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Abstract—We present the design and evaluation of an integrated problem solving environment for cancer therapy analysis. The

environment intertwines a statistical martingale model and a K Nearest Neighbor approach with visual encodings, including novel

interactive nomograms, in order to compute and explain a patient’s probability of survival as a function of similar patient results. A

coordinated views paradigm enables exploration of the multivariate, heterogeneous and few-valued data from a large head and neck

cancer repository. A visual scaffolding approach further enables users to build from familiar representations to unfamiliar ones.

Evaluation with domain experts show how this visualization approach and set of streamlined workflows enable the systematic and

precise analysis of a patient prognosis in the context of cohorts of similar patients. We describe the design lessons learned from this

successful, multi-site remote collaboration.

Index Terms—Visual analytics, precision medicine, design studies, nomograms, parallel coordinate plots, activity-centered design
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1 INTRODUCTION

EACH year, over 50,000 people in the United States are
diagnosed with head and neck cancers [1]. Treatment

strategies are complex and can involve multiple courses of
therapy with different potential outcomes. With head and
neck cancer numbers increasing every year, partly due to
viral infections, clinicians aim to develop customized treat-
ment strategies tailored to each individual patient, under a
healthcare model termed “precision medicine”.

Unlike epidemiology or public health, which aim to com-
pare the characteristics of different cohorts or groups of sub-
jects, precision medicine proposes the customization of
healthcare, with medical decisions, practices, and products
being tailored to the individual patient. The customization
is based on individual factors collected from cohorts of
patients who are similar to the patient under consideration.
These factors may include disease markers, treatment
options, demographics, and genetic, lifestyle, environmen-
tal, laboratory, or quality of life data. These data are not
only heterogeneous and large scale, but also locally sparse,

as in finance or astronomy, because some patient measure-
ments may be missing, incomplete, or irregularly collected
on subjects. Making similarity-based precise recommenda-
tions for a specific patient requires novel approaches which
blend biomedicine with complex quantitative methodology,
and with visual encodings to help explain and operate this
complex methodology.

In this work, we present an integrated problem solving
environment and set of visual workflows that enable the sys-
tematic similarity-based exploration and analysis of individ-
ual factors collected from subsets of patients. Our approach
intertwines a martingale model and a K Nearest Neighbor
approach with visual statistical encodings and visual analysis
in order to compute and explain the probability of survival
under user-specified constraints. This visual analysis method-
ology was successfully developed through an interdisciplin-
ary, remote, geographically-distributed collaboration.

The contributions of this work are: 1) a description of the
application domain data and tasks, with an emphasis on
the multidisciplinary development of precision medicine
tools; 2) the design of a novel blend of statistics and visual
encodings to compute and explain the probability of sur-
vival, based on an existing cohort of patients; 3) the descrip-
tion of novel interactive encodings, interactive nomograms
and Kaplan-Meier plots; nomogram encodings reflect the
weight of each independent variable’s effect on the depen-
dent variable; 4) an implementation of this approach in a
web-based visual therapy explorer, SMART—Smart Multi-
dimensional Adaptive Radiotherapy Treatment (Fig. 1); 4)
an evaluation of the resulting workflows and encodings
over an existing head and neck cancer repository, with
domain experts; 5) a start-to-end description of the design
process and of the lessons learned from this successful,
multi-site remote collaboration.
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2 BACKGROUND AND RELATED WORK

Head & Neck Cancer Treatment. In clinical and research set-
tings, therapy response-driven decisions are made on an ad
hoc basis: almost all current therapy decisions after histo-
pathologic diagnosis of head and neck cancer are driven by
age, performance status, and clinical staging information
(e.g., T3-stage cancer), through the filter of physician knowl-
edge [2], [3]. The current approach is not scalable. Ideally,
decision junctures would be approached based on data and
knowledge, rather than physician experience or institu-
tional memory alone.

While data repositories collected from cohorts of subjects
are available, existing advanced risk prediction models cap-
ture in relatively crude fashion oncological outcomes
through the use of standard regression-based models [4],
[5]. These models do not handle incomplete demographic
or laboratory data. Furthermore, these models provide the
clinicians with few means of interaction and personaliza-
tion, limiting their use by physicians.

Visual Exploration of Patient Cohort Data. In healthcare, the
potential of data visualization has been illustrated in a num-
ber of subareas, including patient cohort analysis. Applica-
tions span disease evolution statistics extracted from
electronic medical records (EMRs) [6], [7], cohort symptom
and history comparison [8], [9], [10], cohort medical image
attribute comparison [11], [12], [13], and cohort heteroge-
neous medical data analysis [14], [15]. As often the case in
clinician-driven visual analysis based on statistics, the
visual encodings in these works include conventional repre-
sentations such as histograms, bar charts, pie-charts, box
plots, radial charts, time-series plots and scatterplots.

While our work also builds on patient cohort data, our
focus is on a different problem. Practicing oncologists are
not pursuing overview analyses of cohort data in the style
of public health or epidemiology studies. They pursue pre-
cision analysis of relatively small sets of similar patients. In
particular, in this work we focus on: 1) statistical computing
of survival probabilities and similarity from heterogeneous,
locally-sparse data, and 2) contributing visual encodings
and workflows which enable the operation and explanation
of the resulting model mechanics. As in the clinician-driven
analysis works above, these encodings further need to be
adoptable by clinician stakeholders.

High-Dimensional Data Encodings. Patient data are high
dimensional. Several works [16], [17], [18], [19], [20], [21]
present taxonomies and analyses of high-dimensional visu-
alizations, which include scatterplots, heat maps, mosaic
plots, and star plots. Some of the visual encodings that we
adapt, with modification, are based on these approaches
(mosaic plots, Kiviat diagrams). Other visual encodings
(Kaplan Meier survival plots, nomograms) are novel means
to interactive visual exploration, and are adopted because
they exist, in basic paper form, in the target domain. Paper-
based nomograms, in particular, pre-date parallel coordi-
nate plots by a century [22], and differ significantly from
them (Section 3.6).

Visual Design. Previous works in visualization design
theory [23], [24], [25] investigate human-centered design
in the context of a narrowly focused set of target users.
Kerzner et al. [26] present a design study process for
vehicle vulnerability analysis in information sensitive col-
laborations. Although collocated visual design processes
have been previously discussed in these works and

Fig. 1. Patient prognosis for a white female with T4 supraglottic cancer. The Kiviat panel (left) shows the patient along with the five most similar
patients in the repository; glyph colors (mapped to the computed survival probability) capture a notable variation of therapy outcomes. The interactive
nomogram shows that despite variation in treatment, similar T4 patients (green) have similar low survival outcomes, below 0.5. Two similar patients
with higher survival are revealed to be T3-level (purple). The Kaplan-Meier survival over time plot, however, predicts similar trajectories for the T3
and more severe T4 category. The mosaic context confirms that even the T3 female subgroup has low mean survival rates, below 0.5.
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others, little is known about the visual design process in
the context of geographically distributed, multi-site col-
laborations, in which complementary-expertise teams
contribute components of the problem solving environ-
ment. Furthermore, none of these works follow the activ-
ity-centered design paradigm (an extension of human-
centered-design) [27] adopted in this work.

3 METHODS

3.1 Geographically-Distributed Project Setting

The type of complementary expertise, motivation and ini-
tiative required to circumvent obstacles related to large-
scale, heterogeneous, locally-sparse risk prediction is sel-
dom found at the same geographical location. The
environment we describe was developed through a geo-
graphically-distributed collaboration with domain experts
from several disciplines. In addition to the visualization
research group, one expert and his group specialize in
head and neck cancer radiotherapy, and two other experts
and their respective groups work in high dimensional data
management, respectively in biostatistics and machine
learning. Each research group corresponds to a different
geographical site. Altogether, the team members have
over 15 years of experience in interdisciplinary collabora-
tions. However, the high level of expertise required by
each field (radiation oncology, biostatistics, big data min-
ing, biomedical visualization) results in limited knowledge
overlap between individual research groups.

The collaboration spans four sites, each separated pair-
wise by 200 to 900 miles, and located in the same time zone.
Because of the challenges associated with this type of geo-
graphic distribution and span of expertise, we started by
setting up collaboration tools, including an up-to-date
schedule with deliverables, and by completing an on-line
diagnostic survey for geographically distributed collabora-
tions called the Collaboration Success Wizard [28]. The sur-
vey probes human factors that may strengthen or weaken a
remote collaboration, including mutual expectations, team
maturity, and motivations for working together, while the
Wizard provides both personal and project-level reports to
help build successful and productive collaborative projects.
This process enabled the team to identify its core assets, as
well as create a list of actionable items to strengthen the
project, such as “identifying common grounds” and
“articulating precisely the nature of the work”.

3.2 Design Process

Our design process followed an Activity-Centered-Design
paradigm [27], [29], which is an extension of the classic
Human Centered Design paradigm. The approach places
particular emphasis on functional specifications [30] and on
user tasks. We adopted this approach because it stems from
software engineering principles that have been tested and
proven in multi-site settings similar to ours. We imple-
mented this paradigm through an iterative process where
the research team met weekly via video conferencing, and
quarterly via site visits to confirm requirements and func-
tional specifications, explore prototypes, refine the design,
test the software, and verify that evolving requirements
were being satisfied. Given the geographically-distributed

nature of the collaboration, the design further benefited
from a set of integrated tools, including several freely-avail-
able cloud-based and web-based collaboration systems.

3.3 Data and Task Analysis

3.3.1 Collocated Data Analysis

The first stage of design, requirement engineering, started
with several face-to-face and video conference semi-struc-
tured interviews of the radiotherapy and statistics
experts, followed by an in-person observation session.
Requirement engineering was largely completed during
an intense 3-day period of face to face meetings, which
included common meals and after-hours discussions. In
an unusual approach, the requirements process was a
two-way dialog in the style of pair programming [31],
[32], in which the group explained repeatedly to a lay,
observer audience what the project was trying to accom-
plish, and through this process clarified their own ideas.
The interviews established who the users of the visualiza-
tion would be and how often it would be used, a priori-
tized list of the main tasks performed by radiologists and
statisticians in the process of therapy planning, the data
sources and flow of data through the process, and non-
functional requirements such as portability and support
for local and remote collaboration.

During the followup observation session, a clinician
walked the interviewer through the therapy planning pro-
cess using a collection of paper and proprietary software
tools. We identified together the background roadblocks to
cohort-based therapy planning, as highlighted in the earlier
sections: dimensionality, heterogeneity, sparsity, opacity of
existing, insufficiently predictive statistical tools. We
analyzed requirements and wrote the resulting functional
specifications for the application, and had the clinicians
and the larger team approve the preliminary specifications
document.

Beyond the co-expertise research groups, the longer-term
target users are cancer radiotherapy clinicians who have
collected a repository of head and neck cancer data over
several hundred patients they have treated. The cancer data
are high-dimensional, sparse and heterogeneous; through
brainstorming around a poster board over several days we
identified the following key data inputs which play a role in
guiding the patient therapy, as well as their categorization:

� Demographics. Patient demographics include varia-
bles such as gender, age, ethnicity, or functional lev-
els of activity Eastern Cooperative Oncology Group
(ECOG), most of which are categorical data.

� Disease Descriptors. Cancer descriptors include the
site of tumor, the cancer stage, and indicators of the
disease spread to the lymph nodes, which are also
categorical data. Imaging data was summarized in
the repository, however the repository did not
include images.

� Treatment Descriptors. Treatment variables describe
the therapy sequence used, which may include a
combination of chemotherapy and radiation therapy,
and also the categorical type of local therapy
applied—e.g., with organ (larynx) preservation (LP)
or without.
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� Outcome Descriptors. Outcome descriptors typi-
cally include the number of months survived by
the patient, as well as whether they are still
surviving.

From these recorded variables, the goal is to predict the
probability of survival of a specific patient. With the excep-
tion of the patient age and survival interval and probability,
which take continuous numerical values, all variables used
in this analysis take discrete, categorical values in a typically
small set (2 to 5 possible values). Table 1 summarizes these
variables.

3.3.2 Task Analysis

Through repeated interviews with our collaborators and
analysis of the resulting interview data, we summarized a
list of tasks for analyzing the patient data in head and neck
cancer therapy:

� Task 1: Given a particular patient, compute anddisplay
the most similar patients according to demographics,
treatment descriptors, and disease descriptors, along
with the patients’ survival probabilities.

� Task 2: Show specific information for a particular
patient (treatment descriptors, demographics etc.),
along with their computed survival probability.

� Task 3: Compare the selected patient to the most sim-
ilar patients in terms of their characteristics and com-
puted survival probability (e.g., survival with age,
treatment etc.).

� Task 4: Compare trends in the survival probability
over time of a specific patient’s subgroup versus
another subgroup. E.g., compare the survival proba-
bility over 5 years of white T3 patients between those
who have and those who have not received
chemotherapy.

� Task 5: Explore correlations between specific patient
(or subgroup) variables and the predicted survival,
and indicate the variable contribution to the pre-
dicted value. E.g., explore the relationship between

ethnicity and computed survival probability for a
specific patient.

� Task 6: Provide the cohort context for a particular
patient survival probability, including the size of the
cohort. E.g., display the survival probability of
female African-American patients with glottic can-
cers, along with the cohort size that was used to com-
pute that probability.

While the tasks are numbered here, they are often com-
bined in different sequences along specific workflows to
solve higher-level goals such as “Which cancer descriptor
has strong influence on the survival of patient A?” or
“Which therapy course would yield the best outcome for
patient B?”. As also reflected by the tasks above, the clini-
cians emphasized repeatedly that their interest is in how a
specific patient fits into the existing repository, and not in
general, public-health style analyses.

3.3.3 Data Preprocessing

To enable risk prediction calculations, we transformed the
data to numerical values. Data was extracted from charts of
patients who were treated with adjuvant or definitive radio-
therapy for locally advanced (stage T3 or T4) laryngeal can-
cer between 1983 and 2011. Eight prognostic covariates
were used in the analysis (i.e., age, sex, ethnicity, Eastern
Cooperative Oncology Group performance status, primary
site, stage, and details regarding treatment (chemotherapy
and local therapy) based on a review of the literature
[33], [34], [35], [36], [37].

For all the text-valued attributes, we created a lookup
table for all possible values to replace the values with conse-
cutive numeric values (e.g., for sex: 0 = Female, 1 = Male).
Missing values were assigned a distinguished value (or
NaN). Out of the eight covariates, only age was continuous
and was not transformed.

3.4 Visual Encodings

Encoding data with many attributes and yet few values per
attribute is not trivial, because, in our experience, graphs
with multiple dimensions are typically hard to understand
by users who do not have a visualization background. For
future ease of distribution, as well as ease of testing, a web-
based implementation was also desirable. For these reasons,
we pursued a web-based multiple coordinated views para-
digm that allowed both separation and integration of the
data views along multiple workflows.

Due to the project geographical and time constraints,
prototyping took place in a remote setting, punctuated by
site visits. A series of low-fidelity prototypes were sketched
on paper and in software to illustrate how individual fea-
tures could be incorporated into an overall design, what
tasks could be performed and what interactions could
be incorporated. We followed a parallel prototyping
approach [38], which has been shown to lead to better
design results, in which multiple prototypes were presented
to the group. We discussed multiple versions, combinations
and permutations of these low-fidelity prototypes with the
group, and incorporated their feedback and suggestions in
successive iterations.

The final prototype works in two stages, inspired by Van
Ham and Perer’s paradigm for large data: “Search, show

TABLE 1
Dataset Descriptors

Demographics Age Numerical value larger than
0

Gender (2) Male or female
Ethnicity (5) White, african-american, his-

panic, asian, other
ECOG (4) 0 to 3

Therapy
Descriptors

Chemotherapy (4) No chemo, concurrent,
induction, or induction+che-
moRT

Local therapy (3) LP/chemoRT, LPRT, or LP/
RT alone

Cancer
Descriptors

Site of tumor (4) Glottic, Subglottic, Supra-
glottic, or Transglottic

Cancer stage (2) T3 or T4
Nodal disease (2) N+ or N0

Survival
Probability

Numerical value between 0 and 1

Survival
Month

Numerical value larger than 0
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context, expand on demand” [39], [40]. We note that while
powerful, this paradigm has not been well studied outside
the domain of large-scale, dense graphs. In our approach, in
the first stage, a clinician may either enter the search criteria
for their patient, or elect to explore a patient from the exist-
ing dataset. The environment then responds with four inter-
active coordinated views: 1) a search-based Kiviat patient
comparison panel; 2) a nomogram explorer–a geometric
construction diagram to enable detailed analysis and com-
parison of survival probabilities; 3) a survival-over-time
comparison panel; and 4) a context mosaic plot and filter
bar panel. The panels are connected to statistical computa-
tion modules that enable filtering and probabilistic calcula-
tions on the selected data. We describe below each panel
and its associated statistics module.

3.5 Nearest Neighbors Comparison Panel

Categorical Kiviat Diagrams. Because clinicians were inter-
ested in analyzing similar patients and their response to
treatment, the first panel enables similar patient compari-
son. A small-multiple display of Kiviat diagrams represents
the 5 most similar patients to the one selected. The similarity
is determined based on a subset of the eight most critical
attributes. These attributes can indicate how different
patients responded to the same therapy, or how patients
with similar traits responded to different treatments.

Once the most similar patients are retrieved by the statis-
tical module described below, their attributes are mapped

as follows: in a single Kiviat an axis is assigned to each
patient attribute, and the axes are arranged radially. We
assign to each possible attribute value a distance from the
center, and a closed polygon path is constructed by connect-
ing the points on the axis representing the patient’s attrib-
utes to produce a compact representation of a patient.
Finally, the color of the Kiviats encodes the survival proba-
bility of that patient, from blue (good) to orange (bad). The
shape and color encoding captures effectively the variety of
outcomes across similar patients (Fig. 2).

The Kiviat encoding was selected over heatmaps and
parallel coordinate plots because of its preattentive features.
We note that our encoding extends star plots—typically
used to encode quantitative attributes—to few-valued cate-
gorical data. Although the mapping enforces a false implicit
ordering of non-ordinal data (Asian patients are not “less
than” Hispanic patients), the benefits arriving from the pre-
attentive shape comparison clearly outweighed the disad-
vantage. The Kiviat axis ordering is not an issue here: each
Kiviat uses the same axis ordering across patients, resulting
in similar polygon shapes for similar patients.

Statistics Module. When a patient is selected, a statistical
module executes a K Nearest Neighbor (KNN) algorithm to
find the most similar patients in the dataset. To compute
patient similarity, the algorithm uses the eight most impor-
tant features presented in Table 1 (or a subset of these val-
ues; to enable therapy exploration, therapy-variables are by
default excluded). As the table shows, all the attributes

Fig. 2. Example Kiviat panels for three patients (417, 568, 413). Each panel shows on the left the patient currently selected, and on the right the 5
most similar patients. The glyph colors encode the patient survival rate, from good (blue) to worse (orange). While the Kiviats encode few-valued cat-
egorical data, as opposed to quantitative, note how the glyph shapes in the small multiple display capture the patient similarity at a glance.
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except for age are discrete values with no intrinsic order
relation. For example, a white person cannot be said to be
closer to a Hispanic than to an Asian. In the case of discrete
data like ours, Hamming distance is the preferred measure
of similarity; euclidean or Manhattan distance metrics are
not appropriate in this case. Therefore we compute Ham-
ming distance over all the discrete attributes:

HammingðP;QÞ ¼
XjAj

i¼1

1 iff ðPi 6¼ QiÞ; (1)

where P and Q refer to the patients, jAj is the number of
attributes, and Pi refers to the value of the ith attribute of P.
Because the Hamming distance is a discrete function with
range [0,jAj], we use the age difference as a tiebreaker. The
five patients with the smallest distance measures are
selected as the nearest neighbors.

The 5-year probability of survival is computed through
the nomogram module described below.

Interaction. Details on demand are available by hovering
over each Kiviat axis. Further controls allow a user to
include or exclude specific variables from the KNN search.

3.6 Interactive Nomogram Panel

Interactive Nomogram. The second component of the environ-
ment is an interactive nomogram panel. A nomogram (from
Greek “nomos”, law, and “gramme”, line) is a graphical cal-
culating device in the shape of a two-dimensional diagram.
The diagram uses a parallel coordinate system: it represents
the relations between typically three variables by means of
a number of fixed vertical axes, so arranged that the value
of one variable can be found by a simple geometric con-
struction, for example, by drawing a straight line intersect-
ing the other scales at the appropriate values.

Nomograms date from 1884 [22] and are commonly
used, in paper form, in the target domain. We adapt and
extend the nomogram encoding for the purpose of similar-
ity-based therapy planning.

We note that, despite a similar use of parallel coordi-
nates, nomograms differ from the century-later parallel
coordinate plots [42] in several important aspects related to
their construction and usage. Nomograms are, first and
foremost, a precision calculating device, not a general filter-
ing tool—a scalpel, not a sword. Because nomograms are
calculating devices, unlike general parallel coordinate plots,
the order of the nomogram axes is fixed, and the last axis
bears particular meaning by encoding the outcome of inter-
est. Second, the nomogram axes can be, and are in practice,
mapped to few-valued categorical attributes, not many-val-
ued attributes. These axes can further be translated verti-
cally and scaled. Third, the height of each nomogram axis is
correlated to the weight of that variable into the computa-
tion of the outcome. Fourth, because nomograms are
employed to analyze one to a few specific individuals, they
should not be used to drive other statistical modules, in the
style of parallel coordinate plots: the resulting statistics on
such few samples would be invalid.

For the order of the first set of axes, we followed the typi-
cal clinician descriptor of a new patient: “56 year old male
white patient with T3 glottic cancer [...]”, hence age, gender,

ethnicity, cancer type, site [...]. The next set of axes encode
the treatment plan applied. The last axis (or the “result” of
the nomogram) is the outcome of that therapy: the 5-year
survival rate. The height of each axis is proportional to the
weight of that variable in the outcome calculation, and thus
helps give insight into the mechanics of the statistical model
on which it is based. Where possible, the vertical tick labels
are laid down according to their contribution to the survival
probability: for example, in the nomogram plot age goes
from high values at the axis bottom towards low values at
the axis top, since older age is associated with lower proba-
bility of survival. As in general parallel coordinate plots,
each patient in the repository becomes a polyline in this
coordinate system (Fig. 3).

Statistics Module. Because the mean survival probability
needs to be computed over a 5-year period in the presence
of incomplete data, we perform this computation with a
martingale model and a statistical algorithm. We first com-
pute offline the estimated 5-year survival from a parametric
accelerated failure-time model which assumes a baseline
Weibull distribution. Covariates including gender, age,
staging, nodal status, ethnicity, location of tumor etc. are
assumed to be linearly related to the hazard factor. The haz-
ard factor is the instantaneous probability of dying on any
day given the subject were alive the previous day. A pro-
portional hazards model typically assumes the logarithm of
the hazard is equal to a linear combination of covariates
(e.g., gender, age, staging, etc) [43]. The model is fit using a
maximum likelihood approach. The resulting 5-year sur-
vival value is mapped to the last axis of the nomogram.

Interaction. The default usage mode for the nomogram is
along its original purpose: only the K Nearest Neighbors
are shown, and therapy variables are not included in the
KNN search. For wider exploration, users may elect to view
other patients, or recompute and explore the nearest neigh-
bors using only a subset of the similarity criteria. The Kiviat
panel is updated accordingly.

Users can filter the nomogram data by interacting directly
with the axes in the chart, or indirectly through a set of axis
controls. Clicking and dragging along an axis creates a filter
with that selection. The advanced indirect controls allow, in
the style of traditional paper-nomogram generation, the
removal of specific axes and remapping of the values shown.

Figure 3 illustrates the process of nomogram editing to
generate a paper nomogram. The resulting paper nomo-
gram has been recently published and disseminated [41].

3.7 Kaplan Meier Survival Panel

Survival Curves. The use of survival curves in cancer research
has a long history [44], [45], [46], [47]. Static survival curves
were frequently used by both radiotherapists and statisti-
cians to explain therapy outcome differences across patient
groups. A survival curve displays the survival experience of
a cohort of patients by showing the survival probability ver-
sus time. We blend interactive filtering with a Kaplan Meier
survival plot encoding and a statistical module to enable the
mining of survival probabilities (Fig. 4).

The survival encoding shows how the probability of sur-
vival over time changes depending on the different charac-
teristics of the patients. For instance, patients with a T4-stage
of cancer tend to have lower chances of survival compared to
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patients with a T3-stage cancer over the same period of time.
The horizontal axis of the graph represents time, while the
vertical axis represents the probability of survival of a patient
over that period of time. We compute these plots for all the
attributes currently selected by the user.

Each plot in the graph represents a different value that
the respective attribute can assume, and its color (based on
colorbrewer2.org) encodes the attribute. Each plot is sur-
rounded by a paler ribbon in the same hue, which repre-
sents the 95% confidence interval of our prediction.

Statistics Module. Straightforward estimators of the prob-
ability of survival at a certain time point (e.g., the sample
percentage of subjects surviving beyond a certain time
point) are insufficient when the length of follow-up is

variable. For example, when we estimate the survival prob-
ability at 5 years for a subject who is only followed for 3
years before the study ends, it is unclear whether the subject
would have survived for 5 years. This phenomenon, known
as right-censoring, characterizes many biomedical datasets,
including the one considered here.

The Kaplan-Meier (or product-limit) estimator of the sur-
vival probability is the standard method when the outcome
(survival time) may be right-censored due to loss-to-follow-
up or study termination. Additionally, the Kaplan Meier
estimator is the nonparametric maximum likelihood estima-
tor (MLE) of the survival probability. MLEs are advanta-
geous because they are the (asymptotic) efficient estimator.
That is, we cannot do better (in terms of minimizing the

Fig. 3. Interactive nomogram for a white female subject with T3 supraglottic cancer, before (top) and after (middle and bottom) axis editing. A filter
has been applied along the age axis in all versions. In the top image, a mouse-over highlights one similar patient of interest. In the middle version, a
statistician has determined that the gender axis is irrelevant and has removed it. In the bottom version, some axes have been rescaled and trans-
lated, in order to generate a cleaner, publishable paper nomogram [41].
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mean squared error) than the Kaplan-Meier estimator with-
out making some parametric assumption about the survival
distribution.

We calculate the data in the chart using the Kaplan-Meier
estimator formula:

ŜðtÞ ¼
Y

ti�t

ni � di
ni

; (2)

where ŜðtÞ is the maximum likelihood estimate, ni is the
number of survivors just prior to time ti, and di is the num-
ber of deaths occurred at ti.

The confidence interval is calculated as a two standard
deviation range around the predicted value, where the stan-
dard deviation is computed using Greenwood’s formula:

^VarðŜðtÞÞ ¼ ŜðtÞ2
X

ti�t

di
niðni � diÞ : (3)

Interaction. The attribute being analyzed in the survival
plot can be changed by choosing from a listbox located
above the graph. We do not compute or show a Kaplan plot
when the number of patients considered for the plot drops
below 5. The plot is linked to other panels (e.g., the nomo-
gram view) through color.

3.8 Cohort Context

Mosaic Plot. The last component of the environment is a con-
text mosaic plot (Fig. 5) [48], which shows the number of
patients in the dataset who match the user-specified values
for any combination of attributes. The mosaic has two func-
tions: showing a quantitative context of the patient distribu-
tion based on the current category selection, and filtering
the data if necessary.

The two mosaic axes are mapped to the possible values
that a pair of attributes can take, from a sequence of attrib-
utes selected by the user. Each combination of values is

assigned a tile; the size of the tile is proportional to the per-
centage of patients with those particular attributes, within
the currently selected dataset. The mosaic tiles use the same
color scheme as the Kiviats to encode the 5-year survival
rate for patients belonging to that group: blue means the
mean 5 year survival probability for that group is greater
than a user defined threshold; orange means the opposite.
The threshold can be interactively modified through a
scented widget [49] at the bottom of the mosaic.

The interactive mosaic encoding was selected and
streamlined after multiple discussions of prototypes, over a
simpler treemap encoding, small multiple scatterplot varia-
tions, heatmaps, and textured/multicolored mosaics.
Quotes below mark feedback from our biomed collabora-
tors. Heatmaps, a popular encoding in the biomed field,
were discarded despite showing large amounts of overview
information in a compact form, because “clinicians are inter-
ested in how their particular patient fits in, and not in
generic overviews”. Small multiple scatterplots took too
much screen space and were “hard to read”. In view of the
heatmap comments, the treemap encoding was a surprising
success, yet lost to the mosaic plot which, after streamlining,
was “much clearer and easier to read”.

Filter Bar. A filter bar at the top of the mosaic serves as a
navigation reminder: each time a filter is applied to the data
through the mosaic, a breadcrumb is added to the bar,
showing the attributes added to the current filter. The
breadcrumbs are interactive and allow users to disable spe-
cific filters (Fig. 1).

Statistics Module. The mosaic is linked to the same statis-
tics module as the nomogram panel. The module computes
the 5-year survival rate of each patient.

Interaction. Clicking on a tile filters the data and updates
the mosaic: only the patients with the selected combination
of attributes will be shown in the updated mosaic. The
attributes can be reordered using a popup menu, if the user
wishes to explore the data in a different sequence from the
default one. Hovering over a tile further displays statistics
about that subgroup (such as number of samples and stan-
dard deviation) as details on demand.

3.9 Scaffolding

Because medical professionals tend to resist to novel encod-
ings (as documented in our related work), it was important
to incorporate in the environment scaffolding components

Fig. 4. A survival encoding in the style of Kaplan-Meier, showing the dif-
ferent survival probability distributions depending on the cancer stage.
For this interactive plot, white patients with supraglottic cancer were
selected.

Fig. 5. Mosaic investigation of survival rates and cancer sites context for
a Hispanic patient. Left: Glottic cancers (second box from the top, in
blue for all ethnicities) indicate high (above 0.52) 5-year mean survival
rates across ethnicities. Right: Hispanics, Asian and undetermined eth-
nicities with glottic cancers have even higher (above 0.69) mean survival
rates. However, only the Hispanic group (rightmost column) contains
enough samples to warrant further investigation.
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that would ease the interface learning curve. In the overall
layout, encodings that exist in paper form in the target
domain (nomograms and survival plots) are placed cen-
trally, to provide visual anchors. We link the less familiar
representations (Kiviats and mosaic) to these anchors
through a linked view paradigm, which has been shown to
assist in visual scaffolding [50]. Inspired by similar
approaches in successful videogames, we further provide
help buttons for each panel, as well as for the entire inter-
face, with on-demand explanations for each visual represen-
tation and the interactions available.

Implementation Details. The therapy explorer is built in
Javascript, using the D3.js data visualization library. We
implemented our own nomogram package, and make it
available as open-source (https://github.com/uic-evl/d3.
nomogram). The explorer is available at https://uic-evl.
github.io/SMART/.

4 EVALUATION AND RESULTS

Because evaluators and designers were separated over space
and time due to the project constraints, we evaluated the ther-
apy explorer through a combination of multiple demonstra-
tions and case studies involving the larger expert team, and
several hallway usability tests with novice users. This com-
bined approach enabled faster design cycles than the weekly
electronicmeetings: novice users captured coarse-level design
potential issues, while the experts had final say over design
decisions and captured higher-level potential issues. The
demonstrations took various forms, from collocated designer-
driven demos to collocated novice-driven tests and to expert-
driven remote sessions using screen-sharing software.

4.1 Hallway Usability

Hallway usability is a fast, inexpensive method of usability
testing inwhich randomly-selected people—e.g., people pass-
ing by in the hallway—are asked to try using a product or ser-
vice. The approach can help designers identify “brick walls,”
problems so serious that users simply cannot advance using
the product. In the early stages of design, we employed hall-
way usability to observe six computer science graduate stu-
dents use the system. We note that hallway usability tests are
in no way large scale user studies, which exceed the scope of
visualization design works, but a practical, hands-on
approach to improving usability in specific contexts.

We selected a list of reasonably complex tasks for these
users (e.g., “Using the tree map representation, display the
overall survival probability at 0.5 for a given male Hispanic
subject with supraglottic T3-stage cancer”) and gave them
the opportunity to use the prototypes after a brief tutorial.
We used a think-aloud technique while observing the par-
ticipants, and used their feedback to improve the design.
The approach enabled us, for example, to evaluate infor-
mally the workflow benefits of a linked views paradigm as
opposed to separate tabs, and the advantages and disadvan-
tages of encodings, for example Kaplan Meier charts, nomo-
grams, treemaps, or mosaic plots.

These tests and feedback indicated, for example, that the
workflow was best incorporated in a linked views paradigm
(lower time-on-task and fewer clicks), even if this implied
less real-estate screen space per encoding, and that in this

application mosaic plots were easier to understand than
treemaps (higher task success and lower time on task, by a
factor as high as 3). Feedback from the domain experts con-
firmed these findings during both site visits and remote
meetings (e.g., “mosaic plots are absolutely better than tree-
maps in this case”).

4.2 Expert Case Studies and Feedback

To evaluate the effectiveness of the approach, we have com-
pleted two case studies together with domain experts. The
case studies were completed in separate sessions, two weeks
apart; the second case reflects increased user familiarity with
the visual representations. Both case studies involved two
senior radiotherapists (one of whom is a practicing clinician),
a statistician, and a data mining researcher. The therapy
explorer was used on a dataset of 632 patients with head and
neck cancer. For these two cases, the experts were given direct
access to the web-based explorer, and we used screen sharing
with turn taking, and a think-aloud technique to analyze their
interactions with the environment. The domain experts have
been using this work for over a year [41]. The case studies and
verbiage reported below have been abbreviated and simpli-
fied for a lay audience.

4.2.1 Patient Prognosis and Therapy Exploration

In the first case study, our collaborators analyzed a specific
patient in the repository, with particular emphasis on
patient similarity and therapy choice (tasks Task 1 - Task 4).
The team selected a specific patient, white female with T4
supraglottic cancer.

The group analysis started directly with the Kiviat com-
parison panel. In fact, a team member was visually brows-
ing through the patient data using the Kiviats, and the
subject caught their eye due to the variation of outcomes in
her nearest neighbors: the neighbor glyph colors varied
from light blue to orange (Fig. 1). The most promising simi-
lar case (third from the bottom, in blue) is very similar—
also white female supraglottic, low ecog score, etc—, but
has T3 supraglottic cancer.

The specialist took note of the demographics of the patient,
and proceeded to the mosaic to figure out the context of the
patient’s group (white, supraglottic). After interacting with
the mosaic, the group noted the T3 female subgroup had par-
ticularly lowmean survival rates, close to those of the T4 cate-
gory (Fig. 1 mosaic). The Kaplan Meier survival plot also
predicted similar trajectories for the T3 and T4 categories.
Spurred on by this finding, the analysis moved swiftly to the
interactive nomogrampanel. After further filtering by gender,
T category, and nodal disease, the analysis focused on the two
patientsmost similar to the subject. The group notedwith sur-
prise that despite the variation in the treatment course for
these patients, the survival outcomes were very similar and
fairly low. The clinicians are using these findings to identify
high-risk treatment responders.

4.2.2 Hispanic Glottic Therapy Analysis

In this exploratory study, the domain experts hypothesized
a potential correlation between Hispanic ethnicity, glottic
tumor site, multiple therapy paths, and survival rates for a
specific patient (tasks Task 1 through Task 6). This
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hypothesis marked a departure from the state-of-the-art
therapy planning protocol at the clinic, which was primarily
based on cancer staging (T3 versus T4).

After selecting the patient characteristics, the radio-
therapists’ exploration started with the nomogram panel,
while the data mining researcher headed straight to the Kiv-
iat panel, and the statistician zeroed in on the Kaplan-Meier
survival plot. After reconvening and interacting as a group
with the mosaic plot and the survival slider, it was noted
that across all ethnicities, glottic cancers had higher 5-year
mean survival rates (Fig. 5 left) than cancers at other sites,
and that Hispanics, Asian and undefined ethnicities had
even higher 5-year mean rates (Fig. 5 right) than other eth-
nicities. The details on demand revealed that from these
three subgroups, the Hispanic glottic group had sufficient
samples present in the repository (23 subjects, as opposed
to 1, respectively 5).

Drilling down in this subgroup, the mosaic view con-
firmed that T3 cancers had higher survival rates than the
more advanced stage T4 cancers, as expected. When switch-
ing to the Kaplan Meier T-category survival plot, we easily
noted, however, that the T4 and T3 ribbons (standard devia-
tion) were both wide and at times overlapping, indicating
similar survivals regardless of the cancer staging. As
expected, the predicted survival time in months for T3 cases
was significantly longer than the one for T4. However, and
surprisingly, the advanced-stage T4 cases featured higher
probability of survival in the 4 to 17 years survival period
than T3 cases (Fig. 6).

Next, the group examined the nearest neighbors of the
specific Hispanic glottic patient (Fig. 7). As shown in Fig. 7,
the six cases are remarkably similar with respect to eight
possible variables (Site, TCategory, Gender, Ethnicity, Che-
motherapy, NodalDisease, Ecog, LocalTherapy). Further-
more, they all had reasonable survival outcomes, as

encoded by the blue shades of the glyphs. Encouraged by
this finding, the group used the interactive nomogram to
explore correlations between the patient’s age at the time of
treatment and the survival rate. Within the patient’s age
group, all similar patients with glottic cancer had reason-
ably high survival rates. Survival rates in the same group
lowered dramatically for patients with supraglottic cancer,
indicating that the tumor site was an important predictor of
treatment success. Follow-up clinical studies will be
informed by this observation, and may be used to refine the
therapy selection protocol.

4.2.3 Expert Feedback

The clinicians were enthusiastic about the therapy
explorer (“freaking awesome”). The Kiviat encodings, the
interactive nomograms, and the interactive survival plots
were immediate successes, while the context mosaic was
more slowly adopted after a few demonstrations. In addi-
tion to the case studies completed with the therapy
explorer, the group promptly noticed several anomalies
in the dataset that had never been discovered before and
turned out to be data copying issues. This confirms the
power of this approach even in a challenging task such as
outlier detection. The experts further confirmed the value

Fig. 6. T-category survival plot for Hispanic glottic cancer cases (T3 in
brown, and T4 in pink). The T4 and T3 ribbons (standard deviation) are
both wide and at times overlapping. The predicted survival time in
months for T3 cases is significantly longer than the one for T4. However,
and surprisingly, T4 cases feature higher probability of survival in the
middle 4 to 17 years survival period than T3 cases: note that in this 4-17
interval (X axis) the T4 line chart is higher than the T3 line chart.

Fig. 7. Kiviat profile for a Hispanic male patient with glottic cancer, and
the 5 most similar patients in the repository. The polygon shade encodes
the 5-year survival rate (blue is better, grays and browns towards orange
are worse). Note how similar the six patients are with respect to 8
variables.
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of the explorer as a research and education tool, and are
eager to publicize it.

During the evaluation process, we noted that the layout
of the panels on the same screen made possible multiple
workflows (Fig. 8): 1) left to right, beginning by browsing
the patient set to find similarities, followed by context data
and comparison of survival, followed by filtering opera-
tions, and progressing towards individual patient detailed
analysis and survival prediction; 2) right to left, beginning
with therapy exploration, then moving on to similarity
search etc; 3) middle to either left or right, beginning with
the survival plots and followed by similarity search or con-
text analysis; 4) from top to bottom, filtering the patient
data in the nomogram, then examining the context of the
results, and so on. We note that Marshall and Shipman [51],
who have studied the use of tools for collaborative work,
observed before that users resist systems that impose for-
malisms such as structures and procedures. We speculate
that the coordinated views paradigm followed in our work
supports not only flexible integration of multiple data
views, but also flexible workflows.

5 DISCUSSION

The case studies and the domain expert feedback indicate
that our integrated approach is of significant help in the
comparative exploration of treatment outcomes. The evalu-
ation with expert users of varied backgrounds further
shows that the therapy explorer is at the same time user-
friendly and powerful. Experts could find in just minutes
new interesting patterns and even anomalies in a dataset
they had explored using different tools for a long time. The
novice usage evaluation sessions and an emphasis on

scaffolding have further helped in creating an easy to use
and clear interface. The result is a compact design which
maximizes the use of screen real estate and supports flexible
expert workflows.

The statistics-backed interactive nomograms and the
interactive survival plot encodings are novel contributions.
The exploration of Kiviats and mosaics in the context of
few-valued categorical data is further original. The explora-
tion of the design space with an emphasis on an activity-
centered design process, and the implementation of the Van
Ham and Perer’s mantra in this few-valued context are fur-
ther novel contributions. The combination of visual encod-
ings in a tool to handle multivariate data in precision
medicine is also novel.

The chosen visual encodings have been shown to have
complementary strengths. When connected through scaf-
folding, these multiple encodings and views on the data
provided insight into domain problems, steered the inves-
tigation, and allowed for the generation of new observa-
tions. In this scaffolding context, helpful factors were the
fact that static nomograms existed in the target domain.
Similarly, the interactive Kaplan Meier survival plots are
close to the static plots and error bars common in
biomedicine.

In terms of limitations, we note that our precision
approach operates on a relatively reduced set of patient
markers, none of which include spatial characteristics. Inte-
grating a larger number of markers in both the statistical
methods and in the visual representations is an ambitious
direction of future work.

A measure of the success of this project is the adoption of
the tool for research purposes by our co-authors and their
research labs. Reflecting on the design experience in this

Fig. 8. Three of the possible workflows through the explorer, as observed during evaluation with domain experts who had different backgrounds.
These observations show how panel layout in a linked views approach enable multiple workflows.
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successful geographically-distributed collaboration, we note
the following points:

� P1 Sprint requirements engineering: collocated, two-
way, sprint-style. The data and task analysis phase
can really make or break a geographically distrib-
uted visual design project, and as such constitutes
the best use of face to face time. This starter set of
requirements was generated and refined through
peer-programming style interaction, in which the
team explained the project, in several rounds, to a
lay audience. This two way dialog and mutually-
approved document formed a solid foundation for
the prototyping stage.

� P2 Prototyping and scaffolding: parallel prototyping,
domain encodings, and live demos. In our remote,
multi-site collaboration—with reduced and strict
time available for meetings—parallel prototyping
was a key element, as were live demos. We further-
more found success by building upon domain-spe-
cific encodings. Using those familiar encodings
within a linked view framework served as a visual
scaffold, allowing the users to harness and expand
their previous analysis experience. We furthermore
found that paper prototypes are convenient for fast
design iterations, but that sometimes live demos are
required to make the case for a particular encoding:
for example, mosaics only became a success once
interacting with them was possible.

� P3 Local/Remote evaluation: combined hallway usabil-
ity and remote testing. The combination of hallway
usability and remote testing methods has allowed
for faster design and development cycles, in a collab-
oration which had to tackle differences in geographi-
cal space and expertise. To this end, a web-based
implementation was also important for remote test-
ing. Due to the limited time available for e-meetings,
it was further important to have scenarios ready to
demonstrate the benefits of specific encodings and
interactions.

6 CONCLUSION

In conclusion, we have designed, developed and validated a
novel visualization approach to precision medicine that
enables the detection of similar patients and then the sys-
tematic exploration and comparison of individual factors
collected from these groups of similar patients. Our
approach integrates a statistical model and a K Nearest
Neighbors approach with visual analysis in order to com-
pute and explain the probability of survival under user-
specified constraints.

We introduced scalable visual encodings for these data,
which are multivariate, heterogeneous and often few-val-
ued. These linked encodings combine statistics-driven
nomograms—an interactive parallel plot representation for
risk prediction; interactive Kaplan-Meier survival plots—a
visual representation for risk evolution over time; Kiviat
representations; and statistics-driven mosaics. The combina-
tion of these familiar and unfamiliar encodings follows
visual scaffolding principles, to support their adoption by
the target audience. The statistics-driven encodings we

have introduced and documented in this work may find
application in other domains that feature risk assessment,
for example in finance visualization.

Evaluation with domain experts shows that the combina-
tion of these encodings supports streamlined workflows
which help radiotherapists quickly identify similar patients
and predict outcomes. Last but not least, we described the
expert feedback and the design lessons learned from this
successful, multi-site remote collaboration. We believe these
findings transfer across collaborations, visual designs and
application domains.
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