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VIPurPCA: Visualizing and Propagating
Uncertainty in Principal Component Analysis

Susanne Zabel, Philipp Hennig, and Kay Nieselt

Abstract—Variables obtained by experimental measurements
or statistical inference typically carry uncertainties. When an
algorithm uses such quantities as input variables, this uncer-
tainty should propagate to the algorithm’s output. Concretely,
we consider the classic notion of principal component analysis
(PCA): If it is applied to a finite data matrix containing imperfect
(i.e. uncertain) multidimensional measurements, its output—a
lower-dimensional representation—is itself subject to uncertainty.
We demonstrate that this uncertainty can be approximated by
appropriate linearization of the algorithm’s nonlinear function-
ality, using automatic differentiation. By itself, however, this
structured, uncertain output is difficult to interpret for users.
We provide an animation method that effectively visualizes the
uncertainty of the lower dimensional map. Implemented as an
open-source software package, it allows researchers to assess the
reliability of PCA embeddings.

Index Terms—Uncertainty, Dimensionality Reduction, Visual-
ization.

I. INTRODUCTION

H IGH-DIMENSIONAL data is encountered in all fields
of science. In medicine, the health status of a patient

is described by over hundreds of measured records [1], in
bioinformatics, high-throughput methods provide large-scale
omics data [2], in computer vision, high-resolution images
of thousands of pixels are processed for image recognition
[3], to just name some prominent examples. The availabil-
ity of these large data sets provides lots of potential for
data analysts, but at the same time raises big challenges.
Working on high-dimensional datasets is often limited by
computational constraints, therefore, dimensionality reduction
techniques are commonly applied. These methods project the
data to a lower dimensional subspace, such that properties of
the data in high-dimensional space are preserved in their low-
dimensional representation. Methods for dimensionality reduc-
tion can be divided into linear and nonlinear approaches. The
most prominent linear dimensionality reduction is principal
component analysis (PCA; [4]), which produces new features
as linear combinations of the original variables. The respective
coefficients are formed by a new set of orthonormal basis
vectors, which are called principal components (PCs). The
PCs point into orthogonal directions of maximum variance
in the data and can be found by computing an eigenvalue
decomposition of the data’s covariance matrix (Fig. 1a).
Data is transformed and projected according to the principal
components. Dimensions are reduced by only taking a small

Philipp Hennig is with MPI for Intelligent Systems, 72076 Tübingen,
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subset of all principal components into account. However,
conventional PCA is unaware of uncertainty as it uses finite
input sets and results in a definite low-dimensional map.
It is not common practice to analyze the stability of the
reducing map with respect to (minor) imprecisions in the data
(uncertainty analysis) or to evaluate how much each input
contributes to the output uncertainty (sensitivity analysis).
PCA is often applied for a general visual overview of the
data but is also used to identify characteristics in the data that
explain certain patterns (e.g. clusters), like for example in the
field of archeogenomics [5]. Therefore, PCA influences the
user’s reasoning early on in the data analysis pipeline. Hence,
it is relevant to incorporate uncertainty information if available
to improve the interpretability of the low-dimensional map,
to prevent invalid conclusions, as well as to strengthen robust
evidence. As seen in Fig. 1b, the uncertainty of the input highly
influences the outcome of the PCA. Therefore, we devel-
oped a method for visualizing and propagating uncertainty in
PCA (VIPurPCA, pronounced ’vip your PCA’). As an input,
VIPurPCA expects a dataset carrying uncertainties obtained
by experimental measurements or statistical estimates (Fig.
1b). The output uncertainty is approximated by linearizing
PCA’s nonlinear functionality to allow for Gaussian error
propagation. Here, nonlinearity refers to the computation of
the eigenvectors, which is nonlinear in the input. Derivatives
as part of the linearization are efficiently computed using
automatic differentiation and represent the influence of indi-
vidual data points on the principal components. In this work,
uncertainty is modeled probabilistically which is difficult to
visualize explicitly. Hence, we have developed an intuitive
visualization of the stability of the lower dimensional map
itself and integrated it into VIPurPCA: Equipotential samples
drawn along an orbit of the probability distribution build
frames of an animation of the resulting lower dimensional
map (Fig. 2). This visualization technique provides valuable
insights into the amount and structure of the uncertainty of
PCA’s output.

In this work, we mathematically formulate error propagation
through PCA and show its computational advantage compared
to iterative Monte Carlo sampling. We also introduce a method
for visualizing embedding uncertainties, which provides addi-
tional value to alternative visualizations of uncertain embed-
dings. In three real-world examples, we show how different
sources of input uncertainty influence the stability of the
PCA embedding and how this is visually identified using our
visualization approach.
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Fig. 1. Comparison of standard PCA (a) and VIPurPCA (b). (a) Left: PCA is applied to four 2-dimensional samples. The directions of the computed
Principal Components (PCs) are indicated in orange. Middle: Dataset in terms of the new coordinate system. Right: Dimensionality reduction by projecting the
data to the first PC. (b) Left: Input data including (correlated) Gaussian uncertainties are used as an input for VIPurPCA, which propagates the uncertainty to
the PCA’s output. Mean and 1𝜎-interval of computed PCs are indicated in orange. 100 Samples from the computed distribution over the principal components
are used to transform (middle) and project (right) the data. The distribution of the one-dimensional projections is represented by a probability density to reduce
visual clutter.

II. RELATED WORK

There exists a large variety of dimensionality reduction tech-
niques, for reviews see for example [6]–[9]. Traditionally,
linear techniques like principal component analysis (PCA) [4],
factor analysis [10] and classic multidimensional scaling [11]
were used, which more recently have been complemented by
a large number of nonlinear techniques to handle complex
nonlinear data [8]. PCA is in fact the most popular linear
dimensionality technique. It computes a new set of features
(principal components) as a linear combination of the original
variables, such that the amount of variance in the data is
maximal when reducing its dimensions. In this work, we
extend PCA to handle input data containing known correlated
Gaussian errors, which are propagated to the algorithm’s
output. Methods like factor analysis or probabilistic principal
component analysis (PPCA) [12] are generalizations of PCA
and model the observed variables as linear combinations of
latent factors and added Gaussian noise. This Gaussian noise
is unknown, uncorrelated, has zero mean, is even isotropic
for PPCA, and is estimated by the method. Similarly, we also
assume the observed variables to have observational errors,
which however can be correlated, are known, and are entered
as input by the user. Recently, Görtler et al. [13] proposed
an uncertainty-aware version of PCA working on probability

distributions rather than a set of input points. In this method,
a closed-form solution for the covariance matrix of the input
distributions is provided which is then fed to the standard
PCA procedure. This procedure resembles sampling from the
input distribution and computing the PCA on the concatenated
set of samples. Opposed to that, our method propagates the
uncertainty to PCA’s final output. Despite being an approx-
imation our result converges to the ground truth obtained
by Monte-Carlo-based uncertainty propagation. Görtler et al.
[13] visualize the uncertainty in the low-dimensional map by
showing samples drawn from their propagated distributions
as overlayed scatter points. In this work, we suggest that in
some scenarios the overlay visualization is less appropriate and
propose instead to visualize showing samples in an animation.

There have been many attempts to incorporate uncertainty
and sensitivity analysis into visual analytics tools, i.e., un-
derstanding high-dimensional data via low-dimensional rep-
resentations, to increase the interpretability of the resulting
visualizations. One approach adds sensitivity information in
terms of flow-lines to the scatterplot to give insights into how
one variable changes with respect to another variable in the
original space. This approach was implemented in flow-based
scatterplots [14] and Generalized Sensitivity Scatterplots [15]
using derivatives to determine the sensitivities. Rather than

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3345532

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

features

sample 1 sample 2
fe

a
tu

re
 v

a
lu

e

PCA

Automatic differentiation

Bayesian Inference

Distribution over eigenvalues and -vectors

Static and animated visualization of low-dimensional map

PC 1 PC 1

P
C

 2

P
C

 2

High dimensional dataset

with uncertainties

Fig. 2. Workflow of VIPurPCA. As an input VIPurPCA uses a high-dimensional dataset carrying uncertainties. Applying VIPurPCA to the inputs’ mean
provides the standard output of PCA (eigenvectors, eigenvalues, and lower dimensional map). Additionally, uncertainties of the inputs are propagated using
automatic differentiation and Bayesian inference. The inferred uncertainty of the eigenvectors is visualized in an animated low-dimensional map.

showing sensitivities of one variable with respect to another
variable, Faust et al. [16] display sensitivities of projected data
with respect to the original data in a tool called DimReader.
Using automatic differentiation to compute derivatives they
show how infinitesimal perturbation in the data affect the
outcome of nonlinear projections. Isolines of the scalar field
spanned by these derivatives are computed indicating how
projected points move if the input was perturbed in a specific
way. Their proposed method focuses on the visualization
of the sensitivity analysis considering input parameters as
independent and perturbations not to follow any probability
distribution, which gives an intuition on how perturbing an
input affects the output. VIPurPCA also provides sensitivity
analysis in form of derivatives, but in addition, quantifies the
uncertainty of model outputs based on the uncertainty of model
inputs and provides an eligible visualization of the output
uncertainty.

As the focus of this work is on information visualization,
related work on uncertainty visualization for scientific visu-
alizations such as isosurfaces [17], [18] or volume rendering
[19] is not covered in detail.

Communicating uncertainties visually is a big challenge
[20]. Levontin and Walton [21] recently reviewed available
approaches to tackle this task and remaining challenges. There
are a variety of approaches to classify uncertainty visualiza-
tion methods [22]–[25]. In this work, uncertainty is modeled
using a probabilistic approach which requires the visualiza-
tion of distributions. Visualizing high-dimensional distribu-
tions explicitly (e.g., plotting a frequency or probability) is
not feasible. Alternatively, implicit approaches are available
that explore the distribution via samples drawn from the
distribution. [26]. Those potential realizations are visualized
in a second step for which different views exist. Individual
samples can be overlaid, aggregated in the form of a density
representation [27], shown in hypothetical outcome plots [28]
one after another in an animation [29] or next to each other as
small multiples. In this work, we discuss the advantages and

disadvantages of the visualization approaches applied to un-
certain low-dimensional maps. Additionally, we implement an
animation approach that provides smooth transitions between
individual frames.

Introduced by Hennig [30] on animating samples from
Gaussian processes, we adopted the approach to visualize the
uncertainty of the PCA result (i.e., the distribution over the
eigenvectors). We use time to traverse through trajectories
of equipotential samples of the output distribution, where at
each time point a sample is drawn and used to project the
input data accordingly. By that, the visualization provides
an intuition about the stability of the outcome in terms of
the extent of motion of the points in the two-dimensional
map. Furthermore, it gives valuable information about the
potential structure of samples in contrast to static visualization
of sample distributions (e.g. density plots).

III. BACKGROUND

A. Uncertainty and Sensitivity Analysis

Uncertainty analysis or uncertainty quantification determines
the imprecision of a model outcome 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛) given
the variation of all model variables 𝑥1, . . . , 𝑥𝑛. Uncertainties
associated with 𝑦 can be expressed in many ways, for example,
lower-order moments such as mean and (co-)variance, or
a complete probability distribution over the output(s) [31].
There exist different probabilistic approaches for uncertainty
propagation including simulation-based methods like Monte
Carlo simulations and local expansion-based methods like
the Taylor series method [32]. Basically, in Monte-Carlo-
based uncertainty analysis, a desired function is executed
many times on randomly drawn samples from the distributions
over the function inputs to obtain the probability distribution
over the targeted outcomes. Though highly general, Monte
Carlo methods can be computationally expensive [33]. As the
Monte Carlo approach outperforms the linearization approach
in terms of accuracy it is often used for validation [34].
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As analytical solutions for uncertainty propagation through
(non)linear functions are only available for a limited number
of cases (e.g., in very low dimensions), approximations have
to be applied. Here, the Taylor series expansion is used to
approximate the function of interest by a surrogate function
facilitating the computation of the closed-form solution. Using
the first-order Taylor series approximation, the mean and the
covariance of the output variables can be estimated, which are
sufficient to describe the output distribution, if the output is
Gaussian distributed [35].

Let x ∈ R𝑝 be a random normal distributed vector with
mean µx and covariance matrix 𝚺x (x ∼ N(µx,𝚺x)), and
let 𝑓 : R𝑝 → R𝑞 be a nonlinear function such that y = 𝑓 (x).
The first-order Taylor approximation expanded at the point µx

is given by

y ≈ ŷ = 𝑓 (µx) + J (x − µx) (1)

where J ∈ R𝑞×𝑝 is the Jacobian
𝜕 𝑓

𝜕x

��
x=µx

evaluated at µx.
The resulting mean µ𝒚̂ and covariance 𝚺𝒚̂ of ŷ are expressed
by

µ𝒚̂ = 𝑓 (µx) (2)

𝚺𝒚̂ = J𝚺xJ
𝑇 . (3)

As y is approximated by a linearization, the Taylor series
expansion is biased when applied to highly nonlinear functions
[35], [36].

Sensitivity analysis addresses the question of how much
each input contributes to the output uncertainty. The Jacobian
provides sensitivity coefficients of all outputs with respect
to each input value and therefore provides information on
the importance of individual inputs on the function’s outputs.
Using linearization for uncertainty propagation as described
before includes the computation of the Jacobian and thereby
automatically facilitates sensitivity analysis [34]. A computa-
tionally efficient way of differentiating (non)linear functions
is described in section III-D.

B. Principal Component Analysis

Consider a data matrix X ∈ R𝑛×𝑝 where rows represent
observations and columns represent features, such that each of
the 𝑛 observations is defined by a 𝑝-dimensional feature vector
{x𝑖}𝑖=1,...,𝑛 with x𝑖 ∈ R𝑝 . Furthermore, column-wise zero
empirical mean is assumed. Starting with 𝑝-dimensional fea-
ture vectors PCA projects them into a 𝑞-dimensional subspace
(𝑞 ≤ 𝑝) which is spanned by 𝑞 orthonormal directions, called
principal components (PCs). The projections {t𝑖}𝑖=1,...,𝑛 with
t𝑖 ∈ R𝑞 are obtained by an orthogonal linear transformation
of the original observations x𝑖 and the weight vectors (PCs)
{w𝑘}𝑘=1,...,𝑞 with w𝑘 ∈ R𝑞:

t𝑖𝑘 = x𝑖 ·w𝑘 (4)

Mathematically, the weight vectors can be either computed by
maximizing the sum of variances of the projections [37] or
by minimizing the mean-squared error between the original
vectors and their projections [4], which can be shown to
be equivalent. Given a principal component vector w, the

projected data onto the PC is computed by Xw and its sample
variance 𝜎2

Xw is given by:

𝜎2
Xw =

1
𝑛 − 1

(Xw)𝑇 (Xw) (5)

= w𝑇 X
𝑇X

𝑛 − 1
w (6)

= w𝑇𝚺xw (7)

where 𝚺x denotes the covariance matrix of the original fea-
tures in X . The vector w is chosen in a way such that σ2

Xw
is maximized under the constraint that ∥w∥ = 1 [37]:

w = arg max∥w∥=1 w
𝑇𝚺xw (8)

Using the Lagrange multiplier 𝜆 the objective function can be
rewritten as:

𝐿 (w) = w𝑇𝚺xw − 𝜆(w𝑇w − 1) (9)
𝜕𝐿

𝜕w
= 2𝚺xw − 2𝜆w = 0 (10)

𝚺xw = 𝜆w (11)

Thus, the desired vector w is an eigenvector of the covariance
matrix 𝚺x, corresponding to the largest eigenvalue 𝜆. It can
be shown that 𝚺x has a set of 𝑝 real eigenvalues 𝜆𝑘 , and their
corresponding eigenvectors w𝑘 are the weight vectors used for
the linear transformation:

T = XW (12)

where W denotes the weight matrix of eigenvectors.

C. Gaussian Distributions on Matrices

In this section, Gaussian probability distributions over matrices
are shortly introduced [38]. Given a matrix X ∈ R𝑛×𝑝 describ-
ing observations of 𝑝 variables for 𝑛 samples. Typically, row
vectors x𝑖 are considered as samples drawn from a multivariate
Gaussian distribution N(x;µ,𝚺) with µ ∈ R𝑝 and 𝚺 ∈ R𝑝×𝑝 .
In contrast, matrix variate normal distributions consider each
observation to be distributed around its own mean, and to
potentially co-vary with all other observations. One way to
represent this distribution is to distribute vec(X) ∈ R𝑛𝑝 as
a multivariate Gaussian distribution. vec(X) describes the
vectorization of the matrix, which is equal to concatenating the
columns of X into one vector. Mean M ∈ R𝑛𝑝 and covariance
C ∈ R𝑛𝑝×𝑛𝑝 are defined as:

M = E[vec(X)] (13)

C = E[(vec(X) −M ) (vec(X) −M )𝑇 ] (14)

The matrix normal distribution can be considered a multivari-
ate normal distribution by rearranging matrices into a vector
[39]. The covariance matrix is structured by a Kronecker
product of two smaller matrices V ∈ R𝑛×𝑛 and W ∈ R𝑝×𝑝

representing the sample’s and feature’s covariance matrices,
respectively, such that

vec(X) ∼ N (vec(M ),W ⊗ V )
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D. Auto-differentiating Linear Algebra

Many machine learning algorithms require the evaluation
of derivatives when optimizing an objective function. The
backpropagation algorithm has been widely used in training
neural networks to compute gradients of the loss function
with respect to the weights of the network given a single
input-output training sample. Backpropagation belongs to a
bigger family of techniques for the computation of derivatives,
called automatic (or algorithmic) differentiation (AD). Instead
of calculating the derivative analytically, this set of techniques
evaluates the derivative of a function at a given point. AD can
be applied to any regular code containing not only elementary
arithmetic operations and functions, but also statements like
branchings, loops, and recursions. As the derivatives of these
individual operations are known, AD repeatedly applies the
chain rule to compute the overall derivative for any arbitrary
combination of operations at machine precision [40].

In general, for any vector valued function y = 𝑓 (x), with
𝑓 : R𝑝 → R𝑞 , the Jacobian J 𝑓 can be computed at a specific
input point a:

J 𝑓 =


𝜕y1
𝜕x1

· · · 𝜕y1
𝜕x𝑝

...
. . .

...
𝜕y𝑞

𝜕x1
· · · 𝜕y𝑞

𝜕x𝑝


�������
x=a

(15)

AD computes the gradient of each element of the output with
respect to each element of the input and it can be extended
to matrix-valued functions mapping from R𝑘×𝑙 → R𝑚×𝑛

resulting in a Jacobian of size 𝑚 × 𝑛× 𝑘 × 𝑙, but also to higher
ranking tensors.

There exists a large number of AD implementations for
a large variety of programming languages. For example,
TensorFlow [41], PyTorch [42], autograd [43], mxnet [44],
and JAX [45] provide libraries for AD in Python. However,
gradient computation of linear algebra primitives like QR
decomposition, Cholesky decomposition, singular value de-
composition, or symmetric eigendecomposition is not avail-
able in all frameworks. Furthermore, automatic full Jacobian
computation instead of summarized gradients is only provided
for some platforms. JAX provides both functionalities and
can differentiate native Python and Numpy code in a highly
efficient manner by using XLA (Accelerated Linear Algebra)
to compile and run the code on accelerators like GPUs and
TPUs. Therefore, using JAX it becomes possible to compute
the Jacobian of an eigen decomposition with respect to the
input data which is required for the computation of the
covariance matrix of the conditional distribution 𝑝(U ,𝚲|Y )
(eq. 22).

IV. METHODS

A. Bayesian Inference

Let 𝑝(X) = ∼ N(X;µ,𝚵), where X ∈ R𝑛×𝑝 , be a matrix
Gaussian distribution describing the prior knowledge about a
high-dimensional data set. Let the observations Y ∈ R𝑛×𝑝 ,
given X , be distributed according to the matrix Gaussian
distribution 𝑝(Y |X) = N(Y ;X ,W ⊗ V ), where V ∈ R𝑛×𝑛
and W ∈ R𝑝×𝑝 . The covariance matrix W ⊗ V describes

the (structured) noise introduced by observing the data. Note
here that the covariance matrix of Y can be any positive
semidefinite matrix.

Let F : R𝑛×𝑝 → R𝑝×𝑞 , R𝑞 be the function U , 𝚲 = F (X)
to compute the PCA (U : eigenvectors, 𝚲: eigenvalues) of the
high-dimensional data X as an eigendecomposition of the
covariance matrix (see Section III-B). Note that the function
F (X), i.e. the computation of the covariance matrix and
its eigendecomposition, is not linear in its input X . In the
following, the functions FU and F𝚲 consider the outputs U
and 𝚲, respectively.

Since we do not have access to X , but to Y , we are inter-
ested in the distributions 𝑝(U |Y ) and 𝑝(𝚲|Y ). Below, results
are derived for 𝑝(U |Y ), which can be used analogously to
derive 𝑝(𝚲|Y ). 𝑝(U |Y ) can be computed by marginalizing
over X assuming that U is independent of Y given X:

𝑝(U |Y ) =
∫

𝑝(U |X ,Y ) · 𝑝(X |Y )𝑑X (16)

=

∫
𝑝(U |X) · 𝑝(X |Y )𝑑X (17)

Mean and variance of the linear conditional Gaussian distribu-
tion 𝑝(X |Y ) can be easily inferred given 𝑝(Y |X) and 𝑝(X)
[46]:

𝑝(X |Y ) ∼ N (X;M ,P ) (18)

M = µ + 𝚵 · (𝚵 +W ⊗ V )−1 · (Y − µ) (19)

P = (X𝑖−1 + (W ⊗ V )−1)−1 (20)

The other term 𝑝(U |X) can be written as a Dirac likelihood
𝑝(U |X) = 𝛿(U −FU (X)). Due to the non-linearity of FU in
its input X , the first and second moment of 𝑝(U |X) can not
be inferred directly. Therefore, FU is linearized around M
(eq. 19) by a first-order Taylor approximation (eq. 1). By only
considering the first two Taylor polynomials and by assuming
that FU (X) is differentiable, the linear approximation is given
as

FU (X) ≈ FU (M ) +∇XFU (M ) (X −M ), (21)

where ∇XFU (M ) := JM ∈ R𝑝𝑞×𝑛𝑝 is the Jacobian of the
function FU (X) evaluated at M . Since Gaussians reproduce
under linear operations [46], a closed-form solution (eq. 2, eq.
3) for 𝑝(U |Y ) can be approximated by

𝑝(U |Y ) ≈ N (U ;FU (M ),JMPJ𝑇
M ). (22)

Assuming that 𝑝(X) is centered around zero (µ → 0) and
that we are totally uncertain about this distribution (𝚵 → ∞),
M (eq. 19) and P (eq. 20) have the following limits:

M
µ→0,𝚵→∞−−−−−−−−−→ Y (23)

P
µ→0,𝚵→∞−−−−−−−−−→ W ⊗ V (24)

Therefore,

𝑝(U |Y ) M→Y ,P→W ⊗V−−−−−−−−−−−−−−−→
N(U ;FU (Y ),JY (W ⊗ V )J𝑇

Y ). (25)
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Fig. 3. Schematic view of drawing equipotential samples from a Gaussian
distribution. (a) The grey sphere (2-manifold) describes equipotential samples
of a three-dimensional standard Gaussian distribution defined by r (green
vector). The randomly chosen 1-dimensional black circle lies on the manifold
and is used to draw samples by looping through the orbit in equidistant
intervals. The exponential map is used to map from the tangent bundle (Lie
algebra) to the manifold (Lie group). (b) Standard normal distributed samples
lying on the orbit (black) are scaled, rotated (red), and shifted (yellow)
corresponding to the mean and covariance of the target distribution.

B. Animating Samples from Gaussian Distributions

To get an idea about the structure of samples from Gaussian
distributions, an animation is used to display animated samples
following a trajectory of equipotential lines of the probability
distribution. This approach was introduced by [30] on ani-
mating samples from correlated Gaussian beliefs and adopted
in this work for our purpose. Assume we want to display
samples from a Gaussian distribution N(x;µ,𝚺),x ∈ R𝑚.
It is important to mention that this also includes matrices of
size 𝑛 × 𝑝 vectorized to a vector of size 𝑚 = 𝑛𝑝. Samples
s∼ N(x;µ,𝚺) can be drawn in the following way:

1) Construct the Cholesky decomposition L of 𝚺, such that
𝚺 = LL𝑇 and L is a lower triangular matrix with real
and positive diagonal entries

2) Draw a sample u∼ N(u, 0, I),u ∈ R𝑚 from the stan-
dard Gaussian distribution

3) Compute a sample s = µ +Lu distributed according to
the target distribution s∼ N(x;µ,𝚺)

The key step of the animation approach is step 2, while
steps 1 and 3 make it applicable to any Gaussian distribution.
N(u, 0, I) is a spherically symmetric distribution. To draw
samples one could also draw a random sample for the radius
r (Fig. 3a, length of green vector) from a standard Gaussian
and draw u uniformly at random on the (𝑛−1)-manifold (Fig.
3a, grey sphere) defined by r. All points lying on this (𝑚−1)-
manifold, which is a Lie group, are equally likely. Instead of
randomly picking one point, it would be beneficial to show
all of them to get an impression of the degeneracy. As it is
impossible to plot an (𝑚 − 1)-dimensional space, time could
be used as an extra dimension to traverse through the space.
Therefore, the animation loops through a one-dimensional
orbit of the (𝑚 − 1)-manifold (Fig 3a, black circle), which is
drawn uniformly at random and defined by a tangent t at point
u0. The tangent is part of the Lie algebra of the Lie group’s
manifold. Tangents of length 0 to 2𝜋 (the number depends

on the total number of frames 𝑓 ) are mapped through the
exponential map to the orbit which build the samples for the
animation. The set of standard normal samples u1, ...,u 𝑓 is
subsequently scaled, rotated, and shifted according to the mean
and covariance of the target distribution by s𝑖 = µ+Lu𝑖 (Fig.
3b).

For the animation, samples are drawn from the distribution
over the eigenvectors 𝑝(U |Y ) (eq. 22) as described above and
used to transform the input data accordingly:

S1 ∼ 𝑝(U |Y ) →T1 = Y S1 → frame 1 (26)
S2 ∼ 𝑝(U |Y ) →T2 = Y S2 → frame 2 (27)

...

S 𝑓 ∼ 𝑝(U |Y ) →T 𝑓 = Y S 𝑓 → frame 𝑓 (28)

To visualize the uncertainty of the two-dimensional map,
these samples build frames in an animated visualization.
Depending on the uncertainty (covariance) of the eigenvectors
the individual frames will differ more or less from each other.
The animation smoothly connects the individual frames.

C. Evaluation of VIPurPCA

To evaluate the performance of VIPurPCA its accuracy and
runtime were assessed in relation to Monte Carlo sampling. In
contrast to VIPurPCA Monte Carlo sampling is an iterative
algorithm, whose accuracy and runtime depend on the number
of iterations. Therefore, comparative analyses were performed
relative to the number of Monte Carlo iterations. To this end,
an input distribution was simulated following a matrix normal
distribution with a Kronecker product-factored covariance ma-
trix. To ensure clear directions of eigenvectors, features p𝑖

were scaled by 𝑖. In each Monte Carlo iteration, a matrix
variate sample was drawn from this distribution and PCA is
applied to compute a two-dimensional embedding of the data.
The directions of the individual eigenvectors across all Monte
Carlo iterations were aligned to estimate the first (mean) and
second (covariance) order moment of the distribution over
eigenvectors. Those estimates converged for an increasing
number of iterations and were compared to those computed
by VIPurPCA using the relative Frobenius norm 𝐸rel, where
𝜃 represents either the first or second order moment:

𝐸rel =
| |𝜃MC − 𝜃VIPurPCA | |F

| |𝜃VIPurPCA | |F

D. Data and Software Availability

VIPurPCA (pronounced ‘vip your PCA’) is provided as a
python package. Code and data are available at https://github.
com/Integrative-Transcriptomics/VIPurPCA. Example anima-
tions can be viewed at https://integrative-transcriptomics.
github.io/VIPurPCA/examples/.

V. EXPERIMENTS AND RESULTS

We demonstrate VIPurPCA on three different example data
sets. The first dataset, the students grades dataset by Denoueux
and Masson [47], is an example of non-correlated uncertainty,
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TABLE I
TEST RESULTS OF SIX STUDENTS [47] PROVIDED AS REAL NUMBERS,

INTERVALS, OR QUALITATIVE STATEMENT.

M1 M2 P1 P2

Tom 15 fairly good N(14, 5.72 ) [14, 16]
David 9 good fairly good 10

Bob 6 [10, 11] [13, 20] good
Jane fairly good very good 19 [10, 12]
Joe very bad fairly bad [10, 14] [14]

Jack 1 [4, 6] 9 [6, 9]

arising from an imprecise grading scheme. The second dataset
by Higuera et al. [48] contains protein expression levels of
the mouse cortex for different experimental treatments. The
uncertainty results from technical replicates of the experiment
and is assumed to be potentially correlated. The third dataset
[49] contains human gene expression levels and their uncer-
tainties for different experimental conditions that were inferred
from microarray Affymetrix chips using Bayesian methods.
The results of VIPurPCA and Monte-Carlo sampling were
compared on a simulated multivariate Gaussian dataset to esti-
mate the accuracy of VIPurPCA. These simulations were also
used to measure the performance of VIPurPCA concerning
runtime and space complexity.

A. Student Grades Dataset

This simulated dataset was introduced by Denoueux and
Masson [47] and consists of four marks from 0 to 20 obtained
by six students in mathematics (M1 and M2) and physics
(P1 and P2) (Tab. I). Some of the marks are not precise and
are given as intervals represented by uniform distributions or
linguistic labels like ”fairly good” or ”very bad” which are
represented by trapezoidal distributions which are defined by

𝑓 (𝑥 |𝑎, 𝑏, 𝑐, 𝑑) =


𝑢( 𝑥−𝑎

𝑏−𝑎 ) 𝑎 ≤ 𝑥 < 𝑏

𝑢 𝑏 ≤ 𝑥 < 𝑐

𝑢( 𝑑−𝑥
𝑑−𝑐 ) 𝑐 ≤ 𝑥 < 𝑑

0 else

(29)

where 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 and 𝑢 = 2(𝑑 + 𝑐 − 𝑏 − 𝑎)−1 [50]. The
test result P1 of the student Tom is unknown and modeled
by the normal distribution N(14, 5.72) as suggested by [13].
Means and variances were computed for individual test results
depending on the given distribution (for details, see Table S1).
Real valued marks are given a very small variance of 0.1.
This example addresses uncorrelated uncertainties meaning
that data points are spherically uncertain around the mean.
After applying VIPurPCA several output features are obtained
(Fig. 4). The mean (Fig. 4a) and variance (Fig. 4c) of the first
eigenvalue have relatively high absolute values compared to
the other three. However, it is striking that the (co-)variances
(Fig. 4d) associated with the first eigenvector (Fig. 4b) are
relatively low. This can be explained by the fact that the first
principal component comprises a high proportion of the total
variance of the data (74 %). The variance covered by the first
principal component is so high that the small uncertainties
of the data points don’t have a big effect on the direction

of the component. Directions of low variance are much more
sensitive to uncertainties in the data. An interesting insight is
also provided by the Jacobian of the PCA applied to the data
mean (Fig. 4e). Individual derivatives of the Jacobian matrix
represent the influence of the respective sample feature on the
respective output feature. The absolute value of the derivatives
depends on the locations of the samples in space but also on
the orientation of the samples’ features w.r.t. the orientation
of the eigenvectors. In this example, the Jacobian (upper 4
rows) shows that perturbing any of the inputs will not change
the direction of the first eigenvector that much. On the other
hand, the direction of the second eigenvector (rows 5-8) is less
stable to minor perturbations of the inputs.

Samples drawn from the computed distribution over the
eigenvectors can be used to transform the mean input accord-
ingly and project the data into lower dimensional space. Fig.
4f shows this distribution of projections as kernel density plots
in comparison to standard PCA for two different combinations
of principal components. The shape of the individual densities
shows that samples are more uncertain in the direction of PC
2 compared to PC 1. This matches the finding of the low (co-
)variances observed for the first eigenvector (Fig. 4d). The
small size and closeness of the second and third eigenvalue
result in a much more uncertain low-dimensional map (Fig.
4f). For this example, it becomes apparent that the visualiza-
tion of the first and second PC is fairly reliable while looking
at the plot for the second and third PC is not trustworthy at all.
This shows the importance of considering the uncertainties in
dimensionality reductions, as by only looking at the standard
PCA result it is not clear how trustworthy the result is and
that the reliability changes when looking at different principal
components.

B. Mice Protein Expression Dataset
This real-world dataset is available at the UCI Machine Learn-
ing Repository [51] and was initially analyzed by Higuera et
al. [48]. It contains expression levels of 77 proteins (features)
from the nuclear fraction of the mouse cortex for a total of
72 mice (samples). The experiment was repeated 15 times.
The mice have been assigned to 8 classes depending on their
genetics and experimental treatment. For this work, we chose
only one experimental treatment indicating if the mice were
stimulated to learn (context shock (CS), no context shock
(SC)) as a label for visualization purposes. After preprocessing
the data as suggested by Higuera et al. [48] replicates were
used to estimate the uncertainty of each measurement. This
was done by vectorizing the matrix of each replicate and
stacking the resulting vectors as columns in a matrix such
that rows are the variables and columns the replicates used
to compute a covariance matrix. An important property of the
resulting covariance matrix is that it has covariance entries
different from zero. Using kernel density plots to show the
uncertainty of the lower dimensional map is inappropriate
for this example due to visual clutter. It becomes clear that
this visualization technique is limited to examples with a low
number of observations.

To solve the problem of visual clutter individual sam-
ples are traversed using time as an additional dimension.
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(f) standard PCA vs. VIPurPCA
Fig. 4. Features obtained by VIPurPCA. While classical PCA only provides the mean of the eigenvalues (a) and eigenvectors (b), VIPurPCA provides
uncertainty information of the mean eigenvalues and eigenvectors in terms of covariance matrices (c, d) according to Equation 25. (e) Applying VIPurPCA
includes the computation of the full Jacobian of all output variables w.r.t. all inputs giving information about the influence of individual data points onto the
result of the method. (d, e) The labels (y-axis) correspond to the index notation indicating the matrix elements of the mean eigenvector matrix (Fig. 4b). (f)
Given the distribution over the eigenvectors (see Fig. 4b, 4d) samples of eigenvectors are randomly drawn and the mean input data is projected accordingly
to get an intuition of the distribution. In comparison to conventional PCA, the outcome of VIPurPCA is shown as a kernel density estimate plot of the lower
dimensional map. PC 1 vs. PC 2 as well as PC 2 vs. PC 3 are shown exemplarily.

The animation for the mice protein expression dataset can
be found here (https://integrative-transcriptomics.github.io/
VIPurPCA/examples/mice/). To get an intuition of the anima-
tion ten frames are shown as small multiples in Fig. 5. We
highlighted two data points in green and pink which can be
followed through all ten frames. The sample labeled in green
moves the most in the shown dimensions but always stays
within the blue class. The pink labeled sample on the other
hand also greatly switches its position and thereby its possible
class label (frame 4-6 in Fig. 5).

C. Human Gene Expression Dataset

This microarray gene expression dataset [49] comes along with
the Bioconductor package puma (propagating uncertainty in
microarray analysis) [52]. It was obtained from eight Human
Genome U95Av2 Arrays (HG-U95Av2) from Affymetrix. Es-
trogen (absent, present) and time (10h, 48h) are the two factors
of interest in the 2×2 factorial-designed experiment, with two
replicates for each combination of factors. Bayesian methods
[53] applied to the Affymetrix GeneChips data provide gene
expression levels along with uncertainty estimates. Out of
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Fig. 5. Low dimensional maps (PC 1 vs. PC 2) of the mice dataset.
The animation’s frames (upper row: 1-5, lower row: 6-10) are shown as
small multiples. A data point that is highly uncertain w.r.t. its position
is labeled in green. The pink-tagged sample is uncertain w.r.t. its class
membership and changes location from a blue to an orange neighbor-
hood and back. The full animation is available online https://integrative-
transcriptomics.github.io/VIPurPCA/examples/mice/.
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Fig. 6. Kernel density estimation plot showing the result of VIPurCPA
applied to the human gene expression dataset. Time (10h, 48h) and estrogen
(present=T, absent=F) were the experimental factors of interest. Two replicates
were measured for each combination of factors.

12,625 genes, the 10% most variant genes were selected and
subjected to VIPurPCA. As seen in Fig. 6, PC 1 separates
time points and PC 2 separates estrogen availability. The
extension of the individual densities mainly in the direction
of PC2 indicates that the lower dimensional representation is
mainly uncertain in this direction.

D. Evaluation of the Performance

The accuracy and computational costs of VIPurPCA were
assessed in comparison to Monte Carlo sampling. Due to the
iterative nature of Monte Carlo sampling comparative analyses
were jointly done in relation to the number of Monte Carlo it-
erations. VIPurPCA and Monte Carlo sampling were applied
to simulated matrix-variate distributions of different sizes and
the resulting distributions of the two leading eigenvectors ana-
lyzed w.r.t. the relative Frobenius norm of the respective means
and covariance matrices (Fig. 7). For each dataset, there exists
a critical number of iterations at which Monte Carlo sampling
becomes more time intensive than VIPurPCA when adding
more iterations (see Fig. 7, intersection of orange lines). At
these points, the estimation of the mean eigenvectors (Fig. 7,
blue dashed line) by Monte Carlo sampling has converged for
some datasets. However, their estimated uncertainty in terms
of the covariance matrix (Fig. 7, blue line) has not converged
yet for almost all datasets. A qualitative comparison of the
visualizations of uncertain low-dimensional maps computed
by Monte Carlo sampling and VIPurPCA shows that the
estimated uncertainties of individual low-dimensional data
points are very similar (Figure S1). An extensive analysis
of the runtime and memory consumption of VIPurPCA is
available in Figures S2 and S3, respectively.

E. Evaluation of the Visualization

In this work, uncertainty is modeled probabilistically resulting
in a distribution over directions of high variance in the data.
Drawing samples from this distribution and projecting the
data accordingly results in a distribution over embeddings
that indicates the uncertainty of the low-dimensional repre-
sentation of the data and that provides the same kind of
visualization users usually encounter when inspecting their
PCA results. Using a simulated high-dimensional uncertain
dataset of four clusters several visualization possibilities of

hypothetical embedding outcomes were compared: showing
the union of all samples as a point cloud in one scatterplot
(Fig. 8a), using a density plot to aggregate uncertainty in-
formation of individual data points (Fig. 8b), or displaying
hypothetical outcomes as small multiples (Fig. 8c) or as
an animation (https://github.com/Integrative-Transcriptomics/
VIPurPCA/blob/gh-pages/ includes/animation.gif). All views
show that all four clusters are uncertain. However, the point
cloud and density view do not show whether the uncertainties
of samples from the blue and orange cluster correlate and
therefore do not indicate whether the blue and orange clusters
are separable given the uncertainties. The small multiple view
and the animation show that the uncertainties of samples from
the blue and orange clusters are anti-correlated in the direction
of PC 2 and the clusters are in fact not separable given the
uncertainties.

VI. DISCUSSION AND CONCLUSION

Dimensionality reduction techniques enable the classification,
visualization, and compression of high-dimensional data. In-
cluding uncertainty quantification and visualization of the
lower dimensional map enhances its interpretability and trust-
worthiness. In this work, we introduce VIPurPCA, which
propagates uncertainties through PCA, the most commonly
used dimensionality reduction technique. Assuming Gaussian
distributed input and output distributions the computation of
the outputs’ covariance matrix boils down to linear algebra
routines in the setting of Bayesian inference. Compared to
methods like probabilistic principal component analysis or
factor analysis also correlated uncertainties of the inputs
can be handled. When the input uncertainties become zero,
VIPurPCA returns identical results as common PCA applied
to the input means. It is a common approach for uncertainty
propagation to linearly approximate a function’s outcome
using a Taylor series expansion. It provides valid results if
the function of interest is not too far from linear within one
standard deviation from the mean, and if the input variabilities
are relatively small [35]. Therefore, if the input uncertainties
become too large, the computed output distribution might be
inaccurate as a matter of principle. Using higher-order terms
could improve the approximation, but includes the computa-
tion of a Hessian matrix of a vector-valued function, which
in the case of PCA is unfeasible. Directions corresponding
to eigenvalues close to zero are extremely sensitive to input
variabilities and their order might also be precarious. Thus,
their distribution is more likely to be incorrectly approximated
by VIPurPCA. However, those low-variant dimensions are
usually not kept, as already a few dimensions explain most
of the variance due to an underlying principle explaining the
input data.
VIPurPCA provides an approximate closed-form solution

to the final distribution, which can be advantageous over
Monte Carlo sampling for performance reasons. In particular,
when Monte Carlo methods are applied to complex datasets,
many samples may be required for convergence. Computing a
PCA for all of these samples can be time consuming. Although
VIPurPCA computes an approximation to the final distribu-
tion, we have shown that the relative error is small compared
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Fig. 7. Performance evaluation of VIPurPCA compared to Monte Carlo sampling. For simulated datasets of an increasing number of samples (columns)
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norms (blue) between the first (dashed) and second (solid) moment, respectively, of the output distribution over eigenvectors computed by VIPurPCA and
Monte Carlo sampling are shown. The mean values of 10 repeats are shown, respectively.

to Monte Carlo sampling. For the simulated data, when com-
paring the first and second moments of the final distribution
calculated by Monte Carlo sampling and VIPurPCA, the
relative error decreases with an increasing number of Monte
Carlo iterations (Fig. 7). The magnitude of the relative error
indicates the number of significant decimal digits excluding
leading zeros, e.g. if 𝐸rel = 10−𝑝 , the estimator has at least
𝑝 correct significant digits. As seen in Figure 7 (solid blue
line), VIPurPCA approximates the uncertainties to around
two significant decimal digits in the majority of cases. The
propagation of the uncertainties did not work only for the
largest data set (𝑝 = 103, 𝑛 = 104), probably because floating
point errors occur during the calculation, which could be
avoided by allowing JAX to use double (64bit) precision.
A visual comparison of resulting uncertain maps for both
methods is given in Figure S1. Since it depends on the number
of iterations, the runtime of Monte Carlo sampling is difficult
to compare with the runtime of VIPurPCA. Depending on the
number of dimensions 𝑝 and samples 𝑛, for a certain number
of iterations, Monte Carlo sampling becomes computation-
ally more expensive than VIPurPCA (Fig. 7, intersection of
orange lines). In general, runtime and memory consumption
are highly dependent on the implementation and are mutually
dependent. For VIPurPCA, the time (Fig. S2) and space
complexity (Fig. S3) are linear in the number of samples and

quadratic in the number of input dimensions. For datasets with
sample sizes up to 104 and dimensions of 103 the compute
time is still only on the order of minutes.

Another focus of this work was to visualize the uncertainty
of the lower dimensional map properly and intuitively. It is
possible to visualize the covariance matrix of the eigenvectors
directly for example as a heatmap [54]. However, the effect
of individual entries of the covariance matrix on the stability
of the lower dimensional map is not apparent. We, therefore,
decided to rather show the structure of samples drawn from
the distribution over eigenvectors by using those samples to
transform the input data accordingly. Overall, showing the
uncertainty of the lower dimensional map as an animation
intends to complement an already existing visualization
of a PCA result, namely a scatter plot of two principal
components, with uncertainty information. Therefore, if
the scatter plot itself fails as an appropriate visualization,
i.e. being not clearly arranged, the animation can not fix
this. When looking at the different visualization options
(Fig. 8 and https://github.com/Integrative-Transcriptomics/
VIPurPCA/blob/gh-pages/ includes/animation.gif), various
individual advantages and disadvantages become apparent.
The point cloud (Fig. 8a) and the density plot (Fig. 8b) are
capable of displaying many samples such that the entire
distribution of potential embedding locations for each subject
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Fig. 8. Visualization possibilities using samples from the distribution which
models the uncertainty of the embedding. (a) Individual samples are overlaid
as points in a combined scatterplot. (b) Points belonging to the same subject
are summarized as a density. (c) Individual samples are shown sequentially
as small multiples.

is visible. While the point cloud can represent outliers, the
density plot reduces visual clutter, though not completely.
Nevertheless, both visualization forms show the union of
all samples, and the structure of individual samples is
lost as a result. However, this is especially important with
overlapping point clouds/density curves to determine if the
subjects are actually overlapping or oscillating together.
The small multiples visualization (Fig. 8c) or the animation
(https://github.com/Integrative-Transcriptomics/VIPurPCA/
blob/gh-pages/ includes/animation.gif) can resolve this issue
as well as the problem of visual clutter. By using our proposed
method of drawing equipotential samples following an orbit
in the distribution (adapted from [30]), a smooth transition
between frames is possible and individual data points can
be tracked, especially in the animation. While the small
multiples visualization needs more space, the animation has
the disadvantage of not being able to be printed. How well the
uncertainty of the low-dimensional map is perceived by the
user in any of the mentioned visualization techniques depends
on several properties of the data including the number of
samples, the amount of uncertainty that is visualized, the
structure of the data (e.g. if it is clustered), and the structure
of the uncertainty (e.g. if it is correlated). Future work
could evaluate the perception of uncertainty for differently
structured datasets in detail. VIPurPCA also visualizes the
Jacobian matrix, which indicates the influence of individual

features and samples on the outcome of the PCA, as a
heatmap. Input features or samples with a large impact on
the outcome can thereby be easily identified.

In this work, we used three real-world data sets with
different sources of uncertainty and calculated and visualized
the stability of the embeddings. The impact of the input uncer-
tainties on the stability of the embedding not only depends on
their magnitude and structure, but also on the dataset itself, and
can affect the confidence of the embedding to varying degrees.
Dimensionality reduction is often used to visualize potential
clusters in the data. VIPurPCA helps to assess whether the
observed clusters are stable under the input uncertainties, or
whether the cluster membership of individual samples might
be questionable (see for example Fig. 5, pink sample). For the
human gene expression dataset VIPurPCA helped to identify
that the direction in the data splitting samples by time (PC1)
is stable, while the direction that splits samples by estrogen
availability is more uncertain.

To simplify the use of VIPurPCA for a broad range of
scientists we plan to release VIPurPCA as a web tool. By
that, additional possibilities to interact with the data and visu-
alizations could further improve the interpretability of the data.
Despite that PCA is effectively one of the most commonly
used dimensionality reduction techniques, nonlinear methods
such as t-SNE [55] and UMAP [56] are favored when the
data is distributed near a low-dimensional nonlinear manifold.
Therefore, future work could include applying our approach
of uncertainty propagation and visualization to those methods.
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Bioinformatics Tübingen (now Institute for Bioin-

formatics and Medical Informatics), Germany, and is currently an Associate
Professor for Bioinformatics at the University of Tübingen, Germany. Since
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