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Abstract—Pseudocoloring is one of the most common techniques used in scientific visualization. To apply pseudocoloring to a scalar

field, the field value at each point is represented using one of a sequence of colors (called a colormap). One of the principles applied in

generating colormaps is uniformity and previously the main method for determining uniformity has been the application of uniform color

spaces. In this paper we present a new method for evaluating the feature detection threshold function across a colormap. The method

is used in crowdsourced studies for the direct evaluation of nine colormaps for three feature sizes. The results are used to test the

hypothesis that a uniform color space (CIELAB) will accurately model colormapped feature detection thresholds compared to a model

where the chromaticity components have reduced weights. The hypothesis that feature detection can be predicted solely on the basis

of luminance is also tested. The results reject both hypotheses and we demonstrate how reduced weights on the green-red and

blue-yellow terms of the CIELAB color space creates a more accurate model when the task is the detection of smaller features in

colormapped data. Both the method itself and modified CIELAB can be used in colormap design and evaluation.

Index Terms—Colormapping, color perception

Ç

1 INTRODUCTION

ONE of the most common and effective methods for
visualizing scientific data is using a color sequence,

commonly called a colormap, to encode scalar values in uni-
variate map data [40], [53], [62]. A set of examples in Fig. 1
shows the same sea surface height data rendered using nine
different colormaps. What makes a good colormap? Clearly,
to some extent this depends on the way it will be used.
Three broad task categories can be identified:

� Pattern Perception: The first and broadest task cate-
gory is feature or pattern perception [4], [58]. The
patterns that may be of scientific interest are essen-
tially infinite. A researcher may be interested in fea-
ture shapes, and how large or small they are in terms
of spatial size or amplitude. Basic to all pattern per-
ception is the feature detection threshold—if the fea-
tures making up a pattern cannot be seen, the
pattern cannot be seen.

� Value reading tasks and value localization tasks: The
value reading task is to determine the data value at a

point on a map, usually by means of a key [56], [58].
An example of such is a weather map with color-
coded temperatures; observing the color of a point
on the map and visually matching that color to a
color key allows the temperature to be estimated.
The value localization task is the reverse of this [34].
A value is given and the task is to find locations on
the map corresponding to that value.

� Categorization task: Sometimes colors are used to
visually categorize data [9], [50]. For example, in
large-scale geographical maps, greens roughly char-
acterize low plains whereas browns characterize
mountainous regions. Shades of blue are used for
ocean depths.

Much of thework that has been done on the design of color-
maps has focused on design principles, not on tasks per se.
These principles include order, smoothness, uniformity, and dis-
criminative power [11], [55]. Order in a global sense is the degree
towhich a sequence is perceived as progressing through colors
in a particular direction [4], [38], [61]. The options available in
the ColorBrewer palettes for cartography are good examples
of ordered palettes [9]. The widely used (and equally widely
criticized) rainbow colormap has no overall perceptual order
[8], [44], [58]. Smoothness refers to the extent to which a color-
map has no distinct boundaries in the sequence of colors [30],
[53], [54]. Uniformity refers to the extent colors equally sepa-
rated on the colormap correspond to equal perceptual distan-
ces [8], [21], [29], [30], [41]. Discriminative power refers to how
many perceivably different colors are traversed by the color-
map. Usually this is defined as the number of just noticeable
differences (JND) over the entire sequence [11].

In the present study, we are concerned with the discrimi-
native power function of a colormap (how well it resolves
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features across its extent). Local discriminative power is anal-
gous to contrast sensitivity, a term commonly used in psycho-
physics to denote the inverse of a contrast threshold (the
minimum contrast that can be resolved by a human subject).
We also derive a metric of overall discriminative power—the
overall capacity of a colormap to resolve features.

The contribution of this paper is a straightforward
method for evaluating the discriminative power function of
a colormap across its extent. This is applied for a range of
feature sizes and the results used to develop a modified ver-
sion of CIELAB that more accurately models human percep-
tion of features in colormapped data. We also show how
modified CIELAB can be applied in a colormap design tool.

2 BACKGROUND AND RELATED WORK

The most common method that has been advocated for cre-
ating perceptually uniform color sequences has been the
application of uniform color spaces (UCSs) such as CIELUV,
CIELAB, CIEDE2000 and CIECAM [10], [15], [24], [25], [27],
[31]. The most popular uniform color spaces are mathemati-
cal transformations of the CIE XYZ coordinates, constructed
such that metric differences between pairs of colors in the
space correspond to experimentally determined perceptual

differences from user studies. A uniform colormap defined
using a UCS is a sequence where adjacent colors have equal
separations in that UCS. The overall discriminative power
of the colormap defined by a UCS is simply the total length
of the path of the colormap in the UCS [11], [21], [35], [40].

Although using a UCS to understand the power of color-
maps to resolve features is common, there are reasons for
thinking that the standard UCSs will not actually provide a
good basis for measuring or creating uniformity for many of
the features that are critical in scientific data. Uniform color
spaces were based on measurements between two quite
large patches of uniform colors [26], [33], [39]. They were
intended for the paint and fabric industries and there is rea-
son to believe that they will not, in fact, provide a good basis
for assessing the quality of colormaps in terms of either their
uniformity, or their ability to allow people to resolve small
features in data. The problem has to do with the dependence
of feature discriminative power of different color channels,
as can be seen in Fig. 2. Opponent color theory holds that
human color vision can be characterized in terms of three
color-opponent channels, the luminance (black-white) chan-
nel, the green-red channel, and the yellow-blue channel [16].
Various measurements have shown that the different chan-
nels have very different characteristics. For example, the

Fig. 1. Sea surface height rendered in the nine test colormaps in this paper. Using the acronyms introduced in Section 4.2, the data is rendered
in: (top row, left to right) RA, CW, ECW, (middle row, left to right) BOD, GP, GR, (bottom row, left to right) BY, VI, TH.

Fig. 2. Left: A pattern illustrating how human spatial patterns sensitivity falls off for both low and high spatial frequencies. Right: human pattern
sensitivity for the different color channels as a function of spatial frequency (Adapted from Mullen [32]). Uniform color spaces were based on
measurements with large stimuli containing low spatial frequencies. Many visualization are dominated by higher spatial frequencies.
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luminance channel is better at revealing shape-from-shading
information and patterns in motion [3], [14]. Most relevant
here are findings that the different channels have very dif-
ferent feature discriminative powers, particularly at higher
spatial frequencies [32], [36].

Vision researchers have been characterizing the human
visual system in terms of its ability to resolve sinusoidal pat-
terns of different spatial frequencies since the late 1960s [6],
[12]. The left-hand image of Fig. 2 illustrates this concept.
Campbell and Robson [12] showed that human ability to
resolve complex patterns is solely determined by sensitivity
of the constituent frequencies. For luminance modulated
patterns there is both a distinct high frequency and low fre-
quency fall off in sensitivity. Fig. 2 shows (on the right) the
results from a study that investigated the feature discrimi-
native power of the green-red and yellow-blue channels in
addition to the luminance channel [32]. Both this and a
study by Poirson and Wandell [36] show that at spatial fre-
quencies of one cycle/degree and above, the luminance
channel has far greater sensitivity to patterns in comparison
with the color channels. Since it is the case that the UCS
measurements were made with larger patterns (2 and 10
deg [33]) containing low spatial frequencies this would sug-
gest that using UCSs to design colormaps will considerably
overweight the contributions of the green-red and yellow-
blue channels to both uniformity and overall discriminative
power. This means that they may be unsuitable as a basis
for designing colormaps for data such as the ocean eddies
and currents illustrated in Fig. 3.

The differences between luminance and chromatic chan-
nels have been noted by researchers who have suggested
that high spatial frequency patterns should be represented
mainly by luminance variation [40], [43], [44] and low spa-
tial frequencies are better expressed by chromatic varia-
tion [4], [40]. Others, from Stevens on, have noted that fewer
steps can be resolved in chroma than can be resolved in
luminance [4], [5], [43], [49]. Chroma is a technical term that
refers to the vividness of a color—its distance from a neutral
gray of the same luminance. Saturation is often informally
used to refer to the same quality but technically has a some-
what different definition. Also, various researchers have

proposed that aside from the issue of resolution, luminance
variation is more suitable for form perception [40], [42], [58].

The two studies that bear most directly on the detection of
patterns in colormapped data are by Rogowitz et al. [43] and
Kalvin et al. [17]. Rogowitz et al. measured detection thresh-
olds using large Gaussian patterns placed 3 deg from the
center of fixation for a number of colormaps. The Fourier
transform of a Gaussian is also a Gaussian and the patterns
used would have had dominant spatial frequency compo-
nents below 0.5 cycles/deg. In addition to testing a rainbow
colormap they compared the influence of linear changes in
hue versus chroma versus value in Munsell and CIELAB
space. They found that hue based colormaps such as the rain-
bowperformworsewith respect to uniformity than the lumi-
nance and chroma based ones. Kalvin et al. used Gabor
stimuli at 0.2 and 4 cycles/deg. For high spatial frequency
patterns they found an increase in threshold for saturation
and hue variation. The results for luminance variation, how-
ever, were puzzling. For grey scales defined by the HSV
model there was little increase in threshold, whereas when
the grey scale was defined by CIELAB there was a substan-
tial increase in threshold. They offer no explanation for this
striking discrepancy. We build on this work, althoughwith a
very different methodology, using sinusoidal patterns.

Other evidence for the importance of luminance in form
perception comes from a study by Ware [58] in which study
participants were presented with a variety of patterns
(parabola, saddle, ridge, etc) and asked to rate how well the
underlying shapes were represented using Likert scales.
Overall, the grayscale colormap was judged the most effec-
tive at representing underlying shape and the author
argued that this was because the luminance channel is most
relevant to form perception. However, this was a subjective
and not an objective measurement. Rogowitz and Kal-
vin [42] encoded a photograph of a human face with various
colormaps in order to evaluate them. Faces colormapped
with monotonically increasing luminance were judged to
appear most natural. Faces are very special patterns for
which the brain has a dedicated processing area (e.g., [18],
[28]), but it is not clear if judgments of naturalness in faces
generalize to the more abstract patterns within scientific

Fig. 3. A colormapped image showing current speed in the southern oceans. The important features such as eddies and jets are quite small.
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visualization. Kindlmann et al. [19] used the human facial
recognition ability to generate a method for personalized
luminance matching on uncalibrated displays. It can be
used for generating colormaps with predefined properties
w.r.t. luminance, for example, monotonicity or constancy.

Related papers by Stone, Szafir, and collaborators [51],
[52] emphasized the influence of symbol size on the discrim-
ination of colored symbols for applications in the design of
discrete symbols used in information visualization. They
adapted CIELAB to match their results to provide an
“engineering model” for use in the design of colored sym-
bols. Our modeling approach is similar.

Color-plane variation is often broken down into hue and
chroma components. Hue denotes the cycle of colors, from
red to yellow to green to blue to purple and back to red.
Chroma denotes the vividness of colors, or how much they
differ from neutral grays of the same luminance. It has often
been noted that the commonly used spectrum approxima-
tion, as a whole is not perceptually ordered, although parts
of it are [8], [58]. Color channels can also carry perceptually
ordered information in the form of chroma, as can double
ended colormaps (e.g., red-green or yellow-blue) [4], [5],
[17], [43]. It is also the case that most of the colormaps in use
contain variation in both lightness and chromaticity varia-
tion over their extent. (Note: Chromatiticity refers to any
non luminance variation in color). Few people in scientific
visualization use a simple grayscale colormap. In the pres-
ent paper, we are concerned solely with the ability of color-
maps to enable feature detection.

Finally, it is worth considering that by stretching and
compressing a colormap at different points it will always be
possible to take any colormap and make it uniform, whereas
the overall discriminative power should not dramatically
change, at least according to some metrics [11]. It is also
important to note that in many cases, colormaps are deliber-
ately made to be non-uniform in order to emphasize a par-
ticular value range in the data, for example, as in [7], [46].
Nevertheless, there are good reasons for designing uniform
sequences as most people use colormaps unmodified, lack-
ing the tools to selectively stretch and compress parts of the
sequence to suit their needs.

3 CONTRIBUTION AND HYPOTHESES

The work presented here had a number of goals:

1) Develop a method for directly measuring the feature
detection threshold functions of colormaps that can
be used for differently sized features. Our method is
designed to build a bridge between spatial percep-
tion theory and colormap evaluation.

2) Conduct a study evaluating a set of colormaps for
differently sized features.

3) Determine if a modified UCS can model the results.
4) Show how the method can be applied in a colormap

design tool.
Based on the differing spatial sensitivities of color oppo-

nent channels compared to the luminance channel [32], [36],
we can make specific predictions relating to the modifica-
tions needed for USCs to accurately model the results.
Where the task is to identify small features in colormapped
data, UCSs will fail to accurately model feature detection

thresholds. Specifically they will overweight the contribu-
tions of the green-red and blue-yellow channels. We test
this hypothesis by modeling the data using CIELAB with
modified weights on the a

?
and b

?
terms. A corollary of this

hypothesis is that colormaps with the greatest variation in
luminance will have the most overall feature discriminative
power. We also test the hypothesis that a luminance only
model (L

?
) can account for the data.

A preliminary report on the method appeared in Ware
et al. [59]. That short paper introduced the basic method
and applied it to seven colormaps. Here we provide a much
more complete account. We have extended the method,
applying it to additional colormaps designed to specifically
test in the green-red and yellow-blue directions. In addition,
this paper applies the method to multiple feature sizes to
test for size dependency effects. All of the UCS modeling
work is presented here for the first time.

4 METHOD

The basic study method was briefly introduced in Ware
et al. [59]. The following description ismore complete, describ-
ing the additional feature sizes and additional colormaps.

4.1 Test Patterns

The method is based on the test pattern illustrated in Fig. 4.
This has columns of features that reduce in contrast from
bottom to top. The point at the top of any column where the
pattern becomes invisible represents the local discrimina-
tive power. Notice how the patterns fade out at approxi-
mately the same height for the gray colormap, but at very
different heights for the rainbow colormap. Sets of these
patterns are used to estimate feature detection thresholds at
30 points along the colormap.

The basic test pattern is an artificial data image with the
following properties. The background of the image is a lin-
ear ramp, increasing from 0.1 to 0.9 from left to right. Note
that the reason this does not range from zero to one is to
avoid truncation of the target patterns. Added to the back-
ground ramp is a set of six equally spaced columns of fea-
tures. These contain oblique sinusoidal patterns as shown.
For each column, contrast increases according to a power
law from top to bottom:

a ¼ c � 2ð1þðy�sÞ=pÞ; (1)

where c is the starting amplitude, y is the distance from the
top of the image, s is the position at which the pattern starts,
and p is the amplitude doubling interval. All units are in pix-
els. For our 600� 600 test patterns, c ¼ 0:001, s ¼ 40 pixels,
and p ¼ 80 pixels. Since the pattern varied over 560 pixels,
this yielded seven doublings, or a factor of 128 from top
to bottom. A value, v, between 0 and 1 is computed at each
pixel using

v ¼ rþ 0:5agðsinð2
ffiffiffi
2

p
pðxþ yÞÞ�Þ; (2)

where r is the ramp value, x and y are pixels, � is the spatial
wavelength and g is a Gaussian distribution:

g ¼ e�½3ððx�x0ÞÞð2�Þ�2 : (3)

Here x0 represents the horizontal position of a particular
feature column.
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There were three pattern wavelengths used in this study:
10, 15, and 45 pixels. In each test pattern, for the 10 and
15 pixel data, six discrete vertical stripes of the sine pattern
were constructed as illustrated in Fig. 4 for the 15 pixel data.
Stripes were horizontally separated by 100 pixels. Sets of 5
such patterns were generated for each colormap with start-
ing offsets of 10, 20, 50, 70, and 90 pixels. Because the pat-
terns were considerably wider for the 45 pixel feature set,
we replaced each single test pattern with two, each 600 pix-
els wide, testing the lower and upper ranges of each color-
map respectively as shown in Fig. 5. In these, the vertical
feature stripes were separated by 200 pixels, and the column
offsets were adjusted appropriately. Initially, a spatial fre-
quency of 15 pixels was studied. The 45 pixel and 10 pixel
values were chosen to extend the range of spatial frequen-
cies investigated.

To render images used as stimuli, each colormap table was
expanded in software to a 1000 entry RGB look up table, using
linear interpolation. The color of each pixel in a stimulus
image was obtained by multiplying the data value at that
point by 1000 and using the result to index into the table and
obtain the corresponding RGB value. For transformations to

CIE XYZ and CIELAB it was assumed that all screens met the
sRGB standard and that the referencewhite (for CIELAB)was
defined by themaximumvalues on R,G and B respectively.

4.2 Colormaps

Nine colormaps, shown in Fig. 6, were used in the current
study with three different spatial frequencies of the test pat-
tern. These colormaps were chosen for a variety of reasons.

� The rainbow (RA), one of many spectrum-based ver-
sions, is from ParaView [1].

� The Moreland cool/warm (CW) [30] is a commonly
used example of a double-ended colormap.

� The extended cool/warm (ECW) and blue/orange
divergent (BOD) sequences by artist F. Samsel and
the Data Science at Scale Team (DSS) at LANL [47]

Fig. 4. The test pattern we use shown with a gray colormap (top) and a
rainbow colormap (bottom) for the 15 pixel feature size. Six vertical col-
umns of sinusoidal features are shown. In each column the contrast
decreases by a factor of two, every 80 pixels. Clicking on the point where a
feature column becomes invisible yields ameasure of the detection thresh-
old for features having the spatial frequency of the pattern. A set of five
images for each colormapyields 30 sample points across the colormap.

Fig. 5. An example of the two test patterns that were combined to test
the 45 pixel feature set, shown in the CW colormap. Although the size
has been reduced here to conserve space, each was shown at the same
size as the ones in Fig. 4.

Fig. 6. The nine color sequences used in the study (from top to bottom):
RA:rainbow, CW:cool/warm, ECW:extended cool/warm, BOD:blue/orange
divergent, GP:grayscale, GR:green-red, BY:yellow-blue through red/blue,
VI:Viridis, TH:thermal.
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are more recent examples of double-ended color-
maps designed to maximize feature resolution. Both
of these have a large luminance variation.

� The grayscale (GP) was constructed to have equal
steps in CIELAB L* ranging from 0-100. The values
were converted to XYZ and then to RGB assuming
the sRGB monitor standard.

� The green-red (GR) was designed to vary only on the
green-red color channel. It has equal steps in CIE-
LAB a* (the representation of the green-red channel).
It varies from �60:5 to 73.0. L* and a* are constant at
53 and 50 respectively.

� The blue-red (BY) colormap. The reason for choosing
blue-red, rather than yellow-blue, is because of the
shape of the gamut of R,G,B colors in CIELAB, with
the maximum range occurring between red and
blue. However, this colormap only varies in b*, the
CIELAB representation of the blue-yellow channel.
It has equal steps in b* from �78 to 55. L* and a* are
constant at 53 and 42 respectively. We have labeled
it BY in order to emphasize that it varies in the blue-
yellow direction defined by CIELAB.

� The Viridis (VI) [57] colormap is an example of a
widely used uniform colormap designed to cycle
through a number of hues.

� The Thermal (TH) sequence is sometimes used in
Thermal imaging. It has the unique property of tra-
versing most of the luminance range seven times,
which, according to the hypothesis in Section 3,
should give it extreme overall detection power.

The colormaps used are given as [V, R, G, B] tables in sup-
plementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2018.2855742 where V varies between 0
and 1.

Because of the very lowdiscriminative power of the yellow-
blue sequencewe doubled the starting contrast to 0.002 to keep
it within the range of the test pattern. Similarly, because of the
very high threshold discriminative power of the Thermal
imaging sequencewe halved the starting contrast to 0.0005.

4.3 Task

For each test pattern, the participant’s task was to click on
each of the six points in the columns where the vertical pat-
tern became invisible.

4.4 Participants

Participants were solicited on Mechanical Turk [2] and paid
$0.85. In total, 560 unique participants were collected across
the three different feature datasets with 55.9 percent male,
43.2 percent female, and 0.9 percent unspecified partici-
pants. Participants ranged from 18 to 73 years of age with a
mean age of 36. Since this study involved color, precautions
were taken to minimize any potential contamination due to
color vision deficiencies (CVD). A fuller discussion and vali-
dation of those precautions can be found in Section 7.1.

4.5 User Study Procedure

The experimental procedure closely followed the method
laid out in [59]. The study itself was coded using the heat
map question in Qualtrics survey software [37] and the

studies were launched on Mechanical Turk using the Turk-
Prime interface [22]. Using built-in Qualtrics functionality,
participants on mobile devices were blocked from taking
the study. Participants were asked to check that the browser
was on 100 percent zoom and to place themselves 50 cm
from the screen (with advice for how far that was for an
average male or female). Only 5.5 percent of participants
had a screen resolution of 1280 � 720 or under. The most
common screen resolutions were 1360 � 768 (38.9 percent),
1920 � 1080 (28.8 percent), and 1600 � 900 (10.4 percent).
The average screen resolution was 1580 � 920. For typical
laptop and desktop screens this yields the cycles/degree
values given in Table 1.

Each colormap was tested at 30 data points as discussed
above, with five stimuli images in the case of the 10 pixel
and 15 pixel data, and 10 stimuli images in the case of the 45
pixel data. The test patterns were shown one at at time,
with a set of five/ten testing a single colormap given
sequentially. The individual stimuli images were presented
in randomized order. Each participant saw all stimuli for
one to three randomly chosen colormaps. A participant was
allowed to take the study again for a different feature size.
The number of participants per colormap ranged from 21 to
35 participants.

Data was manually scanned to remove participants
whose click pattern indicated they either did not under-
stand the task (click once per column) or were not faithfully
completing the task (e.g., always clicked at the top/bottom
of the columns). Additionally, participant clicks were
required to be no more than twice the feature size away
from the nominal horizontal center of each column. These
validation checks removed 9 percent of the participants.

5 RESULTS

The results are summarized in Fig. 7. These plots show the
log discriminative power, averaged across participants for
each of the nine colormaps and for each of the three pat-
tern sizes. We are using a log scale for these plots and for
most of the analysis, both because the stimulus test pattern
contrast was exponentially scaled on the vertical axis, and
because it better expresses the range of variation both
within and across colormaps. Discriminative power is the
inverse of the measured threshold (the minimal amplitude
of the sine pattern that can be resolved), and this is analo-
gous to contrast sensitivity used in psychophysics. It is
also analogous to DE=Ds, where DE is the measure of dif-
ference between two colors in a uniform color space, and
Ds is the distance along a colormap normalized to a length
of 1.0. The data are somewhat arbitrarily separated into
two groups: patterns that vary monotonically in lumi-
nance, and those that do not. The other reason for this sep-
aration is having all the data on a single plot was overly
cluttered.

TABLE 1
Estimated Cycles/Degree for the Three Features Sizes

Feature Size: 10 pixel 15 pixel 45 pixel

Typical laptop 5.11 3.41 1.14
Typical desktop 3.87 2.58 0.86
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Inspection of these empirical functions tells us a great
deal about the different colormaps we tested. First, we
observe some of the characteristics of the curves’ shapes
that are common across the three feature sizes.

� The Rainbow colormap (RA) is extraordinarily non-
uniform; in its middle section it has 1/16th of the fea-
ture discriminative power that it does at either end.

� As expected, the Thermal colormap has the great-
est overall discriminative power, not surprising as
it has the greatest path length along the luminance
direction. It goes from dark to light and back again
several times.

� The Samsel divergent colormap (BOD) has the next
greatest discriminative power, except in the middle
sections where it worse than the gray scale. Diver-
gent ECW also has high discriminative power except
in the middle and at the high end.

� The Viridis (VI) colormap is the most uniform of all
those tested.

� The green-red (GR) and blue-red (BY) colormaps
have very low discriminative power. The BY curve
shows reduced discriminative power at the red end
for smaller features.

� The gray colormap (GP) is somewhat less uniform
compared to Viridis, but it also has greater discrimi-
native power over most of its length.

� The Moreland cool-warm (CW) colormap is not uni-
form for features of this size, even though it was
designed to be uniform. The curve is somewhat flat-
ter for the large (45 pixel) feature sizes.

One feature of note in the 45 pixel data is the notch that
appears in both the gray and viridis colormaps at the center.
We believe that this is an unfortunate artifact arising
because the colormaps were divided into two parts for the
45 pixel feature size test.

Contrast sensitivity is the reciprocal of the contrast
threshold. It is a measure of the discriminative power of a
color map and can be equated to DE values in uniform color
space. To allow us to compare the colormaps, average dis-
criminative power was computed on a subject-by-subject
basis for the nine colormaps at the three frequencies tested.
This is analogous to the overall trajectory length of a colormap
in a uniform color space. One caveat is that our method only
evaluates the middle 80 percent of a colormap. These aver-
aged results are shown in Fig. 8. As predicted, the thermal col-
ormap has by far the greatest average discriminative power,
followed by the two Samsel divergent colormaps (ECW and
BOD). The green-red and yellow-blue colormaps have very
low average discriminative power, also as predicted.

To statistically compare the different colormaps in terms
of their average discriminative power, we ran a 2-way
ANOVA (feature size, colormap) on the contrast sensitivity

Fig. 7. The disciminative power functions for the (left to right) 10, 15, and 45 pixel data patterns.

Fig. 8. The mean discriminative power for the nine colormaps tested at
the three spatial frequencies. Error bars correspond to 95 percent CIs.
The solid bars indicate where the Tukey HSD found no significant differ-
ences between those mean discriminative power for each of the three
feature size. The arcs indicate where colormaps were not significantly
different for specific feature sizes.
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results. Both main effects and the interaction were highly
significant. For feature size (F(2,703) = 35.6, p < 0:001); for
colormap (F(8,703) = 1155, p < 0:001); for the interaction F
(16,703) = 8.59, p < 0:001). We also ran Tukey HSD tests for
the differences between colormaps separately for each of the
three feature sizes. The results of the HSD tests are indicated
by grouping lines shown above the bars in Fig. 8. A solid bar
indicates that the colormaps are not different for all three of
the features sizes. The arcs show where colormaps failed to
differ for a specific feature size. Overall there are four group-
ings. The BY and GR colormaps have lower average discrim-
inative power than any of the others. The thermal colormap
has the greatest average discriminative power, followed by
the two extended double ended colormaps (BOD and ECW).
The rest of the colormaps (CW, VI, GP, RA) are indistin-
guishable at some sizes but not at others.

From Fig. 2 we can expect that discriminative power for
the chromatically varying colormaps will increase with fea-
ture size much more rapidly than for the luminance varying
colormap. To better understand the effects of feature size on
the contrast thresholds a subset of the colormaps are replot-
ted in Fig. 9. This shows data obtained with the rainbow
(RA), gray (GP), blue-red (BY) and green-red (GR) color-
maps with curves for the different sizes on each plot. The
Rainbow colormap exhibits a large effect of feature size in
the section to the left of center. This section represents the
cyan to green range, where there is very little luminance
variation, but large chromatic variation. The two areas at
the ends of the measured section of the rainbow colormap
have considerable luminance variation and the contrast sen-
sitivity varies much less as a function of feature size. The
blue-red (BY) and green-red (GR) colormaps also shows
greater discriminative power for the 45 pixel feature sizes in
comparison with the 10 and 15 pixel feature sizes, whereas
there is very little variation in the gray scale (GP) in the sen-
sitivity with respect to size.

To statistically test the hypothesis that the relative dis-
criminative power of the non-luminance components of col-
ormaps increase with feature size, we ran a two way
ANOVA (colormap, feature size) on the results from the
gray, green-red and blue-red color maps (GP,GR,BY). Both

main effects and the interaction were highly significant. For
colormap (F(2,183) = 1213, p < 0.001); for feature size (F
(2,183) = 23.95, p < 0.001); for the interaction (F4,183) =
31.75, p < 0.001). Fig. 10 illustrates the interaction, showing
the ratio of the average contrast sensitivities for the GR and
BY colormaps with the gray (GP) colormap for each of the
sizes. The results show that participants became increas-
ingly sensitive to chromaticity differences (relative to lumi-
nance differences) as feature sizes increased.

6 MODELING THE RESULTS WITH CIELAB

As a step towards an engineering model of the kind devel-
oped and expanded upon in [51] and [52] for discrete colors
we were interested in determining the extent to which a
modified version of a UCS could account for our results. We
began by investigating modified and unmodified versions
of both CIELAB’s CIEDE1976 and CIEDE2000. However,
since CIELAB’s euclidean metric (CIEDE1976) produced
the best results in preliminary work and is considerably
simpler, we conducted most of the analysis with standard
CIELAB. The CIEDE2000 results were very similar but pro-
vided slightly lower correlation with the experimental data.
We only present CIEDE1976 results here.

To fit the results, a set of intervals spanning each of the 30
test points was defined on the test colormaps. The colormap
R,G,B values were converted to CIE X,Y,Z and then to
(modified) CIELAB values assuming the sRGB standard.
The CIELAB reference white, Ln was defined by R ¼
G ¼ B ¼ 1. Color difference values log(DE) were computed
for these intervals for all nine sequences yielding a total of
270 values. These correspond to the 270 average log contrast
sensitivity measurements obtained for each of the 10, 15,
and 45 pixel patterns. To determine if changing weights on
the CIELAB a

?
and b

?
terms more accurately account for the

data, we computed the entire set of log(DE) values for a
matrix of weights on a

?
and b

?
values declining in steps of

0.05 using Equation (4). We also tested the fit using weights
of 0.125, 0.075, and 0.025. The quality of the model fit was
evaluated by calculating the r2 correlations between the 270
measured data points (30 points on 9 colormaps) and the
corresponding intervals in the modified CIELAB model.

DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDL? Þ2 þ ðwaDa

? Þ2 þ ðwbDb
? Þ2

q
: (4)

Fig. 9. The detection threshold curves for the rainbow, grayscale, the yel-
low-blue and green-red colormaps. Note how the thresholds drop as a
function of feature size for the green-red and yellow-blue colormaps and
for parts of the rainbow.

Fig. 10. Relative resolving power across all three feature sizes. The ratio
of the average contrast sensitivities (with respect to the gray) is plotted
for the BYand GR colormaps.
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The regression equation compared the average results
obtained (recall that these are already on a log scale) with
the log of the DE=Ds ratio for all 270 points.

log10ðcÞ ¼ alog10ðDE=DsÞ þ b: (5)

In Table 2,we show the r2 values obtainedwith unmodified
CIELAB (wa;wb ¼ 1) and for CIELAB L

?
only (wa;wb ¼ 0) as

well as the best fits and their correspondingweights.
The regression parameters can be used together with the

a
?
, b

?
weights to construct regression model-based curves

corresponding to the measured contrast sensitivity curves.
The result for the 15 and 45 pixel data is shown in Fig. 11. As
can be seen, except for a few excursions, the fits are excellent
when reduced weights on a

?
and b

?
are used. The results for

the 10 pixel data are very similar to the 15 pixel results.
It is probably never the case that scientific data is made

up of a single spatial frequency and for this reason, we also
did regression fits using modified a

?
, b

?
weights to the com-

bined data set including all three spatial frequencies. The
result was an r2 value of 0.94, with a best fit occurring with
a

?
, b

?
weights = 0.1. The fit is given by the equation:

log10ðcÞ ¼ 0:879log10ðDE=DsÞ þ 0:531; (6)

where c is the measured contrast sensitivity, DE is the modi-
fied CIELAB value, and Ds is the interval. This can be rear-
ranged to become

c ¼ 3:4ðDE=DsÞ0:879: (7)

To test whether the best CIELAB fits obtained with
weighted a

?
and b

?
were better than the fits obtained with

wa; wb ¼ 1we used an F test using the ratio of the regression

residuals (1� r2) [20] for each of the values in Table 2. The
degrees of freedom are the number of data points minus the
model degrees of freedom (270-2) for both the numerator
and the denominator. The results from applying this test for
all sizes and for the combined data, summarized in Table 3,
show that the weighted model fits were significantly better
than the results obtained with standard weights wa; wb ¼ 1
with p < 0:001. In addition the weighted model fits were
significantly better compared to L

?
-only, at the p < 0:001

level, for all sizes and for the combined data.
We can also compare the path lengths of colormaps against

the measured discriminative power shown in Fig. 8. Fig. 12
shows a comparison of the path length in both unmodified
CIELAB and weighted CIELAB (wa,wb = 0.1) for only the
measured section of the colormaps (between 0.1 and 0.9). As
can be seen, the correlation is less than 0.8 for unmodified
CIELAB and greater than 0.99 formodified CIELAB.

7 DISCUSSION

Our original hypothesis was that using a uniform color space
to predict the feature detection functions of colormaps will
be inaccurate because these models give too much weight to
chromatic channel information when smaller features are
considered. Our new feature resolution method applied in a
Mechanical Turk study yielded 270 average feature detection
measurements for three different spatial frequencies. As
hypothesized, unmodified CIELAB provided a poor model
for the results. A much better model was obtained by greatly
reducing the weights on the model terms corresponding to
the green-red and yellow-blue color channels. We also tested
against the hypothesis that L

?
by itself could account for the

data equally well and found that it could not, although this
did better than unmodified CIELAB.

Overall, our results are in rough agreement from what
would be expected from Fig. 2. At 3 cycles/deg. Mullen’s
results [32] show a ratio of approximately 5:1 between the
contrast sensitivity of the color channels and the luminance
channel. We found the contribution of the color channels to
be even smaller than this. In addition, Fig. 2 shows the dif-
ference between color channel sensitivity and luminance
sensitivity declining as spatial frequency decreases, some-
thing we also found. It will be interesting in future work to
determine whether this trend continues for still larger pat-
terns. However, a methodology other than the one we use
here will be required.

The stimulus patterns we have developed provide an
easy-to-use method for directly measuring the feature
detection functions of colormaps [59]. But given the excel-
lent results obtained with the modified CIELAB model,
the model expressed in Equation (7) can be used as an

TABLE 2
The r2 Values for Regressions of Unweighted CIELAB (Second Column), Luminance Only (Third Column) and Weighted
CIELAB (Fourth Column) against the Observed Resolving Power Results Along with the Best Fit Weights and Coefficients

Feature Size Fit r2: wa,wb = 1 Fit r2 wa,wb = 0 Best fit r2 Weight a Weight b Coeff a Coeff b

10 pixels 0.386 0.819 0.961 0.075 0.075 0.867 0.517
15 pixels 0.438 0.861 0.975 0.075 0.075 0.874 0.572
45 pixels 0.521 0.831 0.970 0.125 0.125 0.799 0.730
Overall 0.429 0.815 0.940 0.100 0.100 0.879 0.531

Fig. 11. The model fit to all nine colormaps for the (top) 45 pixel data and
(bottom) 15 pixel data.
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alternative. Fig. 13 shows a color sequence design tool we
have constructed for this purpose. The left hand panel
shows a slice through CIELAB space at a particular lumi-
nance value. While the best model fits were obtained by
using different weights for the different pattern sizes, good
correlations can be obtained using a single pair of weights.
Choosing 10 percent weights on the a

?
and b

?
terms, for

instance, would be a reasonable option for smaller feature
sizes (>1cycle=deg). If somewhat larger features are of inter-
est then weights of 15 or 20 percent may also be used.

The simple model expressed in Equation (7) should be
only regarded as the first step towards a more complete
engineering model. It has a number of shortcomings. First,
while covering a broad range of color space, the set of color-
maps on which it was based do not provide a systematic or
uniform sampling of color space, and may not cover all
regions of color space most likely to be used in creating col-
ormaps. Second, it is not based on a systematic or uniform
sampling of spatial frequency. Third, a more general model
should include data on low spatial frequency patterns. Nev-
ertheless, because the r2 values varied smoothly and gradu-
ally over wide range of weights (which is why we were able
to produce a respectable fit to all of the data with a single
pair of weights) we believe that the model proposed here
has value as a rough approximation until a more complete
model becomes available.

The results reinforce the importance of luminance varia-
tion in the representation of features in data as already noted
by prior researchers [42], [58]. Because of theminor contribu-
tion of color differences to feature detection a simple rule of
thumb: “use lightness variation for pattern perception” still
holds. Also, they explain why the Samsel BOD and ECW col-
ormaps provide great discriminative power; it is because
they substantially increase the pathlength, especially with
respect to luminance, over colormaps which vary monotoni-
cally in luminance such as Viridis. The thermal imaging col-
ormap provides an extreme example of this. It has more than
four times the discriminative power of Viridis.

The results presented here only apply to features >1
cycle/degree of visual angle. We do not know the extent to

which important features in scientific data fall in this size
range, but it may well be the majority because far more
information can be conveyed with high spatial frequency
channels than low spatial frequency channels. The amount
of information carried on a channel varies with the fre-
quency [48]. For two dimensional patterns this becomes the
square of the frequency. Based on the human spatial modu-
lation sensitivity function provided in Watson [60], hun-
dreds of times more perceivable information can be carried
at spatial frequencies above 1 cycle/degree than can be car-
ried at lower spatial frequencies.

Resolution of constituent features provides a necessary
condition for pattern perception, but it is far from being the
entire story. The perception of features that are well above
detection threshold almost certainly depends on a number
of additional perceptual mechanisms relating to contour
perception and shape perception. But these too are likely to
depend mostly on luminance variations. Certainly this is
true for faces in the work of [14], [19], [42].

We wish to be clear that we are not advocating the use of
double ended colormaps for most cases. In general it is bet-
ter to reserve the use of double ended colormaps for cases
where values vary above and below some baseline, as is
commonly done in the case of temperature anomalies. Nev-
ertheless, it is the case that the extended double-ended col-
ormaps do offer greater ability to resolve features, and
where this is a critical requirement they can be valuable for
this purpose.

There is also the issue of consistency in luminance varia-
tion. There is a cost to changing the direction of luminance
variation within a colormap as Fig. 14 illustrates. The ring
patterns in that image are consistently visible for Viridis
and green-red. With the ECW colormap, they are light on
the left, but dark on the right and this is confusing. The ther-
mal imaging colormap has multiple zigzags with respect to
luminance and this makes it extremely confusing (see also

TABLE 3
F Tests Comparing Best Fits (From Table 2) with Fit Using Unmodified CIELAB (wa,wb = 1) and with L* Only (wa,wb = 0)

Feature Size Test against unmodified CIELAB: wa,wb = 1 Test against Luminance only: wa,wb = 0

10 pixel F(268, 268) = 15.74, p < 0.001 F(268, 268) = 4.67, p < 0.001
15 pixel F(268, 268) = 22.48, p < 0.001 F(268, 268) = 5.56, p < 0.001
45 pixel F(268, 268) = 15.97, p < 0.001 F(268, 268) = 5.63, p < 0.001
Overall F(268, 268) = 9.51, p < 0.001 F(268, 268) = 3.08, p < 0.001

Fig. 12. A comparison of the average discriminative power as a function
of the colormap path length in (left) CIELAB and (right) the weighted
CIELAB. Note the improved fit using the weighted model.

Fig. 13. A color sequence design tool. The left hand panel shows a slice
through CIELAB at the luminance level of the selected point. The plot on
the right shows the feature detection function based on the modified
CIELAB model. A simple double ended, uniform rainbow colormap has
been constructed.
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Fig. 1). The only case where we can imagine that it may be
useful is where extreme feature resolution is critical. This is
presumably why it is sometimes used.

The results also confirm prior work that has shown
chroma scales to have fewer resolvable steps compared to
luminance scales [4], [5], although they are perceptually
ordered. If a chroma scale is chosen, it will likely benefit
from some small amount of monotonic luminance variation
in addition to the progressive increase in chroma.

Our results are qualitatively similar to those of [43] and
[17] even though our method is very different. They simi-
larly found a very sharp peak in contrast threshold (the
inverse of contrast sensitivity) in the center of the rainbow
colormap. They noted although chroma scales appear to be
good candidates for creating colormaps for encoding data
magnitude they had lower contrast sensitivities compared
to gray scales.

7.1 Discussion on Crowdsourcing

Crowdsourcing user evaluation has become increasingly
common over the past decade, including within the visuali-
zation community. While there are obviously trade-offs
between the ecological validity available with a wide demo-
graphic cross-section versus the level of experimental con-
trol, the community is rapidly lining up on the side of easy
participant recruitment and quick turn-around time.

Mturk does have the potential for contamination due to
color vision deficiencies. Approaches to minimize CVD con-
tamination range from simply asking people to self-select
for a given study, (e.g., Szafir’s recent Best Paper at InfoVis
2017 [52]) to including a CVD test such as Ishihara plates
(e.g., Liu and Heer [23]) although as the authors acknowl-
edge, online presentation of Ishihara plates has potential
pitfalls (due to, e.g., unknown monitor calibration or allow-
ing participants infinite time to respond).

Research on crowdsourced participant pools [13], [45]
has shown that while participants are very consistent in
their demographic responses across many studies (e.g., 98.9
percent gender consistency), they are indeed more likely to
lie when a lucrative reward is offered but restricted to a cer-
tain demographic. Our approach to minimize potential

contamination due to CVD [56] exploits these tendencies by
periodically launching a study to sweep self-identified
participants with CVD into an exclusion pool. The study
specifically requests participants with CVD and presents
participants with a valid test for CVD. Anyone taking the
study, either colorblind or potentially lying to garner the
fee, are put into the exclusion group. The result is an Mturk
participant pool with, not the expected �4.5 percent occur-
rence of CVD in the general population, but something
much less, albeit unspecified. Additionally, during an actual
study, participants are asked for their CVD status and
removed if they have CVD.

We can again validate this approach by comparing the
male/female response within a subset of this current study.
The three colormaps of particular interest for CVD are the
grayscale (GP), the green-red (GR) and the blue-red (YB).
The data for these three colormaps was gathered via a
within-subject study. Given the very low occurrence of
CVD in women, we used the TurkPrime [22] gender consis-
tency score to separate the participants into male and female,
requiring a gender consistency score of 100 percent. Note
that not all participants have a calculated gender consis-
tency score as it is not assigned for participants with fewer
than 100 studies launched on TurkPrime. Given the results
of Fig. 9, we combined the 10 pixel and 15 pixel data to
increase statistics and simply summed the raw vertical pixel
response for all 30 data points for each participant. An inde-
pendent two-sample t-test was conducted to compare raw
pixel response for male (N = 13) and female (N = 21). We
found no significant difference for any of the three color-
maps as summarized in Table 4.

Fig. 14. In this figure, artificial data has a background ramp increasing from the left. Superimposed on the ramp are ripple patterns. Top: grayscale
(left), green/red (right); bottom: extended cool/warm (left), thermal (right).

TABLE 4
Summary of Independent T-Test for Male and Female Response

Across the Three Colormaps of Interest for CVD

Colormap: Grayscale (GP) Green-Red (GR) Blue-Red (BY)

Mean (M) 6717 10900 11281
Std Dev (M) 1737 10768 11491
Mean (F) 6308 1875 1908
Std Dev (F) 1078 1118 1263
p (two-tail) 0.46 0.82 0.73
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Anecdotally, over years of crowdsourcing color studies,
we have found that CVD participants often appear as out-
liers in the data. Hence, a common-sense approach of asking
people to self-identify in combination with effective data-
scrubbing is probably sufficient to mitigate the risk of
CVD contamination for typical crowdsourced experiments
involving color.

Likewise, since this study was carried out using Mechan-
ical Turk, certain caveats apply relating to the use of that
platform. The laptop or desktop screens viewed by study
participants were almost certainly not calibrated and the
resolutions were unknown. Because of this we can only give
an estimate of the actual spatial frequencies of the test pat-
terns. Yet, despite these limitations, we were able to obtain
remarkably clean data. The great advantage of a Mechanical
Turk study in applied research such as this is the ecological
validity. Compare our study with hundreds of participants
with the psychophysical studies on which spatial color the-
ory is based; the latter had only only one or two partici-
pants [32], [36]. The goal is to produce colormaps that are
effective under a range of viewing conditions and across
many scientists. For this reason, the variety of both monitors
and study participants is a major asset.

8 CONCLUSION

The method we have developed provides a simple and
quick way of evaluating the uniformity of colormaps. It
produces remarkably consistent results, even with a study
environment that lacks the normal laboratory controls for
user studies.

The work with CIELAB modifications provides a link
between spatial vision, color theory and practical problems
of colormap design. The results and theory both suggest
that colormap uniformity is not a simple concept, since the
relative weights of chromatic variation and luminance vari-
ation change as a function of the spatial frequency of fea-
tures. Nevertheless, a simple modification to CIELAB can
produce a far better model for the detection of patterns in
colormapped data where those patterns are composed of
features with spatial frequencies of one cycle per degree
and higher.
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