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Abstract—The inference of 3D motion and dynamics of the human musculoskeletal system has traditionally been solved using
physics-based methods that exploit physical parameters to provide realistic simulations. Yet, such methods suffer from computational
complexity and reduced stability, hindering their use in computer graphics applications that require real-time performance. With the
recent explosion of data capture (mocap, video) machine learning (ML) has started to become popular as it is able to create surrogate
models harnessing the huge amount of data stemming from various sources, minimizing computational time (instead of resource
usage), and most importantly, approximate real-time solutions. The main purpose of this paper is to provide a review and classification
of the most recent works regarding motion prediction, motion synthesis as well as musculoskeletal dynamics estimation problems using
ML techniques, in order to offer sufficient insight into the state-of-the-art and draw new research directions. While the study of motion
may appear distinct to musculoskeletal dynamics, these application domains provide jointly the link for more natural computer graphics
character animation, since ML-based musculoskeletal dynamics estimation enables modeling of more long-term, temporally evolving,
ergonomic effects, while offering automated and fast solutions. Overall, our review offers an in-depth presentation and classification of
ML applications in human motion analysis, unlike previous survey articles focusing on specific aspects of motion prediction.

Index Terms—Computer Graphics, Animation, Motion Prediction, Motion Synthesis, Machine Learning, Biomechanical Simulation.

✦

1 INTRODUCTION

MOTION prediction and synthesis methods are nar-
rowing the gap between handcrafted and automatic

animation. To date, the prediction of 3D human motion
and dynamics is performed mainly using physics-based
methods that produce accurate and realistic solutions, while
taking into consideration physical parameters such as joint
velocities, forces, torques, etc. For example, in the field
of biomedical engineering, human kinematics and mus-
culoskeletal dynamics estimation is performed with great
precision by open-source software like OpenSim [1], [2], or
computational models like Finite Element Models (FEMs)
that simulate the behavior of an individual’s lower limbs.
Such methods use kinematics and dynamics equations to
calculate human movement, joint forces, or muscle func-
tion biomechanics given raw human motion capture data
(e.g. joint angles and torques) and/or forces. There are
a plethora of publications concerning the use of physics-
based techniques mainly focused on FEMs, such as [3], [4],
that exploit and validate subject-specific FEMs in order to
estimate muscle-tendon forces, joint contact forces, and joint
contact mechanics in patients with knee prostheses.

However, in the last decades both biomedical and com-
puter graphic engineers have turned towards data-driven
(machine learning) approaches in order to obtain faster com-
putation times and more automated, as well as real-time,
solutions while estimating human biomechanics. In this
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paper, we aim to provide a review and categorization of the
most recent studies investigating kinematics and dynamics
estimation problems, as well as motion synthesis techniques
using machine/deep learning, in order to offer sufficient
insight into the state-of-the-art and help new researchers in
these application domains. Thus, unlike previous survey ar-
ticles which focus on dedicated problems (e.g., only vision-
based motion trajectory prediction using deep learning (DL)
[5] or kinematics prediction using predictive modeling and
data mining to study the human kinematics of patients
with neuromuscular and musculoskeletal diseases [6]), our
review summarizes the most recent innovations in three
different, yet related, application domains, namely motion
prediction, motion synthesis, and musculoskeletal dynam-
ics estimation, offering a more general view to ML-driven
human motion estimation.

Most works in motion prediction and synthesis, as will
be presented below, implement various machine learning
models, which are using human motion capture and move-
ment history data (e.g. previous frame/s or motion state/s
such as joint angles) as input to predict or synthesize the
pose and/or the joint trajectories of a virtual character.
Both motion prediction and synthesis publications are clas-
sified into deterministic methods that predict/synthesize
a motion sequence, which converges to the ground truth,
and probabilistic techniques, which predict/construct all
plausible pose sequences of a 3D character based on his-
torical poses and/or control inputs. Motion synthesis works
also include physics-based and diversified motion synthesis
techniques. Special attention is given to ML-based solutions
for musculoskeletal dynamics estimation, which open the
path for ergonomically-adjusted motion estimation (e.g. fa-
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tigue modeling), and thus, contribute to the simulation of
more realistic computer graphics’ character animation. That
is because such biomechanics works provide insight into
the internal processes of the human body instead of super-
ficially estimating or reproducing human motion without
taking into consideration significant movement parameters
such as joint and muscle forces. Therefore, a connection
between kinematics and dynamics estimation techniques is
starting to be explored by state-of-the-art approaches such
as Physics-Informed Neural Networks (PINNs) to estimate
both internal forces and joint kinematics [7], [8].

This work is organized as follows. In section 2 we pro-
vide high-level definitions in respect to motion prediction
and synthesis. Moreover, some basic notations are defined
in order to provide a broader context of the concepts pre-
sented in the related literature. Sections 3-5 present pub-
lished approaches and applications in motion prediction
and synthesis, along with musculoskeletal dynamics esti-
mation solutions. Section 6 includes a comparative analysis
between the reviewed works in the aforementioned three
topics and some discussion on limitations and potential
open issues, while section 7 provides a conclusion to this
review. Finally, an Appendix (Appendix A) that outlines
our literature search methodology, an Appendix (Appendix
B) containing a thorough description of the most popular
human motion datasets for motion prediction and synthesis,
and an Appendix (Appendix C) with key terms and details
on established classifiers, are provided as supplementary
material.

2 BACKGROUND AND RATIONALE

2.1 Goal of Motion Prediction

The main goal of a motion prediction algorithm is given
a sequence of input (usually motion capture) data X =
{x1, ...,xT }, where xt ∈ R3 is the 3D pose element of a
human at time frame t = 1, ..., T , to estimate the motion
(pose) ŷt′ ∈ R3 at a future time point t′ > T . A similar
formulation of motion prediction or motion forecasting can
be found in the highly cited paper [9]. Each 3D pose at time
point t is usually visualized on a 3D skeletal structure of the
human joints and is parametrized through joint positions
(or joint angles).

The motion prediction problem has been studied in
many applications concerning kinematics prediction [6] and
kinematics prediction combined with motion synthesis (e.g.
[10], [11], [12]). Depending on the application, the input of
motion prediction algorithms may differ. As stated in [13],
many methods are using only a single source of information
such as the pose of a virtual character at the current frame
[14], [15], but there are also approaches that encode high-
level contextual information such as scene interactions (e.g.
[10]) to potentially offer more robust predictions, e.g. in
combination with motion synthesis (section 2.2). Most of
these works exploit recursive deep neural networks [10],
[15], [16] which are using joint positions, trajectories, ve-
locities, rotations, a character’s pose, etc. of the previous
frame/s, as input to the network, in order to predict the
future human model’s pose or a sequence of motion-derived
parameters.

2.2 Goal of Motion Synthesis

The aim of human motion synthesis is to find a model f
that can simulate new human movements (solutions) which
represent either task-dependent motions obtained from ex-
ample data (deterministic motion modeling) or stem from
a set of randomly sampled latent variables (probabilistic
motion modeling). To build the function f , a reference
motion set is utilized, X =

{
X(1), ..., X(n)

}
, where n is the

number of observations used to capture the variability of the
motion pattern, selected usually under certain conditions or
activities (e.g. sit on a chair). As the modeling of distinct
actions (motion classes) in obstacle-free environments finds
limited applicability, especially in computer graphics, mo-
tion synthesis methods usually incorporate a combination of
input parameters, reflecting not only the digital character’s
pose and trajectories, but also environment parameters,
interactions, and goal-setting parameters. All the different
parameters are used in order to generate a novel action
pose, Ŷ = f(X).

Both physics-based and data-driven methods for motion
synthesis are described thoroughly in previous review stud-
ies, such as in [17], where a general overview of 3D human
movement generation methods is provided. In contrast to
physics-based approaches, data-driven methods produce
more realistic and expressive movements, since they use real
(prerecorded) movements for training. Nevertheless, they
are prone to motion artifacts, such as lack of balance, and
still rely on samples ”seen” in the training dataset, which
renders them incapable of modeling a wide variety of move-
ments [18]. On the contrary, advanced ML techniques and
generative modeling approaches are able to synthesize new
motion patterns by taking into consideration environmental
and time parameters and create movements that are not
explicitly defined in their training dataset [18].

3 MOTION PREDICTION

3.1 Short-term and Long-term Motion Prediction

Most works addressing motion prediction focus on short-
term [15] and long-term [14], [16], [19] motion sequence fore-
casting, i.e. the generation of future body poses (represented
through 3D skeletons) based on observed past human mo-
tion frames with respect to the current frame. The goal of
short-term prediction is the estimation of the next-frame
pose, whereas long-term prediction deals with predicting
poses over a longer horizon or over the next actions. That is,
given an input (ground truth during training) pose sequence
with spanning time t = 1 to τ : X = {x1, ...,xτ}, a short-
term model predicts the pose of the next frame t = τ + 1,
namely ŷτ = xτ+1 , while long-term motion prediction ap-
proaches predict the future poses over the horizon t = τ +1
to τ + T , thus, the output will be Y = {ŷτ+1, ..., ŷτ+H}
[19]. An example of 3D pose skeleton sequences’ short and
long-term prediction is given in Fig. 1.

3.1.1 Recurrent-based structures
One of the first works on short-term motion prediction that
has set the foundation for long-term prediction is presented
in [15]. Instead of directly predicting the body pose, joint
velocities are estimated by implementing a simple Recurrent
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Fig. 1. Short-term and long-term human motion prediction on gait as
reproduced from [14]. During inference, given an observed (input) 3D
pose sequence (first row) X = {xt}, where xt ∈ R3 for t = 1, ..., T , the
ML-based framework proposed by [14] produces future pose sequences
(red skeletons) at a future time point t′ > T , which resemble the ground
truth (second row). Specifically, the first 4 frames (skeleton poses)
correspond to a short-term prediction (predicting a motion sequence
with a length of 400 ms), while predicting 10 motion frames constitutes
a long-term prediction (predicting a motion with a length of 1000 ms).

Neural Network (RNN) architecture using Gating Recurrent
Units (GRUs) as decoder. GRUs do not own an output layer,
resulting in training fewer parameters, thus, they can be
computationally faster compared with other RNN models
like LSTMs [20], [21]. This work focuses on short-term
motion prediction but also builds the foundation around
modeling long-term motion dependencies. Another short-
term prediction approach is presented in [22], where an
RNN-based motion prediction framework for short-term (in
the span of 1 second time period) forecasting during fencing
is proposed. This architecture is specifically designed for
mutually interacting characters, such as pair of athletes in
fencing videos, and consists of two RNN encoder-decoders,
each of them predicting the motion of one of the two char-
acters. This model consists of two RNN encoder-decoder ar-
chitectures, each of them predicting the motion of one of the
two players, since each player’s movement varies from the
other’s, and the models are mutually connected to predict
the movement of the players depending on the interaction
between them. More specifically, the players’ interaction
is simulated by feeding the output of the RNN’s middle
layer of each player to the one of the opposing player,
since this layer contains both past and current player’s pose
information, which is a good representation of the context of
motion of the opponent player. This ”mutual connections”
technique was tested using single-person architectures such
as in [9] and [15]. The evaluations in [22] suggest that their
framework accurately predicts moves in reaction to the
opponent, like avoiding.

Instead of using GRUs for long-term prediction, the
authors of [16] proposed a method that explicitly encodes
human and animal anatomy by modeling the skeletons as
a kinematic tree consisting of one or multiple kinematic
sequences and based on the mathematical formalism of
Lie algebra [16]. An alternative to a GRU-based RNN [15]
is proposed in [14], where the authors used a Modified

Highway Unit (MHU) as a component of the recurrent
prediction layer (decoder). In this work [14], MHUs were
used to differentiate at each pose the joints participating
in a movement from the ones that do not participate, and
thus are claiming to be more efficient for long-term motion
prediction. A recent work [19], which shows improved re-
sults over the previous short-term prediction approach [15],
uses GRUs for the description of long-term dependencies in
motion. The network is trained using a continual learning
training scheme, where a robust general representation of
motion is first learned based on training samples from
simpler diverse tasks, and then only the decoder module
is fine-tuned in order to predict the motion of a specific
(new) human subject, mitigating the problem of training
from scratch.

3.1.2 Attention- and Graph-based Models
A different approach to both short-term and long-term
motion prediction which is advertised to outerperform [14],
[15], tries to discover repeated motions along a human’s
movement by applying an attention-based feed-forward
network that predicts future motion sequences by compar-
ing current sequences with similar (to the current motion)
past pose sub-sequences [23]. The method in [23] improves
over previous work [14] in that it does not calculate similar-
ities between static poses (that are not unique within each
action) but captures the spatiotemporal dependencies in the
data using motion attention. Specifically, it estimates future
motion through weighted aggregation of historical motion
sequences, combined with the current pose sequence, and
introduced as input to a Graph Convolutional Network
(GCN). According to the authors, this approach leads to
better learning. Inspired by [23], the authors in [24], used a
similar technique to produce motion prediction mappings
of two people who interact with each other. In [24], a
framework containing two pipelines was constructed each
of them consisting of an attention model for learning tempo-
ral relationships and a GCN predictor for extracting spatial
dependencies between the joints of the pose skeletons, like-
wise to the technique used in [23]. Moreover, for modeling
the interaction between two persons a Cross-Interaction
Attention (XIA) model was used to generate the future
pose of each person based on the movement of the other.
Specifically, XIA uses multi-head self-attention to generate
weights shared between the two predictors that model the
movement of each person. For the purposes of this work, the
authors recorded a dataset that contains 115 sequences of
highly interacted Lindy-hop dancing poses, called the ExPI
(Extreme Pose Interaction) [24].

A work that can be assumed as a continuation of [23],
is [25] where a graph generative model consisting of GCN
layers was developed, which performs both short- and long-
term prediction by taking into consideration the natural
connectivities of the human joint pairs of the skeleton pose
(treating the latter as a dynamic graph). For this purpose,
two parameterized graphs are constructed; one to explic-
itly learn (as weights) the natural kinematic connections
between joints of 3D skeletal sequences, and another one
to implicitly learn the relationships between joints that are
not geometrically connected. This framework dynamically
learns the relationships between the joints in 3D skeleton
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sequences, and, thus, presents a more flexible and accurate
approach compared to approaches, such as [23] that con-
sider the 3D poses static. A work that also uses graphs to
model the relationships in the 3D skeletal poses is [26]. This
framework is an encoder-decoder architecture called Dy-
namic Multiscale Graph Neural Network (DMGNN), based
on multiscale graphs that have nodes that represent body
parts at various scales and the edges of the graph represent
the relationships between these parts. In particular, the
encoder contains a sequence of Multiscale Graph Convo-
lutional Units (MGCU) each one of which corresponds to
a multiscale graph, to extract temporal and spatial features
at multiple scales from the input motion sequences. Also,
the decoder includes Graph-based Gated Recurrent Units
(G-GRUs) to generate predictions. Similarly to [25], in [26]
the graphs are learnable and dynamic since their topology
is changing across the model’s layers.

More recent works that utilize GCN-based frameworks
are [27] and [28]. In [27] a Gating-Adjacency GCN (GAGCN)
is used as an encoder to learn both joint dependencies
and temporal relationships from past pose sequences. Each
GAGCN encoder layer uses both a spatial gating network
and a temporal gating network, to produce blending coef-
ficients which are used to blend the trainable spatial and
temporal adjacency matrices in order to learn correlations
between joints and time frames. More specifically, gating
networks classify motions by automatically computing the
probability of the action class that the observed pose se-
quence belongs to [27], and, thus, can be used to enhance the
generalization of neural networks in more than one move-
ment. Blending coefficients and gating networks will be re-
explored in Section 4. Supplementary, the GAGCN scales
the number of adjacency matrices to balance spatiotemporal
features and further fuses these features to explore the cross-
correlations that reside between them in past motions. The
method proposed in [27] outperforms previous long-term
prediction works such as [23] and short-term ones, e.g. [15].
As for [28] the authors use ”initial guesses” of the future
pose sequences to increase the prediction accuracy progres-
sively. For this purpose, the authors employ a two-stage
prediction model, which consists of two motion prediction
networks: the init-prediction network that predicts the mean
of future poses as an initial guess, and the formal prediction
network that is fed with a concatenation of the input (past
poses) and the predicted (guessed) pose sequence to gener-
ate the final result. This framework is used as a base to create
a multi-stage network, where each stage generates a more
smoothed version of the ground truth motion sequence.
These smoothed motions are used as intermediate targets
to progressively produce better and better guesses, which
will result in a more accurate final future pose sequence.
What is more, each stage uses spatial dense GCNs (S-
DGCN) and temporal dense GCNs (T-DGCN) to extract
spatial dependencies in 3D poses and temporal correlations
in joint trajectories, respectively, whereas in [25] GCNs are
used only to process spatial features.

3.2 Probabilistic Motion Prediction

The works reviewed so far that address the motion predic-
tion problem, are deterministic approaches, meaning that
given an input human motion, they predict a determinis-

tic future pose sequence that regresses towards the mean
pose. On the contrary, there are probabilistic (or stochastic)
methods, which predict diverse possible future motions
based on a single historical motion sequence [29]. Such
works usually use Variational Autoencoders (VAEs) [30],
[31], which consist of an encoder-decoder architecture. The
encoder takes as input data x and transforms these data into
a latent representation z, meaning that it approximates the
posterior distribution qϕ(z|x), where ϕ are the parameters
of the encoder. The z expresses the variation in data and is
given as input to the decoder that produces a reconstruction
of the initial data, x̂, by learning pθ (x|z ), where θ are the
parameters of the decoder [30], [32]. The loss function of
the model consists of a reconstruction term that aims at
increasing the performance of the model and a regulariza-
tion term. The latter regularizes the latent space, meaning
that it brings the distribution of z closer to a standard
normal distribution, in order to both prevent overfitting
and give the ability to the model to produce new data [30].
Contrariwise, the simple autoencoders can have an irregular
latent space (e.g. decoded data from close latent space
points can be quite different, etc.), thus, a generative process
cannot be constructed upon them. An extension to VAEs, are
the Conditional Variational Autoencoders (CVAEs) that use
additional information, such as a conditioning variable or a
specific past pose sequence, to produce x̂. Thus, conditioned
on a conditioning variable c, the encoder of CVAE becomes
qϕ(z|x, c) and the corresponding decoder pθ (x|z, c ) [32].

In contrast to the works mentioned in Section 3.1 that use
3D skeletal representations to model pose sequences, in [29]
a time sequence of 3D markers (3D joint locations forming a
sparse point cloud) is used to fit into a 3D human body mesh
to produce realistic motion predictions. Particularly, in this
work, a CVAE, called MOJO, is developed to both perform
motion prediction and also produce more realistic results by
retaining the full temporal resolution of the input sequence
and also integrating high-frequency motion components
into the predicted motion. In [32], [33] not only future
motion is generated stochastically, but diversity and context
of motion, respectively, are imposed via stochastic processes.
Specifically, in [33] a more stochastic way to enforce diverse
motion is discussed: instead of combining historical pose
sequences (or model’s hidden state) with noise vector to
model stochasticity (and further produce plausible future
motion) in rather a deterministic way, the authors proposed
to randomly select and shuffle a part of the hidden state of
the model with a random vector in every training iteration.
As a result, the model is forced to take into consideration
this random noise in order to enhance the diversity in future
pose sequences. This technique is integrated into a recurrent
encoder-decoder network with a CVAE block, where the
RNN encoder uses past pose sequences to produce the hid-
den state, part of which is combined with noise as aforemen-
tioned to create a ”perturbation” vector. The latter is fed into
a VAE decoder whose output is given to an RNN decoder
to produce the future motion [33]. As a continuation of
their previous work, [33], in [32] the same authors introduce
a variational model that aims both at diversity in motion
forecasting and taking into account the context of the future
3D poses, so instead of conditioning the encoder, as in [33],
they also condition the decoder. To do so, the authors of [32]
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developed a CVAE consisting of two autoencoders, i.e. one
VAE fed with past 3D poses (conditioning poses) that learns
the distribution of the conditioning signal and another VAE
that learns the distribution of the latent representation of
the future motion depending on the condition. By sampling
the latent representation of the input based on historical
3D poses, the latent variable is imposed to have relevant
(to the conditioning signal) information, and, thus, produce
contextually plausible future motion.

A state-of-the-art probabilistic motion forecasting frame-
work is Motron [34], which models the multi-modality of
humans. Motron follows an encoder-decoder architecture as
in the above similar works, whereas in this model latent
representation samples z are combined with the hidden
state of the encoder before being fed to the decoder, in
order to induce diversity in motion. To model motion multi-
modality, the distribution over the latent variable qϕ(z|x) is
used. In contrast to CVAEs, the latent variables produced in
this work do not explicitly learn a representation for the
decoder, but the decoder implicitly learns to distinguish
future output poses [34]. What is more interesting about
this method, is that it was tested under handling data
with occlusion and produced confidence values to measure
its uncertainty of predictions. Another recent publication
addressing motion multi-modality is [35]. In [35] a multi-
objective CVAE-based model to balance both accuracy and
diversity in motion forecasting was implemented. To this
end, this network infers two different prior distributions;
the accuracy qacc(z|x) and the diversity one qdiv(z|x). By
sampling from the accuracy prior distribution, the distribu-
tion of the input dataset is estimated, and different pose
sequences are explored by learning the diverse prior dis-
tribution. Once again this framework follows an encoder-
decoder architecture; the encoder extracts temporal features
of motion trajectories using RNN and feed-forward net-
works, and the decoder predicts the future poses. To further
enhance the motion diversity, a short-term oracle CVAE-
based model infuses pseudo-ground-truth multi-modality
into the proposed model [35]. Lastly, a recent work that
addresses the problem of action-drive probabilistic motion
prediction is [36]. A CVAE-based model was created in
[36], which, conditioned on historical motion sequences and
action labels, predicts possible plausible motions, unlike
works that focus on conditioning motion prediction on a
single action. Two different temporal encoding structures,
an RNN-based and a Transformer-one were used to build
the VAE. The main contribution of this work is the predic-
tion of multi-action motion sequences (i.e. sequences that
contain multiple actions per sequence, such as drinking
and passing the bottle) while providing smooth transitions
between diverse actions in the motion and allowing the
predicted motions to have varying lengths. To simulate
action transitions in the training dataset, the authors in
[36], proposed a training method that combines the cre-
ation of synthetic motions, from past and future motion
sequences from different actions, with the use of a weakly-
supervised technique to aid in creating smooth transitions
between action classes. This framework also incorporates
a variance-based method to generate pose sequences of
different lengths.

3.3 Controlled Motion Prediction

A subcategory of motion synthesis and motion prediction
studies targets the controlled motion generation. These meth-
ods generate a motion conditioned on a control signal that,
for example, predefines the direction, style, or velocity of
the movement, etc. and thereby achieves interactive control
over the generated motion [37]. Specifically, controlled mo-
tion prediction produces future motion poses (at next time
frame t+1) based on past observed poses and control signals
in order to control the movement of different body parts
[38] or predict transitions between different actions [39] or
frames [40]. On the contrary, controlled motion synthesis
focuses on synthesizing new movements (at current time
frame t) in a controlled fashion (conditioned on specific
trajectories, velocities, goals, etc.), rather than free motion
generation methods (see Section 4.1). A work that is a
representative example of controlled motion prediction is
presented by Harvey et al. [40]. In this paper, adversarial
recurrent neural networks (RNNs) were used for the auto-
matic generation of the transition motion between an initial
and a target pose. In particular, the authors developed a
motion prediction RNN, to which they applied two different
embedding modifiers at each timestep of inference: (i) a
time-to-arrival embedding was applied on the hidden repre-
sentation of all inputs in order to facilitate the handling of
in-between pose transitions of different lengths for a single
model, and (ii) a scheduled target noise vector was introduced
aiding the model to withstand distortions in target poses.
The time-to-arrival embedding is evolving from the target
pose backward to the initial one, in order to permit the
recurrent layer of the network to have continuous insight
into the number of timesteps needed to reach the target
pose, thereby helping to produce a more dense and smooth
motion. The scheduled target noise vector feeds the RNN
with distorted target poses when a long transition is about
to start, in order to aid the motion generator model to reach
the correct pose. To increase the quality of the synthesized
motion, a generative adversarial network (GAN) was added
[40]. Similar works to the one in [40], which however focus
more on motion synthesis than prediction (like [37]), are
presented in Section 4.1.

Other works include [38], [39], where in [38] a unified
deep generative model was developed for generating both
controllable and diverse motion sequences. This model se-
quentially predicts the motion of different body parts giving
the ability to retain the movement of some parts of the body
by fixing the latent representations of these parts, while
predicting diverse solutions for the other parts of the body
(by varying their latent representations), and, thus, offering
controllability. So, this model learns a pose prior, instead of a
motion distribution that most aforementioned probabilistic
methods do, which facilitates the learning of diverse mo-
tions. Also, a joint angle loss is used to penalizethe predicted
motions according to restrictions of the anatomical struc-
ture of the human body, meaning that joint angle values
are limited to a certain range, which range is defined by
processing 3D human poses. The pose prior along with
the joint angle loss provide temporal smoothness and more
realistic motion [38]. Moreover, in [39] an Aggregated Multi-
GAN model was presented, that gives the ability to control
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motion prediction across actions and further customize the
forecasted movement. To do so, the authors of this work
developed local GANs to guide the motion of different body
parts and a global GAN to aggregate the complete motion
to maintain synchronicity and balance between the limbs
(kinematic chains) of the animated character.

4 MOTION SYNTHESIS

4.1 Controlled Motion Synthesis
4.1.1 Deterministic Approaches

4.1.1.1 Recurrent Architectures: One of the most
prominent papers in this scientific area [10] proposes a deep
auto-regressive algorithm, called the Neural State Machine
(NSM), which predicts in real-time the character’s move-
ment and interaction with scene objects given a specific
goal (e.g. sit on a chair in the opposite side of the scene).
More specifically, the NSM enables automatic transition
between different high-level action states (e.g. run to sit)
in order to reach a user-specific goal state. NSM consists of
two neural networks: the gating network and the motion
prediction network. The gating network computes a set of
parameters, called blending coefficients, which are mixed
with the network’s weights to predict the transition from
one action to the other based on the given goal and the phase
of the motion signal (phase defines the different stages
of motion). The motion prediction network is responsible
for synthesizing the character’s pose and movement in
the current and future frames based on previous frames’
character and scene information. The NSM as described in
[10] is presented in Fig. 2. A work similar to NSM is [41],
where a fully automated approach based on adversarial
imitation learning generates a control policy that permits the
character to achieve a specific goal in a virtual environment
while imitating motion styles from the training dataset. In
particular, the proposed model incorporates an adversarial
system, called adversarial motion prior (AMP), which can
specify the low-level motion style (e.g. jumping, running) of
the character while performing a task. A dataset of unstruc-
tured motion clips is exploited by an RL-based method to
automatically select the high-level tasks that the character
should perform. The main innovation of this model is that
it bypasses the need to manually design or tune reward
functions for different motions [41].

The same authors of NSM published two more works as
a continuation of the work in [10] - one in 2020 [11] and
one in 2021 [12]. In [11] a novel framework is proposed
that dynamically synthesizes character-character, character-
object, and character-scene interactions containing multiple
contacts. The main architecture of their framework resem-
bles the one of NSM but is enriched with a local motion
phase feature and a generative control scheme. In more
detail, in contrast to the NSM where action movements are
synchronized via a single global phase variable, in the latter
work local motion phases of each body (skeletal) segment
being in contact with an object (such as a ball) are used to
train the proposed model. This local phase feature helps the
neural network to learn the asynchronous motion of each
body segment and its interaction with the environment and
scene objects. Moreover, in order for the neural network
to produce fast and complex movements, like the ones

Fig. 2. The architecture of NSM as presented in [10]. F is the frame
input consisting of the character’s pose and past/future trajectory info,
and G is the goal input composed of goal positions and orientations
as well as the action that the character has to perform when reaching
the goal. Furthermore, I and G are geometry scene information, and
{a1, ..., an} are the weights of the Motion Prediction network, which are
mixed with the blending coefficients that the Gating Network computes.
Moreover, At ⊆ Xt is a subset of the current input, which is fed to the
gating network to produce the blending coefficients. As for the motion
prediction network, it is fed with the character’s pose, trajectory, and
goal data from the current frame t, and predicts those parameters for
the next frame t + 1, thus, producing the virtual character’s predicted
pose, Xt+1. For more information concerning the Motion Prediction and
Gating Networks comprising NSM, please refer to Sections 3.1 and 3.2
of [10].

used in basketball, the authors present a generative control
model. This model is an encoder-decoder network that uses
input control signals from a gamepad and generates a more
precise sequence of control signals, in order to produce
variations in movements and higher-quality motion.

In [12], another work of the same authors, a deep
learning framework for character animation layering is de-
scribed. This system can synthesize brand-new combina-
tions of martial art movements and close-character interac-
tions from a variety of motion skills given a reference motion
and user input control signals. The architecture of this novel
framework builds upon their previous motion synthesis
work [11] consisting of a gating and a pose prediction
network used to reproduce movements from motion capture
data and generate new movements. Following the training
of the model, various control modules are created from sub-
sets of data. These modules can have various forms (neural
networks, physics-based simulations, animation clips, etc.)
and are used to produce future movement trajectories of
the joints participating in motion and, thus, aim to drive
motion synthesis. Then, these trajectories are given as input
to a control scheme in order to be layered by additive,
override, or blending operations. The output of this control
interface is fed to the motion synthesis network to finally
produce a novel full-pose for the character from the current
frame to the next one. This model can be used for both
online and offline motion synthesis like their two previous
works. In the most recent work [42] of the team of [10],
[11], [12], a new model called the Periodic Autoencoder was
created. The main goal of this neural network is to learn
spatiotemporal periodic embeddings from a huge amount
of unstructured data without supervision. In particular, this
network transforms the motion space into a learned multi-
dimensional phase feature space by using a temporal con-
volutional autoencoder. This model treats the 3D character’s
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motion as different local phase signals, corresponding to the
movement of the different body parts. The model enforces
these signals to be in a periodic form and exploits this local
periodicity in order to extract the phase feature space. The
model’s capability to be used along with similar to previ-
ous frameworks (the local motion phases neural network
introduced in [11] and the one in [43]) for a variety of
character animation tasks such as predicting or synthesizing
locomotion patterns, to highly-complex music-driven dance
moves and character-object interactions as well as improve
the quality of motion synthesis, was also explored in [42].

Furthermore, it is worth mentioning that the predecessor
of NSM [10] is a real-time motion synthesis regression
framework called the Phase-Functioned Neural Network
(PFNN) [44]. Similarly to [10], this network uses the pre-
vious pose of the character, a single phase parameter, the
user control signals, and scene geometry as input. The
network’s weights are modified according to a simple phase
function, giving the ability to produce various movements
for the character in order to achieve the user-desired task.
Moreover, this framework is trained using a vast amount of
data including different movements (e.g. walking, climbing,
running, etc.), which are fitted to heightmap data (e.g.
terrain) from virtual environments in order to adapt the
character’s motion to a variety of geometric environments.

More recent deterministic controlled motion synthesis
approaches include [45], [46], where the synthesis of com-
plex 3D dance moves synchronized with music pieces is
realized. In [46], a full-attention cross-modal transformer-
based model was developed, which is fed with a music clip,
an initial part of the motion (called seed motion), and some
specific (key) pose moves that are expected to belong in the
dance sequence. For this purpose, two single-modal trans-
former encoders were created, one to produce embeddings
of music clips and one to encode 3D pose sequences with
full attention across all time steps, respectively, as well as a
cross-modal transformer decoder to learn the correlations
between the cross-modal data and fuse their representa-
tions in order to synthesize dance sequences based on key
poses. Aside from key pose mappings, the cross-modal
transformer models local position embeddings, which are
representations of the relative positions of the key poses
in the generated motion. The latter create a position prior
that enforces the synthesized poses at the corresponding
(key) frames to be consistent with the sample key poses.
Both key pose and local position embeddings control the
dance movements that are generated by the model. Another
music-driven motion synthesis work is [45], which focuses
on imprinting the global context of a dance genre, instead
of exploiting local features of the dance sequence such as
in [46]. The framework created for the purposes of [45], is
a hierarchical three-level model. The first level is an auto-
conditional LSTM model, meaning that is conditioned both
on the music and the movement patterns to produce tem-
porally consistent motions that are synchronized with the
music’s beat. The second level aids in clustering consecutive
pose sequences to certain distributions, thus, controlling
the dance moves and introducing more naturalness to the
produced motion. This level also enables motion diversity
by applying scaling and translation transformations to the
joint rotations of the input pose sequences. Finally, the

last level fixes the order of the movements and further
enforces the generated motion to follow the distribution
(global structure) that characterizes a specific dance genre,
i.e. choosing the pattern in the dance [45]. The second and
third levels use traditional deep learning methods such as
Multi-Layer Perceptrons (MLP).

4.1.1.2 GAN-based Methods: Even though genera-
tive adversarial networks (GANs) are a probabilistic model-
ing approach [47], they can be utilized as part of determin-
istic models to create a diverse training set upon which the
output of the model will be conditioned. Such examples that
incorporate generative adversarial training are [48], [49].
Just as in [10], [50], a generative network that models the
movement of a virtual human in a 3D scene conditioned
on the character’s previous pose and the environment, was
developed in [48]. This framework consists of three parts,
where the first is a scene encoder, which is fed with a scene
in an RGB image format to produce the scene’s geometry-
aware feature (visual semantics and structure), and the
other two are a generator and a discriminator constituting
a GAN-based learning approach. The scene embedding
that the first component of the model generates is used
to condition the model’s results. Specifically, the generator
learns the latent distribution of the motion trajectories that
are used to sample trajectories based on which the pose
distribution is produced. By aligning diverse poses and
sampled trajectories, a novel 3D pose sequence based on
the virtual scene is synthesized. As for the discriminator
component, it consists of four discriminator modules; the
trajectory and pose discriminator aid in creating smooth
and continuous pose sequences, while the projection and
context discriminators impose the generated motion to
follow the global structure of the virtual scene (e.g. the
floor) and the local structure (e.g. objects to be avoided) at
each frame, respectively. In contrast to the aforementioned
works that require large and well-structured datasets to be
trained, in [49] a generative model that is able to synthesize
new and diverse pose sequences trained only on a single
short motion series was constructed. This model is called
GANimator and consists of GAN-based components, where
the encoder of each GAN part incorporates skeleton-aware
convolution layers [51] (see section 4.1.2 for more details
on skeleton-aware architectures). Each component of this
model is fed with the output of the previous part and a
random noise vector to perform upsampling upon the input
motion sequence, which results in progressively increasing
the temporal resolution of this single training motion. Also,
these layers are automatically adjusted to preserve and
follow the skeleton structure of the animated subject, thus,
giving the flexibility to synthesize motion for both humans
and animals with any number of limbs. What is interesting
about this work is that it produces both controllable motion
sequences and uncontrollable ones that take after the core
frames of the original input sequence. The unconditional
motion series are synthesized based on random noise and
usually simulate crowd motion and motion mixing and
editing, whereas controllable movement can be generated
conditioned on user inputs. Furthermore, this model can be
used for both motion editing and interpolation, and style
transfer.
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4.1.2 Probabilistic Approaches

Besides the deterministic motion synthesis approaches,
there are studies using probabilistic methods for controlled
motion generation [37], [52]. While deterministic models
lead to repetitive characters in applications, the probabilistic
models generate different motions upon each subsequent
invocation, even for the same control signal, and also pro-
vide a measure of the likelihood for each possible motion.
Combining probabilistic methods with controlled motion
generation approaches gives the ability to interactively con-
trol the synthesized output motion based on a specific con-
dition (control input signal e.g. current pose, the direction
of walking, etc.).

4.1.2.1 GAN Models: In [53] a system utilizing
GANs was developed to synthesize realistic character re-
actions to another virtual character’s or user’s motion. The
model is an attentive recurrent network (an LSTM), which
allocates its weights to the preferred content from the input
information, such that the main character can focus (pay
attention) to the movement of another character and accord-
ingly react. The generator has an encoder-decoder architec-
ture, with the encoder being a part-aware LSTM that learns
the encoding of the observed motion by separately model-
ing the body part-level dynamics of the input character (the
one performing the action to which the network must react).
The decoder is an attentive LSTM that, based on the encoder
information, temporally aligns the decoded reactive motion
with the input character. Furthermore, the discriminator
consists of LSTMs and has two tasks: to differentiate the
generated reactions from the natural ones and to identify
the class label of the interaction. The recognized classes can
be then used to train the generator in a supervised manner.
Similarly, Mourot et al. [54] present a method that estimates
complex movements, such as jumps of a 2D avatar, by
incorporating in the architecture a GAN and an encoder
that help to learn mappings from human pose sequences to
GAN’s latent space. This method has the ability to upsample
the number of joints in each pose sequence in order to
correct any missing or occluded joints.

4.1.2.2 Variational Autoencoders: An autoregres-
sive conditional variational autoencoder (VAE) was used in
[52], producing a distribution of future poses based on a set
of stochastic latent variables. The VAE is controlled via a
reinforcement learning (RL) model to produce the desired
motion. More specifically, the stochastic latent variables of
the VAE define the action space of the movement. The RL
model learns control policies that use this action space to
govern the VAE in accordance with a reward function that
defines the tasks/goals of the character in motion [52]. What
is more, the VAE consists of an encoder and a decoder which
work in concordance to generate natural pose transitions;
the encoder produces a latent representation of high dimen-
sional motion transition information, while the decoder gen-
erates the next pose based on this latent representation as
well as a condition pose (i.e. current pose) [52]. In this work,
the task is learned separately from the motion dynamics,
which enables the learning of various control policies using
the same motion model, whereas direct prediction methods
predict final task-dependent motions from example data.

Variational Autoencoders were also used in [55], [56],

[57] for synthesizing novel motion. A two-level hierarchical
motion VAE (HM-VAE) that produces mappings of human
motion into global and local latent space representations
simultaneously, was introduced in [55]. HM-VAE’s func-
tionality focuses on extracting both local features, which
capture the motion of each body part, and global latent
space embeddings, which model the global dependencies
between all joints. The model follows an encoder-decoder
skeleton-aware architecture to learn over the human skeletal
structure (inspired by [51]), where both the decoder and the
encoder consist of skeleton convolution, skeleton pooling
and skeleton unpooling layers. Explanatory, the skeleton
convolution maintains the plentitude of joints in the skele-
ton structure, while it downsamples the duration of each
pose sequence. Skeleton pooling is applied between pairs
of connected bones to merge their features and further
reduces the spatial features of the input to produce better
motion representations, whereas skeleton unpooling does
the reverse procedure. Moreover, to aid the construction
of the global latent space, a trajectory prediction module,
similar to the above-described structure was added to the
model. What is interesting about this work is that this
framework is task-generic, meaning that it can be used in
various tasks, such as synthesizing motion from incomplete
observed 3D pose sequences as well as complete corrupted
animations (motion interpolation and completion), or in
video human pose estimation. A work similar to [55] is
[56] where the CVAE-based model was used in motion
synthesis, prediction, interpolation, completion, and spa-
tiotemporal recovery tasks. In particular, this model pro-
cesses each input 3D pose sequence as a masked motion
sequence, where the masked regions of the motion are the
to-be-generated frames, which are synthesized given the
unmasked regions as conditions. Thus, the CVAE extracts
a latent distribution of the missing motion regions, from
which diverse motions are sampled and plausible motion
sequences can be produced. To do so, the model uses two
encoder-decoder pipelines as illustrated in Fig. 3; one fed
with the ground truth of the masked regions to produce
latent representations that are combined with unmasked
frames’ features to reconstruct the ground truth motion
sequence and another one that uses the input conditions to
produce different possible motion sequences. This frame-
work also incorporates a module called Action-Adaptive
Modulation (AAM) applied to the normalization layers at
the decoder level, which exploits motion semantics (i.e.
action labels, which are used to learn the parameters of
the normalization layers) to better control the style of the
synthesized motion. A cross-attention mechanism employed
between the features extracted from the encoder and the
decoder is also integrated into this model, to produce more
realistic and globally coherent movements based on long-
term temporal dependencies. As in transformer networks,
multi-head self-attention is used to extract the long-term
correlations [56].

A state-of-the-art work is [57], where a model that
combines Recurrent Transformers (RT) with VAEs, named
RTVAE-multi, was developed for the simultaneous genera-
tion of multiple action human motion sequences. For each
action, the encoder of the network uses a concatenation of
3D human pose sequences with the action label features
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Fig. 3. The architecture of the CVAE-based model proposed in [56]. The model consists of two branches, where the top branch is given the
unmasked frames’ parts of a motion sequence as input in order to generate plausible motion sequences, and the bottom branch is fed with the
ground truth of the masked parts of the same motion to extract features that are blended with the latent representations produced by the upper-
branch to reconstruct the complete ground truth pose sequence. As AAM is denoted the Action-Adaptive Modulation mechanism that is utilized to
determine the style of generated sequences, while an action classifier is used to spread motion semantics (action labels) through the whole motion
sequence. Figure reproduced from [56].

along with the previous hidden state, to predict latent
distributions for every action in the sequence. When the
encoder processes all the frames of the input pose sequence,
then, multiple latent vectors, where each one corresponds to
one sub-sequence of an action, are sampled from the latent
distributions. The decoder of the architecture uses these
vectors stacked with one another, along with sequences rep-
resenting positional representations of a particular action,
to synthesize the input motion. The vectors of all actions
are stacked in order to enforce a continuous and temporally
coherent representation of the whole input sequence. The
decoder can further produce a motion sequence of any
length since it does not depend on the timestamp when each
action sub-sequence ends. Therefore, the main contribution
of the work in [57] is that this model produces realistic
human movements with an arbitrary number of both actions
and frames.

Another publication in probabilistic motion generation
[37], presents a generative and autoregressive controllable
motion-data model based on normalizing flows, named
MoGlow. MoGlow produces the next pose of the character’s
movement by drawing a random sample from a simple
distribution (e.g. Gaussian), and then it passes it through
a neural network in order to transform it in a non-linear
way, similarly to a conditional GAN. As a result, the simple
initial distribution is transformed into a distribution with
high complexity that fits the distribution of the next pose
in data [37]. Furthermore, MoGlow is causal, meaning that
the output pose is not dependent on future poses of control
inputs but only relies on prior poses and relevant control
signals. The latter implies the absence of algorithmic latency
which is crucial for interactive character animation and
control.

A publication that is close to the Neural State Machine
[10] is [50]. In this work, a probabilistic model, called
the Scene-Aware Motion Prediction method (SAMP), was
created in order to predict and synthesize the motion of
virtual characters based on a specific goal, while moving
and interacting with objects in an enclosed virtual scene.
Specifically, this framework consists of three components,
the MotionNet, the GoalNet, and a Path Planning Module.
The MotionNet is an autoregressive CVAE fed with the
previous state (character’s pose, trajectory, and goal) and
the geometry of the target object (the one with which the

virtual character will interact based on the goal). Given the
input (historical and current states as well as the object),
the encoder of the CVAE extracts a random latent vector at
each frame, which is given along with the previous state
and the target object, as a condition to the decoder in order
to generate the next state. The decoder follows an architec-
ture that resembles the one of NSM [10] since it consists
of a gating network that produces blending coefficients
and a prediction network. SAMP can be generalized to
different objects via using another CVAE, called GoalNet
that produces possible contact positions and orientations on
the target object. To further give the ability to the virtual
character to freely navigate in a scene with multiple objects
while avoiding obstacles, a Path Planning Module, i.e. an
A* algorithm, is employed to calculate the best path that
the avatar has to traverse without hitting on an object in a
cluttered scene. It is clear that GoalNet is first employed
so as to predict the goal’s position and orientation, then
the path planning algorithm runs and lastly, MotionNet
generates the next character’s state.

4.1.2.3 Diffusion Models: A quite recent trend is
the use of diffusion models in probabilistic human motion
synthesis. One of the most prominent works in this ap-
plication domain is [58], where a Motion Diffusion Model
(MDM) is implemented in a low-resource framework and
trained on a single mid-range GPU. MDM is a transformer-
based model that produces motion sequences conditioned
on either natural language, audio clips [45], [59] or actions
[60], while it can also generate motion without relying on
conditions. The diffusion process includes noising the input
motion sequence and producing the denoised version of
the signal as output using a transformer encoder. Unlike
traditional diffusion models, at each step, MDM predicts
the sample and not the noise, which enables the use of
geometric losses (e.g. foot contact loss) in diffusion that
mitigate motion artifacts leading to high-quality motion.
Similarly to [58], in [61] a computational-cheap model for
the prediction of movement rather than noise, was de-
veloped. In this work, the Single Motion Diffusion model
(SinMDM) is introduced, which is trained based on a single
motion input sequence to model movements of any skeletal
topology and length. SinMDM was examined under two
different neural backbones, where the most notable one is
a transformer with local attention layers to temporally min-
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imize the receptive field. Learning local motion sequences
enables the creation of diverse movements and prevents
overfitting. This architecture has a variety of applications
including style transfer, modeling long motion sequences,
temporal or spatial in-betweening, etc., and demonstrated
better performance compared with the work in [49], which
constitutes another single-motion technique.

Unlike task-specific works [58], frameworks that offer
multitask unification [62], [63] are also present in this cate-
gory. In [62] a model called MoFusion for unifying a wide
variety of motion synthesis tasks such as diverse motion
synthesis based on data from multiple sources (audio, text),
motion in-betweening, etc., was presented. Like the afore-
mentioned works, MoFusion’s main component is also a
transformer network that incorporates cross-attention mech-
anisms to cope with diverse input signals. This framework
is pretrained as a diffusion model, which gives the ability to
the model to handle partial or whole-body motion synthesis
as well as simultaneously generate movements that match
multiple sources (e.g. text and music) without the need
for training instances that contain multiple sources’ labels.
Moreover, the authors in [62] showed that pretraining their
model reduces overfitting and improves performance. An-
other interesting work is the one in [63], where a multi-task
diffusion model represents motion content and style into
a common latent space in order to unify motion generation
with style transfer tasks. This multi-task framework predicts
different aspects of human motion (e.g. motion trajectories,
joint angles, etc.) along with the noise by incorporating
more neural networks in order to provide local guidance.
However, this model is also optimized by global guidance
using a discriminator and physical regulations in order to
produce more realistic 3D poses. Lastly, in [64] a physics-
guided diffusion model (PhysDiff) was developed based on
MDM [58], by integrating a physics-based motion projection
module in the diffusion process to reduce motion artifacts
(e.g. ground penetration and floating). This module uses
a motion imitation policy to guide the movement of a
character through a physics simulator at each diffusion step,
in order to project the generated (denoised) pose sequence
into a physically-plausible motion.

4.2 Physics-based Motion Synthesis

Another wide category of motion synthesis methods is
physics-based motion synthesis, which is basically con-
trolled motion generation taking into consideration physical
quantities such as joint velocities, forces, torques, etc. The
better physical parameters selected for the animated charac-
ter, the more physically-realistic variations of the reference
motion are learned by the motion parameterization policy.
In physics-based motion synthesis methods, the action space
is well-defined and often comprised of joint torques [52].
For example, in [65] joint torque limits are set, so as to
achieve more natural motion parameterization. More specif-
ically, a deep policy network that learns a family of motor
skills based on a single motion clip, was developed. This
algorithm incorporates a deep network that learns motion
parameterization that associates motion parameters to their
motions, in order to learn a movement that imitates the
input motion. This algorithm also includes a continuous-
time reinforcement learning network to model both tem-

poral and spatial variations of the reference motion. The
main innovation of [65] is that motion parameterization is
learned simultaneously with different motor skills, which
improves both computational efficiency and the quality of
the resulting motion. In [66] a residual force control (RFC)
was integrated into existing RL-based control models in
order to overcome the problem of mismatch between real
human motion and animated character motion, which does
not allow a system to synthesize realistic and complex
human movements. The RFC learns during RL training to
apply external residual forces to the 3D character in order to
better reproduce highly sophisticated motions like a ballet
dance.

The works in [67] and [68], which are similar to [65] and
[66], also belong in this category. In the latter two works
deep RL models learn control policies for physically plausi-
ble movement as motion imitation tasks. The work of [67]
is worth mentioning, where the motion of a user-controlled
physics-based character is interactively produced based on
motion capture data, in order to responsively meet the
user’s specified control changes in real-time. Specifically, a
two-step approach to motion synthesis that combines a high
degree of responsiveness, while maintaining the natural
visual qualities of human motion and balance, is proposed.
The first step is a motion-matching network that implements
kinematic controllers. The kinematic controllers’ utility is
to find and select frames from an animation database (un-
structured motion capture database in this work), based
on certain physical and user control input requirements.
The frames that satisfy these requirements are continuously
combined to synthesize a virtual character’s motion. In
this work, the requirements are features like the character’s
future trajectory positions and orientations, animation style,
and continuity of foot placements. The second step is a
reinforcement learning network which provides a feedback
system to maintain character balance. Based on this, the
virtual character moves and balances relying entirely on
its own strength, thus resulting in a realistic interaction
with the environment. Both the virtual character and the
objects in the environment used to test this framework
were given physical properties like mass, friction, etc., and
other physical parameters were set, such as upper limits for
torques and velocities in the joints.

Motion prediction is combined with physics-based mo-
tion synthesis in [69] through the development of a motion
generation model that combines VAEs and Inverse Kinemat-
ics. The VAE uses a new sampling technique in the latent
space to compensate for the motion detail loss when the
dimension of the latent space is low, and also for sampling
difficulties due to sparsity in training data caused by a high
dimensional latent space. This allows to produce plausible
motions even from a small amount of training data. The
IK method is used to enhance the synthesized pose by
matching selected points in the body to a desired pose (e.g.
as defined by motion capture). This IK method requires less
effort since it provides a target sampling space for the pose
in every keyframe, instead of manually annotating specific
target positions in all frames of the motion, as performed
in traditional IK techniques. Furthermore, this model incor-
porates a motion correction technique based on i) imitation
learning with a physics simulation, and ii) a motion debi-
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asing module. Imitation learning aims at training a policy
that modifies the next pose in a way that resembles the goal
pose. Specifically, the imitation learning scheme proposed
in [68] is used along with an RFC physics simulator [66]
(used to preserve physical stability in the generated poses)
to eliminate artifacts in the synthesized motion sequences
and thus render them physically plausible. On the other
hand, motion debiasing compensates for biases produced
due to dynamic mismatch during the imitation learning
process, in order to help the model fully imitate motions. A
dynamic mismatch [66] is the mismatch between the virtual
character’s pose and the goal (ground truth) motion [69].

Finally, in a rather recent work [70] in this category a
model was implemented, that generates physically-realistic
3D pose sequences and the corresponding contact forces
based on RGB videos instead of using mocap data. First,
a CNN pose estimator is implemented to estimate both the
2D and 3D joint positions from each video frame. An Inverse
Kinematics method is then used to transform the 3D joint
positions for each frame into relative rotations of each body
part of a skeleton model. Finally, an optimization technique
is applied to minimize a loss function that combines a
differentiable physics loss, a pose estimation loss, and a
smoothness loss [70]. The model has the ability to physically
correct noisy image-based pose estimations by incorporat-
ing physical parameters of motion and contact (e.g. contact
forces) upon them. These optimized pose estimates can be
used as a standard motion capture dataset to train a CVAE-
based model that generates future motion sequences and
contact forces.

4.3 Diversified Motion Synthesis

A recent line of work focuses on the synthesis of a large
number of diversified high-quality motions with arbitrary
duration, and visually-convincing variations in both space
and time [71] [72] [73]. In [71] a DL-based generative model
is developed, that can be used for both online and offline
motion synthesis and control, producing a wide variety
of realistic motions of any length. This model consists of
an RNN (comprised of LSTM cells) for motion synthesis
combined with an adversarial neural network (similar to a
GAN) for ”refining” the produced motion (control) so as
to be identical to the reference input motion. A new deep
learning model, called Dynamic Future Net (DFN) [72],
was developed to produce diversified motion (walking-to-
running, walking-to-dancing, etc.) with arbitrary duration,
given a short-length pose sequence (e.g. walking). The DFN
consists of 3 models: a pose encoder and a pose trajectory
encoder, which embed pose and trajectory motion capture
data into latent representations, respectively, and a stochas-
tic latent RNN which learns the transition stochasticity of
the past, current and future states in motions. In contrast
to [37] [71], this network models explicitly the current state
by relying on past and future states. Thus, this model is
able to model both short-term and long-term randomness of
motion. An interesting work [73] that covers both categories
presented in this review, motion prediction and synthesis,
as well as motion reconstruction, presents a Spatiotempo-
ral Recurrent Network (STRNN), which enables long-term
3D skeletal human motion prediction and synthesis while

learning diverse motion patterns. The STRNN incorporates
a spatial, a temporal, and a residual network: the spatial
network is a fully connected hierarchical neural network
that segments the 3D human skeleton model in parts in
order to model the spatial variations in a motion frame,
without converging to the mean pose , while the temporal
network is an LSTM-based RNN, which models the tempo-
ral variance between long-term motion sequences, without
the need for supplementary temporal variables (e.g. using
phase as in [44]). The residual network acts as a filter since
it produces a filtered signal from the concatenation of the
output of the temporal and spatial networks. In particular,
this is a fully connected network that learns a signal which
cancels high-frequency noise, such as periodic jumps, that
are problematic in iterative motion prediction.

One of the most recent works in this application domain
is [74], where a generative model called MoDi that produces
diverse 3D pose sequences unconditionally, was introduced.
The generator’s architecture consists of two parts; the first
part is a mapping network that constructs a latent space
where the features of each motion are differentiated from the
features of other motions, while the second part is a motion
synthesis network that produces 3D pose sequences through
skeleton-aware convolutions [51]. In supplementary, a set of
motion style codes (standard deviation values) is introduced
into the intermediate layers of the motion synthesis network
to control the synthesis. This model is trained in an unsuper-
vised way from unlabeled and unstructured motion capture
data, which does not prevent the model from producing
a robust latent space. Moreover, an inversion method was
used to invert an unseen motion into the learned latent
space of the generator in order to enable motion editing in
the latent space [74]. It is worth mentioning another recent
publication in diversified motion generation [75], which
is a continuation of the work presented in [48]. In [75] a
scene-aware hierarchical model that focuses on producing
diversified goal-driven character-scene interactions. Simi-
larly to [50], the model consists of three components each of
which models a level of diversity; a CVAE that models the
interaction diversity (e.g. interacting with various objects
and performing different motion styles while doing so) by
generating scene-agnostic motion sequences conditioned on
a specific action and placing these poses into the given
scene, a stochastic data-driven scene-conditioned path plan-
ning module based on A* algorithm to encode path diversity
(e.g. produce different paths while reaching for a goal) and
a transformer-based CVAE to synthesize diverse long body
movements based on the calculated paths, scene context,
character-object interactions, and actions [75].

5 MUSCULOSKELETAL DYNAMICS ESTIMATION

As mentioned above deep learning techniques for mus-
culoskeletal dynamics estimation can complement motion
prediction and synthesis works by estimating biomechanical
parameters that render motion estimation more accurate
and realistic. For example, in [76] a deep learning method
was developed for estimating foot contact mechanics and
ground reaction forces in order to mitigate artifacts dur-
ing motion synthesis. More specifically, a CNN was cre-
ated to derive the distribution of vertical GRFs over the
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feet from joint positions. Based on these estimations the
foot contact labels can be extracted, which then can be
used as kinematic constraints in an optimization-based IK
method to eliminate footskating artifacts during motion
estimation, model animations in uneven terrain or even
performing image-based motion reconstruction [76]. It is
worth mentioning that the authors in [76] created a human
motion capture database enhanced with pressure insoles
data, which can be used for both animation and simulation.
Similarly, in [77], vertical, anterior-posterior, and medial-
lateral GRFs during stair walking were estimated by a
Bidirectional LSTM (an LSTM that has both forward and
backward connections exploiting both past and future data)
based on joint kinematics. Ground reaction forces can be
used for both biomechanical analyses and therefore clinical
applications as well as used in eliminating motion artifacts
during simulation/animation as stated in [77].

Works such as [78], [79] are prime exemplars of com-
bining musculoskeletal modeling with machine learning. In
[78] a deep reinforcement learning-based architecture learns
robust control policies to generate a variety of sophisticated
human motions (e.g. dancing, kicking, etc.) using a 346-
muscle-actuated model. The main advantage of this work
is that a scalable algorithm is utilized that has the ability
to control the movement of anatomically variant muscu-
loskeletal models, which are fully- or under-actuated mod-
els (e.g. due to muscle weakness, prosthesis use, etc.). Fur-
thermore, in one of the most recent works in this application
domain [79] the gait of a full-body musculoskeletal model is
controlled via a pre-trained reinforcement learning frame-
work, named Generative GaitNet. GaitNet uses physics-
based musculoskeletal simulation to produce walking se-
quences based on both anatomical (e.g. muscle deficits, body
proportion, etc.) and gait conditions (like stride). In contrast
with the work in [78], GaitNet learns a control policy with
608 muscle parameters. Deep reinforcement learning tech-
niques were utilized to also simulate and control gait in
modifying terrains [80] and in elderly patients, to explore
how aging affects the kinesiology and muscle control during
a fall [81]. Also, joint-actuation models were used instead of
musculotendon ones to speed up computations and simplify
modeling [82].

A state-of-the-art work that proposes an interesting turn
in musculoskeletal dynamics estimation that leverages prob-
lems of both computational models (e.g. speed issues) and
data-driven models (e.g. no modeling of the underlying
physics that rule the internal body state of a human), is
[7]. In [7] a deep learning model based on Physics-Informed
Neural Networks (PINNs) for estimating muscle forces and
joint angles of both lower and upper limbs given corre-
sponding sEMG signals, was developed. PINNs combine
conventional machine/deep learning models with physics
laws, which are incorporated into the loss function in order
to regularise the model’s outputs. In this work, a CNN is
utilized as the base deep learning technique to extract a
feature space that represents the mapping between EMG
signals and muscle forces and joint kinematics, while the
total loss of the function of the framework is computed
based on two losses: an MSE loss that minimizes the data
prediction error and a physics-based loss that minimizes
the equation of motion (physics law between muscle forces

and joint motion). The latter loss can penalize the loss
function of the CNN in order to render the model more
robust and enhance its generalization ability. The evaluation
results in terms of root mean square error and Pearson’s
correlation coefficient showed that this method performs
better compared to other network architectures (e.g. CNN
with more layers, SVR, etc.), since infusing physics-based
domain knowledge in the network results in faster conver-
gence speed [7]. A work similar to [7] is [8] where a Physics-
Infused Neural Network (PIMNet a network that exploits
both physics-based and ML methods) was developed for
predicting joint torques and contact forces for each pose of a
motion sequence. These predictions can be then utilized to
produce more accurate short and long-term human motion
predictions as it is claimed in [8].

In this category, there are also works with applications
in computer vision, where physical forces in human-object
interactions are predicted from visual information [83], [84].
In particular, in [83] a model consisting of an image fea-
ture extractor along with an encoder-decoder module was
developed to predict contact points and forces between a
human hand and an object given RGB videos and the initial
state of the object. Then, the authors used a differentiable
physics simulation mechanism to apply the inferred forces
in a mesh object so as to accurately reproduce the actions
obtained from video. By exploiting the gradients through
this simulation, the model learns to optimize the simulated
motion in terms of both contact points and force prediction.
This joint optimization leads to increasing performance on
both predictions and also the model extracts a physical
representation that renders it capable of generalizing to new
unseen objects using few training instances as showed in
[83]. A previous work similar to [83] is [84], where an LSTM
network with fully-connected layers was utilized to estimate
the interaction force applied to an object while its shape is
modified by an external load, based only on image informa-
tion. Specifically, the model learns the mapping from image
sequences depicting object shape alterations to interaction
forces without relying on any force or torque sensors. This
method can be also applied to estimate interaction forces
against human skin or human limbs.

Other than works in computer graphics applications,
there is also a plethora of works with biomechanical and
medical applications, most of which focus on estimating
knee contact forces (KCFs) [85], [86], [87], [88], [89] and mus-
cle forces in the lower limbs [86], [88], [90], using various
ML techniques. These works trained their surrogate models
using datasets comprised of derivative data from mus-
culoskeletal modeling analyses (Inverse Kinematics, Joint
Reaction Analysis, etc.) based on motion marker tracking
system measurements or signals from other sensors [87].

In [85] ANNs and support vector regression (SVR) were
used for predicting medial and lateral knee contact forces
(KCFs) during gait in real-time. The training of both mod-
els was performed either including ground reaction forces
(GRFs) in the training dataset or not including GRFs, in
order to investigate whether the omission of the (difficult
to acquire) GRFs substantially affects the prediction power
of the models. A work that also resembles the one in [85]
utilizes ANN [87] for estimation of knee joint forces in
sports movements (namely linear motions like gait and
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TABLE 1
Overview of ML approaches for Musculoskeletal Dynamics Estimationa

Publication Real-Time/Offline Motion Dependent Variables Type of Movement

(Giarmatzis, 2020) [85] Real-time With and without GRFs Gait
(Burton, 2021) [86] Offline/

Potential Real-time Use With GRFs Sit-to-Stand, left and right step down, and gait
(Stetter, 2019) [87] Offline With GRFs and IMU signals Sports Movements (e.g. running, jumping etc.)
(Park, 2022) [79] Real-time No GRFs Gait
(Rane, 2019) [88] Real-time GRFs and EMGs Gait
(Zhu, 2020) [89] Offline/

Potential Real-time Use GRFs and EMGs Gait

(Dao, 2019) [90] Offline/
Potential Real-time Use No GRFs Gait

(Sohane, 2020) [91] Offline No GRFs Squatting
(Zhang J., 2022) [7] Offline No GRFs Walking and Wrist Motions
(Mourot, 2022) [76] Offline No GRFs Walking, running, jumping, etc.
(Liu, 2022) [77] Offline No GRFs Stair Walking
(Zhang Z., 2022) [8] Offline No GRFs Various from H3.6m [92]
(Ehsani, 2020) [83] Offline No GRFs Object Manipulation Motions
(Lee, 2019) [78] Offline No GRFs Walking, Running, Jumping, Kicking, etc.
a

The studies in Musculoskeletal Dynamics Estimation can be classified as follows: (i) studies that do or do not make use of motion-
dependent variables such as GRFs, (ii) works that developed either real-time or offline frameworks and (iii) according to the targeted
activity (e.g. gait, other daily life activities, etc.).

running including changes of direction and jumps) is per-
formed based on mocap, force plate and data measured
by wearable sensors. More analytically, knee kinematic and
dynamic data from inertial measurement units (IMUs) were
extracted. The model was trained using IMU measurements
of all movements (as input) and the knee joint forces (as out-
put) – which were obtained from musculoskeletal analysis
considering only the stance phases of each motion – in order
to find the correlation between them.

Another approach to KCF prediction was presented
in [89], where a model that integrates the random forest
(RF) with the artificial fish swarm algorithm was used.
The model is using marker motion data, GRFs, KCFs and
muscle electromyography (EMG) signals from patients with
an instrumented knee replacement as input. The RF algo-
rithm can handle high dimensional data and can be trained
really fast, however, the optimization of its parameters can
significantly improve its performance, hence, the artificial
fish swarm algorithm was utilized to do so [89]. Another
similar work is [91], where ML regression-based models
were developed for estimating knee muscle force during
squatting movements, given a variety of parameters such as
joint angles, muscle forces, mass, and height. In particular,
the authors in [91] developed four different frameworks,
namely an RF model, a neural network, a generalized linear
model (standard linear regression), and a decision tree, and
compared them in terms of mean square error, Pearson’s
correlation coefficient and coefficient of determination (i.e.
the square of Pearson’s correlation coefficient) to conclude
that the random forest one outperforms the others in a knee
muscle force prediction scenario.

Concerning muscle force prediction, in [86] four different
machine learning approaches were implemented to estimate
the joint contact and muscle forces in patients with total
knee replacement during a variety of everyday activities
(sit-to-stand, left and right step down, and gait). The authors
compared the performance of an RNN, a CNN, a fully-
connected neural network, and principal component regres-

sion (i.e. a regression analysis based on PCA) to conclude
that RNNs provide the most accurate predictions. The same
conclusion was reached by the authors of [90], where a deep
RNN (specifically an LSTM) was used to predict lower limb
muscle forces from kinematic gait data since it can incorpo-
rate dynamic temporal relationships of the muscle forces. In
order to increase the accuracy of the model’s predictions
they used a weight transfer learning technique, meaning
that the weights from a pre-trained LSTM network model
were stored and loaded into a new LSTM network model.
The latter method is more beneficial when the available
biomechanical data are scarce. Moreover, a CNN model was
adopted in [88] to learn the mapping from kinematic space
to force space. More specifically, the network predicted
the medial knee joint reaction force, the forces for major
muscle groups of the lower limb, and the EMG sensor
measurements in real-time during gait. This model was
validated in two different ways: by comparing the CNN’s
predictions with musculoskeletal modeling estimations and
EMG sensor data, as well as ground truth tibiofemoral force
data from the Grand Challenge Competition [93].

6 COMPARATIVE ANALYSIS AND DISCUSSION

6.1 Motion Prediction

Regarding motion prediction, most deterministic methods
consist of recurrent architectures, such as conventional Re-
current Neural Networks [22] and Gated Recurrent Units
[19], which are suitable for solving problems where the
input and/or output consist of sequences of points that are
not correlated (e.g. when input and output are body joint
trajectories) since they have the ability to model temporal
dependencies. A work that combines RNN with GAN-
based models, [40], shows the best performance assessed
by the mean angle error, among studies using the same
motion capture dataset, i.e. the Human 3.6m (H3.6m) by
[92], followed by [27] and [32], according to Table 3.

On the contrary to CNN/RNN architectures that focus
on exploring temporal dependencies in motion sequences,
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TABLE 2
Publications since 2017 in Motion Prediction, Synthesis and Reconstructionb

Publication Motion Prediction Motion Synthesis Motion Reconstruction Source Code
S-TMP L-TMP CMP DMP CMS P-BMS DMS ST

(Starke, 2019) [10] - - - - - - link
(Starke, 2020) [11] - - - - - - link
(Starke, 2021) [12] - - - - - - link
(Holden, 2017) [44] - - - - - - link
(Tang, 2018) [14] - - - - - - - -
(Martinez, 2017) [15] - - - - - - - link
(Liu, 2019) [16] - - - - - - - link
(Ma J., 2022) [62] - - - - - - - link
(Yasar, 2021) [19] - - - - - - - -
(Peng, 2018a) [94] - - - - - - - - link
(Gomes, 2020) [95] - - - - - - - - -
(Aberman, 2020) [96] - - - - - - - - link
(Bergamin, 2019) [67] - - - - - - - -
(Liu, 2021) [39] - - - - - - link
(Shi, 2020) [97] - - - - - - - - link
(Men, 2021) [53] - - - - - - - - -
(Harvey, 2020) [40] - - - - - -
(Henter, 2020) [37] - - - - - - - - link
(Ling, 2020) [52] - - - - - - link
(Lee, 2021) [65] - - - - - - - - link
(Peng, 2018b) [68] - - - - - - - - link
(Peng, 2021) [41] - - - - - - - - link
(Yuan, 2020) [66] - - - - - - - link
(Wang Z., 2019) [71] - - - - - - -
(Chen, 2020) [72] - - - - - - -
(Wang H., 2021) [73] - - - - - -
(Honda, 2020) [22] - - - - - - - - -
(Mao, 2020) [23] - - - - - - - link
(Cui, 2020) [25] - - - - - - - link
(Li M., 2020) [26] - - - - - - - link
(Zhang, 2021) [29] - - - - - - link
(Aliakbarian, 2020) [33] - - - - - - link
(Aliakbarian, 2021) [32] - - - - - - -
(Salzmann, 2022) [34] - - - - - - link
(Zhong, 2022) [27] - - - - - - - -
(Ma T., 2022) [28] - - - - - - - link
(Guo, 2022) [24] - - - - - - - link
(Ma H., 2022) [35] - - - - - - -
(Mao, 2021) [38] - - - - - - - link
(Pu, 2022) [46] - - - - - - - - -
(Aristidou, 2021) [45] - - - - - - - -
(Starke, 2022) [42] - - - - - - link
(Raab, 2022) [74] - - - - - - - - link
(Li J., 2021) [55] - - - - - - - - -
(Cai, 2021) [56] - - - - - - - - -
(Briq, 2022) [57] - - - - - - - - -
(Hassan, 2021) [50] - - - - - - link
(Wang J., 2021) [48] - - - - - - -
(Li P., 2022) [49] - - - - - - - link
(Wang J., 2022) [75] - - - - - - - -
(Xie, 2021) [70] - - - - - - - link
(Maeda, 2022) [69] - - - - - - link
(Mao, 2022) [36] - - - - - - - link
(Raab, 2023) [61] - - - - - - - link
(Mourot, 2020) [54] - - - - - - - - -
(Tevet, 2022) [58] - - - - - - - link
(Chang, 2022) [63] - - - - - - link
(Yuan, 2022) [64] - - - - - - - -
b

The acronyms for each column are: (i) for Motion Prediction: S-TMP stands for Short-Term Motion Prediction, L-TMP for Long-Term
Motion Prediction, CMP for Controlled Motion Prediction and DMP for Diverse Motion Prediction, (ii) for Motion Synthesis: CMS stands
for Controlled Motion Synthesis, P-BMS for Physics-Based Motion Synthesis, DMS for Diversified Motion Synthesis, and ST for Style
Transfer. Some papers address more than one application domains (thus adding the ”Motion Reconstruction” column, even though this
survey does not focus on this category), however, the initial classification was done based on which problem they focus on more. For
example, [73] describes a framework that performs both motion prediction, synthesis, and reconstruction, yet the main contribution of this
work is learning motion multi-modality. Moreover, we provide the publicly distributed source codes of the publications, if available.
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many recent deterministic works, among which is the state-
of-the-art publication [27] that achieves the second best
performance (according to Table 3), are turning to graph-
base models, Graph Neural Networks, and especially graph
convolutional networks [23], [24], [25], [26], [28] to construct
spatiotemporal feature spaces from historical human body
pose sequences. These models offer a further understand-
ing of the human internal body state by exploiting the
human structure. Explanatory, in a graph neural network
human 3D skeletons are represented as graphs (the nodes
correspond to joints or body parts, and edges represent the
relations between joints), and the network’s main goal is
to extract spatial dependencies between the joints of the
pose skeletons in order to produce accurate and realistic
future motion. Some of these works e.g. [23], [24], combine
attention-based techniques with graph neural networks to
guide the weights of the model in such a way that more
accurate predictions are generated.

Furthermore, as for the probabilistic motion prediction,
mostly Variational Autoencoders such as Conditional Vari-
ational Autoencoders [29], [32], [33], [35], [36] are utilized.
In Table 3, the short- and long-term MAE results are re-
ported also for probabilistic approaches such as [33], [34]
and the one with the third best performance [32]. These
results indicate from the set of diverse motions that such
models can produce, there is at least one pose sequence that
converges to the ground truth motion [33]. Thus, there is
one solution of these stochastic models that is very close to
a deterministic solution.

However, it is worth noting that the work in [16] (with
the fifth-best performance) seems to have a few advantages
over previous works. In particular, this work is presented
as an alternative method to LSTM and GRU approaches
[14], [15], which are unable to model long-term dependen-
cies (long-term prediction) efficiently, as shown in Table
3. Moreover, in order to overcome strange distortions in
the predicted motion, the authors developed a Lie algebra
representation to explicitly encode the geometry and actual
DoFs (degrees of freedom) of individual joints of 3D human
skeletons. On the opposite, other studies, like [15], usually
model the pose as 3D joint positions, thereby dealing with
joints as independent entities and, thus, cannot capture
intrinsic geometry.

Finally, open research questions are still in the applica-
tion domain of ML-based motion prediction for synchro-
nizing the locomotion of a rehabilitation exoskeleton limb
according to the movement or muscle excitation of a natural
limb [98]. This scientific area encompasses a plethora of pub-
lications where the motion of the exoskeleton is estimated
using traditional (non-ML) methods, like the Gaussian pro-
cess latent variable model [99] and human motion intent
prediction–based control algorithm [100], whereas studies
similar to [98] utilizing machine learning, have not been
published in the last years.
6.2 Motion Synthesis
Most recent publications in motion synthesis utilize deter-
ministic or probabilistic techniques, which are further cate-
gorized into physics-based methods, diversified motion syn-
thesis, and style transfer techniques. Many studies combine
RNNs with generative adversarial training. When RL or ad-
versarial neural networks comprise the core mechanism for

motion synthesis (given a specific scenario), the techniques
are categorized as probabilistic, whereas if adversarial tech-
niques are utilized for the creation of a pluralistic training
set (e.g. set of scenes required to condition the movement
trajectories) prior to deterministic model training, the meth-
ods are considered as deterministic. It is worth mentioning
that even though adversarial techniques are used in deter-
ministic motion generation —with most recent applications
being synthesizing 3D character movement in interaction
with a virtual scene [48] and producing movement from
a single short motion sequence [49] —GANs are mainly
present in probabilistic data-driven motion synthesis. Most
deterministic motion synthesis methods rely on Recurrent
Neural Networks [11], [12] (e.g. Long Short-Term Memory
models [45]) and transformers with stacked attention layers
[46].

This review also briefly presents studies on probabilistic
motion synthesis [37], [50], [52], [55], [56], [57], [58], [61],
[62], [63], [64]. Such works usually combine recurrent neural
networks (simple RNNs, LSTMs, etc.) with adversarial neu-
ral networks [71], like GANs [40] or RL [52], [67] models,
which learn control policies to generate the desired motion
given a specific scenario. Other works [50], [55] in this
application domain exploit variational autoencoders and
specifically Conditional VAEs [50], [52], [56] since these
models give the ability to produce multiple plausible motion
sequences conditioned on past pose series or even parts of
historical motions as in [56]. Moreover, in some of these
works [56], [57] VAEs are a part of transformer-based archi-
tectures with multiple stack attention layers, which enable
the extraction of both local and global long-term temporal
features from 3D pose sequences and further synthesize
motions of any lengths. Nevertheless, more recent works,
published in late 2022 [58], [62], [63], [64] and early 2023
[61], explore the concept of diffusion models for motion gen-
eration conditioned on multiple data sources (text, audio,
etc.). Diffusion models produce a distribution that can better
express the many-to-many distribution matching problem
(i.e. producing diverse motions) and thus increase the learn-
ing capacity of the neural network. This is an advantage
over other probabilistic models, like VAEs, that imply a one-
to-one mapping or produce a normal latent distribution that
limits the stochasticity of the learning procedure [61].

Even though all of the aforementioned papers are quite
recent and innovative, the architecture proposed in [37]
slightly differentiates from the others because it can generate
highly complex distributions. In addition, as the neural
network is invertible, it gives the ability to directly calculate
and maximize the likelihood of the data of the model
during training, in contrast to GANs or VAEs. Moreover,
MoGlow has built-in controllability, meaning that it can
model conditional motion distributions without algorithmic
latency, unlike VAEs [52]. Moreover, this model is task-
agnostic which means that it is independent of restrictions
like the anatomy of the animated character, or the motion
being quasi-periodic (like in [44]).

The motion synthesis works presented previously use
mostly motion capture data in order to train their models.
Specifically, according to Table 4, most works create the
training dataset by recording their own motion capture data
sequences, since they try to produce quite specific move-
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TABLE 3
Overview of ML approaches for short-term (400ms) and long-term (1000ms) prediction of motion on H3.6Mc

Publication ML Technique Dataset Short-term MAE Long-term MAE

(Martinez, 2017) [15] GRU H3.6m [92] 1.23 1.89
(Tang, 2018) [14] MHU H3.6m 1.13 1.80
(Liu, 2019) [16] RNN H3.6m 0.93 1.36

(Mao, 2022) [36] CVAE-based NTU-RGB [101], GRAB [102],
BABEL [103], HumanAct12 [60] - -

(Liu, 2021) [39] GAN-based H3.6M 1.43 1.75
(Harvey, 2020) [40] RNN and GAN H3.6M, LAFAN1 [40] 0.56 (320ms) and 0.64 (500ms) 0.79
(Honda, 2020) [22] RNN 2D mocap data from videos - -
(Mao, 2020) [23] GCN-based Feed-Forward H3.6M, AMASS [104], 3DPW [105] 0.94 1.57
(Cui, 2020) [25] GCN H3.6M, CMU, 3DPW 0.86 1.20
(Li M., 2020) [26] DMGNN H3.6M, CMU 0.95 1.21
(Zhang, 2021) [29] CVAE H3.6M, CMU, AMASS, and more - -
(Aliakbarian, 2020) [33] CVAE H3.6M, CMU 0.68 1.03
(Aliakbarian, 2021) [32] CVAE H3.6M, CMU, etc. 0.65 1.02
(Salzmann, 2022) [34] GRU-based H3.6M, AMASS 1.01 1.63
(Zhong, 2022) [27] GCN-based H3.6M, AMASS, 3DPW 0.65 1.02
(Ma T., 2022) [28] GCN-based H3.6M, CMU, 3DPW 1.02 1.61
(Guo, 2022) [24] GCN-based Own Mocap Data (+Videos, 3D meshes etc.) - -
(Ma H., 2022) [35] CVAE-based H3.6M, HumanEva-I [106] - -
(Mao, 2021) [38] Deep Generative H3.6M, HumanEva-I - -
c

The results of both short- and long-term prediction on the publicly available H3.6M dataset. The MAE (mean angle error) indicates the error (in degrees)
between the reference joint angles (from the reference motion set) and the predicted ones and is computed across all activities (walking, running, jumping,
etc. - 15 in total of H3.6M). The lower the MAE is, the better the accuracy that the model outputs. For [26] and [39] the short-term prediction MAE is
the average of 11 actions of H3.6M, (namely, directions, greeting, phoning, posing, purchases, sitting, sitting down, taking photos, waiting, walking dog,
walking together) and the long-term MAE is for the remaining 4 actions of the dataset (i.e. walking, eating, smoking, discussion). As for the [33] and [32]
the short- and long-term forecasting results are averaged among the 4 actions of walking, eating, smoking, and discussing.

ments (e.g. martial art styles [12] or basketball dribbles [11]),
which are hard-to-find in existing databases that contain
one or few classes of action. Also, most motion synthesis
publications offer real-time solutions, which can be used for
automatic animation production and character control.

6.3 Musculoskeletal Dynamics Estimation
Most motion prediction and synthesis works that were
described in the previous sections, provide human loco-
motion estimations relying only on kinematics data (e.g.
joint angles) and neglect other physical parameters such
as GRFs, joint, muscle, and contact forces, joint torques,
etc. leading to unrealistic simulations. However, one can
integrate deep learning models such as [76], [77] that es-
timate biomechanical parameters (e.g. foot contact mechan-
ics or GRFs) in order to enhance the accuracy of motion
estimation and provide more physically-plausible results.
Other works in this category with applications in computer
vision, like [83], can be used to infer physical forces from
visual information (videos or images), which forces can
be then exploited to enhance motion synthesis/prediction.
Moreover, recent methods for musculoskeletal dynamics
applications [7], [8] bring physics-based domain knowl-
edge into the data-driven model (e.g. CNN, LSTM) as soft
constraints (in the loss function). These Physics-Informed
Neural Networks, while promoting physical consistency,
do not explicitly model the complex underlying physics
governing the human body (unlike FEM and traditional
computational neuromusculoskeletal models), and, hence,
they can be computationally fast. In both works [7], [8], it
was shown that by penalizing/regularising the motion pre-
diction/synthesis models, the robustness in the estimation
of the forces and the kinematics improved. Lastly, in this cat-
egory there are works such as [79] and [78] that synthesize

the motion of muscle-actuated models via deep learning and
pose as alternatives to musculoskeletal modeling software.
It is worth mentioning that developing models for dynamics
estimation with applications in visualization and graphics is
still an open field for research.

Furthermore, there are many musculoskeletal dynamics
works that are used to solve biomedical/medical prob-
lems. Such works can be used alongside motion estimation
techniques to simulate the internal state of a 3D virtual
character and take a turn toward physics-based animation.
In this category, fall works that developed machine learning
frameworks such as Artificial Neural Networks [85], [87],
Random Forest [89], [91], Recurrent Neural Networks [86]
and Convolutional Neural Networks [88] used for joint and
muscle force estimation, especially for the lower limb.

6.4 Challenges and Research Aims

The use of machine learning in motion prediction and
synthesis has shown a rise in the last three years (2020-2022),
with over 40 works with new research directions reviewed
in this work. As for the ML-based musculoskeletal dynamics
estimation studies, which started to appear after 2018, we
consider that more research in this application domain,
investigating motion synthesis or motion prediction in com-
bination with force prediction would be advantageous for
multiple reasons. For biomedical engineering and clinical
applications, body joint torques, joint force and muscle
force estimation aids in the diagnosis or prognosis of a
disease (e.g. osteoarthritis), while the availability of a model
simulating the patient’s body motion allows performing
sensitivity and perturbation analysis for a different number
of parameters, which is necessary for the design of subject-
specific treatment (e.g. for total knee replacement surgery)
and personalized intervention and rehabilitation strategies.
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TABLE 4
Overview of ML approaches for motion synthesisd

Publication ML Technique Dataset Real-Time/Offline

(Starke, 2019) [10] NSM (auto-regression) Own Mocap Dataset Real-Time
(Starke, 2020) [11] NSM with local motion phases Own Mocap Dataset Real-Time
(Starke, 2021) [12] NSM with control modules Own Mocap Dataset Real-Time and Offline
(Henter, 2020) [37] LSTM-based CMU [107] and HDM05 [108] and dog Mocap from [43] Real-time
(Peng, 2021) [41] Adversarial RL Commercial Mocap dataset Real-time
(Starke, 2022) [42] Periodic Autoencoder Various Mocap Datasets (e.g. AIST++, dog mocap [43]) Real-time
(Aristidou, 2021) [45] DL methods like LSTM Own Mocap Dataset and AIST++ Real-time
(Pu, 2022) [46] Transformer-based AIST++ [59] Offline
(Men, 2021) [53] GAN (LSTM-based) SBU [109] and HHOI [110] and 2C [111] Real-Time
(Mourot, 2020) [54] GAN-based MPI-INF-3DHP [112] Offline
(Wang J., 2021) [48] GAN-based PROX [113], GTA-IM [114] Offline
(Li P., 2022) [49] GAN-based - Offline
(Hassan, 2021) [50] Autoregressive CVAE-based Own Mocap dataset Offline
(Ling, 2020) [52] VAE + RL Own Mocap Dataset Real-time
(Li J., 2021) [55] HM-VAE AMASS, 3DPW, LAFAN1 Offline
(Cai, 2021) [56] CVAE H3.6M, CMU Offline
(Briq, 2022) [57] RTVAE-Multi PROX, Charades [115] Offline
(Raab, 2023) [61] Transformer-based Diffusion Model HumanML3D [116] and Mixamo [117] and more Offline
(Ma J., 2022) [62] Transformer-based Diffusion Model AMASS [104], LAFAN1 [40], BABEL [103] and more Offline
(Chang, 2022) [63] Diffusion Model dataset proposed by [118] Offline
(Yuan, 2022) [64] Transformer-based Diffusion Model HumanML3D [116] and more Offline
(Lee, 2021) [65] Deep NN + RL Public Available Datasets (like CMU [107] and Mixamo [117]) Real-time
(Yuan, 2020) [66] RL-based H3.6m Real-time/Offline
(Bergamin, 2019) [67] Motion Matching + RL Own Mocap Dataset Real-Time
(Peng, 2018b) [68] RL Commercial Mocap dataset or keyframed animations Real-time
(Maeda, 2022) [69] VAE + RL [68] + RL-based [66] HDM05 Offline
(Xie, 2021) [70] CVAE-based + CNN H3.6M, HumanEva-I Offline
(Wang Z., 2019) [71] LSTM + GAN-based network Own Mocap dataset + CMU Real-time/Offline
(Chen, 2020) [72] RNN CMU Offline
(Wang H., 2021) [73] RNN Various datasets like CMU, HDM05, H3.6m etc. Offline
(Raab, 2022) [74] GAN-based Mixamo and HumanAct12 Offline
(Wang J., 2022) [75] CVAE-based PROX Offline
(Tevet, 2022) [76] Transformer-based Diffusion Model HumanML3D [116] and more Offline
(Aberman, 2020) [96] GAN-based Motion clips of an animated character and videos Offline
d

The 3D human full-body motion datasets mentioned in this table, were used for evaluating the cited works and are described thoroughly in Appendix
B.

In computer graphics research on the other hand, such
approaches may facilitate the creation of more realistic hu-
man movements in video games, adjusted to the estimated
energy expenditure [119] and the character’s long-term
fatigue induced by selected actions [120]. Therefore, they
open the path for modeling temporally evolving, ergonomic
effects [121], which may allow in the future to synthesize
fatigue-driven motion, and thereby produce more empathic
computer graphics characters’ animation.

Other open challenges for future research, are summa-
rized below.

ML-based motion prediction

• Exploring novel or hybrid architectures that would
produce more accurate predictions, i.e. resulting in
small MAE as in [40].

• Evaluating existing models or developing new ones,
using data from multiple action classes (beyond gait).

• Investigating new methods for eliminating distor-
tions in the predicted movement, such as in [16].

• Using ML/DL methods to synchronize the locomo-
tion of rehabilitation exoskeleton limbs based on
the motion or muscle excitation of physical limbs
[98], and generally focusing on developing motion
prediction techniques for biomedical applications.

ML-based motion synthesis

• Targeting real-time algorithms for various applica-
tions, such as in the gaming industry.

• Using existing motion synthesis methods to create
synthetic human movement databases (e.g. [40]).

• Focusing more on physics-based animation tech-
niques that enhance the realistic feel and the accuracy
of the synthetic movement.

ML-based musculoskeletal dynamics estimation

• Developing frameworks that estimate both the kine-
matics and dynamics of a digital avatar.

• Creating models that focus more on visualization
and graphics applications (e.g. animating muscle-
actuated models).

• Focusing more on architectures predicting joint or
muscle forces in a short time horizon, instead of
estimating them at the current frame.

7 CONCLUSION

Summarizing, this paper provides a thorough insight into
state-of-the-art ML-based frameworks for motion predic-
tion, synthesis, and musculoskeletal dynamics estimation
problems. Such innovative works can accelerate the cre-
ation of more realistic animation, aid in robot planning
for human-robot interaction applications, and significantly
contribute to the design of exoskeletons or optimize the
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treatment and rehabilitation of human (lower or upper)
limb conditions. Furthermore, advanced motion generator
schemes, that produce novel and more precise motions,
can be used to bypass many crucial obstacles that both
biomechanics and computer graphics engineers face, such
as the hard-to-find motion capture data, as well as the
scarcity of data obtained from human-object and human-
human interaction. Further research is required to improve
the generalization ability of the models to less frequent
motion classes and transition events.
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