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Abstract—Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular

recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data

derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic

framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the

Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system.

We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between

successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set

of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning

complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new

method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space.

Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time,

the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only.

Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of

adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can

generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as

motion-based gaming and sport training.

Index Terms—Gaussian process, incremental learning, kinect, posture reconstruction

Ç

1 INTRODUCTION

HUMAN motion recognition is an important component
in interactive applications nowadays. Traditional

motion-based systems such as those for dance training
are based on motion capture technology, where the user’s
movement is captured by an optical motion capture sys-
tem [1]. While these applications can evaluate user perfor-
mance with the accurately captured motions, they are not
convenient since users have to wear capture suits with
reflective markers. Moreover, these devices are relatively
expensive and are not affordable for home use.

Depth image based motion sensing devices such as the
Microsoft Kinect [2] serve as an alternative to capture
human movement for interactive applications. Kinect is a
controller-free device that infers 3D positions of human
body joints from a single depth image with the help of a
data-driven machine learning algorithm [3]. With such a
device, it becomes possible to implement a natural user
interface for virtual reality applications and gesture based

systems [4]. While Kinect can robustly track the 3D postures
of the user, the captured data suffer from poor precision
due to self-occlusions and insufficient information provided
by the Kinect sensor. Therefore, Kinect based interactive
applications usually require the user to face the device so
that individual body parts are observable, which greatly
limits the system flexibility. In addition, the user has to min-
imize self-occluded postures, or Kinect would misrecognize
body parts. As illustrated in Fig. 1, the blue skeleton repre-
sents the tracked result by Kinect SDK [2]. We can see the
tracked arms are twisted due to self-occlusions. Therefore,
it is essential to develop effective posture reconstruction
strategies for interactive applications.

The occlusion problem and incompleteness of the
tracked joints remain challenging despite the posture recon-
struction research proposed in the past years. Generating
postures from low dimensional signals is a potential solu-
tion for posture reconstruction [5], [6]. However, these
methods assume the low dimensional signal to be stable
and accurate, while joints tracked by Kinect are not. Hence,
applying them to reconstruct Kinect postures will create
unsatisfying results. Shum et al. [7] applies reliability mea-
surement to improve the posture reconstruction process.
However, the reconstruction results depend heavily on
the similarity between database postures and input ones.
The system therefore requires a huge posture database.

In this paper, we propose a probabilistic model based on
Gaussian Process (GP) to reconstruct postures captured
from Kinect, where the input motion belongs to one of the
action classes in the database. Unlike previous systems that
require a large motion database, GP based model can be
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robustly trained from small training sets. Moreover, the
parameters of the kernel function can be optimized without
relying on experimental cross validation [8]. We constrain
the solution space such that the reconstructed posture is
accurate while maintaining the originality of the input pos-
ture from Kinect. We adopt Gaussian Process model as a
spatial prior distribution to predict the offset between Kin-
ect and the ground truth, which aims at improving the accu-
racy of the postures in the case where there is sensor error
from Kinect. Furthermore, since reconstructing each posture
independently cannot ensure the temporal smoothness of
the posture sequence, we introduce a temporal consistency
term to constrain the velocity variations between successive
frames. Inspired by [7], we embed the reliability of each
joint into the optimization framework to ensure that the
reconstructed posture resembles the accurate parts of the
Kinect tracked posture. Last, we propose a new method
based on local mixture of Gaussian Processes to alleviate
the cubic learning complexity of a regular GP model such
that our system can deal with a large variety of movement.
The experimental results demonstrate that the proposed
approach is effective in reconstructing a number of motions
containing self-occlusions. For example, as illustrated in
Fig. 5a, our method accurately reconstructs the posture of
bending over with a number of joints occluded.

The major contributions of this paper are summarized
as follows:

1) We propose a new unified framework for posture
reconstruction using Kinect. The system optimizes
an occluded posture live captured by Kinect, which
maintains the correctness of the posture while pre-
serving temporal smoothness between frames. The
proposed system performs well with significant
smaller training sets comparing with previous work
in the field.

2) We propose three terms to constrain the solution
space. The Gaussian Process based spatial prediction
term utilizesmotion capture data to reconstruct input
postures. The temporal prediction term ensures the
temporal consistency between consecutive frames.
Finally, the reliability term guides the optimized pos-
tures toward themore reliable parts of the Kinect pos-
tures, preserving the property of the input postures.

3) We propose a new method based on local mixture of
Gaussian Processes that partitions training samples
into local regions to relieve the cubic learning com-
plexity problem of Gaussian Process. With the pro-
posed framework, the prediction speed is enhanced
as only a few local models are considered for each
input posture. It also enables incremental updating
of local models in real time, which enhances the like-
lihood to adapt to the postures that are different
from those in the database.

Compared with our previous work [9], we have signifi-
cantly improved the spatial prediction algorithm. First,
with the newly proposed method based on local mixture
of GP models, our method generates postures of similar
quality to that of [9] with significantly less training data.
Second, we design a new algorithm to incrementally
update a specific local Gaussian Process in real time,
which enables the system to adapt to run-time postures
that are different from those in the database. Last,
because of the use of local models, our new framework
only needs to consider a few local models that are close
to an input posture rather than the whole database. Such
an enhancement in efficiency allows us to combine all
types of motion as a single database, while in [9] a sepa-
rate database is built for each type of motion.

The rest of the paper is organized as below.We first review
the related work of posture reconstruction in Section 2.
Section 3 explains the procedure of data acquisition and pre-
processing processes. In Section 4, we elaborate the spatial
prediction, temporal prediction, and reliability term of the
objective function, and the new method based on local mix-
ture of GP models for posture reconstruction. Experimental
analysis and evaluation are conducted in Section 5. Finally, in
Section 6, we conclude the paper, aswell as discuss the limita-
tions and future research directions.

2 RELATED WORK

With the advancement in real-time depth cameras such as
Kinect, human motion recognition and posture estimation
have become a popular research topic in recent years. Kinect
is based on motion recognition technology proposed by [3],
where they use per-pixel classification method to quickly
predict 3D joint positions from a single depth image. A
number of research domains have benefited from Kinect,
such as human-machine interaction [10], natural user inter-
faces [4], and 3D reconstruction [11]. A recent review on
human activity analysis with Kinect can be found in [12].
Bailey and Bodenheimer [13] investigated the perceived dif-
ferences in the quality of animation generated using motion
capture data and a Kinect sensor, which clearly showed that
the data recorded from Kinect was of lower quality
compared with motion capture data from a Vicon motion
capture system. Hence, it is essential to develop an effective
posture reconstruction method to enhance the posture
quality of Kinect.

In this section, we first review previous work on recon-
structing postures from low dimensional signals. We then
discuss data-driven approaches for posture reconstruction.
We finally review the regression methods applied to pos-
ture reconstruction.

Fig. 1. Example of an inaccurately tracked posture from Kinect. The blue
skeleton is the tracked result by Kinect.
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2.1 Posture Reconstruction from Low
Dimensional Signals

Full body postures can be represented by a set of low
dimensional signals [5]. Some research work has been pro-
posed to reconstruct a full posture with a subset of the sig-
nals. Kim et al. [14] reconstructed human motion from 3D
motion sensors on a performer using kernel CCA-based
regression. Given the input data from sparse motion sen-
sors, they retrieve similar postures from the motion capture
database and transform the low dimensional signal into the
full posture space using an online local model. Chai and
Hodgins [5] employed a small set of retro-reflective markers
to capture performance animation in real time. In their sys-
tem, the low dimensional control signals from the user’s
performance were supplemented by a pre-recorded human
motion database. At run time, the system automatically
learned some local models from the retrieved motion cap-
ture data that were close to the marker locations recorded
by the camera. Their system only needs video cameras and
a small set of markers, which makes it low cost and practical
for home use. However, the majority of markers have to be
tracked by the cameras to provide enough information for
posture reconstruction.

Liu et al. [6] used a small number of motion sensors to
control a full-body human character. They constructed
online local dynamic models from pre-recorded motion
capture database and used them to construct full-body
human motion in a Maximum-a-Posteriori framework, in
which the system tried to find the most similar postures
from database for reconstruction. Helten et al. [15] adap-
tively fused inertial and depth information in a hybrid
framework for posture estimation. Although these meth-
ods can be used to reconstruct postures from low dimen-
sional signals, there is an assumption that these low
dimensional signals are reliable and stable. It is therefore
not applicable to noisy Kinect data.

2.2 Data-Driven Posture Reconstruction

Data-driven approaches usually reconstruct postures by
evaluating the similarity between the input posture and a
large posture database. Sigalas et al. [16] presented a data-
driven model based method for 3D torso posture estimation
from RGB-D image sequence. Although their method can
extract the upper body posture of users without an initializa-
tion phase, they did not cope with full body posture recov-
ery nor handle the occlusion problem. Shum et al. [7], [17]
proposed a unified framework to control physically simu-
lated characters with live captured motion from Kinect by
searching for similar postures in a marker-based motion
database. They constructed a latent space with a small num-
ber of retrieved similar postures, and applied optimization
in the space to reconstruct the input postures. Baak et al. [18]
introduced a data-driven approach for full body reconstruc-
tion from a depth camera. They proposed an efficient algo-
rithm for extracting posture features from the depth data.
However, for fast movements, the proposed system required
all five extremities to be visible. Shen et al. [19] introduced an
exemplar-based method to correct the postures from Kinect
using marker-based motion data.

Yasin et al. [20] introduced a model based framework for
full body reconstruction from 2D video data using motion

capture database as the prior knowledge. The postures
were reconstructed in an optimization framework, in which
similar motion capture postures were retrieved through
nearest neighbor searching. However, the accuracy is not
robust because the 2D features projected from 3D motion
induce posture ambiguity. Wei et al. [21] solved the recon-
struction problem by registering a 3D articulated model
with depth information. They formulated the registration
problem into a Maximum-a-Posteriori framework to regis-
ter a 3D articulated human body model with monocular
depth via linear system solvers. To tackle the problem of
manual initialization and failure recovery, they combined
3D pose tracking with 3D pose detection.

In general, these data-driven methods requires large
database as prior, and the reconstruction results depend
heavily on the retrieved postures.

2.3 Regression Based Posture Reconstruction

Structured regression models for posture estimation such as
[22] and [23] can model the correlations between multivari-
ate output and input. Bo and Sminchisescu [22] presented
the Twin GP model that employs GP priors to model input
and output relations. The output postures were estimated
by minimizing the Kullback-Leibler divergence. Bo and
Sminchisescu [23] optimized an output-associative func-
tional that incorporates outputs and inputs using primal/
dual formulations and adapts the model to kernel ridge
regression and support vector regression. Shakhnarovich
et al. [24] estimated upper body posture, interpolating k-
nearest-neighbor postures matched by parameter sensitive
hashing. Ramakrishna et al. [25] presented an inference
machine to estimate articulated human pose. Their method
allows learning a rich spatial model and incorporating
high-capacity supervised predictors, which results in sub-
stantially improved pose estimation performance. Recently,
it has been shown that deep learning methods such as
[26] and [27] generate high precision pose estimates com-
pared to state-of-art methods.

Gaussian Process models are flexible probabilistic non-
parametric models. [9] presented a new probabilistic frame-
work based on Gaussian Process to enhance the accuracy of
the postures live captured by Kinect. Their method can gen-
erate high quality postures even under severe self-occlusion
situations. GP models are usually applied to small data sets
of a few hundred samples due to its OðN3Þ training com-
plexity, where N is the size of training data. In contrast,
our incremental sparsification method can efficiently handle
large data sets.

Previous attempts to solve the cubic learning complexity
problem of GP involve sparse Gaussian Process (SGP) [28],
[29], [30] and mixture of experts (ME) [31], [32], [33], [34].
SGP approximates the covariance matrix with a small sub-
set of training data [29] or a set of inducing variables [30].
While SGP can greatly reduce the computational complex-
ity, it utilizes a global voting scheme in which all training
samples contribute to the prediction of a new test input. In
contrast, ME applies gating network to partition the input
space into different subspaces, where each GP expert is
trained independently [31]. Compared with a regular GP
model, the computational complexity of ME is reduced
due to the significantly decreased sample size in each
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subspace [35], [36]. However, for simple expert, the gating
network has to be more complicated to model the function,
which results in a higher risk of getting stuck in local min-
ima or a slower learning process [37].

Urtasun and Darrell [33] proposed a sparse regression
scheme for efficient inference of high dimensional and
multi-modal mappings. Their method was based on a local
mixture of Gaussian Processes defined on both appearance
and posture. Different from [33] in which local GP models
were defined separately in the input and output spaces,
our local GP models are defined in the common posture
space. Nguyen-Tuong et al. [36] proposed a method with
local GP models to speed up standard Gaussian process
regression. They grouped the training data into local
regions by the distance measurement. The prediction of a
query point was determined by the weighted prediction of
nearby local models. Our local GP models are similar to
that of [36] in the sense that we use the Gaussian kernel to
measure the similarity between a test joint and the centers
of local models. However, our framework also embeds the
temporal constraint into optimization, which ensures the
smoothness across consecutive frames. In addition, com-
pared with both work, we implement the incremental
updating of local models in real time, which enhances the
likelihood to adapt to run-time postures that are different
from those in the database. Sigal et al. [38] proposed the
shared Kernel Information Embedding that can learn map-
pings from image features to 3D postures. In spite of effi-
cient solutions, this method typically requires large
training sets to represent the variability of appearance of
different people and viewpoints.

In this paper, we use Gaussian Process to model the prior
distribution of postures from Kinect with marker-based
motion data. Our method draws inspiration from [35], [36],
which apply local GP models to speed up the training and
prediction. In addition to training local GP models, ME
needs to learn a gating network to select local models. We
use a kernel function to measure the similarity rather than
training a gating network. The parameters of the kernel can
be calculated during the learning of local GP models. Our
approach is effective even with small training data as GP
based model can robustly learn from small training sets.

3 DATA ACQUISITION AND PREPROCESSING

For brevity, in this paper we will use MOCAP to represent
human motion data captured by an optical motion capture
system. The postures obtained from Kinect are noisy and
incomplete while MOCAP is accurate and stable. Hence, we
can use MOCAP captured in an offline training stage to
reconstruct postures captured by Kinect in real time.

3.1 Data Acquisition

We build amotion database captured from an optical motion
capture system of Motion Analysis Corporation [39] with
seven cameras. Our database consists of different types of
motions such as golf swinging and Tai Chi. The skeleton of
the MOCAP system is a superset of that of the Kinect system,
so we manually select 20 joints from the skeleton of
theMOCAP system tomatch those of Kinect. Each posture in
the database denotes a set of 3D positions of the body parts.

In this paper, we model the relationship between Kinect
data and MOCAP with Gaussian Process. Specifically, we
capture motions with Kinect and optical motion capture sys-
tem at the same time to identify their correspondence. The
setup of this capturing procedure is shown in Fig. 2. The pos-
ture of Kinect at time t is denoted as Xt ¼ ðx1

t ; x
2
t ; . . . ; x

n
t Þ,

xit 2 R3, where xit represents the 3D joint position of joint i
over time t. There are 20 joints based on the skeleton defini-
tion of Kinect, i.e., n ¼ 20. The corresponding MOCAP of Xt

is denoted asMt ¼ ðm1
t ;m

2
t ; . . . ; m

n
t Þ;mi

t 2 R3.
To enhance the robustness of the spatial prediction

model (Section 4.1) and to make the system invariant to dif-
ferent subjects, we follow [7] to conduct the normalization
and retargeting processes, as they are simple yet effective.
The posture normalization procedure is done by removing
the rotation along the vertical axis and the global 3-D trans-
lation. The retargeting procedure ensures the system to be
invariant to the skeleton size of the user.

3.2 Posture Budgeting

In this section, we introduce a data pruning scheme called
posture budgeting to discard redundant samples.

We employ the probabilistic GPs to determine the sam-
ples that are informative to the model. We remove a specific
training sample if such a sample can be precisely predicated
by its neighbors in terms of the mean and variance. Specifi-
cally, we iteratively check each training sample ðxi

t; y
i
tÞ of

joint i and determine its redundancy by calculating the rela-

tive entropy of the prediction of the training sample ðxi
t; y

i
tÞ

with respect to the rest of the database. Following [33], we
compute the Kullback-Leibler (KL) divergence by:

D
KL

ðpðyitjXi; Y i; xitÞjjpðyitjXi � xi
t; Y

i � yit; x
i
tÞÞ; (1)

where ðXi; Y iÞ is a set of training samples, ðxi
t; y

i
tÞ is one of

the samples in ðXi; Y iÞ, and yit is the difference between

MOCAP data and Kinect data. Since both pðyitjXi; Y i; xitÞ
and pðyitjXi � xit; Y

i � yit; x
i
tÞ are Gaussian Processes, we can

solve the KL divergence in close form as:

R
pðyitjXi; Y i; xi

tÞ log
pðyitjXi;Y i;xitÞ

pðyitjXi�xit;Y
i�yit;x

i
tÞ
dx: (2)

Fig. 2. Human motion capture with Kinect and an optical motion capture
system.
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Further details of solving pðyitjXi; Y i; xi
tÞ can be found in

Sections 4.1 and 4.2.
Fig. 3 shows the impact of posture budgeting. The unfil-

tered Walking motion database includes 1,120 training sam-
ples, which is reduced to 681. Nearly 40 percent of the
training data can be pruned while maintaining a similar
error level. For the details of the reconstruction error defini-
tion, please refer to Section 5.3.

4 POSTURE RECONSTRUCTION

To ensure that the reconstructed posture is accurate and
resembles the input data from Kinect, we formulate the pos-
ture reconstruction as an optimization problem by minimiz-
ing an energy function. Such an energy function consists of
three energy terms to constrain the solution space, which
are the spatial prediction term, the temporal prediction
term, and the reliability term. In the following, we will elab-
orate the definition and purpose of each term.

4.1 Spatial Prediction

Assuming that the MOCAP posture Mt is the corrected pos-
ture of the Kinect posture Xt, we design a spatial prediction
term to evaluate how well the reconstructed posture fits
with the MOCAP data, which implicitly favors solutions
that are more similar to the correct posture.

Due to self-occlusions and sensor error, there exists a resid-
ual offset between Xt and Mt, which is calculated by Yt ¼
Mt �Xt, where Yt ¼ ðy1t ; y2t ; . . . ; yitÞ; yit 2 R3. During run time,
the objective is to predict the residual offset Yt so that we can
obtain the reconstructed postureMt by appending Yt toXt.

In this paper, we adopt the non-parametric GP as the
predictor. More formally, let Xi ¼ ½xi

1; . . . ; x
i
T �T be the

input data of an arbitrary joint i, where T is the total num-

ber of frames. Let Y i ¼ ½yi1; . . . ; yiT �T denote the output val-

ues such that yit is the corresponding output of the input

xi
t. Here, we model the sensor error as the difference

between the Mocap data and the Kinect data using Gauss-

ian process, which transforms the input Xi of the ith joint

into the output Y i by:

yit ¼ fðxi
tÞ þ �; (3)

where � � Nð0;b�1Þ is a noise variable, which is indepen-
dent for each data point. The joint distribution of the output

Y i conditioned on inputXi is given by:

pðY ijXiÞ ¼
Z

pðY ijfi;XiÞpðfijXiÞdf ¼ NðY ij0; KÞ; (4)

where K is the covariance matrix, in which the element

cgqkðxia; xi
bÞ is defined as:

kðxi
a; x

i
bÞ ¼ u0 exp � 1

2
ðxi

a � xi
bÞ

T
W ðxi

a � xi
bÞ

� �
þ u1 þ b�1dab;

(5)

where a and b are indices of training samples of joint i, dab is
Kronecker’s delta function, W is kernel width, u0 is signal
noise, u1 is a constant bias. At the training stage, with the
obtained training data from Kinect and MOCAP, we can
learn the hyper-parameters of F ¼ fu0; u1;W;bg by maxi-
mizing the log marginal likelihood:

log pðY ijXi;FÞ ¼ � 1

2
Y iTK�1Y i � 1

2
log Kj j þ C; (6)

where K is the covariance matrix defined in (5) and C is a
constant. Obviously, the computational cost of learning GP
is dominated by the cubic complexity of computing the

inverse of covariance matrixK�1.
Human body joints are highly coordinated and it is

important to take into account the relationship between
them. Here, given an arbitrary joint, we use its neighboring
joints for prediction. Specifically, given a joint i at time t, xi

t,

its neighboring joints Nðxi
tÞ are defined as the set of joints

that are directly connected with the same bone segment as

joint i. Therefore, the input feature xit for obtaining yit of joint

i is the union set of ~xi
t andNð~xi

tÞ, where Nð~xitÞ is the normal-
ized position of the neighboring joints for joint i. The input

data of joint i is thus defined as Xi ¼ ½ð~xi
t1
; Nð~xi

t1
ÞÞ; . . . ;

ð~xi
tn
; Nð~xi

tn
ÞÞ�T , where t1; . . . ; tn are time slices. The output

data Y i correspond to Xi of the prediction model. To sim-

plify notation, we use xi
� ¼ ð~xi

�; Nð~xi
�ÞÞ to denote new input

of the ith joint at time t� and use yi� to represent the corre-

sponding output of xi
� in the remaining parts of the paper.

With the learned model, we formulate the above predic-
tion for yi� as a conditional probability distribution, yielding
the spatial prediction energy term of the ith joint as defined
below:

Ei
S ¼ ln pðyi�jXi; Y i; xi

�Þ � N ðmðxi
�Þ; sðxi

�ÞÞ; (7)

where

mðxi
�Þ ¼ kðxi

�; X
iÞK�1Y i ¼ kðxi

�; X
iÞa (8)

sðxi�Þ ¼ kðxi
�; x

i
�Þ � kðxi

�; X
iÞK�1kðxi

�; X
iÞT (9)

are the predicted mean and variance respectively, K is the

covariance matrix defined in (5), a ¼ K�1Y i is the so-called
prediction vector that can be pre-calculated from training
samples, and the predicted mean is determined by the vec-

tor kðxi
�; X

iÞ.
The term ES ensures that the reconstructed postures are

similar to the correct postures as much as possible. Predict-
ing the offset of each joint reduces the searching space
compared with inferring individual joints directly. The use
of the weighted local GP models allows synthesizing

Fig. 3. Posture budgeting: We can shrink up to 40 percent of the training
data while the mean error almost remains constant.
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variations in postures based on the motion database. There
are several publicly available implementations of Gaussian
Process. In this paper, we used the library developed by
Lawrence [40].

4.2 Incremental Learning of Local Gaussian
Processes

The major problem of using full GP is its cubic learning com-
plexity of the inverse covariance matrixK�1 in (6). Here, we
propose a new method based on a local mixture of Gaussian
Processes that has the following advantages: 1) The local GP
models are created by partitioning the posture space into Q
local regions using clustering algorithm, and trainingQ local
GP models independently. This relieves the cubic computa-
tional cost for learning the full GPmodel. 2) Since we use the
weighted average prediction of nearby local models in
which only a small number of training samples are involved,
the prediction process is fast. 3) With the use of local models,
it becomes possible to incrementally update a specific local

GP with the complexity of OðS2Þ, where S is the size of local
GP. With the newly added predicted samples, the system
accuracy can be enhanced for run-time postures that are dif-
ferent from those in the database.

Our algorithm consists of three major parts: 1) learning the
hyper-parameters of local GP models; 2) performing the
weighted prediction of local GP models; 3) incremental
updating of corresponding local GP models, that is, adding a
new sample into the closest local model and updating the
inverse covariancematrixK�1 in (8). Fig. 4 shows an example
of applying the local mixture of GPmodels. To simplify illus-
tration,we project the 3D joint positions onto theXZ plane.

4.2.1 Learning of Local Gaussian Processes

We cluster the training samples into Q regions and learn the
hyper-parameters at each local region. In our system, Q is
empirically set as 30. Similar to Section 4.1, the hyper-
parameters of F for each local model can be estimated by
maximizing the log marginal likelihood in each local region
as defined in (6).

Here, we explain how to partition the samples into differ-
ent local regions. Given a new input xi

� of joint i, assigning

xi� to the qth local region is straightforward by measuring

the similarity between xi� and the center of cluster Cq. Here,
we use the Gaussian kernel to measure the similarity, which
is in the same form of (5):

similarityðqÞ ¼ exp � 1

2
ðxi

� � CqÞTWðxi� � CqÞ
� �

; (10)

where Cq is the center of the qth cluster (q 2 Q) andW is the
kernel width.

To speed up the run-time computation, we learn these
hyper-parameters as an offline process named GP-offline. Its
computational complexity is the summation of the complexity
of clustering,OðQdNÞ, and the complexity of learningQ local

GPmodels,OðQS3Þ, whereQ is the number of local models, d
is the dimension of input,N is the total training data, and S is
the size of each local model. The first part of Algorithm 1
summarizes the training of local GP models, where the

kmeansðXi;QÞ function partitions theXi intoQ clusters, and
returns an index set &q of samples for the qth local model.

Algorithm 1. Local mixture of GP models and prediction

1 Offline: Learning of hyper-parameters
2 Q: total number of local GP models
3 CQ: the center of each local GP model
4 &

q
: the index set of samples for the qth local model

5 ðCQ; &Q
Þ ¼ kmeansðXi;QÞ

6 for q = 1 to Q do
7 f�fqg ( maxðln pðY i

&q
jXi

&q
; �fq ÞÞ

8 end
9 Online: Prediction of a new input of joint i
10 Input: new input, xi

�, of joint i
11 L: the number of nearby local models
12 S: the size of training samples for each local GP model
13 for l = 1 to L do
14 Compute the similarity to the center of lth cluster:
15 similarityðlÞ ¼ expð� 1

2 ðxi
� � ClÞTWðxi

� � ClÞÞ
16 Compute the local predicted mean by the lth local model

and &
l
is the index set of lth local training samples:

17 m
l
ðxi�Þ ¼ kðxi

�; X
i
&
l
ÞK�1

&
l
;&

l
Y i
&
l

18 s
l
ðxi

�Þ ¼ kðxi
�; x

i
�Þ � kðxi

�; X
i
&
l
ÞTK�1

&
l
;&

l
kðxi

�; X
i
&
l
Þ

19 end
20 Compute the weighted prediction of new input xi

� of joint i
by the L local models:

21 yi� ¼
P

l2L ðsimilarityðlÞ�Ph2L similarityðhÞÞN ðm
l
ðxi�Þ; sl

ðxi�ÞÞ

4.2.2 Prediction of Local Gaussian Processes

Note that the mean of the prediction in (8) can be written as
a function of Y i:

mðxi
�Þ ¼

XT

t¼1
wi

ty
i
t; (11)

where wi
t is the tth element of kðxi

�; X
iÞK�1, T is the total

number of frames. In this view, the mean of the prediction
distribution is determined by the weighted combination
of the N training outputs. We therefore propose to interpret
the full GP as a global voting process, in which all weighted
training outputs contribute to the decision of the test sample

xi� of joint i. We observed that local neighborhoods behave

Fig. 4. Overview of the local mixture of GP models. (a-b) We capture
postures by theMOCAP system and Kinect at the same time to generate
the training samples. (c) At the training stage, we partition the samples
into Q ¼ 4 local regions by K-means and learn Q local GPs with S ¼ 10
training samples independently. (d) During prediction, we extract feature

of the ith ¼ 7 (left hand) joint, x7� ¼ ð~x7�; Nð~x7�ÞÞ. (e) For a given test sam-
ple, xi�, shown in red star, we find the nearby L ¼ 3 local models by simi-
larity measurement defined in (10). (f) We compute the local predicted
mean by the lth local GP model and then generate the weighted mean
prediction mðxi�Þ using L nearby local models given by (13).
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similarly such that nearby samples are likely to have similar
output. With this insight, the full GP could be locally
approximated by a small number of GPs near a given fea-

ture xi
� of joint i, which could significantly reduce the

computational cost and speed up the prediction.
Here, we explain how to determine the vote of local mod-

els. Similar to the model in [41], the contribution of each
local model is determined by the distance to each local
model. Given a new input xi

� ¼ ð~xi
�; Nð~xi

�ÞÞ of joint i, the
weight of each local GP model can be determined by the
normalized distance to lth local model. Specifically, we
compute the averaged prediction of L nearby local models

by mðxi
�Þ ¼ Efm

l
jxi

�g ¼Pl2L ml
ðxi

�Þpðljxi
�Þ where m

l
ðxi

�Þ is

the predicted mean using the lth local model given by (11)

and pðljxi
�Þ is the weight of each local GP, which is given by:

pðljxi
�Þ ¼ similarityðlÞ�X

h2L
similarityðhÞ; (12)

where similarityðlÞ measures the similarity between xi
� and

the center of the lth local model given by (10). Hence, we
calculate the weighted prediction by:

yi� ¼
X
l2L

similarityðlÞP
h2L similarityðhÞ

 !
Nðm

l
ðxi

�Þ; sl
ðxi�ÞÞ

¼
X
l2L

X
&2S

similarityðlÞP
h2L similarityðhÞ

 !
wi

l&y
i
l&;

(13)

where L is total number of the nearby local models, S is the
size of training samples in each local model, & is the index

of local training samples in S, wi
l& is the element of

kðxi
�; X

i
&ÞK�1

&;& , and yil& is one of the offsets in S that belongs

to lth local model. The prediction process is summarized in
the second part of Algorithm 1.

The prediction of our model is computationally inexpen-
sive as those local models are learnt from a very small set of
neighborhoods. L and S are parameters of our model, and
typical small values are sufficient to generate satisfactory
results. In our implementation, the size S of each nearby
local model is 50 and the number of nearby local models L
is 9. The influence of L and S are discussed in Section 5.3.

4.2.3 Incremental Updating of Local Gaussian

Processes

One limitation of the data-driven method for posture recon-
struction is that the reconstruction quality might drop sig-
nificantly if we cannot find similar postures in the database.
To relieve this problem, our model should be able to learn
from the newly estimated samples such that we are more
likely to adapt to unknown postures that are different from
those in the database.

Here, we explain the major process of incremental updat-
ing of local GP models. During the local GPs learning pro-
cess, we learn the hyper-parameters of F and factorize the
covariance matrix K by (14). At the prediction stage, the

local models would predict the offset yi� given a new input

xi
�. During the incremental updating process, we preserve

the samples ðxi�; yi�Þ with high reliability and low predictive

variance and append it into the nearest local model using
the similarity measurement given by (10).

We calculate the similarity between xi
� and the mean of

each local Gaussian Process. If the similarity values with all
local GPs are smaller than a predefined threshold wsimilar,

we create a new local model centers at xi
�. Otherwise, we

update the local GP with the highest similarity value. Notice
that during the incremental learning process, the number of
newly added samples can be further reduced by posture
budgeting introduced in Section 3.2.

To update a local GP, we need to first update both the
prediction vector and the mean of the local model. To
update the prediction vector a ¼ K�1Y i, we adapt [42] in

which the K�1 is updated by adjusting Cholesky factoriza-
tion. As K is a symmetric, positive-definite matrix, we can
uniquely factorizeK as:

K ¼ UTU; (14)

where U is a upper triangular matrix with positive diagonal
elements. We then update the mean of the corresponding
local model.

Given a new input xi
� of joint i, we need to add additional

rows and columns toK and U as follows:

Knew ¼ K knewknew
kTnewkTnew knew

� �
(15)

UT
new ¼ UT 0

uT u�

� �
; (16)

where knewknew ¼ kðXi; xi
�Þ, knew ¼ kðxi�; xi�Þ. Then, we can solve

u and u� by completingKnew ¼ UT
newUnew as:

Uu ¼ knewknew; u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knew � uTu

p
: (17)

Once we have solved Unew, we can update the prediction

vector a in UT
newUnewanew ¼ Y inew through back-substitution.

The cost of back-substitution for a localmodel isOðS2Þ, where
S is the number of training samples in a local model. Finally,
we recalculate the corresponding local model using (8).

Table 1 compares the complexity of the full GP and our
method. The computation of the Cholesky factorization is

OðQS3Þ, where Q is the number of local GP models and S is
the number of training samples in a local model. The predic-

tion cost is OðLS2Þ, where L is the number of nearby local
GPs given an input. Thus, the offline learning complexity,

Oð2QS3 þQdNÞ, dominates the main computational com-
plexity of our method. The cost of incremental updating is

OðS2Þ due to the update of Cholesky factorization, which
enables our system to incrementally update a specific local

TABLE 1
Computational Complexity: The Main Computational
Cost of Our Method is the Offline Learning while

the Incremental Updating is Fast

Proposed Method Full GP

Learning Oð2QS3 þQdNÞ OðN3Þ
Prediction OðLS2Þ OðN2Þ
Incremental Updating OðS2Þ N/A
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Gaussian Process in real time. Algorithm 2 summarizes the
incremental learning of local models.

Algorithm 2. Incremental learning of local models

1 Input: new input, xi
�, of joint i

2 L: the number of nearby local models of xi
�

3 Cl: the center of the lth local model, where l 2 L
4 Q: total number of local GP models
5 B: the training samples B ¼ ðXi; Y iÞ and Bq represents the

samples of the qth local model
6 Predict the offset, yi�, by L nearby local models (see

Algorithm 1)
7 for l = 1 to L do
8 similarityðlÞ ¼ expð� 1

2 ðxi
� � ClÞTWðxi

� � ClÞÞ
9 end
10 Find the most similar jth local model
11 max

similar
¼ maxðsimilarityÞ

12 ifmax
similar

<¼ wsimilar then
13 Create a new local model:
14 CQþ1 ¼ fxi

�g
15 BQþ1 ¼ fðxi

�; y
i
�Þg

16 else
17 Append fxi

�; y
i
�g to the nearest local model j

18 Bjnew ¼ fBj; ðxi
�; y

i
�Þg

19 Update the mean of jthmodel
20 Cjnew ¼ meanðXi

jnew
Þ

21 Update a ¼ K�1Y i of the jth local model:
22 Compute u , u�, and Unew

23 Compute ai
new by back-substitution

24 end

4.3 Temporal Prediction

The above spatial prediction considers each posture inde-
pendently. To ensure the temporal smoothness between
consecutive frames, the relationship between frames is
modeled as a second order temporal model, which has been
verified to be effective in preserving temporal smooth-
ness [43]. Specifically, we adopt a constant velocity variation
to smooth velocity, which is formulated as below:

ET ¼ ln pðMtjMt�1;Mt�2Þ: (18)

Mt,Mt�1, andMt�2 are the reconstructed postures at time
slices t, t� 1, and t� 2. We have the following relationship
between the reconstructed posture, input posture and the
residual offset:

Mt ¼ Yt þXt: (19)

Therefore, we can rewrite (18) as :

ET ¼ ln pðYt þXtjMt�1;Mt�2Þ
¼ jjðMt �Mt�1Þ � ðMt�1 �Mt�2Þjj2

¼ jjMt � 2Mt�1 þMt�2jj2

¼ jjYt � ð�Xt þ 2Mt�1 �Mt�2Þjj2
(20)

which facilitates the continuity in the reconstructedmotions.

4.4 Reliability Embedding

The accuracy of each tracked joint is different depending on
the degree of occlusion. The incorrectly tracked joints from

Kinect will incorrectly guide the system to infer the joint
positions. The residual offset, Yt ¼ Mt �Xt, of the correctly
tracked joints should be smaller as they are closer to the cor-
rected posture, namely Mt. Thus, it is essential to consider
the reliability of each joint to constrain the residual offsets
of these joints with higher confidence during the prediction
of Yt. We use a reliability term ER to penalize the residual
offset of each joint based on its reliability, which implicitly
ensures that the reconstructed posture resembles the input
posture from Kinect as much as possible. More specifically,

the residual offset value yit of joint i should be smaller if the
corresponding joint is with higher reliability.

We adopt the strategy proposed by [7] to evaluate the
reliability of the tracked joints from Kinect. They evaluate
the reliability in three aspects: behavior reliability, kinemat-
ics reliability, and tracking state reliability. The behavior
reliability refers to abnormal behavior of a tracked joint,
which is calculated by the cosine similarity between two
consecutive displacement vectors of one joint. The kinemat-
ics reliability represents the kinematic correctness of the
tracked joints, which measures the change of bone length
for bones connecting with the joint. The tracking state reli-
ability tells if a joint is tracked, inferred or not tracked when
it is completely occluded. More details about the calculation
of the reliability of each joint can be found in [7]. As a result,
the reliability rate of each joint is a value between 0.0 and
1.0 (inclusive). We embed the reliability of each joint into
the optimization framework and formulate the following
reliability term:

ER ¼ jjRYtjj2F : (21)

jj � jjF is the Frobenius norm. The entry of R is the reliability
of each joint, which ensures the reconstructed posture does
not deviate from the input posture from Kinect. Intuitively,

while minimizing the objective function, the value of yit
tends to be small when its reliability value is large.

4.5 Energy Minimization Function

With the terms defined in the above sections, the posture
reconstruction problem is formulated as the following opti-
mization function:

E ¼ argmin
Yt

fwSES þ wTET þ wRERg; (22)

where wS , wT , and wR are the weights of the energy
terms. In our implementation, they are empirically set to
be 0.6, 0.2, and 0.2, respectively. We optimize (22) by
using the gradient descent method. We sample a number
of potential postures in the solution space in each itera-
tion. The posture that minimizes the cost function will be
considered as the initial posture sample in the next itera-
tion. Our posture reconstruction system is frame-based.
The initial posture for optimization at each frame is
defined as the previous reconstructed posture, which
allows the system to have higher chance to find the opti-
mized posture. The optimization procedure stops when
an optimal solution is found or the number of iterations
reaches a predefined threshold.

There are some principles to tune the values of the
weights. The weight of the spatial prediction term should
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be set the largest, since this term drags the reconstructed
posture to the corrected posture as closely as possible. Sec-
ond, the temporal prediction term ensures the temporal sta-
bility of the posture sequences. The reliability term makes
sure the reconstructed posture is as similar as the Kinect
posture, since the primary purpose of the system is to recon-
struct Kinect postures. We will evaluate how these terms
affect the accuracy of the system in Section 5.5.

The proposed framework for posture reconstruction is
summarized here. At the offline stage, we learn a spatial
prediction model using Gaussian Process with pairwise
Kinect data and marker-based motion capture data. It
ensures that the reconstructed posture is as accurate as
the MOCAP data. We also embed the temporal and reliabil-
ity terms in offline process so as to generate temporal
smoothness and reliable postures. At the online stage, the
system obtains an optimized posture with live captured
data from Kinect, which ensures the reconstructed posture
resembles the input posture from Kinect while maintaining
the temporal smoothness between previous frames.

5 EXPERIMENTAL RESULTS

In this section, we will show the experimental results and
present the comparisons with alternative approaches
including Kinect SDK [2], as well as the algorithms pro-
posed by [19] and [9]. We first show postures with severe
self-occlusions reconstructed by our approach. Qualitative
and quantitative analysis were conducted to evaluate
the accuracy.

The experimental results were conducted on a desktop
computer with Intel Core 2 Duo 3.17 GHZ processor. If not
otherwise mentioned, we use Kinect official SDK [2] to
obtain posture data. Here, we consider the Kinect device as
one additional reflective marker of the optical motion cap-
ture system to eliminate the interference between Kinect
and the optical motion capture system. The setup environ-
ment of Kinect and optical motion capture system is shown
in Fig. 2.

5.1 Posture Reconstruction

The proposed approach works for users with different body
sizes and proportions, because we normalize and retarget
the Kinect input posture as explained in Section 3.1. We
evaluate our system on a wide range of human motions,
including sports activity such as Tai Chi, bending, golf
swinging, and daily actions such as crossing arms, waving
right hand, clapping hands, rolling hands up and down,
rolling hands forward and backward. The number of frames
in the training database used in our method, [19] and [9] are
reported in Table 2, which shows that our database is 35
percent smaller than that of Zhou et al. [9], and 83 percent
smaller than that of Shen et al. [19]. In addition, our newly
proposed local mixture of GPs algorithm allows us to com-
bine all types of training motion in Table 2 as a single data-
base, while in [9] a separate training database is built for
each type of motion.

We choose these motions because all these motions con-
tain severe self-occlusions, which are not well tracked by
the Kinect system. However, the proposed method can well
reconstruct these inaccurate postures even if a number of

joints cannot be tracked by the Kinect sensor. Fig. 5 showed
several frames of our results, the lower right avatar repre-
sents the postures reconstructed by our method and the
lower left avatar corresponds to the estimated posture by
Kinect SDK [2]. The upper half shows the RGB and depth
images respectively. We can observe that certain parts of
the postures from Kinect SDK are twisted when there exist
occlusions while our method can reconstruct the postures
very well.

5.2 Qualitative Analysis

In this section, we evaluate the perceptual score for the cor-
rectness of postures reconstructed by our method, postures
from Kinect, postures by the method proposed by [9], [19]
and postures captured by an optical motion capture system.

In order to evaluate the perceptual correctness accord-
ing to the user performed motion, we measure the per-
ceptual score for the postures of each method using a
survey-based evaluation. Such an experiment has also
been performed in [7] and [9]. Notice that while some
recent research such as [44] analyzes how viewers per-
ceive interactions between virtual characters, since the
focus of our research is about posture reconstruction pro-
cess from noisy data, we do not include detailed percep-
tual analysis in the scope of this research.

A total of 15 participants were invited to conduct this
experiment. All of them had little or no experience about
motion capture and 3D animation. The purpose of this
experiment is to assess the relative correctness of the
obtained postures from these five methods. We create a
set of posture sequences with these five methods together
with the RGB video so that the participants know what
the actual actions are. Participants were asked to give a
score for each motion based on its correctness according
to the performed motion without knowing what method
is used. The score ranges from 1 to 10 (inclusive), where 1
means the most incorrect, and 10 means the most correct.

The score distribution for Kinect SDK [2], [19], [9], our
method and MOCAP is shown in Fig. 6. The overall average
scores of these five methods are 5.20, 6.42, 7.51, 7.49 and
9.16 respectively, and the standard deviations are 1.187,
0.578, 0.236, 0.240, and 0.255. As expected, MOCAP data
achieve the best scores. We can see that our method per-
forms better than Kinect and [19] in general. In particular,

TABLE 2
TheNumber of Frames for EachType of TrainingMotionDatabase

Used inOurMethod, Shen et al. 2012, and Zhou et al. 2014

Motions Our
method

Zhou et al.
2014

Shen et al.
2012

Tai Chi 411 650 2,320
Bending 201 320 1,580
Golf Swinging 296 460 1,765
Crossing Arms 245 380 1,685
Waving Right Hand 221 350 1,650
Clapping Hands 270 420 1,720
Rolling Hand Up and Down 308 480 1,840
Rolling Hand Forward and
Backward

306 475 2,050

Bending Leg 243 385 1,890
Mixed motion database 2,501 - 16,500
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our method significantly outperforms Kinect and [19] for
motions with more occlusions such as bending over and
rolling hands, as shown in Figs. 5a, 5c, 6b and 6h. The rea-
son is that we embed the reliability term into our optimiza-
tion framework, which implicitly ensures the system to
recover these joints more than those with higher reliability.
As shown in Table 2, our method generates postures of sim-
ilar quality compared with [9] with a significantly smaller

motion database. It should be noted that for motion that
involves a large range of movement such as Tai Chi, our
method could synthesize postures that are closer to the
ground truth compared to [9]. This is because the weighted
prediction of local models allows synthesizing postures that
are not available in the motion database and more possible
solutions are explored.

5.3 Quantitative Analysis

In this section, we quantitatively analyze the correctness of
the proposed method. We assume the data from optical
motion capture system is the ground truth data. To evaluate
the accuracy of the reconstructed postures, we define an
error function to measure the distance between recon-
structed postures and ground truth postures:

EðF1; F2Þ ¼ 1

IT

XI
i¼1

EiðF1; F2Þ; (23)

where F1 and F2 are the two sets of postures, I is the total
number of joints, and T is the total number of postures. Ei

Fig. 5. Postures from Kinect and their corresponding reconstructed postures. In each picture, the upper half shows the RGB and depth images, in
which the blue skeleton is the tracked results from Kinect. The lower left and right parts represent the 3D Kinect posture and our reconstructed pos-
ture respectively. (a) Bending over; (b) Crossing arms; (c) Rolling hands forward and backward; (d) Rolling hands up and down; (e) Clapping
hands; (f) Bending leg; (g) Golf swinging; (h) Waving left hand; (i) Walking.

Fig. 6. The perceptual score for the correctness of postures from Kinect,
Shen et al. 2012, Zhou et al. 2014, proposed method, and an optical
motion capture system.
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is the reconstruction error of joint i between two set of pos-
tures, which is defined as:

EiðF1; F2Þ ¼
XT
t¼1

DðFi
1t; F

i
2tÞ; (24)

where Fi
1t is the ith joint of the posture at time t from F1.

D is the Euclidean distance between two joints of two
postures:

DðPi
1; P

i
2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPi

1x � Pi
2xÞ2 þ ðPi

1y � Pi
2yÞ2 þ ðPi

1z � Pi
2zÞ2

q
:

(25)

With the error function defined in (23), we first study the
influence of the training size of each local model, S, and the
number of local models, L, on the reconstruction error.
Fig. 7 shows that when we fix the S for each local model,
the 3D joint reconstruction error decreases as the L
increases. Similarly, for any specific L, the system accuracy
can be enhanced by increasing S. However, the improve-
ment is not significant when S is raised to 50 and L reaches
9, because the postures become redundant and do not con-
tribute to the reconstruction process. Thus, the value of S
and L are empirically set to 50 and 9 respectively.

As an example, Fig. 8 shows the trajectory of the left
hand in a golf swinging movement using offline local
GPs (LGP-offline) and local GPs with incremental

updating (LGP-incremental). We can see that the ground
truth data (MOCAP) is smooth and the Kinect data is noisy
due to the self-occlusions and sensor error. The mean error
of Kinect, LGP-offline, and LGP-incremental is 12.36, 8.1,
and 7.7 cm. Compared with LGP-offline, the LGP-incremen-
tal is closer to the ground truth in general, which verify the
effectiveness of the incremental learning framework. We
can also see that a small number of local GP models (L ¼ 9)
is sufficient to reconstruct postures.

More comparisons of different type of testing motions
between LGP-offline, LGP-incremental, [19], and [9] can be
found in Table 3. Here we choose five types of motion for
evaluation: clapping hands, crossing arms, bending, Tai
Chi, and waving right hand. As expected, the error of Kinect
was large in general. Our method outperforms [19] as we
take into account the reliability of each joint such that the
inaccurately tracked joints will not guide the system to infer
the postures. For all classes of motions, our method con-
sistently outperforms the Kinect and [19], which verifies
the effectiveness of the proposed method in terms of
reconstruction accuracy. It should be noted that the LGP-
incremental can generate comparable system accuracy
compared to [9] while the running time is less than [9].
The computational time of [9] and our system are 37 and
29 ms per frame, respectively.

5.4 Comparison Between Randomized Forests
and Our Method

In this particular experiment, we do not use Kinect SDK to
extract joint positions. To ensure a fair comparison between
our method and randomized forests, which is the method

Fig. 7. Influence of the training size and the number of local GP models
on the 3D joint reconstruction error.

Fig. 8. Trajectory of the left hand when performing golf swinging motion.

TABLE 3
Reconstruction Error of Kinect, Shen et al. 2012, Zhou et al. 2014, and the Proposed Method on the Testing Data Sets

Motion Type Number of Frames for Testing Kinect (cm) Shen et al. (cm) Zhou et al. (cm)
Proposed Method (cm)

LGP-offline LGP-incremental

Crossing Arms 2,052 12.5 9.8 7.2 7.9 7.4
Bending Over 1,835 13.7 9.5 8.4 9.2 8.7
Tai Chi 2,885 14.5 10.2 7.5 8.0 7.4
Waving Right Hand 1,568 12.5 8.8 6.5 6.9 6.6
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used to train Kinect, we construct a common training data-
base for both methods.

Our database contains a large number of synthetic depth
images that are created as follow. First, we create a 3D mesh
model in which each body part is labeled. Second, we retar-
get Mocap data to drive the movement of the 3D mesh
model. Third, we render depth information of the scene into
depth images frame by frame. Since our 3D model comes
with body part labels, we can automatically label body part
information for each pixel in the rendered depth images.
Finally, we trained the randomized forests with the labeled
depth images and estimated the joint positions using mean
shift. We also trained our GP models with the same data
and the joint positions found by mean shift using the body
parts estimated by randomized forests. Our training data-
base consists of 17K synthesized depth images generated by
Mocap data, including actions such as golf swing, waving
hands, crossing hands and clapping hands.

We use five-fold cross validation to compare the perfor-
mance of randomized forests [3] and our algorithm. Table 4
shows the comparison of average reconstruction error. It can
be observed that both methods have similar performance for
simpler motions such as T-pose. However, for more chal-
lenging motions that involve self-occlusion such as crossing
hands and golf swing, our method generates better recon-
struction results with smaller reconstruction error.

5.5 Effects of Optimization Terms

In this section, we analyze the reconstruction accuracy by
examining the effectiveness of different terms in the objective
function of (22). We used Tai Chi motion, bending over and
crossing arms for evaluation because of their complicated
movement features. The results are reported in Table 5.

We found that both the temporal prior term and the reli-
ability term improve the reconstruction accuracy, especially
for the movements with severe self-occlusions. Although
setup (c) achieves better results than setup (b), the obtained
movements are jerky, because setup (c) predicts postures

independently without considering relationship between
consecutive frames.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we present a probabilistic framework to
reconstruct live captured postures from Kinect. Postures
from Kinect are noisy, however, such a noise is not a ran-
dom signal and we observed that there are some underlying
patterns in it. In this research, we can thus assume that the
noisy data contain useful information in helping us to find
the solution. Then, we apply a machine learning algorithm
to learn the correlation between Kinect data and Mocap
data so as to predict the offset given Kinect data. Finally, we
verify our assumption with accurately reconstructed pos-
ture results.

To overcome the problem of incorrectly tracked and
missing joints in Kinect, we adopt Gaussian Process model
as a spatial prior to leverage position data obtained from
Kinect and an optical motion capture system. Specifically,
we model the residual offset between postures obtained
from Kinect and MOCAP system instead of using pairwise
posture relationship. While GP works well in small train-
ing data sets, it is not competent in systems that require a
large database, such as motion-based gaming, due to its
high computational complexity. To solve this problem, we
propose a new method based on the local mixture of
Gaussian Processes to speed up the learning and predic-
tion. Our system allows incrementally updating of local
models in real time, which boosts the reconstruction accu-
racy of run-time postures that are different from those in
the database.

For our method to work well, the motion performed by
the user should belong to one of the action classes in the
database. The proposed method is useful for real-time
applications such as motion-based gaming and sport train-
ing where the user is expected to perform a motion from a
set of common moves that are known in advance. While our
system utilizes neighboring joints for prediction, it is diffi-
cult to deal with heavily occluded postures such as turning
around, in which there are only few valid joints. As shown
in Fig. 9, Kinect incorrectly recognizes the posture. The
incorrect joint positions and the decrease of reliability of
body joint greatly impact the recognition quality. In such
cases, the amount of correct data present is so little that our
system cannot produce very good result. One possible solu-
tion would be using multiple Kinects to capture postures
from different directions.

TABLE 4
Reconstruction Error of Randomized Forests and Our

Method Using Five-fold Cross Validation (cm)

Motion Type Reconstruction Error with
Randomized Forests

Reconstruction Error
with Our Method

Crossing Hands 13.8 8.1
Golf Swinging 14.9 9.4
Waving Hands 13.5 7.3
Rolling Hand
Left and Right

13.7 7.4

Clapping Hands 14.3 8.5
T-pose 7.8 7.1

TABLE 5
Reconstruction Error of the Proposed Framework

with Different Constraint Terms

Setup Terms Used Reconstruction Error (cm)

(a) ES 12.0
(b) ES , ET 10.5
(c) ES , ER 9.7
(d) ES , ET , ER 7.9

Fig. 9. Turning around motion. (a) The RGB image of turning around
motion (facing backward); (b) The tracking result of Kinect correspond-
ing to (a) (facing forward).
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There is still room to improve the proposed recon-
struction system. The assigned weights for the terms in
the objective function are empirically set to be fixed in
the proposed system. However, the weights can be differ-
ent for different types of motion to obtain optimal recon-
structed postures. One possible improvement would be
to formulate the weights as a function of the residual off-
set, which is used to measure the importance of each
term. Therefore, the weights can be adaptively deter-
mined according to the type of motion. The incorporation
of physical constraints into the proposed framework is
another interesting direction as the reconstructed pos-
tures in this work are not necessary physically correct.
One possible implementation would be modeling the
physical attributes (i.e., force field) between the Kinect
data and MOCAP data as a prior distribution, and embed
them in the optimization framework to generate physi-
cally valid postures. Last but not least, integrating our
system with other simple yet stable devices such as iner-
tia-based Mocap system would be an interesting topic,
because Kinect can only detect limited range of move-
ments while motion sensor can be used as a complement,
e.g., detecting the occluded body part.
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