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Abstract—This paper presents an approach for the interactive visualization, exploration and interpretation of large multivariate time

series. Interesting patterns in such datasets usually appear as periodic or recurrent behavior often caused by the interaction between

variables. To identify such patterns, we summarize the data as conceptual states, modeling temporal dynamics as transitions between

the states. This representation can visualize large datasets with potentially billions of examples. We extend the representation to

multiple spatial granularities allowing the user to find patterns on multiple scales. The result is an interactive web-based tool called

StreamStory. StreamStory couples the abstraction with several tools that map the abstractions back to domain-specific concepts using

techniques from statistics and machine learning. It is aimed at users who are not experts in data analytics, minimizing the number of

parameters to configure out-of-the-box. We use three real-world datasets to demonstrate how StreamStory can be used to perform

three main visual analytics tasks: identify the main states of a complex system and map them back to data-specific concepts, find

high-level and long-term periodic behavior and traverse the scales to identify which scales exhibit interesting phenomena. We find

and interpret several known, as well as previously unknown patterns in these datasets.

Index Terms—Time series analysis, visualization systems and software, data and knowledge visualization, markov processes,

multivariate visualization, data mining

Ç

1 INTRODUCTION

IN this paper, we examine the problem of visualization for
the analysis and exploration of largemultivariate time series.

Common solutions to visualizing time series such as com-
mon axis/plot or parallel views are unsatisfactory. They fail
to highlight the interactions between variables and become
difficult to interpret even for data ofmediumdimensionality.
When dealing with large, complex datasets, users must
zoom into interesting intervals, isolate informative variables
and remove clutter manually. Each step causes a context
switch, stealing their focus and hindering productivity.

One general pattern which we are often interested in for
time-varying systems are cyclical phenomena. Examples
include natural patterns such as seasons of the year and the
daily cycle in traffic, electrical usage, etc. It need not be peri-
odic, but may occur irregularly, such as increased traffic for
holidays or specific weather events (e.g., especially high
temperatures). As these patterns are most often not known
a priori, identifying them gives us important insights into
the underlying system and is the driving motivation behind
our approach.

To help highlight these patterns, we represent data as
states and transitions. We define states as abstractions

which summarize all of the measurements in a particular
region of the visualized space (i.e., ambient space). Transi-
tions (with the associated states) summarize the path made
by the time series through the ambient space. This hides the
local variation present in any complex system reducing clut-
ter and allowing the visualization to summarize large data-
sets while helping the user identify conceptual modes. For
example, we describe weather in terms of states like
“summer”, “fall”, “winter” and “spring” which are charac-
terized by temperature, humidity and other attributes. In
this kind of representation, cyclic patterns appear naturally
as repeating sequences of states (i.e., literally cycles).

The spatial granularity (i.e., scale) of the states can high-
light certain patterns while hiding others. Hence, our
approach is multiscale, allowing new patterns to emerge
fromwithin coarser scale states or as the interaction of differ-
ent parts of several states. Following our previous example,
states representing yearly seasons can be refined to represent
finer grain characteristics. For instance, a “summer” state
could be split into a sunny and rainy state both representing
hot weather. The analyst could then identify seasonal pat-
terns, patterns which range across many seasons as well as
compare patterns from different seasons.

Our approach is realized as an interactive web-based
visualization tool called StreamStory (see interface in
Fig. 1). StreamStory is designed to help analyze and inter-
pret aligned measurements coming from complex time
varying systems. The system helps the user search for recur-
rent patterns by representing the data as a diagram of states
and transitions, where recurrent patterns visually stand out.
To construct its representation, StreamStory uses and
adapts several machine learning techniques. To represent
multiple spatial granularities, we merge finer-scale states
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into increasingly coarse representations creating a hierarchi-
cal partition of the ambient space. StreamStory enables the
user to interactively navigate this multiscale structure with
multiple visual cues establishing cross-scale relationships.
The tool supports several tasks:

1) based on the data, identify the main states of the
observed system and map these states to data-
specific concepts,

2) find high-level and long-term periodic and recurrent
behaviour in the dataset and

3) explore the dataset at multiple scales to identify at
which scales interesting phenomena occur.

To address these tasks, we present a methodology which
is based on the following pipeline: (1) the temporal informa-
tion is disregarded and data represented as a point cloud,
(2) regions of the ambient space are associated with concep-
tual states, (3) the temporal component is reintroduced and
the dynamics are modeled as transitions between the states
and (4) states and transitions are aggregated to obtain a
multiscale representation.

Based on this methodology, we construct an interface
which visualizes the representation at a single scale as a
graph (see the central panel of Fig. 1) augmented by multi-
ple connected views which map the visual elements back to
the data and help interpret the individual states and pat-
terns. For example, in Fig. 1, the bottom panel visualizes a
historical overview of the data over the entire multiscale
structure and the information on one of the states can be
seen in the right panel. Our main research contributions are:

1) A novel methodology for multivariate time series
visualization, multiscale exploration and interpreta-
tion. The methodology is based on hierarchical Mar-
kov chains and captures long term behavior of the
data through a simplified model of the dynamics as
a graph structure.

2) A novel visualization approach which allows the
user to explore the structure of the dataset. Based on
the methodology, the approach uses visual cues, sev-
eral connected views and auxiliary tools to help the
user to identify patterns and map the abstract repre-
sentation back to meaningful domain concepts.

3) A fully interactive, web-based visualization tool,
StreamStory, which integrates our methodology and
is publicly available at http://streamstory.ijs.si. The
tool remains useable and interactive even for large
datasets as the high level of abstraction prevents
clutter and the use of Markov chains as the underly-
ing model makes it computationally efficient (and so
highly scalable).

StreamStory is designed for individuals who may not
have expertise in data analysis or may be dealing with data
they are unfamiliar with. Its abstractions are designed to
help such users identify and investigate recurrent behavior
in temporal data as recurrence is recognizable as a cycle in
the diagram. The system also provides automatically gener-
ated suggestions of possible interpretations. Examples of
the types of behavior captured include periodic yearly
weather patterns as well as intermittent or irregular recur-
rences. For instance, in Fig. 1 there is a cycle present

Fig. 1. On the move: A multi-scale summary of GPS coordinates collected over the course of three and a half years using a smartphone. StreamStory
qualitatively summarizes the dataset using states and transitions. It shows a centralized structure with a large state in the middle, representing the
researcher’s home location (Slovenia), and many smaller satellite states representing trips to several locations in Europe (e.g., Germany, Portugal,
Sweden, and Slovenia) as well as the US, China, and India. The selected state (with a blue border) is NYC (New York City, see right panel - Latitude:
40:89�, Longitude:�73:92�). The bottom panel shows a timeline where NYC is highlighted. It shows several distinct short trips to NYC and one longer
stay shown in the middle (June-Oct. 2014), corresponding to a summer internship.
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between the states labeled NYC (New York City) and CA
(California), representing an individual’s travel between the
two locations in the United States.

2 PREVIOUS WORK

Beyond simple graphs, many of the techniques for visualiz-
ing time series are domain specific and can only be used for
special purposes. For an overview, we refer the reader to
[1], [2]. In a more generic approach, Shneiderman et al. [3]
visualize multiple time series implemented in a tool called
TimeSearcher. TimeSearcher visualizes multiple time series in
a list, visualizing their distribution by rendering them on
the same plot in a separate view. It offers an interactive
mechanism called TimeBoxes to highlight and filter the time
series of interest. To support multivariate time series Time-
Searcher uses a tabbed view. While comprehensive, this
tabbed view can overwhelm non-expert users and make it
difficult to identify recurrences (particularly in noisy data).

The patterns of interest often lie in the interaction
between the variables—relationships lost when visualizing
each variable in a separate view. In their work, Havre et al.
[4] visualize thematic variations in a text document collec-
tion over time. The approach uses a linear time axis and enc-
odes the values of the attributes as a dynamic stacked
graph. Later, Byron and Wattenberg extend the approach
using a different color coding and a novel layout algorithm.
A drawback of these techniques is that they can only visual-
ize variates with a positive domain and it can be difficult to
identify recurrent behaviour.

In a different approach, Peng et al. [5] discretize and
color code the range of each attribute and visualize the high
dimensional time series in a time series matrix together with
the median and variation. While the transitions are clearly
shown, it is difficult to understand the global structure of
the data from the visualization.

Wang et al. [6] visualize discrete event data across multi-
ple records using a linear timeline in a tool called LifeLines.
LifeLines support rank, align and filter functionality to zoom
in on records of interest and offer a temporal summary as
bar charts showing the number of occurrences of a particu-
lar event. Burch et al. [7] propose Timeline Trees to visualize
discrete transactions of hierarchically organized elements
on a discrete timeline coupled with thumbnail views which
allow users to detect dependencies between elements.
While the approaches described thus far are effective at
visualizing trends, when drilling down into the structure or
comparing attributes/time series, they fail to highlight
recurrent patterns in the data. Furthermore, they often suf-
fer from clutter when used for high dimensional datasets or
larger datasets (in terms of number of samples).

In a different approach, Haroz et al. present connected
scatterplots [8] which visualize two attributes in a scatterplot
indicating the temporal direction using arrows. In a more
generic approach Bach et al. present TimeCurves [9] which
warp the time axis so that similar points appear close to
each other. By disregarding all but similarity information
TimeCurves visualizes only temporal dynamics between the
(potentially many) individual points. In relatively small
datasets, this ensures that all the structure is shown. In
larger datasets, clutter makes it difficult to interpret the
main states of the visualized system. By staying at the

sample level and not using any form of aggregation, both
connected scatterplots and TimeCurves become cluttered when
used with datasets containing even a few thousand exam-
ples. In contrast, by aggregating examples into states
StreamStory can visualize large datasets with potentially
billions of examples, highlighting long term behavior
through visual elements using the properties of the Markov
chain and suggesting possible interpretations.

Recent years have seen the development of static graph-
based techniques to visualize temporal data. J€anicke and
Scheuermann use �-machines to visualize a dynamic field in
a static manner [10]. Similar to our approach, the field is
modeled using states and transitions and visualized as a
directed graph. In a similar approach, Gu and Wang [11]
visualize temporal volumetric data using a graph-based
visualization called TransGraph. Both approaches use coor-
dinated views—one to visualize the graph and the other to
show the original data in the ambient space. Visualizing the
ambient space is not possible for higher-dimensional data
and therefore we omit this view. Instead we employ MDS to
layout the states to reflect their relative relationship in the
ambient space and highlight different regions using color
coding and automatic state labels. The main difference,
however, comes at the conceptual level. While our approach
defines states as compact, time-independent regions of
the ambient space and uses transitions to model the trajec-
tory of the data as it traverses the states, TransGraph and
�-machines define states as spatio-temporal regions, essen-
tially modeling and visualizing change in the configuration
of data at fixed locations.

By modeling the trajectory of the data through regions of
the ambient space, Pylv€anen et al. [12] describe an approach
similar to our own. Applying k-means [13], they model the
operational states of a multivariate time series as Voronoi
cells in the ambient space, modeling temporal dynamics
by counting transitions between the states. However, visual-
izing states only as a planar collection of points with no fur-
ther information makes it difficult to interpret. Furthermore,
using their technique, the scale must be fixed beforehand as
the properties of k-meansmake it infeasible to reconstruct the
visualization with a different number of states. StreamStory
alleviates this issue by employing hierarchical Markov chains
and using color coding to indicate hierarchical relationships
allowing the user to interactively find appropriate scales to
interpret the data.

There are several approaches for using Markov chains to
model time series. In the univariate case, [14], [15], [16] this
involves discretizing the range of the data before modeling
transitions. For multivariate data Ching et al. [17], [18], [19]
discretize the range of each attribute and model the dynam-
ics using several linked Markov chains called a multidimen-
sional Markov chain. Essentially, the approach models the
trajectory of the data through a multidimensional grid. This
can be prohibitive in high dimensional measurement space.
Our approach partitions the ambient space into Voronoi
cells and models the trajectory through the partitions. This
captures additional structure, greatly reduces the number
of parameters and simplifies the representation.

We visualize the states of the Markov chain by building
upon ideas proposed in cluster visualization. We reuse sev-
eral ideas such as projecting a representative of each cluster
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onto a lower-dimensional space [20], [21], usingmultidimen-
sional projection to approximate the structure of the clusters
relative to each other, using visual attributes to describe the
shape of a state [22] and using auxiliary widgets to help in
the interpretation of the states [23], [24]. In addition, we gen-
erate qualitative descriptions of states in the form of auto-
matic state labels and narrative descriptions shown in
tooltips. Both help users quickly identify regions of interest
as well as interpret the graph-based representation.

We create a multiscale representation to allow users to
interactively select informative scales. The literature sug-
gests other multiscale approaches. Woodring et al. [25] visu-
alize temporal volumetric data in a multiscale manner by
modeling each point in the volume as a time series, trans-
forming it with wavelets and clustering by coefficients (i.e.,
frequency bands). The clusters are visualized in spreadsheet
format with a separate view for details. The spreedsheet for-
mat can be overwhelming and is not appropriate for users
who do not specialize in data analysis. Luboschik et al. [26]
use the heterogeneity of subsequent scales as an indicator
for noteworthy information and highlight where a drill-
down to finer scales may be valuable. While we use a differ-
ent indicator to determine interesting scales, this type of
function can be incorporated into the system.

Finally, Auber et al. [27] visualize small world networks
by hierarchically decomposing it into highly connected
components and visualizing it in a two panel interface with
an overview and details panel. The approach identifies and
visualizes components of the graph, but it does not convey
temporal information. Stolte et al. [28] describe a generic
framework for visualizing multiscale datasets which repla-
ces the linear zoom with a graph-based zoom path. In their
framework, each node represents a specific visual and data
abstraction. An analyst can independently zoom on either
axis or independently change the level of detail in the data
or visual abstractions. We use a linear zoom, as this pro-
vides the simplest interpretation for non-expert users.

3 METHODOLOGY

3.1 Overview

The proposed methodology enables interactive multiscale
visualization, exploration and interpretation of large multi-
variate time series. Our goal is to identify recurrent behav-
iour in time series. This type of behaviour is characterized
as paths in the ambient spacewhich return to the same region
several times. These regions represent the typical states of
the time series. For instance, when describing traffic such
states may include a “day” state and a “night” state. These
high-level states can be decomposed onto finer-scale states
like “morning”, “afternoon”, “evening” and “night” with

the associated transitions following the daily cycle. Such
characterizations provide a qualitative summary making it
easier to describe the long-term behavior of the data.

Following this intuition, we propose a methodology
which abstracts data into conceptual states and transitions.
The methodology uses clustering to construct the states and
represents temporal dynamics as transitions between the
states using a Markov chain. The discretization of the sys-
tem into states has several advantages over directly visual-
izing the data. First, long term patterns are represented as
easily recognizable structures while preventing information
overload/clutter making the tool useful for large datasets.
Second, since the states and transitions are discrete, it can
be simpler to interpret and map the abstract states back to
the original measurements. This remains a difficult step and
in Section 4 we discuss tools which automatically suggest
possible interpretations of the representation. The main dis-
advantage of a discrete representation is that we lose some
finer grain information about the data. Therefore, we pro-
vide tools which allow the user to investigate the individual
states and transitions (Section 4). Further, in any discretiza-
tion, the choice of scale affects which behaviours are emp-
hasized, so we construct a hierarchy of representations
allowing the user to find patterns at multiple scales.

The methodology is comprised of several steps (Fig. 2):
(1) constructing a point cloud to represent the multivariate
time series, (2) constructing the states by partitioning the
ambient space, (3) modeling the transitions between the states
and (4) aggregating the states and transitions into a hierar-
chy. We describe these steps in the following sections and
conclude the section by presenting two techniques which
help highlight recurrent behavior.

3.2 Constructing the Point Cloud

The first step of the methodology considers the data as a
point cloud in multi-dimensional space by disregarding the
temporal component (Fig. 2a). Point clouds are commonly
used in machine learning, with each measurement (e.g.,
data associated to one timestamp) represented by a feature
vector. This allows us to use a wide array of machine learn-
ing algorithms in the following steps of the methodology.
We allow the user to select specific attributes which are not
used in later steps of the methodology but can still be
viewed in the final visualization. Superimposing attributes
which are not used in building the representation is useful
for studying correlations between the attributes.

3.3 Constructing the States

We next discretize the ambient space into non-overlapping
regions which we associate with conceptual states (Fig. 2b).

Fig. 2. Overview of the methodology. (a) The multivariate time series is first represented as a point cloud. As an example, we show two noisy approx-
imately periodic signals mapped to points in 2D. (b) The states are constructed by partitioning the ambient space using a clustering algorithm.
(c) Transitions are modeled by translating the partition into a Markov chain, with each state representing a partition cell. (d) Finally, the Markov chain
model is simplified by iteratively aggregating states into a hierarchy, giving a multiscale view of the model.
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Each state represents a typical configuration of the temporal
signal and summarizes the structure around it. The vectors
are partitioned based on a metric using a clustering1 algo-
rithm. For example, in Fig. 2, two noisy periodic signals are
partitioned into six states. Any metric can be used, but we
typically use euclidean distance, where by default, we nor-
malize each dimension by the standard deviation. This
helps mitigate incomparable scaling for the multivariate
time series. We currently implement k-means and DP-
means [29] to construct the partition, but any clustering
technique can be used. The system is extensible and other
clustering algorithms could easily be added. While other
methods may be more appropriate for specific datasets, we
chose these two specific algorithms due to the fact that they
are computationally efficient and that they are known to be
generally robust over a wide range of input. As our system
is aimed at users who do not have expertise in machine
learning, this step should use methods which are robust to
parameter settings (to avoid parameter tuning).

Setting parameters, e.g., the number of centroids for
k-means or the cluster radius for DP-means, must be done
using domain knowledge. Since our method is multiscale, the
parameter represents the finest computed scale and so the
maximum number of states computed. For large datasets, the
number of states is often the bottleneck in computation and
so is limited.We have also found that a large number of states
causes the visualization to become too cluttered at the finest
scales. While the choice of parameter can and does effect the
constructed states, we have found that interesting patterns
are robust to the specific choice of parameters, e.g., in the
experiments, we did not need to performparameter tuning.

3.4 Modeling Transitions

Once the states are constructed, we model the dynamics as
transitions in the lowest-scale Markov chain (Fig. 2c). Each
conceptual state is associated with a state of a Markov chain.
We refer to these as initial states. They form the lowest-scale
representation of the data and are the basis for further
computation.

Transitions between these states model the trajectory of
the temporal signal as it traverses the corresponding dis-
crete regions of the ambient space (i.e., states). We assume
that the sequence of states is generated by a continuous-time
random process. Besides the sequence itself, such a process is
characterized by the time the process spends in a state upon
arrival (i.e., stay time). We assume exponentially distributed
stay times and model the process as a continuous-time Markov
chain [30], extracting the transition probabilities from the
jump chain. The jump chain models the sequence of jumps
and their associated probabilities, discarding the stay times
[30]. This design choice has two main consequences. First,
by using continuous time Markov chains, we do not require
input data to be equally sampled in time, eliminating the
need for an additional preprocessing step. Furthermore,
time series are often sampled from continuous processes
making the assumption of continuous time more natural.
Second, by using the jump chain to visualize dynamics, we
reduce clutter by removing transitions of the form i ! i
from the visualization.

A continuous time Markov chain is completely defined
by a transition rate matrix denoted by Q. Its off-diagonal
elements qij represent the rates of transitioning from state i
to state j (in #jumps=timeunit). The rows of Q sum to zero,
therefore the (negative) diagonal elements qi ¼ �qii repre-
sent the rate of leaving state i. To learn the parameters from
the data, we use a maximum likelihood estimator, which in
the case of Markov chains is simply given by Equation (1)
for each non-diagonal entry of the matrix.

~qij ¼ Nij

ti
; (1)

where Nij represents the number of transitions i ! j
observed in the training set, while ti represents the total
time spent in state i. The diagonal elements are then
extracted as the negative sum of the rows:

~qii ¼ �
Xn
k¼1

~qik:

The key advantage of using Markov chains is that while
their representation is compact, they still allow us to com-
pute several long-term properties efficiently, making the
system scalable and responsive. They provide a summary
of longer term behaviour which can convey the correspond-
ing patterns effectively. It would be possible to use more
complex models, e.g., more complex transition and stay
probabilities, but it would significantly increase the compu-
tational cost of constructing and interacting with the mod-
els. The benefit, however, would be negligible, since the
system provides several tools which allow the user to drill
down to investigate short-term behavior (see Section 4).

3.5 Constructing the Hierarchy

The final step constructs the multiscale representation by
aggregating states and transitions into a hierarchy. We con-
struct a hierarchy of Markov chains (Fig. 2d) and associate
each level with a scale used in the final visualization. This
allows the user to interactively change the visualized scale
and find interesting patterns without the need to reconstruct
the representation. The construction is a two step process: (i)
constructing the topology (i.e., deciding which states are
merged) and (ii) aggregating the states of the lowest-scale
Markov chain to obtain higher scale representations.

StreamStory implements two approaches to construct the
hierarchical topology. The first is a bottom-up distance-
based approach which usesmean linkage agglomerative clus-
tering (UPGMA) [31] to merge pairs of states with minimal
distance. As in the clustering step, we use the euclidean
metric to measure the pairwise distances. The intuition is
that states that lie closer in euclidean space are more similar
and should be merged before more distant states. The sec-
ond approach is a top-down transition-based approach. The
method used is a modification of the algorithm proposed in
[32] to continuous-time Markov chains. It begins by treating
the whole Markov chain as a single high-level super-state. It
then iteratively performs binary splitting on a state of the
Markov chain. State splitting is performed by considering
the Markov sub-chain induced by the sub-states of the cur-
rently chosen state. We then consider the min-cut problem1. We refer to clusters as conceptual states.
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on the weighted graph induced by the sub-chain, taking
transition intensities as weights. To find an approximate
solution, we use a standard technique from spectral graph
theory, i.e., considering the sign of the eigenvector corre-
sponding to the second largest eigenvalue of the symme-
trized transition rate matrix [33], [34], [35]. The splitting
continues until all such sub-chains contain only a single
state and no split can be made—that is, the procedure
reaches the original Markov chain.

Once the hierarchical relationships are known, we com-
pute higher-scale Markov chains by averaging transition
rates. As input to step (ii), we are given a set of merge points
(or scales) sk and, for each scale sk a set of aggregation rules,
describing which initial states should be merged. These are
encoded in the matrix Pk, where ðPkÞij ¼ 1 if and only if the
initial state i should be aggregated into state j. To represent
the Markov chain on scale sk, we calculate its transition rate
matrix Qk using the following formula:

Qk ¼ ðPT
k PPkÞ�1PT

k PQPk; (2)

where Q represents the transition rate matrix between the
initial states, Pk is the aggregation matrix and P ¼ diagðpÞ is
a matrix with the stationary distribution [30] of Q on the
diagonal. The formula calculates the transition rate between
two high-scale states as the weighted average of transition
rates between the associated initial states. To preserve the
ergodic properties, the entries of the stationary distribution
of the source states are used as weights.

Finally, we reduce the number of scales in the hierarchy
to highlight changes in the structure. The goal is to choose
scales which are qualitatively different. We choose the
scales by associating each scale with a vector of eigenvalues
of the transition matrix at that scale. Then we perform
k-means clustering on the vectors with the representative
closest to the centroid of each cluster taken as one of the
chosen scales. The number of clusters is chosen as the mini-
mum of half of the number of initial states and 10. This is to
ensure that the resulting visualization is not overly cluttered
and provides useful information. The adaptive choice of
scales is important to avoid imposing an additional parame-
ter on the user, while ensuring the structure present at dif-
ferent scales is displayed.2 We then post-process the
hierarchical model for visualization - computing the layout
and enriching the structure with other attributes such as
automatic labels of the states.

3.6 Highlighting Recurrent Behavior

We provide the user with two options which help highlight
and reveal recurrent behavior. The options influence the struc-
ture of the model at construction time by altering the feature
vectors used to identify the initial states in the clustering step.

Using Dynamical Context. Based on time-delay embed-
ding [36] the first approach adds derivative information to
the feature vectors. It does so by appending values from the
previous time steps to each feature vector in the dataset,
effectively doubling the dimension of the signal. For
instance, for a time-delay of 1,

xðtÞ 7! xðtÞ
xðt� 1Þ

� �
;

it appends the previous time step to the current time step.
This helps reduce ambiguities in recurrences by effectively
considering the derivative of the time series. The intuition is
that for two points to be similar, their paths (for some num-
ber of time steps) must also be similar. Following the
weather example in Section 1, the feature vectors are
extended using values of the previous month, separating
spring and autumn points. This approach was originally
developed for recovering the dynamics from chaotic
systems [36].

Static Context Based on Time. The second approach extends
the feature vectors with qualitative temporal information
extracted from the timestamps of individual measurements.
The feature vector is extended with a categorical feature
which describes when in time the measurement occurred on
the specified temporal granularity. The categorical feature is
represented by a binary vector,3 hence the dimension incre-
ases by the number of possible categorical values. It requires
the user to select a temporal granularity when constructing
themodel. For instance, when the time unit selected is “day,”
the feature vector will be extended with a categorical feature
indicating which day of the week the timestamp represents,
e.g., Monday, Tuesday, etc. increasing the dimension by 7.
Other options include: (a) second with six categories repre-
senting ten second intervals in a minute, (b) minute analo-
gous to second, (c) hourwith 24 categories representing each
hour in a day, (d) day and (e)monthwith 12 categories repre-
senting themonths of a year.

The approach emphasizes periodicities. The additional
categorical feature naturally brings points which occur in
that category closer together, e.g., with the day feature, all
points on Monday are brought closer, while points occur-
ring on different days are moved further away. This feature
is useful if the domain expert would like to identify patterns
at a specific temporal granularity. Each feature represents a
granularity and highlights a typical period, e.g., the hour,
day, and month features highlight the daily, weekly and
yearly cycles respectively. Additionally, it allows the user to
identify which states occur during a specific time period
(e.g., which states occur most often on Monday).

4 VISUAL REPRESENTATION

We begin this section with the specific requirements which
guide the design of our visualization, followed by a descrip-
tion of the visual elements and how they satisfy the given
requirements. The visualization should provide a high level
conceptual summary of the data which prevents visual clut-
ter when dealing with large datasets. Temporal patterns,
especially periodic and recurrent behavior, should be
apparent. Users should be able to zoom into specific parts
of the summary to find these patterns. Finally and most
importantly, the visualization must help the user interpret
patterns by linking elements of the summary back to
the data.

2. For an advanced user, the automatic choice could be overridden
to a user-specified choice.

3. A binary vector for a data point is 1 for its categorical value and 0
for all other categorical values.
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The hierarchical Markov chain provides the multiscale
summary which simplifies the data into discrete states,
avoiding clutter while still capturing the dynamics. It is
visualized using a graph-based representation augmented
by several visual cues to help the user understand the global
structure of the data. The user can interactively switch the
scale at which the structure is visualized. Perhaps the most
important aspect of the visualization are the auxiliary tools
which provide context for the structure. They allow the user
to drill-down into the individual states and transitions,
visualize their properties, and automatically suggest possi-
ble interpretations using data-driven approaches. The result
is a more intuitive visual representation.

4.1 User Interface

The user interface consists of three connected panels shown
in Fig. 3: (i) the central panel visualizes the data as a static
graph based on the Markov chain at the current scale, (ii)
the bottom panel shows a cross-scale historical overview of
the dataset and (iii) the right panel shows details about
selected states.

The central panel is the main panel in our visualization
and guides the exploration of the dataset. It visualizes the
long-term behavior of the data using the Markov chain asso-
ciated with the current scale using circles and arrows as
states and transitions respectively. Interacting with the
panel changes the information displayed in the other two
panels which act as auxiliary views and provide detailed
information. This avoids overwhelming the user with paral-
lel views and the occlusion problems associated with a three
dimensional encoding. Users can traverse scales by using
the scroll function on the mouse or by sliding a scrollbar on
the left of the panel.

We visualize states as circles and use five visual attrib-
utes to encode their properties (see Fig. 4). These are: (a)
radius, (b) position, (c) color, (d) label and (e) border. The
choice is designed to provide as complete picture as possi-
ble without overwhelming the user. The use of these attrib-
utes in the representation of Markov chains is fairly
standard. Our main contribution is to assign these values in

a way which respects the multiscale hierarchy. This helps
the user understand how the structure at each scale relates
to finer and coarser scales.

The radius encodes the proportion of time the modeled
system spent in the associated state in the training dataset.
It is set so that the area of the circle is linearly proportional
to the states’ entry in the stationary distribution of the Mar-
kov chain [30]. Position reflects the states’ relative position
in the ambient space. It is computed using multidimen-
sional scaling (MDS) to preserve pairwise distances bet-
ween the centroids of the original partitions. Additionally,
we follow with a cross-scale repulsive step to avoid state
overlap. The initial layout is constructed automatically, but
users can rearrange the states to fit their understanding of
the data (see Section 4.2 for details). Color encodes the
states’ positions in the hierarchical topology. We use satura-
tion to encode the states’ scale (i.e., the finest scale on which
the state appears) and hue to encode the distance between
states on the same scale (see Section 4.3 for details).
Throughout the paper, we use a color square (Fig. 4) to
show assignment of colors.

To help interpretation, StreamStory automatically
assigns labels to states using the method presented in
Section 4.4. A label highlights the properties which are
typical for the state when compared to other states. This
includes the configuration of attributes and the typical times
when the state occurs. We use a tooltip as an extension for
the label - providing a textual description of the state. The
user can interactively change the label to reflect their own
interpretation of the state. Finally, when a state is selected,
we highlight it using a blue border and all the transitions
leaving the selected state using the same color.

Temporal dynamics are modeled as transitions between
states and visualized as arrows between the associated
circles. We encode the likelihood of a transition as the thick-
ness of the corresponding arrow. Instead of the traditional
transition probabilities, we show the transitions of the jump
chain associated with the Markov chain [30]. This reduces
clutter by eliminating transitions from a state back to itself.

Fig. 3. The visualization consists of 3 panels. The central panel visual-
izes the data through a Markov chain at the current scale. The bottom
panel shows a cross-scale historical overview of the dataset using an ici-
cle plot. States on the two panels are associated by color. The right
panel visualizes properties of the currently selected state (blue border).

Fig. 4. Visual attributes encode different properties of the states: (a) The
area of each circle encodes the proportion of time the system spent in the
state in the training dataset. (b) The position reflects the states’ position in
the ambient space relative to other states. (c) The color encodes the posi-
tion of the state in the hierarchical topology of the visualized model. The
hierarchy is shown by the colored square on the lower left, with the arrow
indicating the current scale. (d) The label highlights attribute and time-
based properties which are typical for the state when compared to other
states. (e) A bold blue border highlights the selected state.
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To further reduce clutter, we group transitions into high,
medium and low probability groups. We highlight arrows
in the high probability group with a darker color and blur
arrows in the low probability group by using a dotted line
and omitting a label (see Fig. 4). By default we regard transi-
tions with probability over 0.4 as high and those with proba-
bility below 0.2 as low probability transitions. To further
highlight dominant transitions, we allow the user to interac-
tively reduce their number using a horizontal scrollbar at
the bottom of the main panel.

The bottom panel has several views. The view on the bot-
tom panel is selected via tabs as can be seen in Figs. 1 and 3.
The first view is an icicle plotwhich visualizes the dataset as a
cross-scale historical overview. It shows the sequence of
states which occur in the data for all scales simultaneously
(Fig. 3). It can be used to isolate and investigate known his-
toric events and identify the scales where events are visible.
For instance, suppose the user is interested in a particularly
cold winter. They can use the icicle plot to zoom into the
desired year and identify the (sequence of) states which
occurred in the winter months. For each row, the associated
scale is labeled on the left-hand side. The label of the current
scale is highlighted. Color coding is shared with the central
panel, allowing users to quickly identify states. The icicle plot
is also interactively integrated with the central panel. This
allows users to select a state by clicking it on either represen-
tation. When selected, the state is highlighted in both repre-
sentations. When selected through the icicle plot, the
appropriate scale is automatically shown in the central panel.

A second time-based view on the bottom panel can help
interpret temporal patterns by showing when (e.g., which
day of the week) a state or transition typically occurs. The
main panel allows users to select either states or transitions.
When one is selected, the time-based view on the bottom
panel shows when it occurred at different temporal granu-
larities using histograms, mapping states and transitions to
temporal concepts. The available granularities are: daily,
weekly, monthly and yearly. Fig. 5 shows the bottom panel
with the yearly histogram of two states from Fig. 3.

The histograms show that one state usually occurs in the
winter months (Fig. 5a) while the other occurs in the summer
months (Fig. 5b). The bottom panel offers two other views
for the selected state: parallel coordinates and an explana-
tion/decision tree. Parallel coordinates [37] are a standard
tool while the decision tree can be used to explain high
dimensional clusters [38]. These tools associate states to data
specific concepts. They are aimed primarily at specialists, so
we defer the views and further explanation to the supple-
mentarymaterial, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2018.2825424.

The right panel visualizes properties of the selected state.
This includes the mean and distribution of all the attributes
(Fig. 6). For context, we show the global distribution for
each attribute in the background. Attribute distributions
help users identify the meaning of states. For instance,
when visualizing weather, a state with a high temperature
distribution immediately suggests a summer state. For tran-
sitions, the distributions of the attributes immediately
before and after the transition are shown.

Finally, by selecting an attribute in the menu in the upper
right corner of the central panel, users can compare the
states with respect to that attribute. Once selected, states in
the central panel are recolored by the mean value of the
attribute in each state (see Fig. 11). This allows the user to
correlate the structure of the dataset with the value of the
attribute. States with high average values are colored orange
while those with low values are colored blue.

4.2 State Layout

The state layout reflects the positions of states in the ambient
space consistently across the scales while avoiding overlap.
It is designed to highlight the structure of the dataset. There
are three phases to compute the layout. The first phase proj-
ects the centroids of the initial states onto the plane, using
multidimensional scaling (MDS) to preserve the pairwise
distances between the centroids as well as possible. Next,
we iteratively compute the coordinates of states on coarser
scales as a weighted average of their children. Traversing
consecutive scales from finer to coarser, let s1; s2; . . . ; sk be
the states aggregated into state s. The second phase then tra-
verses the scales iteratively and computes the coordinates of
each new state as:

pðsÞ ¼
Pk

i¼1 pðsiÞpðsiÞPk
i¼1 pðsiÞ

: (3)

Fig. 5. The Time histogram explicitly shows when a state or transition
occurs. It supports several temporal granularities (e.g., a daily histogram
showing the hours of the day) which can be used to identify periodic
behavior. The example above shows the months when the Rainfall
LOWEST (dark purple) and the Rainfall HIGHEST (green) states of
Fig. 9 occur. We see the former typically occurs in the winter (a) and the
latter in the summer (a).

Fig. 6. The Attribute histograms show the distribution of attributes in the
selected state with the global distribution of the attribute as context in
the background. Here we show the distribution of two attributes in the
purple Rainfall LOWEST and green Rainfall HIGHEST states from Fig. 3
respectively. The histograms indicate a lower distribution of temperature
and rainfall in the Rainfall LOWEST state (a) and a high distribution of
temperature and rainfall in the Rainfall HIGHEST state (b) suggesting a
correlation between the two attributes.
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where pðiÞ represents the position of state i and pðiÞ is its
entry in the stationary distribution. By weighting using the
stationary distribution, the states where the process spends
more time move less as we change scales. Finally, we apply
a cross-scale repulsive scheme by implicitly constructing
bounding circles around states and iteratively moving the
centers of states with overlapping bounding circles away
from each other. This ensures that the states do not overlap
in the final representation.

4.3 Color Coding

Color coding has been shown to be effective for visualizing
qualitative relationships in the data. It gives the designer
three degrees of freedom which they can use to highlight
aspects of the visualized structure. If used properly it can
enhance the overall aesthetics of the visualization tool.

On a single scale the state layout, sizes and attribute-
based labels give the user insight into the structure of the
ambient space. However, the cross-scale relationships are
still obscured by the single scale visualization.

StreamStory uses color coding to highlight cross-scale
relationships and enable the user to traverse the scales effi-
ciently. It uses proximity based coloring [39] to visualize the
proximity of states in the hierarchical structure and extends
it to encode the states’ scale (i.e., the finest scale at which
the state first appears) using saturation. Intuitively, states in
the same sub-tree are considered more similar than states in
adjacent sub-trees and are assigned more similar hue. Like-
wise finer scale states are more saturated than coarser states
allowing the user to quickly distinguish more conceptual,
high-level states from their lower scale counterparts and
allowing them to quickly identify states which persist
through the hierarchy. The idea is shown in Fig. 7.

The procedure first lays out the initial states around the
external edge of the HSL color wheel. Each state is given a
range proportional to its entry in the stationary distribution
of theMarkov chain reflecting the proportion of time the pro-
cess spends in the state. We add an additional buffer
between states from different sub-trees of the hierarchy. It
acts as an unused color interval and helps visually separate
states from different parts of the hierarchy. The size of the
interval is proportional to the scale where the sub-trees split

(i.e., states separated at coarser scales are separated by
larger intervals). At design time, we allow developers to
specify the range of hue used in the visualization. In all
examples, we use a range which omits yellow (see Fig. 7).

Hue is assigned to the coarser states as the weighted
average of the hue of their children (i.e., the weighted aver-
age of the angles) with lower saturation. The weights are
determined by the stationary distribution of the Markov
chain at the appropriate scale. This makes the color of the
larger states dominate their sub-tree (see Figs. 1 and 3). We
discretize the saturation into equal intervals from smin > 0
to smax ¼ 1, numbering the scales 1 to n and assigning satu-
ration 1� kðsmax � sminÞ=n to all states with scale k.

4.4 Automatic State Labeling

To help interpretation, StreamStory automatically generates
descriptions of states, used as initial labels. Our initial
experiments showed that a representation with abstract
states and transitions often overwhelms a first-time user,
making it difficult to conceptually map the states of the
model back to the data. To address this, the system uses an
automatic, data-driven state labeling procedure which gen-
erates a short textual description of a state, providing a con-
cise mapping from the states to the attributes. The labels are
computed during model construction and, for each state,
provide a label based on two factors: (a) the values of attrib-
utes inside the state compared to other states and (b) the
times when the state typically occurs. The label is shown as
the default text on the state (Fig. 8). The states can be easily
renamed while interacting with the system by selecting the
state and entering a new name in the right panel under
“State name”— see NYC in Fig 1.

Labels are generated in two phases. The first phase com-
putes labels based on attributes. If this fails, the second
phase tries to generate time-based labels. If both phases fail,
the state is left blank.

Attribute-based labels are computed by comparing the
distribution of each attribute inside the state to the attrib-
ute’s global distribution. More specifically, the mean value
of the states’ distribution is compared to the gth and dth per-
centile of the global distribution. If the mean is below the
gth percentile, we assign the label LOWEST to the attribute,

Fig. 7. The color coding procedure. The initial states are distributed along
the edge of the HSL color wheel. Each state is given a range proportional
to its entry in the stationary distribution. Each concentric circle of decreas-
ing saturation represents a subsequently coarser scale. When states
merge (note not all merges are shown), the new hue is the weighted aver-
age of the corresponding angles. Additionally, we add a “buffer” which
acts as an unused color interval between the sub-trees and remove a
range of colors from the visualization (yellow was omitted for aesthetic
reasons). On the right is the corresponding color assignment across the
scales. Each rectangle on the bottom corresponds to a dot on the edge of
the color wheel. The upper rectangles visualize how states merge across
the scales with eachmerge represented by a dot on the left. A state which
does not merge across the scalesmaintains its color.

Fig. 8. Automatic labels characterize a state based either on the typical
configuration of attributes inside the state or time when the state typically
occurs. Here we show two states, which were characterized based on
the Rainfall attribute (blue and green) and two states characterized by
typically occurring in October and between May and June (pink and
brown respectively). The central purple state is left blank, indicating that
no typical characterization was found.
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while assigning label LOW if the mean is between both per-
centiles. Analogous rules are used for HIGH and HIGHEST.
As rule of thumb, we use default values g ¼ 12 and d ¼ 25.
Among all the attribute labels, we use the one in the low-
est/highest percentile as the final state label. If no such label
exists, we attempt to generate time-based labels.

The second phase generates labels based on time by mak-
ing use of the Time histograms presented earlier. It scans the
histograms at each granularity (e.g., daily, weekly, etc.)
searching for cyclically continuous peaks. We consider the
kth bin a peak, if it contains more mass than the average
bin: bk >

P
bj=n, where n represents the total number of

bins in the histogram and bk the value of bin k. Two conse-
cutive peaks are considered a single peak. If a single peak
with more than z mass (with default z ¼ 0:7) is found, the
peaks’ time range is considered as a candidate label. Among
all the candidate time-based labels, we select the one with
its peak containing the most mass. For example, from the
yearly histogram this would produce a label of the form
May - Jun like the brown state in Fig. 8.

5 USE CASES

We use three datasets of varying complexity to demonstrate
how StreamStory can be used to perform the analytics tasks
listed at the beginning of the paper. With all the examples,
we provide an interpretation demonstrating how tomap ele-
ments of the abstract representation back to domain-specific
concepts. We use a weather dataset to illustrate how to find
and interpret the long-term behavior of the data and a wind
dataset to demonstrate how finding the appropriate scales
can reveal structure in the data. We present three patterns
which are typical when exploring data using StreamStory
using a GPS dataset. To illustrate the multiscale structure,
we show three different scales for each example. We note
that the sub-figures were scaled independently and so
should not be directly compared. Finally, we discuss feed-
back gathered from experts during the development of the
tool and compare StreamStory to related techniques.

5.1 Weather Data

We begin with a weather dataset used as an illustrative
example throughout the paper. The dataset consists of aver-
age monthly temperature and rainfall readings collected at
Nottingham Castle, UK over 20 years between 1920 and
1940. We demonstrate how StreamStory can be used to
identify the main states of the dataset, find long-term recur-
rent behavior and map the abstractions back to domain-
specific concepts.

We construct a representation with 12 initial states. In
addition to the rainfall and temperature, we include the pre-
vious months’ values in the feature vectors as explained in
Section 3.6, raising the dimension to 4. Fig. 9 shows the
model at three different scales along with the original data.

At a coarse scale, we identify three main high-level states
corresponding to different parts of the year. In Fig. 9a we
see two large states with a transition state between them.
The labels indicate the right state represents rainy weather
while the left state represents low rainfall. Checking the
individual states, we observe that the left state also has a
lower temperature distribution (Fig. 10a) as opposed to the
right state (Fig. 10b).

This suggests the right state represents summer while the
left state represents winter. We confirm this using the yearly
histograms showing the left state lasts from November to

Fig. 9. In the weather dataset we observe a cyclical pattern, indicating
periodic long-term behavior with the main states corresponding to differ-
ent parts of the year. The yearly periodicity appears at the middle (b)
and fine (c) scales. In this case, this can be confirmed directly by the par-
allel plot (bottom-left).

Fig. 10. The Attribute histograms indicate that the purple Rainfall LOW-
EST and green Rainfall HIGHEST states in Fig. 9a correspond to winter
and summer months respectively. This is indicated by a low distribution
of temperature and rainfall in the Rainfall LOWEST state (a) and a high
distribution of temperature and rainfall in the Rainfall HIGHEST state (b).

Fig. 11. The distribution of Rainfall (in mm) confirms that the states on
the right of Fig. 9b are rainier than the states on the left. The same view
for Temperature is almost identical suggesting a high correlation
between the attributes (we only show the view for Rainfall).
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April and the right state from June to September. While in
this case the interpretation is straightforward, the automatic
labelling presents a clear suggestion which can easily be
verified by the user using the supporting views.

On the middle scale, we identify long-term recurrent
behavior in the form of a yearly cycle. Moving to a finer
scale with six states (Fig. 9b), the right state remains fixed,
while the other two states split. The blue winter state splits
into two, while the middle red state splits into three discon-
nected states. The cyclic shape suggests periodic long-term
behavior, supported by the original data on the bottom of
Fig. 9. Furthermore, the automatic labels indicate that the
top- and bottom-most states represent spring and autumn
months respectively. Using the Time tab (Fig. 5), we see that
Rainfall LOWEST (dark purple) occurs between December
and March (Fig. 5a) while Rainfall HIGHEST (green) occurs
between June and September (Fig. 5b), confirming the
yearly cycle with winter on the left.

The labels also suggest where we may look for additional
structure. The summer season is labeled with high rainfall
while states in the winter are labeled with low rainfall, sug-
gesting that the summers are significantly rainier than the
winters in the UK. Through a menu in the corner of the
panel we visualize the distribution of each of the attributes
by showing the mean value of the attribute across the states.
Fig. 11 shows the values for Rainfall. Recall, states with low
values are shown in blue, while states with high values are
indicated by orange. The view for Temperature looks identi-
cal, suggesting a high correlation between the two, inline
with the plot in Fig. 9.

At the finest scale (Fig. 9c), we see a very dynamic winter
compared to the relatively stable summer. With 12 states,
we see both summer and winter states splitting up into
many smaller states. We can use the structure we found at
the coarser scales to help us interpret the additional states.
Since the visualization draws the states consistently across

scales, we know when in the year each region corresponds
to. The number of states and non-uniform transition proba-
bilities in the winter region suggest that winters are much
more unpredictable than other seasons.

This demonstrates how we are able to identify and inter-
pret the recurrent behavior, some expected (such as yearly
cycles), others unexpected (e.g., more variance in winter
weather). By inspecting the labels, Attribute histograms and
Time histograms, the conceptual meaning of each state and
the transitions become transparent to the user. Importantly,
the system allows for quick verification of the interpretation
by the user. This is a simple illustrative example which veri-
fies that known patterns can easily be identified. Although
different techniques could be used to analyze this dataset,
the remaining two examples illustrate the versatility of
StreamStory.

5.2 GPS Data

Our next example demonstrates several different types of
patterns the user can observe using StreamStory. The data-
set contains personal GPS measurements (latitude, longi-
tude and timestamp) collected by a researcher using
Google’s Location History tool over a period of 3.5 years
between July 2012 and January 2016. It includes several trips
around Europe as well as to the United States and Asia. In
this example, we manually labeled the states by checking
the coordinates of their centroids on a map. Note that this
could be automated in the case of geographic data.

At a coarse scale (Fig. 12a), the dataset exhibits a large
central state with three smaller satellites. Checking the coor-
dinates of the centroids, we find that the central blue state
corresponds to Europe, which corresponds to “home,”
while the left orange state corresponds to the United States.
The other states are Asia on the right and Scandinavia on
top respectively. The latter was separated from Europe due
to its relatively large distance to the other European coun-
tries visited.

At the middle scale, additional structure appears. In
Fig. 12b we see the United States state split into New York,
California and Texas. New York is the largest of the 3 states,
reflecting a summer internship in 2014. Europe splits into
Slovenia (SLO - large blue), where the individual lives, Ger-
many (D - small cyan) and Portugal (P - bottom green). Asia
is split into three purple states. The bottom-right two states
reflect a trip to China (CN), while the purple state near the
Scandinavia is India (IND). This captures various trips the
individual has taken.

The finest scale (Fig. 12c) demonstrates three of the most
typical patterns which can be observed using StreamStory.
Europe becomes a wheel-like pattern with Slovenia in the
center. In the bottom-right corner, the trip to China becomes
a cycle with five states, corresponding to different stops dur-
ing the trip. The cycle indicates that the trip started and
ended in the same city. On the bottom, we see a path repre-
senting a road trip through Europe. The path starts with Italy
through France (I and FR—both green states on the bottom),
then Spain (E) and finishing in Portugal (P—leftmost green
state). Unfortunately, the return trip was not recorded. In
the US, New York splits into New York City and upstate
New York while Texas splits into Dallas and Austin. These
states do not exhibit any special structure.

Fig. 12. The GPS dataset. The main states represent locations around
the world. At the finest scale (c), the dataset demonstrates several typi-
cal patterns which can be observed using StreamStory. The central state
represents Slovenia, the researchers home location. Several trips to var-
ious locations in Europe form a wheel-like pattern around the central
state. On the bottom we see a path corresponding to a road trip through
southwest Europe (Italy (I) - France (FR) - Spain (E) - E - Portugal (P) -
SLO). Finally on the bottom right, we see a cycle corresponding to a
vacation in China.
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This example also illustrates a drawback of the color cod-
ing. At the finest scale, the US and China have similar colors
despite being spatially distant. This happens because at the
coarsest scale their relatively small subtrees (when com-
pared to Europe) are assigned adjacent, relatively small
color ranges. A possible mitigation is to increase the spacing
between subtrees. However, this would narrow their color
ranges and reduce differentiation within the subtrees. In
general it is not possible for the assignments at the coarser
levels to reflect the distance between the subtrees since it
would require projecting the ambient space into a one
dimensional color space.

5.3 Wind Data

In our final example, we illustrate the utility of traversing
the scales to identify unexpected patterns and characteris-
tics in higher-dimensional, less structured data than the
examples above. The data consists of measurements from
a weather station in Ajdov�s�cina, Slovenia—second-level
measurements taken of wind speed and direction during
March 2016. The station is located in the Vipava valley
which experiences the Bora wind phenomenon [40], strong
gusts of wind which can reach over 150 km=h. This particu-
lar wind pattern has remained largely unexplored and there
are no expected patterns. The dataset comes with an expert’s
annotation indicating the presence of Bora at a resolution of
10 minutes.

For constructing the model, we do not use the annota-
tions, rather visualizing them after the model is con-
structed to help identify correlations and structure in the
data. The dataset has 6 attributes, including wind speed,
direction (represented as the sine and cosine of the angle)
and the change in each of the values, sampled every sec-
ond for one month. In this case, a plot of the raw data is
uninformative but the resulting model at three scales can
be seen in Fig. 13.

At a coarse scale in Fig. 13a, the dataset exhibits a similar
structure as our previous example—a large central state
with satellites. The satellite states mainly represent extreme
values with the states on the right corresponding to the
Bora winds. Moving to a middle scale in Fig. 13b, we iden-
tify the main states of interest. The group around the two
large states (left) is characterized by low wind speeds and
represents predominantly calm winds. The three largest
states in the group (blue, purple and cyan) differ mainly by
the direction of the wind while the small green states repre-
sent the changes in direction. The group on the right, con-
sisting of smaller states, is characterized by high wind
speeds. These represent the high speed gusts characteristic
of Bora winds. The histogram in Fig. 14 shows the unstruc-
tured nature of Bora winds.

At a finer scale, in Fig. 13c we see two groups appear on
the right. This represents the most relevant scale for under-
standing this phenomena. The two groups on the right, (SB)
and (WB), represent two dominant directions of Bora
winds. The group (SB) represents wind which is perpendic-
ular to the orographic barrier (a ridge running along the val-
ley). This has been the main meteorological understanding
of the phenomenon - cold air spilling over the ridge and
travelling down the face typically gives rise to high wind
speeds and the gusty nature of the wind.

The other group, (WB), represents a second, previously
unidentified type of Bora, which is much weaker and travels
more along the direction of the valley. This is due to a split
in the valley which causes weaker gusts but is nonetheless
consistent with Bora winds [40]. This type of Bora was first

Fig. 13. Wind dataset. We identify several groups of states representing different wind behavior, including two groups of Bora winds with different
dominant directions. (a) At a coarse scale, there is a single dominant state with several satellites representing extreme behavior (e.g., high wind
speed). (b) At a medium scale, two main groups appear - the group with two large states on the left represents calm winds while the star-like group
on the right represents the typical gusty, high-speed Bora winds. (c) At a fine scale, we identify two groups of Bora on the right with different intensi-
ties and dominant directions (SB) and (WB). (WB) is due to a split in the topography of the valley, which causes weaker gusts. By inspecting the addi-
tional views, we find that the weaker Bora group (WB) changes direction faster than the stronger Bora group (SB). The group on the left (N)
represents calm winds. A strong cycle between high wind speed and a large speed variation representing gusty wind is shown by the arrow. Inspect-
ing the data at a finer scale shows no additional structure.

Fig. 14. The daily histogram of a state predominantly characterized by
Bora does not show any dominant daily patterns. With a small bias
toward morning hours, we see that the state occurs at all times of day.
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observed in this dataset, due to the difficulty in manually
isolating a suitable subset of data where this phenomenon
occurs. StreamStory highlights the phenomenon through
strong transitions among the states in the group.

At this scale, there are other relevant phenomena. In
addition to high wind speeds, as indicated by the state
labels, the two Bora groups have large changes of wind
speed and smaller changes in wind direction. Inspecting the
Attribute histograms, we note however that the weaker
group changes wind direction faster than the stronger
group. The direction of the wind is most spread out and
changes the fastest in the non-Bora group (N). This is pri-
marily indicated by the state labels and uniform transition
probabilities. This lack of structure in the non-Bora group is
to be expected, since low wind speeds allow for quick
changes in direction.

We also see some strong cycles appear in the two Bora
groups. For example, in the strong Bora group (SB), there is
a cycle between high variation in wind speed and high
wind speed in the southwest direction (dws HIGHEST and
ws HIGHEST), pointed out in Fig. 13c. This cyclic pattern
reflects the gusty nature of the wind—the two states capture
the gusts (large change in wind speed) and the peak speeds
respectively. A similar pattern, but less pronounced, can be
seen in the weak Bora subgroup with the difference that the
dominant direction is northwest.

Moving to even finer scales, we do not see any other
interesting structure. We only find the random variations of
the wind rather than any interesting patterns. This illus-
trates how choosing the correct scale is often critical to find-
ing meaningful patterns in data.

5.4 Expert Feedback

During the development of the tool, user feedback was soli-
cited on usability. This includes domain experts, data analy-
sis experts as well as non-experts. Initially, the system was
tested on industrial processes with the non-expert users.
Two test iterations were conducted at different stages of
development. Each included five experts who deal directly
with the industrial process (e.g., foreman on a factory floor).
Each expert was asked to interact with the system for an
hour before giving feedback. The first iteration showed that
the users had significant trouble mapping the states to con-
ceptual interpretations. The addition of the automatic labels
and icicle plot improved interpretability greatly.

The second group of users were domain experts for the
data (e.g., a meteorologist for the weather data). The
experts’ feedback also confirmed the importance of auto-
matic labels in interpreting the structure of the model as
well as highlighting the utility of the histogram views and
cross-state coloring by attribute for exploring a data set. Sev-
eral views, especially machine learning specific views such

as the decision trees were only useful to users who were
familiar with the technique, e.g., data analysis experts.

An important evolution during the development of the
system is the increase in automatic choices of parameters.
While this does reduce the manual control of the system, it
greatly improves the system’s “out-of-the-box” usability.
Just as in the case of state labels, the default parameters sug-
gest a coherent big picture of the data allowing the user to
explore the data without concerning themselves with
parameter tuning (which can be done after a user is com-
fortable with the system). A typical example of this is the
automatic choice of scales to visualize based on a measure
of change in the representation. Once the user is comfort-
able with the system, setting different parameters manually
can be exposed.

5.5 Comparison to Other Techniques

Though there are many different techniques for visualizing
time series (as discussed in Section 2), we could not identify
any directly comparable system. In particular, the target of
most of the other approaches are not non-expert users and
often not larger datasets. In the supplementary material,
available online, we show the result of visualizing one of
our examples (the weather example of Section 5.1) with
TimeCurves [9]. Comparing the results, we found the main
drawbacks of using TimeCurves over StreamStory are: (a)
the inability to map elements of the visual representation
back to the data and (b) the clutter produced by large data-
sets. On the other hand, by discretizing data into states,
StreamStory removes information from the visual represen-
tation which is especially noticeable on small datasets.
Overall, we did not find a direct comparison especially
meaningful since the techniques are aimed at different use
cases. For instance, we do not expect StreamStory to per-
form well on the Wikipedia dataset4 from [9]. StreamStory
works best for large datasets of medium dimension, where
many iterations of a cycle are present. In the case of very
high dimension and sparse data, different approaches are
needed since StreamStory removes many of the important
details in the data. However, as the examples show, in
many cases, the system allows for intuitive exploration of
data highlighting interesting patterns.

5.6 Performance Evaluation

In this section, we demonstrate how the time needed to con-
struct a StreamStory model varies depending on the size of
the dataset and choice of parameters. We note that once the
model is constructed, the visualization is fully interactive. In
the experiments above, the weather (6K) and GPS data
(400k) were nearly instantaneous (1s). The wind data was
much larger (145 MB), and so took approximately 11
minutes. We performed an experiment, testing two datasets
of different sizes, fixing the dimension and varying the num-
ber of initial states in the model. The first dataset (A) contains
285k measurements (155 MB), while the second (B) contains
� 3 Mmeasurements (500 MB). For each dataset, we selected
7 attributes randomly and configured 10, 20 and 40 initial
states respectively. We ran the experiment on a laptop with a

TABLE 1
Measurements of the Initialization Time of a Model
Indicate a Strong Dependence on the Number

of Initial States

Initial states 10 20 40

Dataset A 1m41s 1m50s 2m31s
Dataset B 4m11s 6m10s 14m54s

4. We could not test this since we do not have access to the prepro-
cessed dataset.
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quad core 2:5 GHzCPUwith 8 MB cache and 16 GB of RAM.
The results are summarized in Table 1. The table indicates a
strong dependence on the number of initial states.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel methodology and tool
for visualizing large multivariate time series called Stream-
Story. StreamStory abstracts the data and visualizes its
long-term behavior using hierarchical Markov chains,
encoding the properties of the Markov chain into a graph-
based visual representation. The abstraction is comple-
mented with several tools, driven by statistical and machine
learning methods, which map the visual abstractions back to
domain-specific concepts and suggest possible interpreta-
tions. To find interesting patterns, StreamStory allows users
to interactively change the scale with the visual cues
remaining consistent through the transitions. To construct
the abstraction requires minimal tool specific knowledge
and the system can help explore datasets without extensive
domain knowledge.

Overall, it allows users to interactively identify and inter-
pret the main states of interest in the dataset, highlighting
long-term recurrent behavior. We demonstrated the useful-
ness of the tool on three real-world datasets of varying com-
plexity. Using StreamStory, we identified several previously
known and unknown patterns, presented feedback gathered
from experts and illustrated the scalability of the system. In
the future, we plan to extend the system in several different
directions, which include:

Interactive Feedback. Rather than fixing the structure of a
model during construction, we will investigate how the
user can interactively merge and split states.

Encoding Additional Information Into States. Additional
information could be included in the representations of the
states by constructing a TreeMap-like encoding to convey
cross-scale information about their sub-trees or splitting
their borders into sections to show the distribution of the
attributes inside the state. However, it is not clear whether
this would introduce clutter.

Comparing Multiple Datasets. The current system is
designed to investigate one dataset at a time. An interesting
question is how to use this abstraction to compare two or
more datasets (e.g., wind measurements taken at different
times of the year).

Alternative Representations. Finally, how can we combine
our approach with other techniques discussed in Section 2, to
obtain similar conceptual abstractions for awider class of data.
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