison View. It is best suited for full-screen mode in
FHD (1920X1080) resolution.

6 EVALUATION

We consulted the infrastructure team at Samsung to find well-managed
Git repositories, which staff maintained actively for a commercial
product. They recommended the A-project in-house repository, for
which team members had committed actively, used release tags properly,
and wrote well-organized messages. As another dataset, we selected the
public GitHub repository realm-java, which satisfies the same criteria.
We conducted a qualitative study as well as a quantitative study with
the datasets.

6.1 Qualitative Study
To assess the efficacy and usability of Githru, we performed case studies
with the A-project and the realm-java GitHub repository, followed by
interviews with domain experts. This study was conducted at Samsung
Research with four previous interviewees (D3, L1–3) and one manager
(M1) for about an hour and a half each. They had an average of 11.4
years (ranging from 7 to 16 years) of professional software develop-
ment experience. We demonstrated the Githru system and discussed its
effectiveness and usability.

Exploration and Overview All of the experts started to use Githru
by exploring the stems or clusters and by looking into their summaries
in Grouped Summary View. Then they used the Global Temporal Filter
to focus on different time periods. They also interactively adjusted the
clustering parameters to find suitable granularity, which barely changed
once fixed. All of them were especially interested in summaries about
the authors. They were thrilled to find who contributed the most by
navigating through each cluster or stem. Then they repeatedly hovered
the mouse cursor on some of the authors to check the trend of activities.
When an unexpected name appeared, they checked the list of commits
in Cluster Detail View and explored the file icicle tree to see which
modules the author worked on (Fig. 7d). D3 and L3 were satisfied with
the commit type classification, although we admit that the accuracy
of the classification still has room for improvement. In some cases,
they were surprised to find forward (feature) type commits on a certain
release since the release was supposed to have fixes only. They went
through the commit list in the Cluster Detail View and could find the
reason easily. If a big cluster appeared, they tried to split it up by
adjusting clustering parameters (i.e., moving the Clustering Step slider
to a smaller value). They changed Preference Weights to focus on fewer
similarity criteria, which also led to finer granularity of clusters.

In terms of aiding exploration, L2 admired a displayed graph with PR
information. Actually, it had been requested by a domain expert during
the preliminary interviews, as it was difficult to obtain an overview of
PR information. While GitHub provides the Pulse page for this purpose,
it has limited capability (i.e., only specific periods can be selected),
which was the same as others in GitHub Insights. As a result, one has to
visit each PR page one by one in GitHub. To the best of our knowledge,

Fig. 7. Users can easily identify a hotspot release and the file with the
highest CLOC contributions. (a) Cluster for release 5.12.0. (b) Cluster
with the highest CLOC. (c) File with the highest CLOC. (d) Tooltip for file
information.

Githru is the first tool to integrate PR information in an interactive
overview along with relevant metadata.

L3 noted a real-world case in which Githru might come in handy.
When the company hires another company to work on a project, the
project manager needs to monitor whether it is proceeding as planned.
Formerly, the manager from the hired company reported periodically
about the progress of individual developers. Thus, the report was not
made in real-time and the management had to be passive. However, L3
complimented that Githru can help the manager track the development
history interactively, even on a more detailed scale. In short, we were
able to confirm the efficacy of Githru in real-world exploration tasks.

Release Participants in the case study also complimented the
exploration by release. Since release serves as a milestone in the devel-
opment cycle, the experts performed analysis on a release-by-release
basis (Fig. 7a). They became especially enthusiastic about being able
to identify commits or PRs that were merged into a specific release.
Previously, to retrieve the commits, they had to navigate the commit
graph in git log, Sourcetree, or GitHub, but it was not easy to under-
stand the topology with these tools. The graphs not only suffer from
scalability issues but also from limited interactions to traverse a huge
and complex network. However, in Githru, one can locate a specific
release and select commits belonging to the release by simply brushing
the Global Temporal Filter. Then, one can disable CSM operation and
hover over the specific cluster to see corresponding commits.

L1–3 and M1 stated that this capability would be useful for writing
release notes. They said existing auto-generation techniques for release
notes were seldom used due to their incompleteness, so developers
had to write them manually. The process demanded a laborious effort
to traverse all commits reflected in the release and sometimes caused
errors such as missing certain information. We actually discovered
such an error in the in-house dataset using Githru; a specific release
note mistakenly included information from commits that were already
reflected in the previous release. Some experts suggested that it would
be helpful in writing a release note draft or a weekly report if one could
customize the format of the commit list.

File Information During prior interviews, managers were mainly
interested in finding a hotspot. This aligns with the finding in prior work
that a hotspot could indicate defects and complexity of code [36,45,52].
The managers also mentioned that a tester could handle test cases
related to the hotspot as suggested in prior work [66]. The experts
started looking for a hotspot by comparing the width of the summary
boxes. Then, they selected the cluster corresponding to the widest
column so they could narrow down the search space (Fig. 7b). Finally,
they went through the file icicle tree in the detailed summary (Fig. 7c).
Unexpectedly, one of the experts found that the most changed files in
terms of CLOC in the project were mainly big json data files. He also
found the person worked on the file by simply hovering on the node
of the icicle tree. All the experts confirmed that the icicle tree was an
informative and intuitive way to analyze the hotspot, which is defined
as frequently changed files.

Understanding Stem Topology In the stem graph, the experts
found stale stems without any recent commits that had not merged into

the main stem. Unlike the other participants, L3 wanted to manage
and track the stale stem. Thus, L3 tried to figure out why the stale
stems remained and found several cases: freezing a specific version,
maintaining documents (e.g., GitHub pages), and just left unmanaged
for various reasons. L3 was inclined to use stem-based visualization
since it was closely coordinated with other views, which served the
context. L2, L3, and M1 were interested in the state of PR stems. They
used a similar approach to what was used to find stale stems to explore
the PR stems and find out why an old PR was still open.

In the prior interview, L3 had specifically requested to be able to try
Githru for an upcoming B-project. However, the B-project was known
to have some notorious problems: there had been no manager, few
documents for reference, and little collaboration between members.
L3 had tried to get an overview of its history with existing tools, but
experienced difficulty exploring the context due to its overwhelming
complexity. Thus, we demonstrated examination of the B-project’s
repository to L3 during the case study. It took only a couple of minutes
to come up with the following insights: Each member was using their
own branch without merging it into the master, they were working on
independent modules, and a member who recently joined the project
had started to merge all existing branches into the master using pull
requests. L3 was able to identify the complex structure at a glance, but
could not find any interesting underlying details due to the overwhelm-
ingly complicated structure. Still, L3 was satisfied with the experience
and reported that the insights were helpful for preparation.

Filtering and Searching D3 and L3 greatly appreciated the filter
and search features. They started using the features without hesitation
and reported them as two of the most valuable features in Githru. Ac-
cording to our survey results, most Git clients had a search or filter
function, but these show limitations when compared to Githru. Exist-
ing tools implemented only one of the two features. Moreover, there
is a trade-off between the two features: If the filter is applied, non-
matched commits are removed from the graph, and the result is shown
in a compact way. However, the list loses the graph representation
that includes branch information (i.e., Sourcetree, gmaster, GitHub).
Conversely, searching normally emphasizes matched commits or blurs
non-matched commits, so it retains the graph representation. However,
the number of displayed commits is not reduced, so users must keep
manipulating the next match button and cannot grasp the results at a
glance (i.e., gitk, gitkraken).

Githru overcame the trade-off between filtering and searching. Not
only did we implement the two features, but we also ensured that filter-
ing in Githru does not result in losing the graph information. Moreover,
clustering by similarity is still possible thanks to the simplicity of the
graph from the stem structure. Therefore, the experts could do the same
tasks regardless of filter and search.

6.2 Quantitative Study
To confirm Githru’s effectiveness and usability, we recruited 12 devel-
opers (ten men and two women) with 3 to 15 years (average: 7.75) of
development experience at Samsung and conducted a controlled user
study. As we used an A-project dataset, we excluded any participant
who had experience with the project. The participants were from vari-
ous teams working on cloud, UX, AI, process, device driver, and other
projects.

We designed three questions to ensure that Githru satisfies the re-
quirements. Detailed descriptions of each question and their corre-
sponding requirements are as follows:

• Hotspot: Which file has the largest CLOC (most changed) over a
specific period? (R1(a, b, c), R2(a, c), R3(a, c), R4(a, b, c, d))

• Comparison: Name the differences and commonalities of the author
set who worked on the commits included in the two periods (R1(a),
R2(a, c), R3(a, c), R4(a, c)).

• Topology: What is the first release that reflects a specific PR? (R1(a),
R2(a, b, c), R3(a, b, c)).

As mentioned in Section 4, we selected GitHub for the comparison
with Githru. We also let participants use git log with GitHub, since
it is the most basic tool for developers and provides the richest raw

KIM ET AL.: GITHRU: VISUAL ANALYTICS FOR UNDERSTANDING SOFTWARE DEVELOPMENT HISTORY THROUGH GIT METADATA ANALYSIS 663

select a specific period of dates or commits (R3). Users can also select
a specific date or release tag using the Select Box. This solves the
problem that occurs in brushing when the user has to choose an exact
position, which is difficult to select.

Keyword Filter Users often have to work on tasks related to
certain elements. For example, if a newcomer replaces Alice in a project,
the newcomer may want to see only what Alice did. For such cases,
Githru offers the Keyword Filter, which can exclude or include the
commits related to specific keywords. We provide keyword-filtering for
all similarity criteria except for commit date, which is filtered by the
Global Temporal Filter.

Stem Type Filter Each stem type in Githru has various character-
istics, such as the existence of a name, its relation to PRs, and its PR
status. Users may want to focus on a particular stem type depending
on their task. For instance, there is no need to see merged or closed
branches when looking for recently opened PRs. Thus, we offered
options to show or hide each stem type (R3).

Search and Highlight If one searches for a certain keyword,
Githru scans branch names, tags, commit messages, authors, commit
IDs, and modified files. Then, it highlights every block that matches.
Multiple keyword highlighting is also allowed (R3).

5.5 Comparison View
Comparison View provides a detailed comparison of clusters or cluster
sets (R4) based on similarity criteria and stem topology. It is designed
following the details-on-detail strategy: a rough comparison in Grouped
Summary View, and a detailed comparison in Comparison View. We
used keywords instead of raw messages for comparison since it was
more difficult to use unstructured strings than keywords when visu-
alizing the differences and commonalities between clusters. We used
Selection Cards to compare stem information and date and used a Diff
View for the other criteria.

Capture Selection Users can select the clusters in Grouped
Summary View as a selection to be compared. To enhance reusability,
we provided selection capturing to select once and use it repeatedly.

Selection Cards Selection Cards represent corresponding se-
lections. The stem information, such as a branch name or PR number,
is prominently presented on each card, as they directly represent the
characteristics of the cluster (R1). For the same reason, the color of
the card is also derived from the color of the stem where the selected
cluster(s) is located.

Diff View Diff View shows a two-way comparison between selec-
tions for authors, commit types, files, and keywords (Fig. 1g). Since
comparison becomes difficult as the number of objects increases [34]
and Grouped Summary View already provides a rough overview of
a multi-way comparison, a two-way comparison fits the details-on-
demand strategy (R3, R4).

Diff View assigns different colors to three sets: the intersection, the
difference of A from B, and the difference of B from A to perform a
two-way comparison more effectively. Moreover, the view provides the
option to hide or show elements in each set so that users can focus on a
particular set(s). For instance, if one wants to see only the intersection
between two clusters, one needs to deselect only the parts representing
the difference.

As for the author and commit type criteria, we displayed all values:
the number of developers for a repository is typically below ten due
to the internal guidance gathered during prior interviews. Hence, the
top ten elements for others are represented. Furthermore, to ensure con-
sistency with Grouped Summary View and to offer more information
to users, we provide an option to select between number of commits
(commit #) and CLOC for comparison. Diff View is composed of three
parts as follows:

• Authors & Commit type: Display a stacked bar chart representing
each cluster. Each box represents the value (CLOC or commit #)
of the corresponding author.

• Files: Present individual bar charts for two clusters while showing
the top ten modified (CLOC or commit #) files in each cluster. The
bar size encodes {value / total value (of cluster)} where value is

CLOC or commit #, depending on the selected option.
• Keywords: Visualize the top 20 words ranked by TF-IDF value

as a word cloud. As the statistical overview of the word cloud is
achieved by positively correlating the font size [40], we set the size
of the words in the word cloud at a minmax normalized TF-IDF
value. Thus, the user can perceive the importance of each word.

5.6 System Architecture and Implementation
The Githru system consists of two modules - pre-processing and visu-
alization. The former module crawls and extracts metadata (i.e., list
of commits and PRs) from the Git repository using the GitHub API in
Python. It extracts keywords from each commit message and removes
noises (e.g., stop words, enumeration symbols) using the Natural Lan-
guage Toolkit Library [17]. It also calculates the TF-IDF weight of
keywords and the similarity between commits in advance for faster
performance at runtime. The latter module shows an interactive visual-
ization of the extracted data as a single-page application in JavaScript
using D3.js and the React library. The left pane consists of the stem
graph, detailed views and related control panels, and the right pane
shows the Comparison View. It is best suited for full-screen mode in
FHD (1920X1080) resolution.

6 EVALUATION

We consulted the infrastructure team at Samsung to find well-managed
Git repositories, which staff maintained actively for a commercial
product. They recommended the A-project in-house repository, for
which team members had committed actively, used release tags properly,
and wrote well-organized messages. As another dataset, we selected the
public GitHub repository realm-java, which satisfies the same criteria.
We conducted a qualitative study as well as a quantitative study with
the datasets.

6.1 Qualitative Study
To assess the efficacy and usability of Githru, we performed case studies
with the A-project and the realm-java GitHub repository, followed by
interviews with domain experts. This study was conducted at Samsung
Research with four previous interviewees (D3, L1–3) and one manager
(M1) for about an hour and a half each. They had an average of 11.4
years (ranging from 7 to 16 years) of professional software develop-
ment experience. We demonstrated the Githru system and discussed its
effectiveness and usability.

Exploration and Overview All of the experts started to use Githru
by exploring the stems or clusters and by looking into their summaries
in Grouped Summary View. Then they used the Global Temporal Filter
to focus on different time periods. They also interactively adjusted the
clustering parameters to find suitable granularity, which barely changed
once fixed. All of them were especially interested in summaries about
the authors. They were thrilled to find who contributed the most by
navigating through each cluster or stem. Then they repeatedly hovered
the mouse cursor on some of the authors to check the trend of activities.
When an unexpected name appeared, they checked the list of commits
in Cluster Detail View and explored the file icicle tree to see which
modules the author worked on (Fig. 7d). D3 and L3 were satisfied with
the commit type classification, although we admit that the accuracy
of the classification still has room for improvement. In some cases,
they were surprised to find forward (feature) type commits on a certain
release since the release was supposed to have fixes only. They went
through the commit list in the Cluster Detail View and could find the
reason easily. If a big cluster appeared, they tried to split it up by
adjusting clustering parameters (i.e., moving the Clustering Step slider
to a smaller value). They changed Preference Weights to focus on fewer
similarity criteria, which also led to finer granularity of clusters.

In terms of aiding exploration, L2 admired a displayed graph with PR
information. Actually, it had been requested by a domain expert during
the preliminary interviews, as it was difficult to obtain an overview of
PR information. While GitHub provides the Pulse page for this purpose,
it has limited capability (i.e., only specific periods can be selected),
which was the same as others in GitHub Insights. As a result, one has to
visit each PR page one by one in GitHub. To the best of our knowledge,

Fig. 7. Users can easily identify a hotspot release and the file with the
highest CLOC contributions. (a) Cluster for release 5.12.0. (b) Cluster
with the highest CLOC. (c) File with the highest CLOC. (d) Tooltip for file
information.

Githru is the first tool to integrate PR information in an interactive
overview along with relevant metadata.

L3 noted a real-world case in which Githru might come in handy.
When the company hires another company to work on a project, the
project manager needs to monitor whether it is proceeding as planned.
Formerly, the manager from the hired company reported periodically
about the progress of individual developers. Thus, the report was not
made in real-time and the management had to be passive. However, L3
complimented that Githru can help the manager track the development
history interactively, even on a more detailed scale. In short, we were
able to confirm the efficacy of Githru in real-world exploration tasks.

Release Participants in the case study also complimented the
exploration by release. Since release serves as a milestone in the devel-
opment cycle, the experts performed analysis on a release-by-release
basis (Fig. 7a). They became especially enthusiastic about being able
to identify commits or PRs that were merged into a specific release.
Previously, to retrieve the commits, they had to navigate the commit
graph in git log, Sourcetree, or GitHub, but it was not easy to under-
stand the topology with these tools. The graphs not only suffer from
scalability issues but also from limited interactions to traverse a huge
and complex network. However, in Githru, one can locate a specific
release and select commits belonging to the release by simply brushing
the Global Temporal Filter. Then, one can disable CSM operation and
hover over the specific cluster to see corresponding commits.

L1–3 and M1 stated that this capability would be useful for writing
release notes. They said existing auto-generation techniques for release
notes were seldom used due to their incompleteness, so developers
had to write them manually. The process demanded a laborious effort
to traverse all commits reflected in the release and sometimes caused
errors such as missing certain information. We actually discovered
such an error in the in-house dataset using Githru; a specific release
note mistakenly included information from commits that were already
reflected in the previous release. Some experts suggested that it would
be helpful in writing a release note draft or a weekly report if one could
customize the format of the commit list.

File Information During prior interviews, managers were mainly
interested in finding a hotspot. This aligns with the finding in prior work
that a hotspot could indicate defects and complexity of code [36,45,52].
The managers also mentioned that a tester could handle test cases
related to the hotspot as suggested in prior work [66]. The experts
started looking for a hotspot by comparing the width of the summary
boxes. Then, they selected the cluster corresponding to the widest
column so they could narrow down the search space (Fig. 7b). Finally,
they went through the file icicle tree in the detailed summary (Fig. 7c).
Unexpectedly, one of the experts found that the most changed files in
terms of CLOC in the project were mainly big json data files. He also
found the person worked on the file by simply hovering on the node
of the icicle tree. All the experts confirmed that the icicle tree was an
informative and intuitive way to analyze the hotspot, which is defined
as frequently changed files.

Understanding Stem Topology In the stem graph, the experts
found stale stems without any recent commits that had not merged into

the main stem. Unlike the other participants, L3 wanted to manage
and track the stale stem. Thus, L3 tried to figure out why the stale
stems remained and found several cases: freezing a specific version,
maintaining documents (e.g., GitHub pages), and just left unmanaged
for various reasons. L3 was inclined to use stem-based visualization
since it was closely coordinated with other views, which served the
context. L2, L3, and M1 were interested in the state of PR stems. They
used a similar approach to what was used to find stale stems to explore
the PR stems and find out why an old PR was still open.

In the prior interview, L3 had specifically requested to be able to try
Githru for an upcoming B-project. However, the B-project was known
to have some notorious problems: there had been no manager, few
documents for reference, and little collaboration between members.
L3 had tried to get an overview of its history with existing tools, but
experienced difficulty exploring the context due to its overwhelming
complexity. Thus, we demonstrated examination of the B-project’s
repository to L3 during the case study. It took only a couple of minutes
to come up with the following insights: Each member was using their
own branch without merging it into the master, they were working on
independent modules, and a member who recently joined the project
had started to merge all existing branches into the master using pull
requests. L3 was able to identify the complex structure at a glance, but
could not find any interesting underlying details due to the overwhelm-
ingly complicated structure. Still, L3 was satisfied with the experience
and reported that the insights were helpful for preparation.

Filtering and Searching D3 and L3 greatly appreciated the filter
and search features. They started using the features without hesitation
and reported them as two of the most valuable features in Githru. Ac-
cording to our survey results, most Git clients had a search or filter
function, but these show limitations when compared to Githru. Exist-
ing tools implemented only one of the two features. Moreover, there
is a trade-off between the two features: If the filter is applied, non-
matched commits are removed from the graph, and the result is shown
in a compact way. However, the list loses the graph representation
that includes branch information (i.e., Sourcetree, gmaster, GitHub).
Conversely, searching normally emphasizes matched commits or blurs
non-matched commits, so it retains the graph representation. However,
the number of displayed commits is not reduced, so users must keep
manipulating the next match button and cannot grasp the results at a
glance (i.e., gitk, gitkraken).

Githru overcame the trade-off between filtering and searching. Not
only did we implement the two features, but we also ensured that filter-
ing in Githru does not result in losing the graph information. Moreover,
clustering by similarity is still possible thanks to the simplicity of the
graph from the stem structure. Therefore, the experts could do the same
tasks regardless of filter and search.

6.2 Quantitative Study
To confirm Githru’s effectiveness and usability, we recruited 12 devel-
opers (ten men and two women) with 3 to 15 years (average: 7.75) of
development experience at Samsung and conducted a controlled user
study. As we used an A-project dataset, we excluded any participant
who had experience with the project. The participants were from vari-
ous teams working on cloud, UX, AI, process, device driver, and other
projects.

We designed three questions to ensure that Githru satisfies the re-
quirements. Detailed descriptions of each question and their corre-
sponding requirements are as follows:

• Hotspot: Which file has the largest CLOC (most changed) over a
specific period? (R1(a, b, c), R2(a, c), R3(a, c), R4(a, b, c, d))

• Comparison: Name the differences and commonalities of the author
set who worked on the commits included in the two periods (R1(a),
R2(a, c), R3(a, c), R4(a, c)).

• Topology: What is the first release that reflects a specific PR? (R1(a),
R2(a, b, c), R3(a, b, c)).

As mentioned in Section 4, we selected GitHub for the comparison
with Githru. We also let participants use git log with GitHub, since
it is the most basic tool for developers and provides the richest raw

664 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

Fig. 8. Quantitative evaluation result; the task completion time spent by
subjects on three questions

data. Furthermore, in the prior interview, many developers said they
view repository information in the git log. Therefore, we designed the
experiment to compare Githru against GitHub and git log.

The experiment was conducted as a within-subject study. The total
experiment time was 50 to 60 minutes, which included 20 minutes of
prior explanation and 5 minutes of tool demonstration and practice.
We created two similar problems for each question and the subjects
solved them, in turn using both Githru and GitHub/git log. For git
log, we guided the usage of the command parameters to solve the
problems. At this time, to prevent the order effect, half of the subjects
used Githru first and the rest used GitHub/git log first. We measured
the time it took for subjects to give a correct answer by notifying them
when they gave a wrong answer. The results show that Githru is more
effective for solving problems related to hotspot (Z =−5.76, p< .001),
comparison (Z =−3.78, p < .01), and topology (Z =−2.69, p < .05)
than GitHub/git log. The results are shown in Fig. 8.

6.3 Fulfillment of Requirements
We also asked subjects to check several statements about whether the
requirements were satisfied. The survey was conducted using a 5-point
Likert scale. The results show that the subjects agreed that Githru fulfills
the requirements (average: [R1: 4.25, R2: 4.33, R3: 4.33, R4: 4.83])
and that the differences between the requirements are small enough.
The subjects also agreed with the statement about usability (average:
4.17).

7 DISCUSSION

Usefulness At the most basic level, all the interviewees appre-
ciated Githru simply because it enables them to obtain an overview;
existing tools have difficulty supporting even a simple aggregation of
desired data. In addition, we discussed another usage of Githru: if the
development team’s adoption of it in the real field. L1 said that our
system is also appropriate for exploring a project’s overall history even
when a user does not have concrete questions, such as Where should
I start to explore from? or What do I want to find (author, file)? This
means Githru is also effective for exploratory data analysis (EDA) of
Git history. So, if a new frequent pattern can be discovered during the
EDA using Githru, the team can display it on the team dashboard to
share the insight.

Also, Githru collaborates with existing tools. During analysis, it is
helpful if existing tools are supported when detailed information is
needed. For instance, the branch explorer of gmaster can reveal where
the commit is branched or what the relationship is between non-main
line branches. As for the details of a PR, GitHub is the only tool for
reading conversations attached to a PR.

Limitation and Improvements The stem structure forces every
operation to execute horizontally except for the CSM. As a result, we
could work toward greater simplicity and better interpretation of a DAG.
However, within the stem structure, we cannot perform vertical opera-
tions such as clustering two related stems and summarizing multiple
stems at once.

We employed commit classification and topic analysis methods in
this study. Our focus was not on the methods themselves, so lightweight
baseline methods are selected as a proof-of-concept. High performance
techniques, such as summarizing the messages of a cluster as short
sentences or more precise classifications, may offer more efficacy to
users.

During the study, we found some cases in which clustering by release
did not work properly. This occurs when a release-tagged commit is
not on the master branch, but only on a branch that was created solely
for the release. In such a case, the commit does not merge with the
master branch and the main stem will not hold the information even
when the CSM is applied. Githru supports changing the name of the
main branch by URL parameter when the main branch is not the master.
However, if the release branch continuously changes its name, the stem
reorganization does not work properly.

Future Work The extension of metadata enables extensive and in-
depth analysis as well. Collecting datasets from heterogeneous systems
such as an issue tracking system, CI (continuous integration), and test
environments, and arranging them along the Git history will give us a
holistic understanding of the overall development history. Also, adding
more information about source codes to metadata facilitates in-depth
analysis. Currently, file information such as name, path, and CLOC is
the closest to the source code among the Git metadata used in our study.
Hence, adding extracted fine-grained source code change to the meta-
data will give detailed information about source codes (i.e., function,
class, and edit operations) [31]. In obtaining them, the synchronizations
between heterogeneous data, scalability, and performance issues are
the main obstacles to be solved.

During the case studies, the experts provided practical suggestions
for supporting multiple repositories. They are running multiple reposi-
tories for one project according to modules. For instance, an end-user
device can have three repositories for device, smartphone, and server.
In that case, several issues occur when visualizing the metadata of three
repositories at once such as three main lines, a bigger graph represen-
tation, and synchronization issues. A huge project, for example, an
OS platform such as Tizen [9], runs over a thousand Git repositories,
so there can be serious scalability issues when visualizing the overall
development history. Also, the current Githru visualization module is
running as a standalone front-end application, as mentioned before.
If the number of commits greatly increases for the aforementioned
reasons, it will be necessary to translate them to the server-client model.
Moreover, streaming commits are not supported due to the preprocess-
ing step in Githru. However, we would be able to handle such data by
revising the step to process incrementally. We leave these issues for
future works.

8 CONCLUSION

We presented Githru as an interactive visual analytics system for the
Git metadata to help users explore and understand the context of de-
velopment history. The contribution of this paper is fourfold. First,
we refined analytics tasks and system requirements for Git metadata
through literature reviews and expert interviews. Second, we proposed
novel techniques tailored to the metadata to abstract a large-scale Git
commit graph: reorganization of a DAG to a stem structure, context-
preserving squash merge methods, and clustering reduce the number of
stems and commits. Third, Githru provides a summary view for clusters
to grasp the overview and a comparison view with which users can com-
pare different clusters. Lastly, we evaluated the system with real-world
datasets and domain experts from a major international IT company.
Case studies with domain experts and a controlled user study with
developers, comparing Githru to a combination of GitHub/git log, were
conducted and confirmed the effectiveness and usability of Githru. The
implementation of our system is available at github.com/githru/githru.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-
2019R1A2C2089062, No. NRF-2019R1A2C1088900) and by Korea
Electric Power Corporation. (Grant number:R18XA01). Young-Ho Kim
was supported by Basic Science Research Program through the NRF
funded by the Ministry of Education (NRF-2019R1A6A3A12031352).
The ICT at Seoul National University provided research facilities for
this study. Hyunjoo song and Jinwook Seo are the corresponding au-
thors. The authors thank the participants from Samsung Electronics for
interviews and evaluation.

REFERENCES

[1] Git log documentation. https://git-scm.com/docs/git-log.
[2] Github. https://github.com/.
[3] gitk. https://www.atlassian.com/git/tutorials/gitk.
[4] Gitkraken. https://www.gitkraken.com/.
[5] gmaster. https://gmaster.io/.
[6] realm-java. https://github.com/realm/realm-java.
[7] Semantic versioning 2.0.0. https://semver.org/.
[8] Sourcetree. https://www.sourcetreeapp.com/.
[9] tizen git. https://review.tizen.org/git/.

[10] J. P. S. Alcocer, F. Beck, and A. Bergel. Performance evolution matrix:
Visualizing performance variations along software versions. In 2019
Working Conference on Software Visualization (VISSOFT), pp. 1–11. IEEE,
2019.

[11] C. V. Alexandru, S. Proksch, P. Behnamghader, and H. C. Gall. Evo-clocks:
Software evolution at a glance. In 2019 Working Conference on Software
Visualization (VISSOFT), pp. 12–22. IEEE, 2019.

[12] C. Anslow, S. Marshall, J. Noble, and R. Biddle. Sourcevis: Collaborative
software visualization for co-located environments. In 2013 First IEEE
Working Conference on Software Visualization (VISSOFT), pp. 1–10. IEEE,
2013.

[13] T. Barik, K. Lubick, and E. Murphy-Hill. Commit bubbles. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
vol. 2, pp. 631–634. IEEE, 2015.

[14] A. Begel and T. Zimmermann. Analyze this! 145 questions for data
scientists in software engineering. In Proceedings of the 36th International
Conference on Software Engineering, pp. 12–23, 2014.

[15] M. Biazzini, M. Monperrus, and B. Baudry. On analyzing the topology
of commit histories in decentralized version control systems. In 2014
IEEE International Conference on Software Maintenance and Evolution,
pp. 261–270. IEEE, 2014.

[16] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining git. In 2009 6th IEEE
International Working Conference on Mining Software Repositories, pp.
1–10. IEEE, 2009.

[17] S. Bird, E. Klein, and E. Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,
2009.

[18] T. Bladh, D. A. Carr, and J. Scholl. Extending tree-maps to three dimen-
sions: A comparative study. In Asia-Pacific Conference on Computer
Human Interaction, pp. 50–59. Springer, 2004.

[19] V. Braun and V. Clarke. Using thematic analysis in psychology. Qualitative
research in psychology, 3(2):77–101, 2006.

[20] M. Burch, T. Munz, F. Beck, and D. Weiskopf. Visualizing work processes
in software engineering with developer rivers. In 2015 IEEE 3rd Working
Conference on Software Visualization (VISSOFT), pp. 116–124. IEEE,
2015.

[21] R. P. Buse and T. Zimmermann. Information needs for software devel-
opment analytics. In 2012 34th International Conference on Software
Engineering (ICSE), pp. 987–996. IEEE, 2012.

[22] S. Chacon and B. Straub. Pro Git. Apress, USA, 2nd ed., 2014.
[23] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey. Software history

under the lens: A study on why and how developers examine it. In 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 1–10. IEEE, 2015.

[24] S. Diehl. Software visualization: visualizing the structure, behaviour, and
evolution of software. Springer Science & Business Media, 2007.

[25] S. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesoft-a tool for visual-
izing line oriented software statistics. IEEE Transactions on Software
Engineering, (11):957–968, 1992.

[26] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P. Schuster. Visu-
alizing software changes. IEEE Transactions on Software Engineering,
28(4):396–412, 2002.

[27] S. Elsen. Visgi: Visualizing git branches. In 2013 First IEEE Working
Conference on Software Visualization (VISSOFT), pp. 1–4. IEEE, 2013.

[28] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani.
Chronotwigger: A visual analytics tool for understanding source and
test co-evolution. In 2014 Second IEEE Working Conference on Software
Visualization, pp. 117–126. IEEE, 2014.

[29] J. Feiner and K. Andrews. Repovis: Visual overviews and full-text search
in software repositories. In 2018 IEEE Working Conference on Software
Visualization (VISSOFT), pp. 1–11. IEEE, 2018.

[30] M. D. Feist, E. A. Santos, I. Watts, and A. Hindle. Visualizing project
evolution through abstract syntax tree analysis. In 2016 IEEE Working
Conference on Software Visualization (VISSOFT), pp. 11–20. IEEE, 2016.

[31] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. IEEE Trans-
actions on software engineering, 33(11):725–743, 2007.

[32] T. Fritz and G. C. Murphy. Using information fragments to answer the
questions developers ask. In 2010 ACM/IEEE 32nd International Confer-
ence on Software Engineering, vol. 1, pp. 175–184. IEEE, 2010.

[33] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual
tool for distributed software development teams. In Proceedings. 26th
International Conference on Software Engineering, pp. 387–396. IEEE,
2004.

[34] M. Gleicher. Considerations for visualizing comparison. IEEE transac-
tions on visualization and computer graphics, 24(1):413–423, 2017.

[35] G. J. Greene and B. Fischer. Conceptcloud: A tagcloud browser for soft-
ware archives. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 759–762, 2014.

[36] A. E. Hassan and R. C. Holt. The top ten list - dynamic fault prediction. In
21st IEEE International Conference on Software Maintenance (ICSM’05),
pp. 263–272. IEEE, 2005.

[37] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu. Software evolution
comprehension: Replay to the rescue. In 2011 IEEE 19th International
Conference on Program Comprehension, pp. 161–170. IEEE, 2011.

[38] L. P. Hattori and M. Lanza. On the nature of commits. In 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering-
Workshops, pp. 63–71. IEEE, 2008.

[39] J. Heer, M. Bostock, and V. Ogievetsky. A tour through the visualization
zoo. Communications of the ACM, 53(6):59–67, 2010.

[40] F. Heimerl, S. Lohmann, S. Lange, and T. Ertl. Word cloud explorer:
Text analytics based on word clouds. In 2014 47th Hawaii International
Conference on System Sciences, pp. 1833–1842. IEEE, 2014.

[41] H. Hu, H. Zhang, J. Xuan, and W. Sun. Effective bug triage based on his-
torical bug-fix information. In 2014 IEEE 25th International Symposium
on Software Reliability Engineering, pp. 122–132. IEEE, 2014.

[42] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In Proceedings
of the 2nd conference on Visualization’91, pp. 284–291. IEEE Computer
Society Press, 1991.

[43] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian. The promises and perils of mining github. In Proceedings of
the 11th working conference on mining software repositories, pp. 92–101,
2014.

[44] T. Khan, H. Barthel, K. Amrhein, A. Ebert, and P. Liggesmeyer. An
interactive approach for inspecting software system measurements. In
IFIP Conference on Human-Computer Interaction, pp. 1–8. Springer,
2015.

[45] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting
faults from cached history. In 29th International Conference on Software
Engineering (ICSE’07), pp. 489–498. IEEE, 2007.

[46] V. Kovalenko, F. Palomba, and A. Bacchelli. Mining file histories: Should
we consider branches? ASE 2018 - Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 202–
213, 2018. doi: 10.1145/3238147.3238169

[47] J. Kubelka, R. Robbes, and A. Bergel. Live programming and software evo-
lution: questions during a programming change task. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC), pp.
30–41. IEEE, 2019.

[48] T. D. LaToza and B. A. Myers. Hard-to-answer questions about code. In
Evaluation and Usability of Programming Languages and Tools, pp. 1–6.
2010.

[49] C. Lebeuf, E. Voyloshnikova, K. Herzig, and M.-A. Storey. Understanding,
debugging, and optimizing distributed software builds: A design study.
In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 496–507. IEEE, 2018.

[50] H. Lee, B.-K. Seo, and E. Seo. A git source repository analysis tool based
on a novel branch-oriented approach. In 2013 International Conference
on Information Science and Applications (ICISA), pp. 1–4. IEEE, 2013.

[51] H. M. Michaud, D. T. Guarnera, M. L. Collard, and J. I. Maletic. Recov-
ering commit branch of origin from github repositories. In 2016 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME), pp. 290–300. IEEE, 2016.

[52] N. Nagappan and T. Ball. Use of relative code churn measures to predict

KIM ET AL.: GITHRU: VISUAL ANALYTICS FOR UNDERSTANDING SOFTWARE DEVELOPMENT HISTORY THROUGH GIT METADATA ANALYSIS 665

Fig. 8. Quantitative evaluation result; the task completion time spent by
subjects on three questions

data. Furthermore, in the prior interview, many developers said they
view repository information in the git log. Therefore, we designed the
experiment to compare Githru against GitHub and git log.

The experiment was conducted as a within-subject study. The total
experiment time was 50 to 60 minutes, which included 20 minutes of
prior explanation and 5 minutes of tool demonstration and practice.
We created two similar problems for each question and the subjects
solved them, in turn using both Githru and GitHub/git log. For git
log, we guided the usage of the command parameters to solve the
problems. At this time, to prevent the order effect, half of the subjects
used Githru first and the rest used GitHub/git log first. We measured
the time it took for subjects to give a correct answer by notifying them
when they gave a wrong answer. The results show that Githru is more
effective for solving problems related to hotspot (Z =−5.76, p< .001),
comparison (Z =−3.78, p < .01), and topology (Z =−2.69, p < .05)
than GitHub/git log. The results are shown in Fig. 8.

6.3 Fulfillment of Requirements
We also asked subjects to check several statements about whether the
requirements were satisfied. The survey was conducted using a 5-point
Likert scale. The results show that the subjects agreed that Githru fulfills
the requirements (average: [R1: 4.25, R2: 4.33, R3: 4.33, R4: 4.83])
and that the differences between the requirements are small enough.
The subjects also agreed with the statement about usability (average:
4.17).

7 DISCUSSION

Usefulness At the most basic level, all the interviewees appre-
ciated Githru simply because it enables them to obtain an overview;
existing tools have difficulty supporting even a simple aggregation of
desired data. In addition, we discussed another usage of Githru: if the
development team’s adoption of it in the real field. L1 said that our
system is also appropriate for exploring a project’s overall history even
when a user does not have concrete questions, such as Where should
I start to explore from? or What do I want to find (author, file)? This
means Githru is also effective for exploratory data analysis (EDA) of
Git history. So, if a new frequent pattern can be discovered during the
EDA using Githru, the team can display it on the team dashboard to
share the insight.

Also, Githru collaborates with existing tools. During analysis, it is
helpful if existing tools are supported when detailed information is
needed. For instance, the branch explorer of gmaster can reveal where
the commit is branched or what the relationship is between non-main
line branches. As for the details of a PR, GitHub is the only tool for
reading conversations attached to a PR.

Limitation and Improvements The stem structure forces every
operation to execute horizontally except for the CSM. As a result, we
could work toward greater simplicity and better interpretation of a DAG.
However, within the stem structure, we cannot perform vertical opera-
tions such as clustering two related stems and summarizing multiple
stems at once.

We employed commit classification and topic analysis methods in
this study. Our focus was not on the methods themselves, so lightweight
baseline methods are selected as a proof-of-concept. High performance
techniques, such as summarizing the messages of a cluster as short
sentences or more precise classifications, may offer more efficacy to
users.

During the study, we found some cases in which clustering by release
did not work properly. This occurs when a release-tagged commit is
not on the master branch, but only on a branch that was created solely
for the release. In such a case, the commit does not merge with the
master branch and the main stem will not hold the information even
when the CSM is applied. Githru supports changing the name of the
main branch by URL parameter when the main branch is not the master.
However, if the release branch continuously changes its name, the stem
reorganization does not work properly.

Future Work The extension of metadata enables extensive and in-
depth analysis as well. Collecting datasets from heterogeneous systems
such as an issue tracking system, CI (continuous integration), and test
environments, and arranging them along the Git history will give us a
holistic understanding of the overall development history. Also, adding
more information about source codes to metadata facilitates in-depth
analysis. Currently, file information such as name, path, and CLOC is
the closest to the source code among the Git metadata used in our study.
Hence, adding extracted fine-grained source code change to the meta-
data will give detailed information about source codes (i.e., function,
class, and edit operations) [31]. In obtaining them, the synchronizations
between heterogeneous data, scalability, and performance issues are
the main obstacles to be solved.

During the case studies, the experts provided practical suggestions
for supporting multiple repositories. They are running multiple reposi-
tories for one project according to modules. For instance, an end-user
device can have three repositories for device, smartphone, and server.
In that case, several issues occur when visualizing the metadata of three
repositories at once such as three main lines, a bigger graph represen-
tation, and synchronization issues. A huge project, for example, an
OS platform such as Tizen [9], runs over a thousand Git repositories,
so there can be serious scalability issues when visualizing the overall
development history. Also, the current Githru visualization module is
running as a standalone front-end application, as mentioned before.
If the number of commits greatly increases for the aforementioned
reasons, it will be necessary to translate them to the server-client model.
Moreover, streaming commits are not supported due to the preprocess-
ing step in Githru. However, we would be able to handle such data by
revising the step to process incrementally. We leave these issues for
future works.

8 CONCLUSION

We presented Githru as an interactive visual analytics system for the
Git metadata to help users explore and understand the context of de-
velopment history. The contribution of this paper is fourfold. First,
we refined analytics tasks and system requirements for Git metadata
through literature reviews and expert interviews. Second, we proposed
novel techniques tailored to the metadata to abstract a large-scale Git
commit graph: reorganization of a DAG to a stem structure, context-
preserving squash merge methods, and clustering reduce the number of
stems and commits. Third, Githru provides a summary view for clusters
to grasp the overview and a comparison view with which users can com-
pare different clusters. Lastly, we evaluated the system with real-world
datasets and domain experts from a major international IT company.
Case studies with domain experts and a controlled user study with
developers, comparing Githru to a combination of GitHub/git log, were
conducted and confirmed the effectiveness and usability of Githru. The
implementation of our system is available at github.com/githru/githru.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-
2019R1A2C2089062, No. NRF-2019R1A2C1088900) and by Korea
Electric Power Corporation. (Grant number:R18XA01). Young-Ho Kim
was supported by Basic Science Research Program through the NRF
funded by the Ministry of Education (NRF-2019R1A6A3A12031352).
The ICT at Seoul National University provided research facilities for
this study. Hyunjoo song and Jinwook Seo are the corresponding au-
thors. The authors thank the participants from Samsung Electronics for
interviews and evaluation.

REFERENCES

[1] Git log documentation. https://git-scm.com/docs/git-log.
[2] Github. https://github.com/.
[3] gitk. https://www.atlassian.com/git/tutorials/gitk.
[4] Gitkraken. https://www.gitkraken.com/.
[5] gmaster. https://gmaster.io/.
[6] realm-java. https://github.com/realm/realm-java.
[7] Semantic versioning 2.0.0. https://semver.org/.
[8] Sourcetree. https://www.sourcetreeapp.com/.
[9] tizen git. https://review.tizen.org/git/.

[10] J. P. S. Alcocer, F. Beck, and A. Bergel. Performance evolution matrix:
Visualizing performance variations along software versions. In 2019
Working Conference on Software Visualization (VISSOFT), pp. 1–11. IEEE,
2019.

[11] C. V. Alexandru, S. Proksch, P. Behnamghader, and H. C. Gall. Evo-clocks:
Software evolution at a glance. In 2019 Working Conference on Software
Visualization (VISSOFT), pp. 12–22. IEEE, 2019.

[12] C. Anslow, S. Marshall, J. Noble, and R. Biddle. Sourcevis: Collaborative
software visualization for co-located environments. In 2013 First IEEE
Working Conference on Software Visualization (VISSOFT), pp. 1–10. IEEE,
2013.

[13] T. Barik, K. Lubick, and E. Murphy-Hill. Commit bubbles. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
vol. 2, pp. 631–634. IEEE, 2015.

[14] A. Begel and T. Zimmermann. Analyze this! 145 questions for data
scientists in software engineering. In Proceedings of the 36th International
Conference on Software Engineering, pp. 12–23, 2014.

[15] M. Biazzini, M. Monperrus, and B. Baudry. On analyzing the topology
of commit histories in decentralized version control systems. In 2014
IEEE International Conference on Software Maintenance and Evolution,
pp. 261–270. IEEE, 2014.

[16] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining git. In 2009 6th IEEE
International Working Conference on Mining Software Repositories, pp.
1–10. IEEE, 2009.

[17] S. Bird, E. Klein, and E. Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,
2009.

[18] T. Bladh, D. A. Carr, and J. Scholl. Extending tree-maps to three dimen-
sions: A comparative study. In Asia-Pacific Conference on Computer
Human Interaction, pp. 50–59. Springer, 2004.

[19] V. Braun and V. Clarke. Using thematic analysis in psychology. Qualitative
research in psychology, 3(2):77–101, 2006.

[20] M. Burch, T. Munz, F. Beck, and D. Weiskopf. Visualizing work processes
in software engineering with developer rivers. In 2015 IEEE 3rd Working
Conference on Software Visualization (VISSOFT), pp. 116–124. IEEE,
2015.

[21] R. P. Buse and T. Zimmermann. Information needs for software devel-
opment analytics. In 2012 34th International Conference on Software
Engineering (ICSE), pp. 987–996. IEEE, 2012.

[22] S. Chacon and B. Straub. Pro Git. Apress, USA, 2nd ed., 2014.
[23] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey. Software history

under the lens: A study on why and how developers examine it. In 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 1–10. IEEE, 2015.

[24] S. Diehl. Software visualization: visualizing the structure, behaviour, and
evolution of software. Springer Science & Business Media, 2007.

[25] S. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesoft-a tool for visual-
izing line oriented software statistics. IEEE Transactions on Software
Engineering, (11):957–968, 1992.

[26] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P. Schuster. Visu-
alizing software changes. IEEE Transactions on Software Engineering,
28(4):396–412, 2002.

[27] S. Elsen. Visgi: Visualizing git branches. In 2013 First IEEE Working
Conference on Software Visualization (VISSOFT), pp. 1–4. IEEE, 2013.

[28] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani.
Chronotwigger: A visual analytics tool for understanding source and
test co-evolution. In 2014 Second IEEE Working Conference on Software
Visualization, pp. 117–126. IEEE, 2014.

[29] J. Feiner and K. Andrews. Repovis: Visual overviews and full-text search
in software repositories. In 2018 IEEE Working Conference on Software
Visualization (VISSOFT), pp. 1–11. IEEE, 2018.

[30] M. D. Feist, E. A. Santos, I. Watts, and A. Hindle. Visualizing project
evolution through abstract syntax tree analysis. In 2016 IEEE Working
Conference on Software Visualization (VISSOFT), pp. 11–20. IEEE, 2016.

[31] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. IEEE Trans-
actions on software engineering, 33(11):725–743, 2007.

[32] T. Fritz and G. C. Murphy. Using information fragments to answer the
questions developers ask. In 2010 ACM/IEEE 32nd International Confer-
ence on Software Engineering, vol. 1, pp. 175–184. IEEE, 2010.

[33] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual
tool for distributed software development teams. In Proceedings. 26th
International Conference on Software Engineering, pp. 387–396. IEEE,
2004.

[34] M. Gleicher. Considerations for visualizing comparison. IEEE transac-
tions on visualization and computer graphics, 24(1):413–423, 2017.

[35] G. J. Greene and B. Fischer. Conceptcloud: A tagcloud browser for soft-
ware archives. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 759–762, 2014.

[36] A. E. Hassan and R. C. Holt. The top ten list - dynamic fault prediction. In
21st IEEE International Conference on Software Maintenance (ICSM’05),
pp. 263–272. IEEE, 2005.

[37] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu. Software evolution
comprehension: Replay to the rescue. In 2011 IEEE 19th International
Conference on Program Comprehension, pp. 161–170. IEEE, 2011.

[38] L. P. Hattori and M. Lanza. On the nature of commits. In 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering-
Workshops, pp. 63–71. IEEE, 2008.

[39] J. Heer, M. Bostock, and V. Ogievetsky. A tour through the visualization
zoo. Communications of the ACM, 53(6):59–67, 2010.

[40] F. Heimerl, S. Lohmann, S. Lange, and T. Ertl. Word cloud explorer:
Text analytics based on word clouds. In 2014 47th Hawaii International
Conference on System Sciences, pp. 1833–1842. IEEE, 2014.

[41] H. Hu, H. Zhang, J. Xuan, and W. Sun. Effective bug triage based on his-
torical bug-fix information. In 2014 IEEE 25th International Symposium
on Software Reliability Engineering, pp. 122–132. IEEE, 2014.

[42] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In Proceedings
of the 2nd conference on Visualization’91, pp. 284–291. IEEE Computer
Society Press, 1991.

[43] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian. The promises and perils of mining github. In Proceedings of
the 11th working conference on mining software repositories, pp. 92–101,
2014.

[44] T. Khan, H. Barthel, K. Amrhein, A. Ebert, and P. Liggesmeyer. An
interactive approach for inspecting software system measurements. In
IFIP Conference on Human-Computer Interaction, pp. 1–8. Springer,
2015.

[45] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting
faults from cached history. In 29th International Conference on Software
Engineering (ICSE’07), pp. 489–498. IEEE, 2007.

[46] V. Kovalenko, F. Palomba, and A. Bacchelli. Mining file histories: Should
we consider branches? ASE 2018 - Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 202–
213, 2018. doi: 10.1145/3238147.3238169

[47] J. Kubelka, R. Robbes, and A. Bergel. Live programming and software evo-
lution: questions during a programming change task. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC), pp.
30–41. IEEE, 2019.

[48] T. D. LaToza and B. A. Myers. Hard-to-answer questions about code. In
Evaluation and Usability of Programming Languages and Tools, pp. 1–6.
2010.

[49] C. Lebeuf, E. Voyloshnikova, K. Herzig, and M.-A. Storey. Understanding,
debugging, and optimizing distributed software builds: A design study.
In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 496–507. IEEE, 2018.

[50] H. Lee, B.-K. Seo, and E. Seo. A git source repository analysis tool based
on a novel branch-oriented approach. In 2013 International Conference
on Information Science and Applications (ICISA), pp. 1–4. IEEE, 2013.

[51] H. M. Michaud, D. T. Guarnera, M. L. Collard, and J. I. Maletic. Recov-
ering commit branch of origin from github repositories. In 2016 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME), pp. 290–300. IEEE, 2016.

[52] N. Nagappan and T. Ball. Use of relative code churn measures to predict

666 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

system defect density. In Proceedings of the 27th international conference
on Software engineering, pp. 284–292, 2005.

[53] K. J. North, A. Sarma, and M. B. Cohen. Understanding git history: A
multi-sense view. In Proceedings of the 8th International Workshop on
Social Software Engineering, pp. 1–7, 2016.

[54] M. Ogawa and K.-L. Ma. code swarm: A design study in organic software
visualization. IEEE Transactions on Visualization and Computer Graphics,
15(6):1097–1104, 2009.

[55] J. Perrie, J. Xie, M. Nayebi, M. Fokaefs, K. Lyons, and E. Stroulia. City
on the river: visualizing temporal collaboration. In Proceedings of the
29th Annual International Conference on Computer Science and Software
Engineering, pp. 82–91, 2019.

[56] Z. Porkoláb, T. Brunner, D. Krupp, and M. Csordás. Codecompass: an open
software comprehension framework for industrial usage. In Proceedings
of the 26th Conference on Program Comprehension, pp. 361–369, 2018.

[57] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker, M. Palyart,
and G. C. Murphy. Comparing repositories visually with repograms. In
Proceedings of the 13th International Conference on Mining Software
Repositories, pp. 109–120, 2016.

[58] S. Rufiange and G. Melançon. Animatrix: A matrix-based visualization of
software evolution. In 2014 Second IEEE Working Conference on Software
Visualization, pp. 137–146. IEEE, 2014.

[59] C. Sadowski, K. T. Stolee, and S. Elbaum. How developers search for
code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pp. 191–201, 2015.

[60] K. A. Safwan and F. Servant. Decomposing the rationale of code commits:
the software developer’s perspective. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 397–408,
2019.

[61] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings 1996 IEEE symposium on
visual languages, pp. 336–343. IEEE, 1996.

[62] J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers ask
during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, pp. 23–
34, 2006.

[63] B. Sisman and A. C. Kak. Incorporating version histories in information
retrieval based bug localization. In 2012 9th IEEE Working Conference on
Mining Software Repositories (MSR), pp. 50–59. IEEE, 2012.

[64] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald. An evaluation
of space-filling information visualizations for depicting hierarchical struc-
tures. International journal of human-computer studies, 53(5):663–694,
2000.

[65] R. Stevens and C. De Roover. Querying the history of software projects
using qwalkeko. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pp. 585–588. IEEE, 2014.

[66] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do software engineers
understand code changes? an exploratory study in industry. In Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, pp. 1–11, 2012.

[67] Y. Tymchuk, L. Merino, M. Ghafari, and O. Nierstrasz. Walls, pillars and
beams: A 3d decomposition of quality anomalies. In 2016 IEEE Working
Conference on Software Visualization (VISSOFT), pp. 126–135. IEEE,
2016.

[68] M. Ulan, S. Hönel, R. M. Martins, M. Ericsson, W. Löwe, A. Wingkvist,
and A. Kerren. Quality models inside out: Interactive visualization of
software metrics by means of joint probabilities. In 2018 IEEE Working
Conference on Software Visualization (VISSOFT), pp. 65–75. IEEE, 2018.

[69] E. Wall, S. Das, R. Chawla, B. Kalidindi, E. T. Brown, and A. Endert.
Podium: Ranking data using mixed-initiative visual analytics. IEEE trans-
actions on visualization and computer graphics, 24(1):288–297, 2017.

[70] Y. Wang, J. Weatherston, M.-A. Storey, and D. German. Clonecompass:
Visualizations for exploring assembly code clone ecosystems. In 2019
Working Conference on Software Visualization (VISSOFT), pp. 88–98.
IEEE.

[71] M. Wessel, I. Steinmacher, I. Wiese, and M. A. Gerosa. Should i stale
or should i close? an analysis of a bot that closes abandoned issues and
pull requests. In 2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE), pp. 38–42. IEEE, 2019.

[72] E. Wilde and D. German. Merge-tree: Visualizing the integration of com-
mits into linux. Journal of Software: Evolution and Process, 30(2):e1936,
2018.

[73] Y. Yoon, B. A. Myers, and S. Koo. Visualization of fine-grained code
change history. In 2013 IEEE Symposium on Visual Languages and Human
Centric Computing, pp. 119–126. IEEE, 2013.

[74] S. H. Zanakis, A. Solomon, N. Wishart, and S. Dublish. Multi-attribute
decision making: A simulation comparison of select methods. European
journal of operational research, 107(3):507–529, 1998.

[75] Y. Zhao, H. Wang, L. Ma, Y. Liu, L. Li, and J. Grundy. Knowledge graph-
ing git repositories: A preliminary study. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 599–603. IEEE, 2019.

