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Speech-driven Personalized Gesture Synthetics:
Harnessing Automatic Fuzzy Feature Inference
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Abstract—Speech-driven gesture generation is an emerging
field within virtual human creation. However, a significant
challenge lies in accurately determining and processing the
multitude of input features (such as acoustic, semantic, emotional,
personality, and even subtle unknown features). Traditional
approaches, reliant on various explicit feature inputs and complex
multimodal processing, constrain the expressiveness of resulting
gestures and limit their applicability. To address these challenges,
we present Persona-Gestor, a novel end-to-end generative model
designed to generate highly personalized 3D full-body gestures
solely relying on raw speech audio. The model combines a
fuzzy feature extractor and a non-autoregressive Adaptive Layer
Normalization (AdaLN) transformer diffusion architecture. The
fuzzy feature extractor harnesses a fuzzy inference strategy that
automatically infers implicit, continuous fuzzy features. These
fuzzy features, represented as a unified latent feature, are fed
into the AdaLN transformer. The AdaLN transformer introduces
a conditional mechanism that applies a uniform function across
all tokens, thereby effectively modeling the correlation between
the fuzzy features and the gesture sequence. This module ensures
a high level of gesture-speech synchronization while preserving
naturalness. Finally, we employ the diffusion model to train
and infer various gestures. Extensive subjective and objective
evaluations on the Trinity, ZEGGS, and BEAT datasets confirm
our model’s superior performance to the current state-of-the-
art approaches. Persona-Gestor improves the system’s usability
and generalization capabilities, setting a new benchmark in
speech-driven gesture synthesis and broadening the horizon for
virtual human technology. Supplementary videos and code can
be accessed at https://zf223669.github.io/Diffmotion-v2-website/.

Index Terms—Speech-driven, Gesture synthesis, Fuzzy infer-
ence, AdaLN, Diffusion, Transformer.
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Fig. 1: Each pose depicted is personalized gestures generated
solely relying on raw speech audio. Persona-Gestor offers a
versatile solution, bypassing complex multimodal processing
and thereby enhancing user-friendliness.

I. INTRODUCTION

RECENT advancements have significantly expanded the
use of 3D virtual human technology. Its growing appeal

spans numerous applications, including animation, gaming,
digital receptionists, and human-computer interaction. A major
task in this research area is to create credible, personalized
co-speech gestures. Speech-driven gesture generation through
deep learning provides a cost-effective solution, eliminating
the need for manual intervention associated with conventional
motion capture systems.

However, the primary challenges in speech-driven gesture
generation face precisely identifying the vast array of in-
put conditions necessary for driving gesture synthesis. This
complexity arises because co-speech gestures are shaped by
an extensive range of factors, including acoustics, semantics,
emotions, personality traits, and demographic variables like
gender, age, etc.

Previous approaches [1]–[7] have explored the use of man-
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ual labels and diverse feature inputs to facilitate the synthesis
of personalized gestures. Nonetheless, these methods depend
heavily on various unstructured feature inputs and require
complex multimodal processing. These approaches present
a significant barrier to the practical application and broader
adoption of virtual human technologies.

The fuzzy inference strategy, which pertains to the concept
of fuzzy logic [8], is particularly useful in the field for dealing
with uncertain or imprecise information. The fuzzy inference
strategy is known for its effectiveness in speech-emotion
recognition [9] and audio classification [10]. These methods
do not necessarily require explicit classification outputs but
instead provide fuzzy feature information, which broadens the
explicit discrete space into an expansive implicit continuous
fuzzy space. The information in fuzzy space better aligns
with the actual scenario. Relevantly, research in psychology
highlights the significance of various factors in speech [11]–
[14]. These factors, called fuzzy features, are intricately inter-
twined with co-speech gestures. These studies present novel
opportunities for synthesizing personalized gestures based
solely on speech audio, thereby simplifying the feature inputs
and reducing the complexity of multimodal processing.

Another challenge in this field is ensuring a high level of
gesture-speech synchronization while preserving naturalness.
Recent developments have focused on the application of
Transformer and Diffusion-based models. This methodological
shift has led to substantial progress in the efficiency and
flexibility of gesture-generation technologies. Key examples
of such innovative efforts include Taming [15], Diffuse Style
Gesture [2], Diffuse Style Gesture+ [3], GestureDiffuClip [16],
and LDA [4]. Yet, these approaches encounter challenges with
either insufficient or excessive correlation between gesture and
speech, reducing the naturalness of the generated gestures.

The success of the Diffusion Transformers(DiTs) in
text2image [17] and text2video generation tasks, such as Sora
1, which incorporates AdaLN, marks a significant advance-
ment. This framework introduces a conditional mechanism that
applies a uniform function across all tokens, enhancing the
model’s ability to represent conditional and output features.
This conditional mechanism also holds promise for effectively
enhancing the ability to model the intricate mapping between
speech and gestures. While the original DiTs take discrete text
prompts as conditional inputs, its adaptability for sequence-
to-sequence tasks, such as speech-driven gesture generation,
presents an area of exploration.

In this study, we propose Persona-Gestor, a novel approach
aimed at synthesizing personalized gestures solely from raw
speech audio. This model innovatively introduces a fuzzy
feature inference strategy within its condition extractor and
incorporates AdaLN in a diffusion-based transformer mod-
ule. Persona-Gestor transitions from explicit conditions to
a nuanced, continuous representation of fuzzy features by
employing fuzzy inference, which captures a broad spectrum
of stylistic nuances and specific audio details. These features
are integrated into a unified latent representation, synthesizing
intricate 3D full-body gestures. Adopting AdaLN significantly

1https://openai.com/sora

enhances the model’s capability to depict the nuanced rela-
tionship between speech and gestures. Leveraging a diffusion
process, the framework can generate diverse gesture outputs,
showcasing the potential for high fidelity in gesture synthesis.

For clarity, our contributions are summarized as follows:
• We pioneering introduce the fuzzy feature inference

strategy that enables driving a wider range of per-
sonalized gesture synthesis from speech audio alone,
removing the need for style labels or extra inputs.
This fuzzy feature extractor improves the usability and
the generalization capabilities of the system. To the best
of our knowledge, it is the first approach that uses fuzzy
features to generate co-speech personalized gestures.

• We combined AdaLN transformer architecture within
the diffusion model to enhance the Modeling of
the gesture-speech interplay. We demonstrate that this
architecture can generate gestures that achieve an optimal
balance of natural and speech synchronization.

• Extensive subjective and objective evaluations reveal
our model superior outperform to the current state-of-
the-art approaches. These results show the remarkable
capability of our method in generating credible, speech-
appropriateness, and personalized gestures.

II. RELATED WORK

The present discussion offers a succinct overview of
the conditional extraction mechanism and generative models
within speech-driven gesture generation.

A. Condition Extraction Mechanism

Recent advancements in co-speech gesture generation sys-
tems have incorporated various unstructured conditional infor-
mation as input.

Selecting optimal representations for conditional input is a
crucial research challenge in creating virtual human motions
[18] [19]. For accurate reflection of gestures that match the
auditory perception, prevalent research [7], [20]–[22] utilizes
preprocessed audio features, such as MFCCs, log amplitude
spectrogram, etc. Li et al. [6] develop a model for direct
audio-to-gesture mapping. Despite these methods capturing
acoustic nuances, the quest for richer feature sets continues.
This has prompted investigations into the WavLM model, a
refined, pre-trained wav2vec framework, for enhanced speech
extraction, showcasing in ReprGesture [23], QPGesture [24],
and DiffuseStyleGesture [2].

Text-based co-speech gesture synthesis has seen significant
contributions, such as Yoon et al.’s [25] recurrent neural
network approach and Taras et al.’s [26] system, which merges
acoustic and semantic speech features, employing BERT for
semantic analysis [27]. Additionally, Uttaran et al. [28] uti-
lize GloVe embeddings [29] to surpass models of similar
dimensions, like Word2Vec [30] and FastText [31]. Merging
acoustic with semantic data offers a valuable path to enhance
the relevance and context of generated gestures. Nonetheless,
these modalities’ manual alignment and integration pose a
challenge in effectively superior gesture synthesis.
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For creating style-specific gestures, ReprGesture [23] and
QPGesture [24] integrate textual data with audio features,
whereas DiffuseStyleGesture [2] employs discrete labels to in-
fluence the stylistic aspects of the gestures produced. LDA [4]
enables the system to generate style gestures with classifier-
free guidance. Additionally, recent research has explored using
textual prompts to generate stylized gestures [16]. Given
that human emotions are more accurately represented on a
continuous spectrum [32] [33] and emerge from a complex
interplay of fuzzy factors, depending on discrete emotion
labels can overly simplify the gesture generation process. This
could limit the expressiveness and subtlety of the produced
gestures. To address these limitations, Ghrobani et al. [7]
introduced ZeroEGGS, a model that utilizes example motion
clips to guide the style of gestures. Although achieving zero-
shot is feasible, it still necessitates sample animation clips.

B. Generative approaches

DiffMotion [22], is the pioneering application of diffusion
models integrating an LSTM for the synthesis of diverse
gestures. UnifiedGesture [5] presents a retargeting network to
learn latent homeomorphic graphs to homeomorphic graphs
for various gesture representations. Maximizing the trans-
former architecture’s potential, Alexanderson et al. [4] en-
hanced DiffWave by replacing dilated convolutions. Conform-
ers [34] implementing classifier-free guidance to improve
style expression. GestureDiffuCLIP [16] propose a network
based on the transformer and AdaIN layers to incorporate
style guidance into the diffusion model. LivelySpeaker [35]
depends on contrastive learning to create a joint embedding
space between gestures and transcripts. DiffuseStyleGesture
(DSG) [2] and DSG+ [3], integrating cross-local attention
and layer normalization within transformers. Conversely, these
methodologies face difficulties in achieving an optimal bal-
ance between gesture and speech synchronization, resulting
in gestures that may appear either underrepresented or overly
matched.

In this study, we employ a fuzzy feature inference strategy to
implicitly capture fuzzy features in speech audio, synthesizing
natural, personalized co-speech gestures solely relying on raw
speech audio without additional modalities. Furthermore, we
employ an AdaLN transformer architecture to enhance the
model’s capacity to capture the intricate relationship between
speech and gestures.

III. SYSTEM OVERVIEW

Persona-Gestor, as an end-to-end architecture, processes
raw speech audio as its sole input, synthesizing personalized
gestures that adeptly balance naturalness with synchronized
alignment to speech.

A. Problem Formulation

We introduce the challenge of co-speech gesture generation
by framing it as a sequence-to-sequence problem, where the
objective is to translate a sequence of speech audio features
into a corresponding sequence of gestures. We denote the

sequence of full-body gesture features and the sequence of the
audio signal as g0 = g01:T ∈ [g01 , ..., g

0
t , ..., g

0
T ] ∈ RT×(D+3+3)

and a = a1:T ∈ [a1, ..., at, ..., aT ] ∈ RT . g0t = R(D+3+3)

symbolizes the representation of 3D joint angles, along with
the root positional and rotational velocity at frame t, where
D denoting the number of channels for these joints. The
superscript indicates the diffusion time step n. Here, at refers
to the current subsequence audio waveform signal at frame
t, while T denotes the sequence length. Let us define pθ(·)
as the Probability Density Function (PDF), which aims to
approximate the actual distribution of gesture data p(·) and
enables easy sampling. The objective is to generate a non-
autoregressive whole pose sequence (g0) from its conditional
probability distribution given audio signal (a) as covariate:

g0 ∼ pθ
(
g0|a

)
≈ p(·) := p

(
g0|a

)
(1)

where the pθ(·) aims to approximate p(·) trained by the
denoising diffusion model.

B. Model Architecture

The architecture of Persona-Gestor is depicted in Figure 2.
It comprises four primary components: (1) a Fuzzy Feature
Extractor, (2) an AdaLN Transformer, (3) a Gesture Encoder
and Decoder, and (4) a diffusion network.

1) Fuzzy Feature Extractor: This module utilizes a fuzzy
inference strategy, meaning it does not generate explicit clas-
sification outputs. Instead, it offers implicit, continuous, fuzzy
feature information, automatically learning and inferring the
global style and details directly from raw speech audio. The
module, showcased in Figure 2b and Figure 3, is a dual-
component extractor that integrates both global and local
extractors. The local extractor leverages the WavLM large-
scale pre-trained model [36] to convert the audio sequence into
tokens. We chose WavLM for its adeptness at extracting the
complex features of speech audio to capture universal audio
latent representations, denoted as za.

We observe that the local extractor alone falls short of fully
capturing the array of stylistic features and ensuring style
consistency across sequences. To overcome this, we integrate
a global style extractor, employing a depthwise separable
convolution 1D layer [37] across the za. This global extractor
is designed to automatically capture and embed global fuzzy
style information from za into a token zs ∈ R1×D′

. This
token is then broadcasted and combined with the universal
audio latent representations za ∈ RT ′×D′

to form a unified
latent representation zl ∈ RT×D′′

. We enhance the sequence’s
overall representational fidelity by merging local and global
insights for co-speech gesture generation. Subsequently, the
unified latent representation is directed to the downsampling
module for further processing.

The downsampling module is integrated into the condition
extractor to ensure alignment between each latent represen-
tation and its corresponding sequence of encoded gestures.
In our exploration, we experimented with linear alignment
like DSG [2] and DSG+ [3], but noted an issue of foot-
skating arising from these methods. On the contrary, We adopt
a Conv1D layer with a kernel size of 201 for this module
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(a) Overall schematic (b) Fuzzy Feature Extractor (below), Final Layer
in AdaLN Transformer (above)

(c) AdaLN Transformer Block

Fig. 2: The Architecture of Persona-Gestor mainly integrates a fuzzy feature extractor and an adaptive layer normalization
(AdaLN) transformer diffusion architecture. The fuzzy feature extractor comprises a dual-component framework to compre-
hensively capture the fuzzy style and detail-oriented audio features. These features, as unified latent features, are subsequently
fed into the AdaLN transformer to model the relationship with the accompanist gesture, facilitating the estimation of diffusion
noise for the diffusion model. (a) Overall Schematic. (b) Fuzzy Feature Extractor. (c) AdaLN Transformer Block.

that maps every 201-length target token output from WavLM
to one gesture frame. Finally, the fuzzy feature extractor
outputs c1:T , representing a unified latent representation that
combines encoded audio features and diffusion time step n.
The condition extractor can be formalized by:

za = LE(a) za ∈ RT ′×D′

zs = GE(za) zs ∈ R1×D′

zl = DS(za + zs) zl ∈ RT×D′′
(2)

n′ = DTE(n) n ∈ R, n′ ∈ R1×D′′

c1:T = zl + n′ c1:T ∈ RT×D′′

Where LE(·) and GE(·) denote the local extractor (WavLM)
and the global extractor. DS(·) represents the down sampling
process. DTE(·) signifies the diffusion time step embedding.
The final output of the fuzzy feature extractor is denoted as
c1:T . Here, T ′, D′, and D′′ refer to the WavLM output token
length, feature dimensionality of WavLM’s output token, and
the feature (h) dimensionality of the proposed model’s hidden
state, respectively. a is the input raw speech audio waveform.
Za and Zs are extracted by the local extractor(WavLM model)

and the global extractor. Zl is the unified latent representation.
n is the diffusion time step, n′ is the embedded diffusion time
step feature.

Fig. 3: An overview of the fuzzy inference condition extractor.
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2) AdaLN Transformer: The AdaLN’s fundamental purpose
is to incorporate a conditional mechanism that uniformly
applies a specific function across all tokens, thereby signif-
icantly improving the model’s capacity for representing both
conditional and output features with enhanced efficiency. It
offers a more sophisticated and nuanced approach to modeling,
enabling the system to capture and articulate the complex
dynamics between various input conditions and their corre-
sponding outputs. Consequently, this leads to an improvement
in the model’s predictive accuracy and its ability to generate
outputs that are more aligned with the given conditions.

Diffusion Transformers (DiTs) [17] represent an advanced
transformer-based backbone for diffusion models, surpassing
previous U-Net models in performance. By incorporating
AdaLN within transformer blocks for text-to-image synthesis,
DiTs achieve lower Fréchet Inception Distance (FID) [38]
scores, indicating superior image quality. Recently, this frame-
work has been used for text-conditional video generation.
Despite Diffusion Transformers (DiTs) success in handling
discrete text prompts conditional inputs, their effectiveness in
speech-driven gesture generation, a sequence-to-sequence task,
necessitates a thorough investigation.

Distinctively with the DiTs, our approach utilizes continu-
ous fuzzy features as conditional input tokens. Further, it is
without any patchy for spatial input, resulting in the output
being the latent feature of a sequence of gestures.

The module involves regressing the dimensionwise scale
and shift parameters (γ and β), which are derived from the
fuzzy feature extractor output c1:T , instead of directly learning
γ and β, as depicted in Figure 2c. In each AdaLN transformer,
a latent feature denoted as zn1:T,m is generated by fusing
condition information and gesture using AdaLN and causal
self-attention. Here, 1 ≤ m ≤ M , where M represents the
total number of AdaLN transformer stacks. In addition, the
final layer, as illustrated in Figure 2b, fed the same fuzzy
features but with additional scale and shift operation.

This method facilitates the creation of detailed gesture
sequences solely from speech audio, eliminating the require-
ment for discrete style labels or supplementary inputs. Con-
sequently, it significantly improves the model’s capacity to
generate personalized and closely aligned gestures with the
context of the speech, offering a more refined and context-
sensitive gesture synthesis capability.

3) Gesture Encoder and Decoder: The architecture of the
gesture encoder and decoder is designed to encode and decode
the gesture sequence, as illustrated in Fig.2a and Fig.2b. The
gesture encoder comprises a Convolution1D with a kernel
size of 3. It encodes the initial sequence of gestures g into
a hidden state h ∈ RT×D′′

. Our experimental results revealed
that employing a kernel size of 1 resulted in animation jitter.
Conversely, a kernel size of 3 is instrumental in mitigating this
issue by effectively capturing the spatial-temporal relationships
inherent in gesture sequences.

The gesture decoder reduces the feature dimension of the
output from the transformer D′′ to the original dimension D,
corresponding to the number of channels representing skeleton
joints. Result in outputting the predicted noise (ϵθ). We utilize
a size of 1 convolution1D By convolving a 1D kernel with

each position in the input sequence, our model can effectively
extract meaningful features and relationships between adjacent
joint channels.

C. Training and Inferencing with Denoising Diffusion Proba-
bilistic Model

The diffusion process in this architecture aims to reconstruct
the conditional probability distribution between gestures and
fuzzy features. This entails employing a systematic approach
to sample from this restored distribution, thereby enabling the
generation of diverse gestures.

Following our previous work, Diffmotion [22], incorpo-
rating the Denoising Diffusion Probabilistic Model (DDPM)
into our approach. However, we employ a non-autoregressive
transformer to generate the entire sequence of gestures in-
stead of frame-by-frame. The form is represented by pθ :=
∫ pθ

(
g0:N

)
dg1:N , where g1, ..., gN are latent of the same

dimensionality as the data gn at the n-th diffusion time stage.
The model contains two processes: the diffusion process

and the generation process. At training time, the diffusion
process gradually converts the original gesture data(g0) to
white noise(gN ) by optimizing a variational bound on the data
likelihood. At inference time, the generation process recovers
the data by reversing this noising process through the Markov
chain using Langevin sampling [39]. The Markov chains in
the diffusion process and the generation process are:

p
(
gn|g0

)
= N

(
gn;

√
αng0, (1− αn) I

)
and

pθ
(
gn−1|gn, g0

)
= N

(
gn−1; µ̃n

(
gn, g0

)
, β̃nI

)
,

(3)

where αn := 1− βn and αn :=
∏n

i=1 α
i. As shown by [40],

βn is a increasing variance schedule β1, ..., βN with βn ∈
(0, 1), and β̃n := 1−αn−1

1−αn βn.
The training objective is to optimize the parameters θ

that minimizes the Negative Log-Likelihood (NLL) via Mean
Squared Error (MSE) loss between the true noise ϵ ∼ N (0, I)
and the predicted noise ϵθ:

Eg0
1:T ,ϵ,n[||ϵ− ϵθ

(√
αng0 +

√
1− αnϵ, a1:T , n

)
||2], (4)

Here ϵθ is a neural network (see figure 2a), which uses
input g0t , at−1 and n that to predict the ϵ, and contains the
similar architecture employed in [41]. The complete training
procedure is outlined in Algorithm 1.

Algorithm 1: Training for the whole sequence gesture

Input: data g01:T ∼ p
(
g0|a1:T

)
and a1:T

repeat
Initialize n ∼ Uniform(1, ..., N) and ϵ ∼ N (0, I)
Take the gradient step on

∇θ||ϵ− ϵθ
(√

αng
0
1:T +

√
1− αnϵ, a1:T , n

)
||2

until converged;

After training, we utilize variational inference to generate
the whole sequence of new gestures matching the original
data distribution(g0t ∼ pθ

(
g0t , at

)
). We followed the sampling
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procedure in Algorithm 2 to obtain a sample g0t of the current
frame. The σθ is the standard deviation of the pθ

(
gn−1|gn

)
.

We choose σθ := β̃n.

Algorithm 2: Sampling g01:T via annealed Langevin
dynamics

Input: noise gN1:T ∼ N (0, I) and raw audio waveform
a1:T

for n = N to 1 do
if n > 1 then

z ∼ N (0, I)
else

z = 0
end if
gn−1
1:T =

1√
αn

(
gn1:T − βn

√
1−αn ϵθ (g

n
1:T , a1:T , n)

)
+
√
σθz

end for
Return: g01:T

During inferencing, we send the whole sequence of the
raw audio to the condition extractor component. Then, the
component output is fed to the Diffusion Model to generate
the whole sequence of the accompanying gesture(g0).

IV. EXPERIMENTS

To validate our approach, we utilized three co-speech ges-
ture datasets (Trinity [42], ZEGGS [7], and BEAT [43]). Our
experiments concentrated on producing full 3D body gestures
(including finger motions and locomotion). This choice pre-
sented a greater challenge than merely focusing on upper body
motions due to the expanded output dimensionality and the
need to overcome visual complexities, such as foot-skating,
the naturalness of finger movements, and locomotion.

A. Dataset and Data Processing

1) Datasets: The Trinity dataset focuses on individual
spontaneous speech, the ZEGGS dataset encompasses a wide
range of emotional expressions, and the BEAT dataset consists
of personalized movements exhibited by various individuals.
Further details are elaborated in TableII found in Appendix A.

2) Speech Audio Data Process: In the Trinity dataset, the
audio was recorded at a sampling rate of 44 kHz, while 48
kHz in ZEGGS and BEAT. However, due to the pre-training of
the WavLM large model on speech audio sampled at 16 kHz,
we uniformly resample all audio to match this frequency.

3) Gesture Data Process: We focus solely on full-body
gestures, adopting the data processing techniques outlined by
Alexanderson et al. [20]. Given the variability in data quality
and structure across motion datasets, we tailor our approach by
selecting specific joints for analysis in each dataset. We omit
hand skeleton data for the Trinity Gesture Dataset due to its
inferior quality. For ZEGGS and BEAT datasets, our analysis
includes finger joints and the same set of joints considered in
the Trinity dataset. All data capture translational and rotational
velocities to detail the root’s trajectory and orientation. The
datasets are uniformly downsampled to a frame rate of 20

fps. To ensure accurate and continuous representation of joint
angles, we apply the exponential map technique [44]. All data
are segmented into 20-second clips for training and validation
purposes. As for the user evaluation, we segment the generated
gesture sequence into 10 seconds to improve the efficiency of
the evaluation.

B. Model Settings

Our experiments employ 12 causal attention blocks, each
comprising 16 attention heads (as depicted in Figure 2a).
The encoding process transforms each frame of the gesture
sequence into hidden states h ∈ R1280. For the WavLM model,
we utilize the pre-trained WavLM Large model 2. To en-
sure temporal translation invariance, we employ a translation-
invariant self-attention (TISA) mechanism [45].

The quaternary variance schedule of diffusion model starts
from β1 = 1 × 10−4 till βN = 5 × 10−5 with linear beat
schedule. The number of diffusion steps is N = 1000. The
training batch size is 32 per GPU.

The model was developed using the Torch Lightning frame-
work and tested on an Intel i9 processor with an A100 GPU.
Training durations were approximately 4 hours for Trinity and
ZeroEGGS and 21 hours for BEAT.

C. Visualization Results

Our system excels in creating personalized gestures that
align with the speech context, leveraging the fuzzy inference
strategy to autonomously derive fuzzy features directly from
speech audio. Furthermore, it showcases remarkable general-
ization and robustness by utilizing in-the-wild speech.

(a) Happy (b) Sad

(c) Old (d) Speech

Fig. 4: Samples of gestures corresponding to different emo-
tions. The left side of the subfigure displays ground truth
gestures, while the right side showcases gestures generated
by our architecture.

2https://github.com/microsoft/unilm/tree/master/wavlm
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Figure 4 depicts the visual outcomes of gestures aligned
with the emotional valence conveyed by the audio. For in-
stance, the system produces gestures of joy in response to
happy audio cues (refer to Figure 4a) and gestures of sadness
for sorrowful audio (as depicted in Figure 4b). The system can
also infer age-related characteristics or other nuanced states
from the speech audio (as illustrated in 4c and 4d).

(a) Ayana (b) Jaime

(c) Luqi (d) Zhao

Fig. 5: Samples of gestures corresponding to different person-
alities. The left side of the subfigure displays ground truth
gestures, while the right side showcases gestures generated by
our architecture.

Figure 5 shows the system’s ability to generate personalized
gestures Predicated upon individuals’ unique speech traits. For
example, Ayana’s gestures, with hands together and palms
facing, denote reserved expressiveness. In contrast, Jaime’s
”palm up” gestures imply openness, and Luqi’s alternating
hand movements add dynamic variability. These results high-
light the system’s adeptness at depicting a wide range of
personality-specific gestures.

(a) ...with my mother... (b) ...1400 miles away... (c) ...I’m not saying...

Fig. 6: Samples of gestures corresponding to semantic.

Interestingly, as shown in Figure 6, the system can produce
gestures with certain semantic relevance even in the absence
of explicit semantic constraints. For instance, Carla’s remark
about her mother is matched with a self-referential gesture.
Likewise, Lawrence’s reference to distance is visually en-

hanced by a gesture that emphasizes the semantic essence of
his speech.

Fig. 7: Sample of gesture including finger movements and
locomotion.3

Further, finger movements and locomotion are included, as
shown in Figure 7, which highlight the system’s proficiency
in creating realistic, character-specific animations, thereby in-
creasing the virtual interactions’ believability and immersion.

(a) CamenAgraDeedy (b) JinhaLee (c) SakiMafunikwa

Fig. 8: Samples of gestures corresponding to in-the-wild
speech audio collected from TED Talks.

The Figure 8 showcase gesture outcomes generated from
in-the-wild speech audio, like TED talks, to demonstrate
the system’s ability to create lifelike and style movements
directly from unstructured real-world audio, without additional
prompts or labels. This highlights the system’s robust general-
ization capabilities. Testing in noisy environments with back-
ground music, applause, and urban sounds further revealed the
system’s strong anti-interference performance, emphasizing
its resilience. This efficiency simplifies the input process,
enabling effortless generation of dynamic character animations
from raw audio, thus enhancing user experience and system
accessibility.

Finally, we represent the visualizes (Figure 9) of the
distribution of generated gestures corresponding to different
emotional states (Fig. 9a) and personalities(Fig. 9b) using
the t-SNE method. The figure illustrates distinct separations
between certain states, while others exhibit a degree of simi-
larity yet remain distinguishable. These findings demonstrate
the capability of our proposed method to generate nuanced
and discernible gestures solely from raw speech audio without
relying on labels or manual annotations.

3Due to the inherent challenges in retargeting finger motion to the avatar,
please refer to the support video for more details.
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(a) T-SNE results of the generated gestures in Zeggs Dataset experiment.

(b) T-SNE results of the generated gestures in BEAT Dataset experiment.

Fig. 9: The T-SNE clustering visualization displays a variety of
gestures distinguished by color-coded styles, revealing distinct
regions for gestures tied to specific emotions or speakers, albeit
with some boundary overlaps. This highlights our approach’s
capability to produce distinct style gestures through a fuzzy
feature inference strategy, relying solely on speech audio.

D. Subjective and Objective Evaluation

Consistent with the prevailing practices in gesture genera-
tion research, we conducted a series of subjective and objective
evaluations to evaluate the co-speech gestures generated by our
proposed Persona-Gestor (PG) model.

We adopted slightly varied baselines for different datasets.
For the Trinity dataset, we employed LDA [4] and Taming
[15]. In addition to LDA and Taming, for the ZEGGS dataset,
we also incorporated DiffuseStyleGesture (DSG) [2] and Ze-
roEGGS [7] Furthermore, for the BEAT dataset, we utilized
the same baseline models as in ZEGGS but replaced DSG
with DSG+ [3] and introduced GestureDiffuCLIP (GDC) [16]
as an additional baseline model.

In our experiments with the ZEGGS and BEAT datasets, we
extended the original LDA, DSG, and DSG+4 models to cover
all styles within these datasets. Originally, the Taming model,
trained exclusively on the TED dataset, focused on upper-body
gestures. We have since augmented it to support full-body
gestures across the three datasets. Efforts to adapt LDA to
include finger motions were met with challenges, leading to

4The authors have expanded their coverage to include all types in the BEAT
dataset, as originally presented in the project of that study.

unsatisfactory outcomes in gesture generation. Consequently,
we utilized LDA-generated gestures, excluding finger move-
ments, for our analysis. For more implementation details of
these baselines, please refer to Appendix C.

1) Subjective Evaluation: The goal of speech-driven ges-
ture generation is to produce gestures that are both natural
and convincing. However, exclusive reliance on objective
metrics may not adequately reflect human subjective quality
assessments [20], [46], [47]. This study prioritizes subjective
evaluations to gauge human perception, complemented by
objective evaluations detailed in Section IV-D2.

For thorough subjective evaluations, we utilize three met-
rics: human likeness, appropriateness, and style appropriate-
ness. Human likeness gauges the naturalness and resemblance
of gestures to real human movements independent of speech.
Appropriateness examines the temporal alignment of ges-
tures with speech rhythm, intonation, and semantics, ensuring
natural fluidity. Style-appropriateness evaluates the similarity
between generated and original gestures.

We conducted a user study with pairwise comparisons, as
recommended by [48]. In each trial, participants were shown
two 10-second video clips generated by different models
(including the Ground Truth (GT)) side by side for direct
comparison. The videos were accompanied by instructions
for participants to select their preferred clip based on their
evaluations. Preferences were quantified on a 0 to 2 scale, with
the unselected clip in each pair receiving an inverse score (e.g.,
a -2 score for the non-chosen clip if the chosen one received 2).
A score of zero indicated no preference. Attention checks were
included in the study to ensure engagement. Further details are
available in Appendix B.

Considering the extensive range of styles in ZEGGS (19)
and BEAT (30), individual evaluations for each style were
deemed impractical. Consequently, we utilized a random se-
lection method to assign a subset of 5 styles from ZEGGS and
6 characters from BEAT to each participant. For the Trinity
dataset, we chose Record 008 and Record 015. The training
or validation sets include none of the selected audio clips.

A total of thirty volunteer participants, 17 males and 13
females aged between 19 and 31, were recruited for this study.
Among them, 22 participants were Chinese nationals, while
the remaining eight were international students from the USA
and UK. Notably, all participants in this study exhibited a high
level of English proficiency.

One-way ANOVA and post-hot Tukey multiple comparison
tests were conducted to determine if the models’ scores
differed on the three evaluation aspects. The results are shown
in Table I and Figure 10. The post-hoc analysis information
is provided in the Appendix B.

The results indicate that the GT achieves the highest
scores (0.51 ± 1.73 and 0.95 ± 1.13) in the Trinity and
ZEGGS datasets, exhibiting statistically significant differences
(p < 0.001) in human-likeness evaluations when compared to
model-generated gestures. The GT is characterized by a di-
verse yet limited array of gestures, each with distinct traits that
enhance movement realism. However, these gestures belong
to the dataset’s long-tail distribution, challenging the mod-
els’ learning capabilities. Additionally, these unique gestures
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TABLE I: The subject mean perceptual rating score. Bold fonts were utilized to emphasize the best results for each metric
among the different methods, except for the GT.

Methods Subject Evaluation Metric Objective Evaluation Metric

Dataset Model With Fingers Human↑
likeness appropriateness↑ Style↑

appropriateness
FGD↓

on feature space
FGD↓

on raw data space BeatAlign↑

Trinity

GT Y 0.51±1.73 0.66±1.24 / / / /
LDA [4] N -0.22±0.98 -0.39±1.08 -0.18±1.10 349.53 6008.37 0.68

Taming [15] N -0.48±0.96 -0.47±1.07 -0.23±1.05 3970.14 52196.87 0.68
(Proposed)PG N 0.12±1.09 0.19±1.12 0.20±1.06 289.42 5080.57 0.69
(Ours)PGNSE N 0.08±1.06 0.13±1.18 0.15±1.03 8002.65 70617.28 0.68
(Ours)PGCA N -0.17±1.02 -0.01±1.11 -0.03±1.02 2566.65 26124.39 0.68
(Ours)PGCF N -0.08±1.06 -0.13±1.05 0±1.02 12540.17 156895.12 0.68
(Ours)PGICC N 0.07±1.01 0.06±1.12 0.08±1.01 125921.53 1940124.44 0.67

ZEGGS

GT Y 0.95±1.13 1.19±1.03 / / / /
LDA [4] N -0.73±1.12 0.02±1.31 0.53±1.41 124.55 50996.33 0.66
DSG [2] Y -0.47±1.14 -0.71±1.11 -0.61±1.08 66.77 33297.50 0.63

Taming [15] Y -1.08±1.01 -0.91±1.09 -0.98±0.97 1419.76 293245.12 0.67
ZeroEGGS [7] Y 0.38±1.11 0.29±1.35 0.49±1.31 37.19 26666.85 0.66
(Proposed)PG Y 0.42±1.17 0.48±1.29 0.76±1.34 28.13 26193.92 0.68
(Ours)PGNSE Y 0.33±1.15 0.35±1.29 0.59±1.38 125.40 49081.55 0.66

(Ours)PGOnehot Y 0.25±1.19 0.33±1.31 0.51±1.28 122.56 50259.95 0.63
(Ours)PGCA Y -0.36±1.22 -0.62±1.14 -0.66±1.09 807.12 156686.01 0.67
(Ours)PGCF Y 0.27±1.20 -0.03±1.28 -0.23±1.26 97.57 39256.55 0.67
(Ours)PGICC Y 0.04±1.20 -0.39±1.23 -0.40±1.21 407.89 89893.96 0.67

BEAT

GT Y 0.65±1.16 0.96±1.04 / / / /
LDA [4] N -1.65±0.73 -1.59±0.74 -1.35±1.05 276.25 3584.95 0.66

DSG+ [3] Y -0.28±1.17 -0.49±1.15 -0.40±1.24 23811.46 2384465.64 0.43
GDC [16] N 0.54±1.12 0.47±1.25 0.30±1.27 432.15 93215.56 0.69

Taming [15] Y -0.42±1.14 -0.52±1.14 -0.32±1.24 1251.56 46828.23 0.66
(Proposed)PG Y 0.56±1.14 0.63±1.10 0.66±1.16 264.06 3471.26 0.68
(Ours)PGNSE Y 0.09±1.16 0.27±1.23 0.46±1.31 1514.94 51077.98 0.66

(Ours)PGOnehot Y -0.01±1.16 0.18±1.31 0.32±1.36 1863.69 63872.78 0.63
(Ours)PGCA Y 0.35±1.09 0.17±1.26 0.28±1.33 703.83 18990.56 0.66
(Ours)PGCF Y 0.14±1.01 0.15±1.22 0.30±1.31 1160.63 48899.63 0.66
(Ours)PGICC Y 0.02±1.10 -0.24±1.17 -0.25±1.25 2057.31 78754.92 0.66

(a) Trinity (b) ZEGGS (c) BEAT

Fig. 10: The mean rating of each metric for each approach across the three datasets in comparative experiments.

impact the appropriateness and style-appropriateness scores.
Conversely, while the GT achieves higher scores (0.65±1.16),
no significant differences were observed compared with the
PG (0.56± 1.14) and GDC (0.54± 1.12) in the BEAT dataset
analysis. This suggests that these models are more closely
aligned with GT benchmarks in this dataset.

The experiments on the Trinity dataset show our proposed
model (0.12 ± 1.09, 0.138 ± 1.12, and 0.203 ± 1.06) out-
performing both LDA (−0.22 ± 0.98, −0.39 ± 1.08, and
−0.18± 1.10) and Taming (−0.48± 0.96, −0.47± 1.07, and
−0.23±1.05) architectures significantly (p < 0.001) across all
metrics. This superior performance is due to the more natural
and relaxed gestures produced by our model, PG, enhancing
its effectiveness compared to the LDA and Taming models,
which fall short in accurately capturing the acoustic rhythm.

Evaluation of the ZEGGS dataset showed statistically signif-

icant differences (p < 0.001) between our method (0.42±1.17,
0.48± 1.29, and 0.76± 1.34) and others across all three met-
rics. However, there was no statistically significant difference
(p > 0.05) between our method and ZeroEGGS (0.38± 1.11)
in terms of human likeness, though our method achieved a
slightly higher score. These findings suggest that both our
proposed model and ZeroEGGS can generate vivid gestures.
Our advantage lies in the ability to synthesize emotional
gestures solely through audio input, without relying on any
reference example animations or labels.

In the BEAT dataset experiments, our PG model exhib-
ited significant improvements (0.56 ± 1.14, 0.63 ± 1.10, and
0.66±1.16) in three metrics compared to DSG+ (−0.28±1.17,
−0.49 ± 1.15, and −0.40 ± 1.24), LDA (−1.65 ± 0.73,
−1.59± 0.74, and −1.35± 1.05), and Taming (−0.41± 1.14,
−0.52± 1.14, and −0.32± 1.24) , reflecting the degradation
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(a) Trinity (b) ZEGGS (c) BEAT

Fig. 11: The mean rating of each metric for each approach across the three datasets in ablation experiments.

in synthesis quality observed in DSG+ and LDA when incor-
porating all styles. While human-likeness metrics were com-
parable to GDC, the appropriateness metric of PG achieved
higher scores than GDC (0.47 ± 1.25) despite the GDC’s
ability to better align with speech rhythm. Users reported that
gestures generated by GDC overly emphasized prosodic cues,
resulting in unnatural and frequent gestures. Furthermore,
these gestures often displayed repetitive patterns with limited
stylistic diversity, clearly indicating their origin from the GDC
model and leading to a lower score (0.30± 1.27) in the style-
appropriateness metric. This finding implies that the quality of
gestures is not solely determined by accurately matching the
audio rhythm.

2) Objective Evaluation: We introduce three objective eval-
uation metrics: Fréchet Gesture Distance (FGD) in both feature
and raw data spaces [49], and BeatAlign [50]. FGD, inspired
by the Fréchet Inception Distance (FID) [38], assesses the
quality of generated gestures and demonstrates a moder-
ate correlation with human-likeness ratings, outperforming
other objective metrics [47]. Additionally, BeatAlign measures
gesture-audio synchrony by calculating the Chamfer Distance
between audio and gesture beats, providing insights into the
temporal alignment of generated gestures with speech rhythms.

Table I displays our results, highlighting the state-of-the-
art performance of our method in objective evaluations using
FGD and BeatAlign metrics. Our model outperforms (289.42
for Trinity, 28.13 for ZEGGS, and 264.06 for BEAT) other
architectures in FGD, effectively generating gestures that align
closely with the Ground Truth (GT). It also achieves superior
BeatAlign scores (0.69 for Trinity, 0.68 for ZEGGS, and 0.68
for BEAT) compared to other models, except for GDC (0.69
for BEAT), demonstrating its efficacy in producing co-speech
gestures that synchronize accurately with speech rhythms.
Although GDC scores highest in BeatAlign, corroborating
user feedback, its overemphasis on prosodic cues leads to
frequent high-frequency gestures. While technically accurate,
this diminishes gesture naturalness.

E. Ablation Studies

Ablation studies were performed to evaluate the impact of
key components on our model’s efficacy, specifically targeting
the global fuzzy feature extractor and Adaptive Layer Normal-
ization (AdaLN).

1) Ablation of Global Fuzzy Feature Extractor: For the
global fuzzy feature extractor, we explored the outcomes of
removing this component (we call it: No Style Encoding,
PGNSE) and replacing it with One-hot embedding (PGOne-
hot) for discrete feature extraction. PGOnehot was not applied
to the Trinity dataset due to its limited style variability.

Our analysis of the global fuzzy feature extractor shows no
significant differences (p > 0.05) between PG and PGNSE
on the Trinity dataset in three subjective metrics, likely due
to its limited range of styles. However, the ZEGGS dataset
reveals significant variances in three metrics between PG
(0.42 ± 1.17, 0.48 ± 1.29, and 0.76 ± 1.34) and PGOnehot
(0.25± 1.19, 0.33± 1.31, and 0.51± 1.28), while no notable
differences in human-likeness and appropriateness metrics
are observed between PG and PGNSE (0.35 ± 1.29). PG
(0.76 ± 1.34) outperforms PGNSE (0.59 ± 1.38) in style-
appropriateness, likely because PGNSE cannot ensure a con-
sistent style throughout the sequence. Conversely, the BEAT
dataset exhibits significant differences (p < 0.001) between
PG (0.56± 1.14, 0.63± 1.10, and 0.66± 1.16) and the other
methods, indicating the superior capability of the global fuzzy
feature inference mechanism in capturing stylistic nuances.
Moreover, while PGOnehot is capable of capturing various
logo gesture styles, it may compromise the naturalness of the
movements.

2) Ablation of AdaLN: We integrated Cross-Attention
(PGCA), In-Context Conditions (PGICC), and Concatenation
of Features (PGCF) into our analysis to evaluate AdaLN’s
effectiveness. This structured approach enabled a compre-
hensive assessment of each component’s contribution to the
model’s overall performance and its role in audio-based
gesture generation. The implementations of Cross-Attention
and In-Context Conditions follow the designs in [17], while
Feature Concatenation combines gesture and encoded audio
features along the feature axis, a technique proven effective
in related studies [51]. Separate user studies were conducted
for each component, with findings presented in Table I and
Figure 11.

In the ablation studies concerning AdaLN, the replacement
of the AdaLN module with alternative architectural frame-
works precipitated a significant degradation in performance
across all metrics. This reduction in efficacy can be ascribed
to the deficiency of alternative architectures in synchronizing
speech rhythm and capturing stylistic nuances with precision.
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This outcome underscores the pivotal role of a uniform mech-
anism that applies an identical function across all attention
layers throughout the sequence.

F. Generalization and Robustness

In addition, we test our method’s generalization capabilities.
We utilized in-the-wild speech audio collected from TED talks.
Our system adeptly generates consistent gestures from dataset
types and seamlessly produces gestures from untagged, in-the-
wild audio. It also showcases remarkable robustness against
various auditory disturbances, such as background music,
applause, urban noise, and decorative sounds. This adaptability
highlights the system’s ability to handle a broad spectrum
of audio inputs, ensuring the creation of naturalistic gestures
despite significant noise interference. Such resilience empha-
sizes the system’s suitability for real-world applications. Yet,
we encountered certain inherent challenges in assessing the
generalizability and robustness of alternative models during
our experimentation. More details can be found in Appendix
D, and supporting videos.

V. DISSCUSTION AND CONCLUSION

In this work, we introduce Persona-Gestor, a novel network
architecture designed for the generation of personality ges-
tures, leveraging solely raw speech audio. At its core, Persona-
Gestor combines a fuzzy feature extractor and an AdaLN
transformer diffusion architecture.

The fuzzy feature extractor utilizes a fuzzy feature inference
strategy in the dual-component module to implicitly infer both
fuzzy stylistic features and specific details embedded within
the audio data autonomously. These elements are combined
into a unified latent representation, facilitating the generation
of speaker-aware personalized 3D full-body gestures. This
approach incorporates a highly influential feature into the
capability to synthesize personality gestures through auto-
matically inferred fuzzy features, removing the necessity for
explicit style labels or additional features. This advancement
facilitates the end-to-end generation of gestures that resonate
with the speaker’s unique characteristics, directly from raw
speech audio. Thereby, integrating fuzzy feature inference
ensures a seamless and intuitive creation process that enhances
generalization and user accessibility.

The AdaLN mechanism is a conditional mechanism that
uniformly applies a specific function across all sequence
tokens. This strategic incorporation significantly augments the
model’s proficiency in accurately capturing and representing
both conditional dependencies and output characteristics with
greater efficiency. We demonstrate that AdaLN also facilitates
a refined understanding and processing of the complex inter-
play between the continuous fuzzy features conditional input
and the resultant gesture synthesis, leading to enhanced model
performance and output fidelity. Ultimately, Persona-Gestor
utilizes diffusion mechanism for producing a diverse spectrum
of gesture outputs.

Our approach presents multiple benefits: 1) It exclusively
uses raw speech audio to synthesize speaker-aware person-
alized gestures, bypassing the requirement for extra inputs,

which enhances user-friendliness. 2) It achieves the full-body
(including finger motions and locomotion) gestures’ superior
synchronization with speech, capturing rhythm, intonation,
and certain semantics without compromising naturalness. 3) It
showcases improved generalization and robustness, adapting
effectively across varied conditions.

Our study highlights key areas for enhancement: Firstly,
the model’s sole dependence on speech audio may limit
its effectiveness in capturing style features within segments
of minimal speech. Secondly, the lack of control over the
movement path and orientation of the digital human could lead
to unintended gestures. Thirdly, our model may not effectively
replicate certain gestures, which are crucial for expressing
specific states. These observations underscore the necessity
for improvements to broaden the model’s ability to accurately
convey a wide range of human gestures.

VI. ACKNOWLEDGMENTS

This work was partially supported by the ”Pioneer”
and ”Leading Goose” R&D Program of Zhejiang (No.2023
C01212), the National Key Research and Development Pro-
gram of China (No.2022YFF 0902305), the Public Wel-
fare Technology Application Research Project of Zhejiang
(No.LGF21F020002, No.LGF22F020008), the Key Program
and development projects of Zhejiang Province of China
(No.2021C03137), and the Key Lab of Film and TV Media
Technology of Zhejiang Province (No.2020E10015).

REFERENCES

[1] U. Bhattacharya, E. Childs, N. Rewkowski, and D. Manocha,
“Speech2affectivegestures: Synthesizing co-speech gestures with gen-
erative adversarial affective expression learning,” in Proc. of the 29th
ACM International Conf. on Multimedia, 2021, pp. 2027–2036.

[2] S. Yang, Z. Wu, M. Li, Z. Zhang, L. Hao, W. Bao, M. Cheng, and
L. Xiao, “DiffuseStyleGesture: Stylized audio-driven co-speech gesture
generation with diffusion models,” arXiv preprint arXiv:2305.04919,
2023.

[3] S. Yang, H. Xue, Z. Zhang, M. Li, Z. Wu, X. Wu, S. Xu, and Z. Dai,
“The diffusestylegesture+ entry to the genea challenge 2023,” arXiv
preprint arXiv:2308.13879, 2023.

[4] S. Alexanderson, R. Nagy, J. Beskow, and G. E. Henter, “Listen, denoise,
action! audio-driven motion synthesis with diffusion models,” ACM
Transactions on Graphics (TOG), vol. 42, no. 4, pp. 1–20, 2023.

[5] S. Yang, Z. Wang, Z. Wu, M. Li, Z. Zhang, Q. Huang, L. Hao, S. Xu,
X. Wu, and C. Yang, “Unifiedgesture: A unified gesture synthesis model
for multiple skeletons,” in Proceedings of the 31st ACM International
Conference on Multimedia, 2023, pp. 1033–1044.

[6] J. Li, D. Kang, W. Pei, X. Zhe, Y. Zhang, L. Bao, and Z. He,
“Audio2gestures: Generating diverse gestures from audio,” IEEE Trans-
actions on Visualization and Computer Graphics, pp. 1–15, 2023.

[7] S. Ghorbani, Y. Ferstl, D. Holden, N. F. Troje, and M.-A. Carbonneau,
“Zeroeggs: Zero-shot example-based gesture generation from speech,”
in Computer Graphics Forum, vol. 42, no. 1. Wiley Online Library,
2023, pp. 206–216.

[8] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[9] S. Vashishtha and S. Susan, “Unsupervised fuzzy inference system for
speech emotion recognition using audio and text cues (workshop paper),”
in 2020 IEEE sixth international conference on multimedia big data
(BigMM). IEEE, 2020, pp. 394–403.

[10] N. M. Patil and M. U. Nemade, “Content-based audio classification
and retrieval using segmentation, feature extraction and neural network
approach,” in Advances in computer communication and computational
sciences: Proceedings of IC4S 2018. Springer, 2019, pp. 263–281.

[11] R. A. Calvo, S. D’Mello, J. M. Gratch, and A. Kappas, The Oxford
handbook of affective computing. Oxford Library of Psychology, 2015.

11

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3393236

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[12] M. Goudbeek and K. Scherer, “Beyond arousal: Valence and po-
tency/control cues in the vocal expression of emotion,” The Journal
of the Acoustical Society of America, vol. 128, no. 3, pp. 1322–1336,
2010.

[13] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.

[14] K. Campbell-Kibler, “Intersecting variables and perceived sexual orien-
tation in men,” American Speech, vol. 86, no. 1, pp. 52–68, 2011.

[15] L. Zhu, X. Liu, X. Liu, R. Qian, Z. Liu, and L. Yu, “Taming diffusion
models for audio-driven co-speech gesture generation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 10 544–10 553.

[16] T. Ao, Z. Zhang, and L. Liu, “Gesturediffuclip: Gesture diffusion model
with clip latents,” arXiv preprint arXiv:2303.14613, 2023.

[17] W. Peebles and S. Xie, “Scalable diffusion models with transformers,”
arXiv preprint arXiv:2212.09748, 2022.

[18] J. Windle, D. Greenwood, and S. Taylor, “Uea digital humans entry to
the genea challenge 2022,” in GENEA: Generation and Evaluation of
Non-Verbal Behaviour for Embodied Agents Challenge, 2022.

[19] L. Yu, H. Xie, and Y. Zhang, “Multimodal learning for temporally coher-
ent talking face generation with articulator synergy,” IEEE Transactions
on Multimedia, vol. 24, pp. 2950–2962, 2021.

[20] A. Simon, H. G. Eje, K. Taras, and B. Jonas, “Style-Controllable Speech-
Driven Gesture Synthesis Using Normalising Flows,” in Computer
Graphics Forum, vol. 39. Wiley Online Library, 2020, pp. 487–496,
issue: 2.

[21] Taylor Sarah, Windle Jonathan, Greenwood David, and Matthews Iain,
“Speech-driven conversational agents using conditional flow-vaes,” in
European Conf. on Visual Media Production, 2021, pp. 1–9.

[22] F. Zhang, N. Ji, F. Gao, and Y. Li, “Diffmotion: Speech-driven gesture
synthesis using denoising diffusion model,” in MultiMedia Modeling:
29th International Conf., MMM 2023, Bergen, Norway, January 9–12,
2023, Proc., Part I. Springer, 2023, pp. 231–242.

[23] S. Yang, Z. Wu, M. Li, M. Zhao, J. Lin, L. Chen, and W. Bao, “The
reprgesture entry to the genea challenge 2022,” in Proc. of the 2022
International Conf. on Multimodal Interaction, 2022, pp. 758–763.

[24] S. Yang, Z. Wu, M. Li, Z. Zhang, L. Hao, W. Bao, and H. Zhuang,
“Qpgesture: Quantization-based and phase-guided motion matching for
natural speech-driven gesture generation,” in Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, 2023, pp. 2321–
2330.

[25] Yoon Youngwoo, Ko Woo-Ri, Jang Minsu, Lee Jaeyeon, Kim Jaehong,
and Lee Geehyuk, “Robots learn social skills: End-to-end learning of co-
speech gesture generation for humanoid robots,” in 2019 International
Conf. on Robotics and Automation (Icra), 2019, pp. 4303–4309.

[26] Kucherenko Taras, Jonell Patrik, van Waveren Sanne, Henter Gustav
Eje, Alexandersson Simon, Leite Iolanda, and Kjellström Hedvig, “Ges-
ticulator: A framework for semantically-aware speech-driven gesture
generation,” in Proc. of the 2020 International Conf. on Multimodal
Interaction, 2020, pp. 242–250.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in 2019
Conf. of The North American Chapter of The Association for Compu-
tational Linguistics: Human Language Technologies, vol. 1, 2019, pp.
4171–4186.

[28] Bhattacharya Uttaran, Rewkowski Nicholas, Banerjee Abhishek,
Guhan Pooja, Bera Aniket, and Manocha Dinesh, “Text2gestures: A
transformer-based network for generating emotive body gestures for
virtual agents,” in 2021 IEEE Virtual Reality and 3D User Interfaces
(VR). IEEE, 2021, pp. 1–10.

[29] Pennington Jeffrey, Socher Richard, and Manning Christopher D.,
“Glove: Global vectors for word representation,” in Proc. of the 2014
Conf. on Empirical Methods in Natural Language Processing (EMNLP),
2014, pp. 1532–1543.

[30] Mikolov Tomas, Sutskever Ilya, Chen Kai, Corrado Greg S., and Dean
Jeff, “Distributed representations of words and phrases and their com-
positionality,” in Advances in Neural Information Processing Systems,
2013, pp. 3111–3119.

[31] Bojanowski Piotr, Grave Edouard, Joulin Armand, and Mikolov Tomas,
“Enriching word vectors with subword information,” Transactions of the
Association for Computational Linguistics, vol. 5, pp. 135–146, 2017.

[32] J. Russell, “A circumplex model of affect,” Journal of Personality and
Social Psychology, vol. 39, pp. 1161–1178, 12 1980.

[33] E. Cambria, A. Livingstone, and A. Hussain, “The hourglass of emo-
tions,” in Cognitive Behavioural Systems: COST 2102 International
Training School, Dresden, Germany, February 21-26, 2011, Revised
Selected Papers. Springer, 2012, pp. 144–157.

[34] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented transformer for speech recognition,” in INTERSPEECH
2020, ser. Interspeech, 2020, pp. 5036–5040, interspeech Conf., Shang-
hai, PEOPLES R CHINA, OCT 25-29, 2020.

[35] Y. Zhi, X. Cun, X. Chen, X. Shen, W. Guo, S. Huang, and S. Gao,
“Livelyspeaker: Towards semantic-aware co-speech gesture generation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 20 807–20 817.

[36] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda,
T. Yoshioka, and X. Xiao, “Wavlm: Large-scale self-supervised pre-
training for full stack speech processing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 16, no. 6, pp. 1505–1518, 2022.

[37] L. Kaiser, A. N. Gomez, and F. Chollet, “Depthwise separable convolu-
tions for neural machine translation,” arXiv preprint arXiv:1706.03059,
2017.

[38] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” Advances in neural information processing systems,
vol. 30, 2017.
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APPENDIX A
DETAIL OF DATASETS

Table II refers to an overview of the three datasets (Trinity,
ZEGGS, and BEAT).

TABLE II: Overview of the three datasets.

Dataset Total
Time fps

Audio
Sample

Rate
Character Content

Trinity 244
min 60 44 kHz 1

male
spontaneous speech
on different topics.

ZEGGS 135
min 60 48 kHz 1

female
cover 19 different
motion styles.

BEAT 35h 120 48 kHz 30
speakers

speak on diverse
content.

APPENDIX B
DETAILS OF USER STUDY

1) Processing of User Study: Pairwise comparisons, found
to be quicker and slightly more reliable inter-rater wise,
offer a different perspective from the rating scale method,
which illuminates both absolute and comparative qualities,
thus better accommodating the simultaneous assessment of
multiple stimuli [48]. In our study, we implemented pairwise
comparisons, showing participants two 10-second clips from
various models (including ground truth) for the same speech
excerpt. To streamline and clarify the evaluation, clips were
played side by side, with an arrangement of three clips for
style-appropriateness assessments, featuring the ground truth
in the middle. This setup allowed for the concurrent viewing
of two (three) clips, enhancing the directness of comparisons.

We opted for the original skeletal display gestures instead
of avatars, as accurately retargeting skeletal movements to
avatars, particularly the finger parts, poses significant chal-
lenges. Relevant details can be found in Figure 12.

Participants were instructed to select their preferred clip
by five response options below the videos: ”Left is clearly
better”,”Left is slightly better”, ”They are equal”, ”Right is
clearly better”, and ”Right is clearly better”. The platform
assigns a score to each video based on the user’s selection,
using a scale ranging from 0 to 2, where 0 indicates no
preference. In cases where a video is not chosen within a
pair, it automatically receives an inverse score (e.g., if the
participants select the left video as ”Left is clearly better”,
then the unselected video (the right video) receives a score of
-2). Participants were given the opportunity to rate the videos
only after both had been presented, and they were provided
with the option to replay them at their discretion. For each
metric experiment, we provide explicit evaluation directions
and detailed instructions:

• Human-likeness experiment: You will watch 2 silent
action videos (No sound). Which action do you think is
more natural, the one on the left or the right?

• Appropriateness experiment: Please put on your head-
phones. You will watch 2 videos with speaking audio.
Which action do you think better matches the speech in

terms of rhythm, intonation, meaning and moves more
naturally, the one on the left or the right?

• Style-appropriateness experiment: Please put on your
headphones. You will watch three videos. The video in
the middle is a real action video (Real Human gestures),
and the videos on the left and right are actions generated
by different methods. Which action do you think is more
similar to the video in the middle, the one on the left or
the right?

(a) Human-likeness evaluation UI

(b) Appropriateness evaluation UI

(c) Style-appropriateness evaluation UI

Fig. 12: The screenshot depicting the user evaluation interface.

After conducting the user evaluation, we administered a
user questionnaire survey to gather feedback from participants,
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primarily focusing on their overall perceptions of the obtained
results.

A total of thirty volunteer participants, comprising 17 males
and 13 females aged between 19 and 31, were recruited for this
study. Among them, 22 participants were from China while
the remaining eight were international students hailing from
countries such as the USA and UK. It is worth noting that all
participants in this study demonstrated proficiency in English.

To initiate the formal experiment, we provided all par-
ticipants with a comprehensive introduction to the method-
ology and presented them with illustrative clips that were
not included in the evaluation set. Subsequently, participants
were instructed to don headphones and situate themselves
in a tranquil environment devoid of any disturbances while
facing a computer screen. It is noteworthy that throughout
the experiment, participants remained uninformed about which
method each video corresponded to. The sequence of videos
was randomized and scored by participants upon presentation.
All assessments incorporated attention checks.

Given the substantial number of styles in ZEGGS (19)
and BEAT (30), conducting individual evaluations for each
style would be impractical. Therefore, we employed a random
selection process to choose a subset of 5 styles from ZEGGS.
Regarding the Trinity dataset specifically, we specifically
selected Record 008 and Record 015. Given that the GDC
model is contingent upon extensive data annotations and due
to the framework and dataset being proprietary and subject to
licensing restrictions, our evaluation was limited to selecting
only 6 clips for testing purposes.

Trinity Dataset: A total of 6 speech clips were selected
from Record 008 and Record 015 for gesture synthesis. In
evaluating human-likeness and appropriateness, 7 methods
along with a ground truth (GT) were employed, resulting in
the creation of 48 videos. For this evaluation, users needed to
perform (8×7)/2×6 = 168 tests. For the style-appropriateness
evaluation, without needing to assess the Ground Truth (GT),
participants were required to complete (7 × 6)/2 × 6 = 126
tests.

ZEGGS Dataset: To distribute the variety of styles from
the ZEGGS dataset, a random selection method was utilized,
assigning 5 distinct styles to each participant. This approach
guaranteed that participants would experience a diverse set of
styles, thereby comprehensively encompassing the entire spec-
trum of styles within the ZEGGS dataset. For the evaluation of
human-likeness and appropriateness, 11 different architectures,
including the Ground Truth (GT), were tested, resulting in the
generation of 55 videos per participant. Consequently, users
were required to conduct (11×10)/2×5 = 275 comparisons.
For the style-appropriateness evaluation, the procedure neces-
sitated users to complete (10 × 9)/2 × 5 = 225 comparative
assessments.

BEAT Dataset: In assessing human-likeness and appro-
priateness within the BEAT dataset, 10 distinct architectural
models, inclusive of the Ground Truth (GT), underwent test-
ing, culminating in the creation of 66 videos for each par-
ticipant’s evaluation. This setup mandated users to undertake
(11 × 10)/2 × 6 = 330 comparison tasks. For evaluating
style-appropriateness, participants were required to execute

(10× 9)/2× 6 = 270 comparative analyses.
The experiment for the three datasets required a total of

2 days for each participant to complete. Participants were
allowed to pause and take breaks after each experiment. The
evaluation information is summarized in Table III

TABLE III: The summaries of evaluation information

Dataset Metric Test Count Duration
per experiment

Trinity
Human likeness 168 0.85±0.13h
Appropriateness 168 0.92±0.12h

Style appropriateness 126 1.13±0.32h

ZEGGS
Human likeness 275 1.53±0.21h
Appropriateness 275 1.66±0.28h

Style appropriateness 225 1.67±0.37h

BEAT
Human likeness 330 2.08±0.41h
Appropriateness 330 2.12±0.53h

Style appropriateness 270 1.82±0.28h

2) Process of User Study Data: By conducting a statistical
analysis of user evaluation feedback data, we aim to investigate
the existence of a significant correlation between the average
scores obtained from different gesture generation methods.
Initially, to ensure the applicability of the analytical approach,
a normality test was conducted on the data. Given the limited
sample size of 30, we opted for the Kolmogorov-Smirnov
(K-S) test to assess data normality. The test results revealed
significant relationships (p < 0.05) between the various
gesture generation methods and action scores, leading to the
rejection of the null hypothesis of normality. Therefore, it was
concluded that the test data did not exhibit normal distribution
characteristics.

In light of the non-normality of the data, we employed
the Brown-Forsythe and Welch analysis of variance meth-
ods, suitable for non-normally distributed data. Our analysis
of the differences in Method on Score indicated significant
differences (p < 0.05) among the various Method samples,
suggesting that different gesture generation methods had a
significant impact on gesture scores. To further elucidate
the significance of differences among the gesture generation
methods, we conducted a post hoc analysis using the Tukey
HSD method. This analysis revealed notable differences in
mean scores between multiple groups. Given the complexity
of the methods involved, we present in Figure 13 heatmaps
illustrating the disparity in mean significance across different
methods for each metric experiment conducted on the three
datasets.
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(a) Trinity Human-likenss (b) Trinity Appropriateness (c) Trinity Style-appropriateness

(d) ZEGGS Human-likenss (e) ZEGGS Appropriateness (f) ZEGGS Style-appropriateness

(g) BEAT Human-likenss (h) BEAT Appropriateness (i) BEAT Style-appropriateness

Fig. 13: Heatmaps of the mean ratings of user studies significant differences across all methods for each metric and datasets.
Asterisks indicated significant effects (*: p < 0.05,****:p < 1.00e−04 , ns: no significant difference). We use distinct colors to
represent each dataset: red for Trinity, green for ZEGGS, and blue for BEAT, with lighter shades indicating greater significance
differences.
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APPENDIX C
CHALLENGES OF AUGMENTING STYLE ADAPTABILITY IN

LDA AND DSG

In our evaluations, we expanded the capabilities of the LDA
and DSG models on the ZEGGS dataset to accommodate all 19
styles, significantly surpassing the 6 styles that were initially
supported. This extension entailed adjusting the dimensionality
of the models’ style one-hot embeddings from R6 to R19. For
the BEAT dataset, we applied the full set of personality IDs,
comprising 30 IDs, to the LDA model to gauge its capacity
for capturing a broad spectrum of personality expressions. No-
tably, the DSG+ model’s creators have similarly expanded its
ID range to 30, as indicated in their open-source code. These
adjustments evaluated the models’ flexibility and efficacy in
generating gestures across various stylistic expressions.

The modifications to the DSG model exposed its constraints,
particularly in the generation of gestures, which were limited
in their range of motion and exhibited a constrained motion.
This limitation hindered the model’s ability to produce ges-
tures corresponding to specific states, indicating a shortfall in
the model’s adaptability and expressiveness. Conversely, the
LDA model retained the pose characteristics inherent in the
original data; it faced challenges in generating diverse gestures
and displayed a notable lack of stability in its movements.
These findings suggest a fundamental limitation of One-hot
encoding in accommodating an expanded style spectrum. Con-
trarily, by employing a fuzzy inference strategy, our proposed
model, Persona-Gestor, demonstrated remarkable stability and
diversity across various styles, evidencing its superior adapt-
ability to an extensive range of gesture styles. An ablation
study that replaced the global feature extractor with One-hot
embedding further supports this conclusion.

Meanwhile, in our efforts to enhance the LDA model’s
capabilities, we attempted to extend its functionality to include
finger motion synthesis. Unfortunately, this endeavor did not
yield successful outcomes, as we encountered difficulties in
accurately generating the intended gestures. As shown in Table
IV

TABLE IV: Unveiling the challenges of extended LDA and
DSG training and testing on the ZEGGS and BEAT datasets.
The symbol ✓ denotes the generation of proper gestures, while
× indicates poor or crash gesture generation, signifies
gestures generated with fewer bodily movements.

Dataset Model Style Finger g
dim.

Training
Steps

Train
Loss

Quality
of gesture

LDA

6 N 70 12260 0.0089 ✓
19 N 70 25410 0.0079
6 Y 103 12260 0.246 ×

ZEGGS 19 Y 103 25410 0.171 ×
DSG 6 Y 1141 450000 0.014 ✓

19 Y 1141 450000 0.046
PG(Ours) 19 Y 103 24319 0.0142 ✓

LDA 30 N 70 222240 0.0112 ✓
30 Y 103 222240 0.116 ×

BEAT DSG 30 Y 2232 215638 0.0128 ✓
PG(Ours) 30 Y 159 118899 0.0226 ✓

APPENDIX D
GENERALIZATION AND ROBUSTNESS

1) Generalization: In evaluating the generalization of ges-
ture generation models using in-the-wild audio data from
TED Talks, we encountered varied challenges across different
models, as summarized in Table V. The LDA model’s perfor-
mance was contingent on inputting a style label for gesture
generation, showing limitations in its ability to produce ges-
tures accurately without explicit style guidance. Conversely,
the DSG model required not only Style type information but
also the corresponding text file of the audio and alignment
data between the text and audio, significantly complicating
the model’s scalability. Furthermore, when trained on the
BEAT dataset, the LDA model was ineffective in generating
appropriate gestures. While responsive to speech rhythm, the
GDC model tended to generate excessive and unnecessary
limb movements due to its oversensitivity. In contrast, the
PG model showcased remarkable scalability and efficiency
by autonomously converting discrete styles into fuzzy style
features, bypassing manual style labeling, and simplifying the
gesture generation process.

2) Robustness: To assess the robustness of gesture gener-
ation models against auditory disturbances, we infused test
audio inputs with various noise types, including applause and
music, to simulate real-world scenarios. The outcomes, as
detailed in Table V, illustrate distinct responses from each
model to the presence of noise. The LDA model struggled sig-
nificantly, failing to generate relevant gestures when exposed
to noisy audio from TED Talks. The GDC model, while able to
produce gestures, showed a tendency towards jittery and erratic
movements under noisy conditions, indicating sensitivity to
audio quality. Conversely, the PG model exhibited commend-
able stability and efficacy in gesture generation, unaffected
by the introduced noise. This performance underscores the
PG model’s superior robustness, highlighting its potential for
practical applications in environments with variable audio
quality.

TABLE V: Testing Results of in-the-wild audios (TED Talk)

Input LDA DSG GDC PG(Ours)

Origin generated improperly Complex text processing unnecessary movements Good
Noisy generated improperly Complex text processing with slight jittery Good
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