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Abstract—Virtual reality (VR) research has provided overviews of locomotion techniques, how they work, their strengths and 

overall user experience. Considerable research has investigated new methodologies, particularly machine learning to develop 

redirection algorithms. To best support the development of redirection algorithms through machine learning, we must understand 

how best to replicate human navigation and behaviour in VR, which can be supported by the accumulation of results produced 

through live-user experiments. However, it can be difficult to identify, select and compare relevant research without a pre-existing 

framework in an ever-growing research field. Therefore, this work aimed to facilitate the ongoing structuring and comparison of 

the VR-based natural walking literature by providing a standardised framework for researchers to utilise. We applied thematic 

analysis to study methodology descriptions from 140 VR-based papers that contained live-user experiments. From this analysis, 

we developed the LoCoMoTe framework with three themes: navigational decisions, technique implementation, and modalities.  

The LoCoMoTe framework provides a standardised approach to structuring and comparing experimental conditions. The 

framework should be continually updated to categorise and systematise knowledge and aid in identifying research gaps and 

discussions. 

Index Terms—Human-Computer Interaction, Machine Learning, Navigation, Redirected Walking, Virtual Reality  

——————————   ◆   —————————— 

1 INTRODUCTION 

prominent issue of Virtual Reality (VR) interaction 
regards the well-discussed ‘locomotion problem’. 

This problem occurs when the virtual environment (VE) is 
substantially larger than the boundaries of the tracked 
space in the real world [1], [2], [3]. A range of locomotion 
techniques can address this problem, from controllers to 
redirected walking (RDW) [4], [5], [6], [7]. The focus of the 
current paper is on RDW. Therefore for further 
information on the strengths, weaknesses and applicability 
of VR locomotion techniques, see the following sources [6], 
[8], [9], [10], [11], [12].  

RDW is an algorithmic solution of “Natural Walking” 
(the aim of which is to mimic the experience of real 
walking in VR) that allows users to translate physical 
walking in the real world to large VEs [6] and is argued to 
provide a greater sense of presence [13]. However, to 
address the locomotion problem, RDW algorithms 
introduce manipulations or deceptions to alter a user’s 
walking behaviour [14], [15]. For example, by applying 
‘gains’ (translation, curvature, bending and rotation) to the 
user's virtual viewpoint. A simple example is that to follow 
a straight path in the VE, a user must walk a curved path 
in the real world [11]. There are four main types of RDW 
algorithms (scripted, reactive, predictive and resetting) 
[11], each sharing common goals: prioritise the user’s 
safety [15] and minimise reset techniques to enhance 
immersion in VR [16]. Two frequently discussed RDW 
algorithms types are reactive and predictive. Reactive 
algorithms guide users towards a particular area of the 
tracked space [11], [14], such as ‘Steer-to-Center’ (S2C), 
which selects gain values dependent on prior and current 
positional data guiding the user towards the center of the 
tracked space [17]. In comparison, predictive algorithms 
comprise varying information regarding positional data 
alongside the user’s future possible directions and thus 
apply suitable gains for redirection [11], [14], [17].  

RDW research is often focused on the continued 
development of RDW algorithms and thus may explore 
‘gain’ perception through live-user studies to improve 
feelings of immersion and naturalness [14]. Simulation-
based experiments can be used to develop new RDW 
algorithms, mainly through reinforcement learning (RL; a 
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branch of machine learning) [13], [15], [16], [18], with 
promising results compared to commonly used RDW 
algorithms such as S2C [16], [18]. In addition, simulation-
based experiments can address time and money 
constraints typically associated with live-user experiments 
[17]. Such experiments can also address issues with 
predictive RDW algorithms and computational times [16] 
by producing a large number of simulated paths [13], [19], 
either through procedural path generators [20] or user path 
data [15], [21]. However, while simulation experiments are 
useful analytical approaches, they must continue to 
support live-user studies and should not replace user 
experiments [17]. This raises the question: How can we 
effectively use these two methodological approaches of 
simulations and live-user experiments to support one 
another and advance the field? This question reflects an 
area of discussion not limited to RDW research [22], [23]. 

A starting point is to consider the current limitations 
and concerns of RDW algorithms trained through RL. 
Concerns have been raised regarding environment 
sensitivity, user tasks within an application [18], and the 
differences between simulated and real-user paths [19], 
[24]. Furthermore, recent work by Hirt and colleagues [24], 
who evaluated real-user path data in 200k simulations, 
highlighted how sensitive RDW algorithms are to the 
nuances of walking during user tests, including 
acceleration, stumbling, and veering [24]. This suggests 
that minor walking path deviations lead to a negative 
‘butterfly effect’ on RDW algorithms’ performance [24].  

Consequently, to support RDW algorithms developed 
through RL, recent research has indicated the need to train 
intelligent agents on pre-existing path datasets from 
various user tests [13], [15], [16] and ensure simulated 
users account for human response to RDW algorithms [20]. 
Therefore, to support the RDW simulation-based 
experiments, we must understand how best to replicate 
human navigation and behaviour in VR [20], which can be 
supported by the accumulation of results produced 
through live-user experiments [25]. 

With this in mind, researchers must identify gaps and 
conduct further live-user experiments accordingly. At the 
same time, others may want to identify appropriate 
training data from existing live-user experiments for 
simulations. However, it can be challenging to effectively 
search an ever-growing research landscape for relevant 
information and thus build upon existing knowledge [23]. 
Whilst researchers can work individually to build an in-
depth knowledge of the literature through systematic 
reviews [25], this is labor intensive and may result in 
missing relevant papers [26]. Consequently, we have seen 
the research community create various taxonomies that 
define  RDW techniques and categorise them based on 
their design [9], [14], [27]. In addition, Unity-based toolkits 
with RDW algorithms are also available to be implemented 
in research studies [28], [29]. Both of these contributions 
aid the research community by providing an accessible 
level of understanding through descriptions of techniques 
and ready-to-implement code. Therefore, the RDW 
research community may also benefit from a conceptual 
framework that categorises and systematises knowledge 

on related concepts [30]. Particularly a framework that 
categorises live-user experiments to support comparison 
of experimental methodologies and their influence on user 
behaviour, helping identify research gaps and pre-existing 
user-path datasets from various user tasks to train 
intelligent agents. Therefore, to promote using simulation 
and live-user experiments in tandem and help build our 
understanding of how best to replicate human navigation 
and behaviour in VR, we aimed to create a standardised 
framework that provides ongoing order and structure to 
the VR locomotion literature. By categorising the 
differences in experimental procedures and materials that 
may produce context-dependent results [31], the aims of 
the current framework are the following: 

1. Facilitate the ongoing structuring and comparison 
of methodologies giving rise to human movement 
behaviour in VR. 

2. Encourage open science and data-sharing. 
The remainder of the current paper critically describes 

the process and development of the ‘Locomotion 
Categorisation by Task, Technique and Modality 
Framework’ referred to as the ‘LoCoMoTe Framework’. It 
is important to note that the work categorised and 
presented in this paper is part of an ongoing and dynamic 
resource and should be community driven and updated 
accordingly.  

2 LOCOMOTE CONCEPTUAL FRAMEWORK 

Developing the LoCoMoTe Framework requires an in-
depth analysis of multiple studies to account for the ever-
growing research area [12] whilst also accommodating the 
broad range of techniques and modalities and the nature 
of human behaviour, which is highly dimensional and 
heterogeneous [32]. Therefore, adopting a high-level 
analytical approach is appropriate to support researchers 
in accommodating the comparison of results with varying 
attributes, such as age and gender [33]. Therefore, while a 
systematic review is often the methodology of choice due 
to its association with rigor, reduced bias, and reliable 
results [34], this was deemed unsuitable for the 
development of the LoCoMoTe framework due to the 
focus of systematic reviews on a well-defined research 
question [35]. In contrast, to support the identification of 
new research avenues in the future, thematic analysis has 
been proposed as a more appropriate methodology to 
group data by identifying categories and patterns [36], [37] 
[38]. The thematic analysis approach adopted in 
developing the LoCoMoTe framework initially focused on 
a deductive approach [39] to provide an analytical 
overview of the crucial experimental information [39] 
regardless of individual researcher questions. Themes 
were created that could be used to identify similarities and 
differences between user tests and future points of interest 
to provide an overview of the research landscape. 
Therefore, the analysis considered the underlying task 
given to participants that may impact navigational 
decisions, the locomotion technique and materials used 
during a study to form a pre-specified conceptual 
framework consisting of three themes: Navigational 
Decisions, Technique Implementation and Modalities. 
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2.1 Theme 1: Navigational Decisions 

The first theme considered the underlying task 
instructions given to a participant and was related to 
participants’ opportunities to make navigational decisions. 
We identified that some instructions, such as following a 
(linear) path, may have no navigational decisions, as seen 
in the work by Interrante et al. [40]: “Each participant was 
asked to travel from one end of the hallway to the other, and back” 
page 169, [40]. Other tasks can allow for navigational 
decisions, such as pick-up ‘x’ items in a room, as seen in 
the work by Schmitz et al. [41]: “Participants had the task to 
find and collect the highest of five pillars” – page 1626, [41], 
and then there is exploration, i.e., where there is no 
underlying goal that may restrict navigational decisions. 

Based upon identifying tasks such as: following a path, 
finding ‘x’ items, and exploration, we initially considered 
task-based instructions on a categorical scale of 1-3 (1 = 
Restrictive, 2 = Task-Based and 3 = Explorative). However, 
having only three categories was limited, as not all paths 
will be solely linear. Some may contain junctions and thus 
allow for navigational decisions. Therefore, to account for 
tasks that may fall somewhere between, we extended the 
task-based instructions categorical scale to 1-5 (1 = 
Restrictive, 3 = Task-Based, and 5 = Explorative) (Fig. 1). 

 

Fig. 1. Navigational Decisions Categorical Scale: ranging from 1-5 

It was essential to consider not only the participants’ 
ability to make navigational decisions but also whether 
these decisions may be supported. For example, at a 
junction in an environment, wayfinding aids, such as 
maps, may be placed [42]. Therefore, we also considered 
aided wayfinding, which can assist with navigational 
decisions and may use signs and route instructions [43]. 
Furthermore, we identified that aided wayfinding could 
also consist of deterrents (e.g., no-way signs) (Fig 2). When 
considering wayfinding aids, we acknowledged that 
removing information or aids might hinder completing a 
task. For example, the visual removal of a straight path 
may impact an individual’s ability to walk a straight path. 
Similarly, the environmental design might aid explorative 
tasks, such as architectural spaces and information points. 

Therefore, this theme contained two categorical scales, 
including ‘task-based instructions’ (1-5 (Restrictive – 
Explorative)) and ‘wayfinding aids’ (A aided – E unaided). 

 

Fig. 2. Aided Wayfinding 

2.2 Theme 2: Technique Implementation 

The second theme considered technique implementation. 
Many reviews have provided in-depth information 
regarding fundamental principles of various redirection 
techniques, such as scripted controllers and change 
blindness, and how they can be implemented [4], [12]. 
Additionally, some articles define whether techniques use 
subtle manipulations (occur without the user’s 
knowledge) or overt manipulations (detectable by a user) 
[9], [11] and if they are applied continuously or at discrete 
time intervals [9], [44].  

Consequently, we created two subthemes regarding 
technique implementation to ensure a novel approach to 
the RDW literature. The first subtheme is built upon 
existing categories, such as continuous or discrete 
implementations [9], [44]; however, it regards guidance. In 
contrast to theme one and the use of the term ‘instructions’, 
we distinguished between instructions regarding the 
study task and guidance as to the underlying mechanisms 
of a technique in which we defined the terms positive and 
negative guidance as: positively guided the users (e.g., 
guidance towards an area, assisting the task/goal) or negatively 
guided the users (e.g., guidance away from an area, hindering 
completing a task).  

Positive guidance may use a discrete approach, such as 
change blindness, in which the positions of virtual doors 
are changed [45], [46] without directly impacting the 
tracking of the user and allowing users to explore a larger 
VE. In contrast, negative guidance may introduce 
something that forces users to backtrack along a route and 
alter their navigational decisions, such as a warning sign.  

However, gain-based techniques may be applied 
continuously, guiding the user away from one area and 
towards another simultaneously, using both positive and 
negative guidance. Additionally, in 1:1 mapping, users’ 
movements are directly mapped from the real world to the 
VE [47], [48], neither using positive nor negative guidance. 
Therefore, guidance comprises of four categories: ‘positive’, 
‘negative’, ‘mismatch’, and ‘N/A’. 

The second subtheme in Technique Implementation 
considered whether locomotion techniques use subtle or 
overt manipulations [9], [11]. However, we did not 
consider technique fundamentals. Instead, we considered 
the implementation of locomotion techniques in 
conjunction with study methodologies. For example, in a 
study examining the noticeability of gain techniques, the 
technique could be investigated explicitly (shown clearly 
and openly without any attempt to hide anything, e.g. 
verbal acknowledgement of goal [49]), for example, in 
work by Engel et al. [50]: “After the turn they were asked to 
report whether they turned more or less then 90 degrees in the 
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real world” – page 159, [50]. Alternatively, the technique 
could be investigated implicitly (something that is not 
communicated directly, e.g. contextual cueing [49]), for 
example, in work by Hodgson et al. [51]: “At the end, RDW 
and the purpose of the study was explained.” – page 583, [51].  

Whether a locomotion technique is investigated 
explicitly or implicitly, we acknowledge that information 
may or may not be attended to [52], [53]; hence, studies 
explore the noticeability of gain amounts. For example, 
participants may not be told they are using a gain 
technique but must still adapt to visual and vestibular 
mismatches. Therefore, noticeability consists of ‘Implicit’, 
‘Explicit’, ‘Implicit and Unconscious’, and ‘Explicit and 
Unconscious.’ The phrase unconscious denotes a technique 
that includes manipulation or deception, whether 
investigated implicitly or explicitly. The purpose of 
creating these categories was not to indicate the results of 
a paper, such as technique noticeability, but to identify 
different study methodologies. 

2.3 Theme 3: Modalities 

For the third theme, we considered materials and 
modalities. A previous survey by Cardoso and Perrotta [8] 
mentioned visual, auditory and olfactory information. VR 
research and development indicate that audio-visual 
modalities are predominantly used [54].  

Additionally, modalities can also include haptic and 
gustatory information [55]. Haptic feedback may use 
passive feedback where a physical object can be associated 
with a virtual item [4] or the integration of thermal 
feedback [54]. Fisher and colleagues [56] mention visceral 
interaction, which they relate to speech and gesture input 
technologies and tactile interaction via gloves and motion 
sensors [56], [57], which can be used to apply force or 
vibrations [58]. We can also use internal body information, 
such as vestibular and proprioceptive information [59]. 

Olfactory may be achieved using olfactory displays [55]; 
gustatory has technological constraints, so it may be 
limited to being mimicked through other senses [55]. 
Therefore, gustatory and olfactory modalities may be 
challenging to introduce in VR [55], so we do not expect 
many papers that include these modalities.  

Additionally, cultural information is also presented 
alongside modalities. For example, path-following consists 
of visual information, but there is also a cultural 
association. For example, without a sign saying, “please 
keep off the grass.” we may still see individuals gravitating 
to walk along the tarmac or a designated path even 
without explicit information [60]. This phenomenon may 
occur because of social constructs and prior knowledge. 
For example, to keep the grass healthy or the association 
that the grass may be muddy [60]; therefore, modalities 
and information encompass cultural elements.  

In sum, there are five categories in the theme of 
modalities: visual (any visual element), auditory (e.g., 
white noise), haptic (passive haptic), other (olfactory, taste, 
somatosensory), and cultural. We did not include task-
specific instructions under modalities. Additionally, the 
cultural modality was not analysed, as this is a substantial 
additional piece of work outside this analysis's scope. 

However, each experimental condition acknowledged the 
cultural modality. 

3 METHODOLOGY 

The LoCoMoTe framework aims to provide ongoing order 
and structure to the VR locomotion literature. By 
categorising the differences in experimental procedures 
and materials to help best understand human navigation 
and behaviour in VR and encourage open science and 
data-sharing. Therefore, to develop the LoCoMoTe 
framework, the aim was not to critique the existing 
literature but to analyse the methodologies used in 
experiments. Thus, no quality assessment of the papers is 
included in this work. 

3.1 Process 

To refine the themes of the LoCoMoTe Framework, we 
began by defining our inclusion criteria: 

1. Written in the English language. 
2. Published in journals or conferences. 
3. Live-User Studies. 
Google Scholar was initially used to identify five 

detailed review papers within VR locomotion based on the 
authors of the work, place, and date of publication [6], [8], 
[9], [10], [11], which referenced 479 papers between them. 
Next, a backwards snowballing approach was adopted 
[61]. Figure 3 details the initial identification and retrieval  

 

Fig. 3. The overall process (review papers: [6], [8], [9], [10], [11], [14]) 
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of papers from the reference searching of the five detailed 
review papers that met our inclusion criteria (N = 162 
papers) and the removal of duplicates (N = 79 papers). To 
ensure that the development of the LoCoMoTe themes was 
not limited to the initial papers (N = 83 papers), we also used 
a forward snowball approach to cover various subject 
areas and techniques that may employ different tasks. 

We used google scholar to identify citations of previous 
papers [61] and keywords including education, learning, 
multi-user, affordances, and eye-gaze alongside virtual 
reality (N = 42 papers). Additionally, during intra-reliability 
checks, additional papers were removed for various 
reasons, such as duplicate data (N = 11 papers, Fig. 3). 
Therefore, the final corpus used to refine the themes was 
N = 114. We then analysed additional papers (N = 26) to 
assess the theme refinement for reliability. Therefore, the 
final corpus included in this analysis was N = 140 papers. 

3.1.1 Theme Refinement Process 

The initial analysis of each paper contained one full-text 
read, identifying experimental conditions, with each 
theme analysed sequentially (Fig. 3). We kept quotes from 
papers corresponding to the LoCoMoTe framework 
categorisation in a supporting document. When analysing 
and categorising the papers, many contained descriptions 
of multiple studies and techniques; therefore, it was 
sometimes appropriate to separate aspects of an 
experiment into different parts. 

We categorised 682 experimental conditions identified 
from the 114 papers during the theme refinement, 
corresponding to each theme. Each experimental 
categorisation was kept in spreadsheets. However, if there 
were no changes between the three themes, we did not 
include a detailed breakdown of techniques in the 
spreadsheets. For example, in the work by Kruse et al. [62], 
different translation gain amounts were tested in three 
conditions. Although we distinguished between the three 
study conditions, we grouped the translational gain 
amounts, except for the gain of 1 (1:1 mapping) [62].  

To ensure rigor, we considered credibility, 
transferability, dependability, and conformability [38], 
[63]. Credibility may be achieved through triangulation 
[38]. Investigator triangulation is one approach that 
considers multiple investigators to examine and analyse 
the same data [63] to minimise bias from an individual 
researcher [64]. During the theme refinement process, 
coding was conducted by a single researcher. However, 
the themes and results were discussed with co-authors 
throughout the analysis. 

Furthermore, credibility may also be established using 
prolonged engagement and persistent observation [38]. 
Consequently, intra-reliability checks were completed 
once saturation was met to strengthen researcher 
dependability, including reanalysing the academic papers 
[65]. We considered saturation was met when additional 
data did not impact any theme [66] regarding the 
consistency of each theme category during analysis [67].    

A series of tasks were included during intra-reliability 
(Fig. 3). The first task was to re-read the full text as if 
reading the papers for the first time, identifying any 

changes (identification, removal, or re-categorisation of 
experimental conditions) that may occur, and updating 
both the quotes and table documents accordingly. On 
average (across each theme), experimental conditions 
remained the same during intra-reliability for check 1 = 
46.81%, check 2 = 86.48%, and check 3 = 80.44% (see 
supplementary material for a more detailed breakdown). 
At the same time, it was essential to identify results by 
checking paper publications for the same authors, the same 
task implementations, and the same demographics. If all 
three were identified, only one paper would be included 
(often the paper with more detail). Once these steps were 
completed, all experimental categorisations were 
compared to ensure continuity. Initially, this was 
completed by recording each paper's quotes and placing 
them into a separate document corresponding to specific 
categories. However, by the 3rd intra-reliability check, this 
process had changed to writing the summaries of each 
category with all examples, allowing for easier 
identification of incorrectly placed categorisations. For 
each intra-reliability check, we kept a separate spreadsheet 
showing changes to each paper's categorisation. The Intra-
reliability checks conducted during the theme refinement 
process were paramount in developing the LoCoMoTe 
framework, as they highlighted categorical errors, e.g., 
Experimental conditions previously missed.  

Between the first complete categorisation to the 1st 
completed test of intra-reliability, there were 30 working 
days. Between the 1st and 2nd complete checks of intra-
reliability, there were 75 working days. Between the 2nd 
and 3rd completed checks of intra-reliability, there were 16 
working days. Most papers analysed during theme 
refinement were last accessed on the 19th of July, 2021.  

3.1.2 Categorisation Reliability Process 

After the theme refinement process, which included the 
analysis of 114 papers, we used this opportunity to assess 
the reliability of the LoCoMoTe themes and categories 
with the analysis of new papers. Therefore, the LoCoMoTe 
framework was updated by conducting another backward 
snowball approach on a review paper from 2022 [14]. This 
review paper referenced 124 papers. These papers were 
then refined to those not already analysed (N = 65). 
Following this, N = 26 papers met our inclusion criteria, 
were not duplicates, and were thus included in the final 
analysis. Similar to the theme refinement process, each 
paper contained an initial full-text read, with each theme 
analysed sequentially. We categorised 295 experimental 
conditions identified from the 26 papers during the 
categorisation reliability process. These new 26 papers 
were accessed between the 14th of February, 2023, to the 10th 
of March, 2023. Therefore, with both the papers analysed 
during theme refinement and the categorisation reliability, 
the final corpus analysed at publication was N = 140 papers 
(Fig 3). 

Since an individual researcher conducted the theme 
refinement process, we conducted inter-coder reliability 
tests to ensure the categories were robust. We used the 
theme refinements analysis to create a guide on each 
theme, and its associated categories, with examples (see 
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supplementary material). The guide was then given to 
three new coders who were all familiar with VR but not 
specifically the topic of locomotion in VR. Each coder 
received a copy of the guide, a blank structured document, 
and links to six random papers [68], [69], [70], [71], [72], 
[73] identified from the backwards process on the review 
paper from 2022 [14]. Each coder was tasked with 
analysing the six papers corresponding to each theme in 
the LoCoMoTe framework: Navigational Decisions, Task 
Implementation and Modalities.  

Provided that the entire paper and no specific textual or 
image extractions were given to coders, there were 
instances of missing experimental condition categories 
because not every coder had identified the same 
experimental aspects, e.g., 1:1 Mapping. Therefore, to 
assess inter-coder reliability, we used Krippendorff’s alpha 
with nominal metric differences [74], [75], in which we 
considered values above cα = 0.8 to be a good indicator of 
reliability and values between cα = 0.67 and cα = 0.80 
acceptable for tentative reliability [76]. 

Using a Krippendorff’s alpha with all four coders 
(including the researcher who analysed the previous 
papers during the theme refinement process), for theme 1: 
navigational decisions, there were 46 comparable 
responses, resulting in cαnominal = 0.72, suggesting tentative 
reliability. For theme 2:  technique implementation, there 
were 30 comparable responses, resulting in cαnominal = 0.49. 
A lower reliability agreement for technique 
implementation was likely a limitation of coders not being 
familiar with locomotion techniques and the underlying 
mechanisms regarding manipulation, making it 
challenging to categorise. For theme 3, modalities, there 
were 92 comparable responses, resulting in cαnominal = 0.69, 
suggesting tentative reliability. Although there were 
differences between the expert on the framework and the 
additional three coders, we believe it is likely that with 
more training and familiarity with experimental work, the 
themes refined for the LoCoMoTe framework should hold.  

4 ANALYSIS AND REFINEMENT OF THEMES 

The LoCoMoTe framework aims to provide ongoing order 
and structure to the VR locomotion literature. By 
categorising the differences in experimental procedures 
and materials, the framework supports an improved 
understanding of human navigation and behaviour in VR 
and encourages open science and data-sharing. The 
LoCoMoTe framework categorises three themes 
concerning study methodologies. Initially, theme 
refinement was developed from the analysis of 114 
academic papers. The refined themes were then assessed 
regarding reliability by analysing 26 new papers. Below 
we discuss the papers analysed at the time of publication 
and the development of each theme regarding codes 
produced inductively and observations based on the 
framework. We have not included the full analysis details 
from each paper for ease of reading. Therefore, the details 
(quotes, categorisations of experimental conditions (977) 
and reliability checks) of every paper can be found in the 
supplementary material. 

4.1 Theme 1: Navigational Decisions 

The theme of navigational decisions regards descriptions 
of  ‘task-based instructions’ along a categorical scale of 1-5 
(Restrictive – Explorative) and ‘wayfinding aids’ along a 
categorical scale of (A aided – E unaided) highlighted in 
the methodologies of published papers. To recap, initial 
expectations of the categories were: ‘1’ tasks that do not 
allow participants to make navigational decisions, e.g., 
path following, ‘3’ represented task-based scenarios, and 
‘5’ represented explorative tasks. 

During the theme refinement process and the analysis 
of the 114 papers for developing the LoCoMoTe 
framework, we achieved saturation during the code 
development of this theme. During the theme refinement 
analysis, 70.5% of experimental task-based instructions 
were identified as not allowing participants to make 
navigational decisions and were thus categorised as 1X 
(where X represents wayfinding aids on a categorical scale 
of A aided – E unaided).  

 

Fig. 4. Categorisation of all experimental conditions identified from the 
140 papers: [9, 15, 16, 21, 28, 41, 45, 47, 50, 51, 59, 62, 68 - 73, 77 - 
197] 

When analysing the 26 papers for categorisation 
reliability, this increased from 70.5% to 77.5% (Fig. 4) of 
experimental task-based instructions that were identified 
as not allowing participants to make navigational 
decisions. Furthermore, the 26 papers analysed during the 
categorisation reliability did not impact the categories 
developed through the theme refinement process (Fig 5). 
Before the theme refinement process, we initially identified  
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Fig. 5. Overview of experimental categorisations based on tasks-based instructions and wayfinding aids. Greater detail can be found in the 
supplementary material.

some codes for code development, including ‘path’, ‘target’, 
‘following’, ‘choice’,  ‘exploration’, and ‘task’. However, we 
acknowledged that too many predefined codes might 
complicate analysis [38]. Therefore the creation of 
additional codes using only a deductive approach [67] was 
not applicable. Consequently, to account for semantics, we 
also used an inductive coding approach considering 
phrases that may or may not mean the same thing [67] to 
aid categorisation. 

For both the theme refinement and categorisation 
reliability analysis, many task-based instructions were 
easy to identify and categorise on the categorical scale of 1-
5 (Restrictive – Explorative) from text alone. 

For example, following paths or targets [40], [154] or 
paths with junctions [143], [177], [179]. However, 
semantics did complicate the analysis as anticipated. 
Instances of the phrase ‘freely’ sometimes referred to the 
participants being technologically free from wires rather 
than an explorative task [127]. Additionally, issues 
regarded the lack of detail or clarity of study methods. For 
example, one paper mentioned that participants were 
required to walk around a block, which is ambiguous. 
However, when looking at the supporting figures, the 
placement of the block in the VE verified that the 
categorisation would be 1A, as it formed a linear path [50]. 
Therefore, in many cases, content analysis was applied to 
accompanying figures. 

Furthermore, attention was needed to identify priming 
in experiments. For example, one experiment did not 
appear to override initial explicit instructions on following 
a virtual agent [133]. Consequently, the entire study was 
recategorised as ‘a following’ task and changed from 3A to 
1A.  

The process of theme refinement, including code 
development, intra-reliability, and paper analysis, 
highlighted the differences along the wayfinding aid 
categorical scale (A aided – E unaided) (Fig 5). Our 
approach to categorising the differences on this scale 
focused on removing the visual modality as one reason for 
decreasing the wayfinding aid categorical scale (A aided – 
E unaided). For example, path-following tasks with spatial 
awareness tests, e.g., removal of the visual modality; thus, 
participants would have to rely only on working memory 
to either walk towards or indicate the direction of a target 
location [112], and were often categorised as 1D.  

Overall, categorisations on the wayfinding aid 
categorical scale (A aided – E unaided) may differ 
depending on the participant demographics. For example, 
we may expect veering to occur when trying to walk a 
straight path without reliable orientation-based cues, e.g., 
visual cues [198], [199] for participants with and without 
visual impairments [198]. However, training to reduce 
veering has worked for blind and blindfolded participants 
[198]. Therefore, we cross-referenced papers to indicate 
non-corrected visual impairments or hard-of-hearing 

                      

     

 
  

 
 

 

                   

          

                     

              

                          

                            

                         

                 

                     

                     

         

 

                          

    

                        

         

                           

                  

                   

          

              

             

                   

                                   

                                   

        

             

                                 

                                   

                    

                                 

                    

             

                             

             

                  

 

                        

                           

                        

                   

                   

                  

       

                           

                                                               

        

                                

     

                         

                               

         

              

                            

          

                               

                                

          

 

                        

                           

                        

                  

           

                   

                   

                  

                     

                     

                   

                                 

                 

                      

                      

                               

         

                                

                            

     

                           

          

                     

              

                              

 
 

 
  

 
 

 

                         

                     

                         

        

                             

                          

       

                              

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3313439

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8                                                                              IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS,  MANUSCRIPT ID 

 

participants and found nothing that would concern our 
initial categorisations. However, future research questions, 
training and demographics may impact these 
categorisations. 

Overall, we found it particularly useful to consider the 
figures and the text simultaneously, as this impacted the 
final categories.  

4.2 Theme 2: Technique Implementation 

The theme of technique implementation consisted of 
guidance and noticeability. Guidance was inspired by the 
existing categories of continuous or discrete 
implementations [9], [44], which we used to develop four 
categories: ‘positive’, ‘negative’, ‘mismatch’, and ‘N/A’. As 
anticipated, during the theme refinement process, the 
guidance of technique implementations was easy to 
categorise because the fundamentals of techniques 
themselves do not change. Thus, the guidance subtheme 
was identified as redundant, as it implied which technique 
was used. It was decided that the subtheme of guidance 
would be removed from the LoCoMoTe framework, and 
the technique would be referred to by itself. Therefore, for 
the categorisation reliability process, guidance was not 
analysed.  

For the second subtheme, ‘noticeability’, we did not 
categorise the fundamental design of a technique 
regarding subtle or overt manipulations [9], [11]. 
However, as discussed in section 2.2, we did need to 
acknowledge techniques that contain manipulation and 
the implementation of techniques within study 
methodologies. Consequently, we devised four categories: 
‘Implicit’, ‘Explicit’, ‘Implicit and Unconscious’, and ‘Explicit 
and Unconscious’.  

During the theme refinement and categorisation 
reliability analysis, we did not identify any implicit only 
techniques. However, we did identify many explicit only 
techniques. These techniques require explicit instructions 
to use the locomotion technique, for example, 1:1 mapping. 

However, we acknowledged that participants may not 
have attended to the underlying manipulation of some 
techniques, such as rotational gains. Therefore, depending 
on the study methodology, some techniques could be 
categorised as ‘implicit and unconscious’ or ‘explicit and 
unconscious’ (Fig 6). For example, studies may ask two-
alternative forced-choice (2AFC) questions, such as 
whether participants thought they turned more or less 
than 90° [50], [87] at the end of each trial. It is essential to 
pay attention to the wording of these questions, as some 
may not consider the technique but another element of the 
VE. For example, instead of being asked about perceived 
distance with translational gains, participants were asked 
about perceived slope steepness [151].  

Additionally, careful attention was required to identify 
instances of priming. Some technique implementations 
could have been categorised as ‘implicit and unconscious’ 
but introduced priming. For example, multiple studies 
encouraged participants to indicate if something “feels 
strange or unnatural” – page 1626, [41]. Sometimes focus 
was placed on possible issues with the motion capture 
system [41], implausibility [148], or when they think there 

is a bug in the software [140]. We counted priming as 
explicit and unconscious rather than implicit and 
unconscious because these approaches may lead to 
potential biases within the data and may occur without 
being consciously aware [200].  

 

Fig. 6. Short overview of technique implementations regarding 
noticeability: the total is 977 (experimental conditions). Altered spaces 
refer to techniques such as flexible spaces, and other techniques refer 
to techniques such as the magic barrier tape method. Greater detail 
can be found in the supplementary material. 

4.3 Theme 3: Modalities Used 

The final theme categorised modalities. We acknowledge 
that all locomotion techniques and task implementations 
encompass cultural information. However, we did not 
analyse this within the framework development because 
behaviour can depend on different factors, such as 
personality and general demographics [201]. Not all of 
these will be available in detail in research papers to 
perform ethnographic research; thus, we did not explore 
this research avenue. 

As expected, the visual modality was often provided 
through a VE (Fig. 7). Although occasionally, the VE was 
absent [119], [149] or was never included [87], [89]. 
Particular attention must be paid to removing visual 
elements of VEs, commonly used for spatial awareness 
tests [115], [168] or audio-only groups [93], [127].  

Furthermore, we carefully considered phrases such as 
“participants wore headphones” as there was ambiguity as to 
whether any audio was played [83], [140] and thus were 
not included in the categorisation. Additionally, 
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sometimes audio was not specified but mentioned [113], 
[141], [145] and therefore included in the categorisation. 

We initially considered the haptic category concerning 
specialised devices, such as haptic shoes [118], [119]. 
However, during the theme refinement analysis, the  need 
emerged to categorise additional equipment (Fig. 7), such 
as participants holding controllers, even if they were not 
used directly for the technique. For example, to interact 
with elements in the VE, such as buttons and selecting 
targets [78], [79]. Including these additional study 
elements allow researchers to differentiate between 
different study methodologies, no matter how small, 
which could impact human behaviour in VR.  

 

Fig. 7. Short overview of Modalities for each experiment. The total is 
977 (experimental conditions). Greater detail can be found in the 
supplementary material. 

Similar to the haptic categorisations, we initially 
anticipated the ‘other’ modality to consist mainly of visual 
and vestibular mismatches. However, during the theme 
refinement process, we noted experimental conditions 
considered the use of memory, gamification, and avatars. 
Sometimes avatars were embodied by real-world people 
[92], [126], although it was not always clear if they 
responded or were visible to participants [15], [102].  

5 DISCUSSION 

The current work reported in this paper developed the 
LoCoMoTe framework to facilitate the ongoing structuring 
and comparison of the VR locomotion literature. This was 
achieved by categorising the differences in experimental 
procedures and materials to help best understand human 
navigation and behaviour in VR in different contexts and 
encourage open science and data-sharing. The LoCoMoTe 
framework has three themes: navigational decisions, 
technique implementation, and modalities. It was 
developed by categorising 977 experimental conditions 
identified from 140 papers.  

The first theme, navigational decisions, considered the 
task-based instructions given to participants and the 
opportunities to make navigational decisions. All 
experimental conditions were mapped along two 
categorical scales, including task-based instructions (1-5 
(restricted to explorative)) and wayfinding aids (A aided – 
E unaided) (Fig. 5). We identified the main themes between 
the task-based instructions as: 

1. Path or target following. 

2. Navigate around an obstacle or choice between a 
few well-formed paths to identifiable target 
locations. 

3. Task-based instructions that had small VEs, 
sometimes without well-formed paths. 

4. Explorative search tasks or learning-based tasks. 
5. Purely explorative tasks are often used in 

familiarisation or transitional VEs. 
These distinctions give researchers an overview of the 

research landscape and identify trends and results 
pertinent to their research questions. For example, 
researchers are looking to understand how best to replicate 
human navigation behavior in VR when there are dynamic 
objects [20] and multiple target objects [19]. In this case, 
category ‘4’ may be appropriate as it identifies tasks that 
regard finding target objects (Fig. 5). However, whilst we 
distinguished between categories, we acknowledge that 
these categorisations may overlap. Exploring results from 
different categorisations may be appropriate depending on 
the research question. For example, research regarding 
path-following could explore the use of obstacles where it 
may be appropriate to consider experiments from 
categories ‘1’ and ‘2’.  

Additionally, it may be appropriate to distinguish 
between experiments within these categories. We have 
made some distinctions using the wayfinding aid (A aided 
– E unaided) categorical scale, including removing the 
visual modality for spatial awareness assessments. 
Provided research has highlighted the sensitivity of RDW 
algorithms to the nuances of walking [24], similar tasks 
with varying levels of information given to participants 
could be compared. For example, path-following tasks 
categorised as ‘1A’ provide a clearly defined path. 
However, at the other end, category ‘1E’ contained an 
experimental condition that required participants to 
imagine walking along a straight path with no feedback 
[119]. These distinctions could identify similarities and 
differences in human walking behaviour in VR with 
varying information, including stumbling and veering.   

The second theme, ‘technique implementation’, initially 
consisted of two subthemes: guidance and noticeability. 
The subtheme of guidance was identified as redundant 
during the theme refinement process, as it implied which 
technique was used and therefore was removed. For the 
subtheme of noticeability, we considered whether 
techniques were made known to participants during the 
user studies (Explicit or Implicit). Therefore, careful 
consideration was applied to research methods such as 
between groups, familiarisations, and questionnaires. 

Furthermore, we often categorised priming in studies as 
explicit and unconscious, as this may lead to potential 
biases within the data and may occur without information 
being attended to [200]. Consequently, the phrase 
unconscious is used to represent a technique with 
manipulation but not to denote the noticeability of a 
technique. Using the technique implementation theme 
allows researchers to compare the impact of various 
experimental methods, including 2AFC tasks, 
familiarisation sessions, and priming of participants on 
locomotion techniques. 
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For the last theme modalities, we considered the 
equipment and other information. Although we 
acknowledged cultural information for every experiment, 
we did not analyse this. Furthermore, we did not identify 
any uses of olfactory and gustatory modalities from the 
selection in the current literature. However, these may be 
introduced along with new technological equipment. The 
most diverse category was ‘other’, for example, visual and 
vestibular mismatches, avatars, and gamification. In future 
iterations of this framework, it may be appropriate for each 
category to be broken down further.   

Whilst these themes can be used individually, they can 
also support one another to identify similarities and 
differences between experimental conditions and results. 
For example, research questions may explore the effects of 
self-embodied and computer-generated avatars on 
navigational decisions across the task-based instructions 
categorical scale of 1-5 (restricted - explorative).  

A crucial point of developing the LoCoMoTe framework 
was that it was not intended as complete work or a 
complete literature representation. Instead, the VR 
research community should continually expand and refine 
this work. By categorising different papers and 
experiments, researchers can oversee the research field and 
highlight possible training data and trends. For example, 
at the time of publication, the papers analysed during the 
development of this framework indicate that 77.5% of 
experimental conditions were categorised as following-
based tasks (e.g., following a non-branching path) and 
allowed for no navigational decisions, highlighting a need 
for more varied tasks. With the expansion of this 
framework, the wayfinding aids categorical scale (A aided 
– E unaided)  is the area that may see the most change, with 
additional papers introducing different aspects, such as 
gamification, multi-user scenarios, and different 
population demographics. 

Overall, we anticipate the categorical distinctions in the 
LoCoMoTe framework, developed by identifying different 
experimental methods identified from the analysed 
papers, should support the reproducibility and 
replicability of RDW experiments [31], [202]. Furthermore, 
this study did not attempt to access the datasets of each 
paper analysed. Our goal was to present a standardised 
framework for comparing the literature. Therefore, we 
hope the LoCoMoTe framework encourages data sharing 
where appropriate. However, we acknowledge that even if 
researchers share live-user data containing user paths, not 
all of these paths will be suitable for input during 
simulations and may not fully model users’ reactions to 
RDW [24]. Hirt and colleagues [24] highlight important 
questions such as: “how such unclean behavior can be modeled 
more or less realistically in simulation, for example by inducing 
random perturbations during resets?” – page 531 [24]. While 
the LoCoMoTe framework cannot answer these questions 
alone, as there is no extraction or quality assessment of 
datasets, it does provide a systematic way to analyse paper 
methodologies. Thus, the LoCoMoTe framework provides 
a foundation to work from and answer these questions. 

5.1 Limitations 

To develop the LoCoMoTe framework, we extensively 
analysed relevant papers until saturation had been 
achieved (140 papers), and from them, categorised 977 
experimental conditions. We acknowledge that although 
the work presented in this paper is an extensive analysis of 
the literature, it is not a complete representation of all the 
literature in the field. The LoCoMoTe framework is 
designed to be an ongoing and dynamic resource that 
should be community driven and updated accordingly. 
Furthermore, it can be challenging to minimise subjectivity 
during analysis [203]. Assumptions always have to be 
made; arguably, some of these categorisations may be 
inaccurate [203]. However, we took steps to reduce 
researcher bias by conducting three intra-reliability checks. 
We wanted to focus carefully on the papers to minimise 
subjectivity [203]. Therefore, we kept additional 
documents alongside the categorisation of experimental 
conditions referring to direct quotes from the papers 
(supplementary material), ensuring that we considered 
validity by keeping a thorough document [203]. 

Furthermore, we conducted inter-coder reliability. There 
was tentative reliability for theme 1: navigational decisions 
and theme 3: modalities. Although there were differences 
between the expert on the framework and the additional 
three coders, we believe these differences were likely a 
limitation of the additional coder's unfamiliarity with 
locomotion techniques, having limited training (only 
received a guide), and categorising work that they were 
unfamiliar with, leading to assumptions having to be 
made. Therefore, we believe it is likely that with more 
training on the LoCoMoTe framework and familiarity with 
the experimental work presented in the papers, the themes 
refined for the LoCoMoTe framework should hold. 
Therefore, it is recommended that those familiar with the 
research studies should enter the coding of experimental 
conditions into the LoCoMoTe framework. 

Finally, we have not currently performed a formal 
evaluation of the framework at the time of publication. The 
LoCoMoTe framework aims to provide ongoing structure 
to the VR locomotion literature, including identifying 
similarities and differences in experimental methodologies 
that may produce context-dependent results, thus 
supporting future RDW research with either live users or 
simulation-based experiments. Therefore, we expect a 
formal validation to occur on a longitudinal basis (1+ year) 
on the topics of: “Do researchers use this framework to 
categorise their work? If so, do the categorical distinctions made 
in the LoCoMoTe framework help identify gaps, and are 
researchers working towards addressing these gaps?” and “Do 
the categorical distinctions in the LoCoMoTe framework help 
identify pre-existing user path data from different contexts to 
train intelligent agents in simulation-based experiments? If so, 
are researchers sharing research data where appropriate, and how 
has this affected the RDW research field?” 
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Fig. 8. Summary of the LoCoMoTe Framework 

6 CONCLUSION 

Research has begun to explore the development of RDW 
algorithms using RL [16], [18]. To support this work, we 
must understand how best to replicate human navigation 
and behaviour in VR [20], which can be supported by 
accumulating results produced through live-user 
experiments [25]. However, building upon relevant 
research in an ever-changing field is challenging [23]. 
Therefore, to provide an ongoing structure to the VR 
locomotion literature, we developed the LoCoMoTe 
framework (Fig. 8). Using thematic analysis, we 
considered three themes: 1) navigational decisions, 2) 
technique implementation, and 3) modalities. 

The current work analysed 140 academic papers 
identifying and categorising 977 experimental conditions. 
Of these, we analysed 114 papers to refine our initial 
conceptual themes. Then an additional 26 papers were 
used to assess the categorisation reliability. These 977 
experimental conditions were identified from 140 
academic papers because of the use of a) multiple 
experiments presented in papers, b) the breakdown of 
tasks in experiments to include elements such as 
transitional environments, and c) study conditions, e.g., 
multi-user, naïve groups. Elements such as the specifics of 
the breakdown of tasks may not be easily identifiable from 

the results. Additionally, it may be more appropriate to 
break down the categories further depending on the 
research questions. For example, we often grouped gain-
based techniques despite different gain amounts if other 
variables remained the same. As such, the LoCoMoTe 
framework should be continually updated. 

In this paper, we present the development of the 
LoCoMoTe framework. The primary contribution of this 
work is to provide ongoing structure and comparison of 
methodologies giving rise to human movement behaviour 
in VR.  To help categorise research, identify gaps and train 
intelligent agents. Detailed analysis and categorisation of 
the papers used to develop this framework can be found in 
our supplementary material. Current work is developing 
an online application based on this framework. Once 
complete, researchers will be able to search among the 
themes, see similar approaches, and suggest new papers 
for categorisation. Furthermore, future research should 
explore the validation of this framework and its impact on 
the RDW research community. 
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